]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
drm/amd/display: Check hpd_gpio for NULL before accessing it
[thirdparty/kernel/stable.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31
32 #include <drm/drmP.h>
33 #include <drm/i915_drm.h>
34
35 #include "i915_drv.h"
36 #include "i915_gem_render_state.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 #include "intel_workarounds.h"
40
41 /* Rough estimate of the typical request size, performing a flush,
42 * set-context and then emitting the batch.
43 */
44 #define LEGACY_REQUEST_SIZE 200
45
46 static unsigned int __intel_ring_space(unsigned int head,
47 unsigned int tail,
48 unsigned int size)
49 {
50 /*
51 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
52 * same cacheline, the Head Pointer must not be greater than the Tail
53 * Pointer."
54 */
55 GEM_BUG_ON(!is_power_of_2(size));
56 return (head - tail - CACHELINE_BYTES) & (size - 1);
57 }
58
59 unsigned int intel_ring_update_space(struct intel_ring *ring)
60 {
61 unsigned int space;
62
63 space = __intel_ring_space(ring->head, ring->emit, ring->size);
64
65 ring->space = space;
66 return space;
67 }
68
69 static int
70 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
71 {
72 unsigned int num_store_dw;
73 u32 cmd, *cs;
74
75 cmd = MI_FLUSH;
76 num_store_dw = 0;
77 if (mode & EMIT_INVALIDATE)
78 cmd |= MI_READ_FLUSH;
79 if (mode & EMIT_FLUSH)
80 num_store_dw = 4;
81
82 cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
83 if (IS_ERR(cs))
84 return PTR_ERR(cs);
85
86 *cs++ = cmd;
87 while (num_store_dw--) {
88 *cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
89 *cs++ = i915_scratch_offset(rq->i915);
90 *cs++ = 0;
91 }
92 *cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;
93
94 intel_ring_advance(rq, cs);
95
96 return 0;
97 }
98
99 static int
100 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
101 {
102 u32 cmd, *cs;
103 int i;
104
105 /*
106 * read/write caches:
107 *
108 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
109 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
110 * also flushed at 2d versus 3d pipeline switches.
111 *
112 * read-only caches:
113 *
114 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
115 * MI_READ_FLUSH is set, and is always flushed on 965.
116 *
117 * I915_GEM_DOMAIN_COMMAND may not exist?
118 *
119 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
120 * invalidated when MI_EXE_FLUSH is set.
121 *
122 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
123 * invalidated with every MI_FLUSH.
124 *
125 * TLBs:
126 *
127 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
128 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
129 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
130 * are flushed at any MI_FLUSH.
131 */
132
133 cmd = MI_FLUSH;
134 if (mode & EMIT_INVALIDATE) {
135 cmd |= MI_EXE_FLUSH;
136 if (IS_G4X(rq->i915) || IS_GEN5(rq->i915))
137 cmd |= MI_INVALIDATE_ISP;
138 }
139
140 i = 2;
141 if (mode & EMIT_INVALIDATE)
142 i += 20;
143
144 cs = intel_ring_begin(rq, i);
145 if (IS_ERR(cs))
146 return PTR_ERR(cs);
147
148 *cs++ = cmd;
149
150 /*
151 * A random delay to let the CS invalidate take effect? Without this
152 * delay, the GPU relocation path fails as the CS does not see
153 * the updated contents. Just as important, if we apply the flushes
154 * to the EMIT_FLUSH branch (i.e. immediately after the relocation
155 * write and before the invalidate on the next batch), the relocations
156 * still fail. This implies that is a delay following invalidation
157 * that is required to reset the caches as opposed to a delay to
158 * ensure the memory is written.
159 */
160 if (mode & EMIT_INVALIDATE) {
161 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
162 *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
163 *cs++ = 0;
164 *cs++ = 0;
165
166 for (i = 0; i < 12; i++)
167 *cs++ = MI_FLUSH;
168
169 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
170 *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
171 *cs++ = 0;
172 *cs++ = 0;
173 }
174
175 *cs++ = cmd;
176
177 intel_ring_advance(rq, cs);
178
179 return 0;
180 }
181
182 /*
183 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
184 * implementing two workarounds on gen6. From section 1.4.7.1
185 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
186 *
187 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
188 * produced by non-pipelined state commands), software needs to first
189 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
190 * 0.
191 *
192 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
193 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
194 *
195 * And the workaround for these two requires this workaround first:
196 *
197 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
198 * BEFORE the pipe-control with a post-sync op and no write-cache
199 * flushes.
200 *
201 * And this last workaround is tricky because of the requirements on
202 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
203 * volume 2 part 1:
204 *
205 * "1 of the following must also be set:
206 * - Render Target Cache Flush Enable ([12] of DW1)
207 * - Depth Cache Flush Enable ([0] of DW1)
208 * - Stall at Pixel Scoreboard ([1] of DW1)
209 * - Depth Stall ([13] of DW1)
210 * - Post-Sync Operation ([13] of DW1)
211 * - Notify Enable ([8] of DW1)"
212 *
213 * The cache flushes require the workaround flush that triggered this
214 * one, so we can't use it. Depth stall would trigger the same.
215 * Post-sync nonzero is what triggered this second workaround, so we
216 * can't use that one either. Notify enable is IRQs, which aren't
217 * really our business. That leaves only stall at scoreboard.
218 */
219 static int
220 intel_emit_post_sync_nonzero_flush(struct i915_request *rq)
221 {
222 u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
223 u32 *cs;
224
225 cs = intel_ring_begin(rq, 6);
226 if (IS_ERR(cs))
227 return PTR_ERR(cs);
228
229 *cs++ = GFX_OP_PIPE_CONTROL(5);
230 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
231 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
232 *cs++ = 0; /* low dword */
233 *cs++ = 0; /* high dword */
234 *cs++ = MI_NOOP;
235 intel_ring_advance(rq, cs);
236
237 cs = intel_ring_begin(rq, 6);
238 if (IS_ERR(cs))
239 return PTR_ERR(cs);
240
241 *cs++ = GFX_OP_PIPE_CONTROL(5);
242 *cs++ = PIPE_CONTROL_QW_WRITE;
243 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
244 *cs++ = 0;
245 *cs++ = 0;
246 *cs++ = MI_NOOP;
247 intel_ring_advance(rq, cs);
248
249 return 0;
250 }
251
252 static int
253 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
254 {
255 u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
256 u32 *cs, flags = 0;
257 int ret;
258
259 /* Force SNB workarounds for PIPE_CONTROL flushes */
260 ret = intel_emit_post_sync_nonzero_flush(rq);
261 if (ret)
262 return ret;
263
264 /* Just flush everything. Experiments have shown that reducing the
265 * number of bits based on the write domains has little performance
266 * impact.
267 */
268 if (mode & EMIT_FLUSH) {
269 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
270 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
271 /*
272 * Ensure that any following seqno writes only happen
273 * when the render cache is indeed flushed.
274 */
275 flags |= PIPE_CONTROL_CS_STALL;
276 }
277 if (mode & EMIT_INVALIDATE) {
278 flags |= PIPE_CONTROL_TLB_INVALIDATE;
279 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
280 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
281 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
282 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
283 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
284 /*
285 * TLB invalidate requires a post-sync write.
286 */
287 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
288 }
289
290 cs = intel_ring_begin(rq, 4);
291 if (IS_ERR(cs))
292 return PTR_ERR(cs);
293
294 *cs++ = GFX_OP_PIPE_CONTROL(4);
295 *cs++ = flags;
296 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
297 *cs++ = 0;
298 intel_ring_advance(rq, cs);
299
300 return 0;
301 }
302
303 static int
304 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
305 {
306 u32 *cs;
307
308 cs = intel_ring_begin(rq, 4);
309 if (IS_ERR(cs))
310 return PTR_ERR(cs);
311
312 *cs++ = GFX_OP_PIPE_CONTROL(4);
313 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
314 *cs++ = 0;
315 *cs++ = 0;
316 intel_ring_advance(rq, cs);
317
318 return 0;
319 }
320
321 static int
322 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
323 {
324 u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
325 u32 *cs, flags = 0;
326
327 /*
328 * Ensure that any following seqno writes only happen when the render
329 * cache is indeed flushed.
330 *
331 * Workaround: 4th PIPE_CONTROL command (except the ones with only
332 * read-cache invalidate bits set) must have the CS_STALL bit set. We
333 * don't try to be clever and just set it unconditionally.
334 */
335 flags |= PIPE_CONTROL_CS_STALL;
336
337 /* Just flush everything. Experiments have shown that reducing the
338 * number of bits based on the write domains has little performance
339 * impact.
340 */
341 if (mode & EMIT_FLUSH) {
342 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
343 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
344 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
345 flags |= PIPE_CONTROL_FLUSH_ENABLE;
346 }
347 if (mode & EMIT_INVALIDATE) {
348 flags |= PIPE_CONTROL_TLB_INVALIDATE;
349 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
350 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
351 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
352 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
353 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
354 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
355 /*
356 * TLB invalidate requires a post-sync write.
357 */
358 flags |= PIPE_CONTROL_QW_WRITE;
359 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
360
361 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
362
363 /* Workaround: we must issue a pipe_control with CS-stall bit
364 * set before a pipe_control command that has the state cache
365 * invalidate bit set. */
366 gen7_render_ring_cs_stall_wa(rq);
367 }
368
369 cs = intel_ring_begin(rq, 4);
370 if (IS_ERR(cs))
371 return PTR_ERR(cs);
372
373 *cs++ = GFX_OP_PIPE_CONTROL(4);
374 *cs++ = flags;
375 *cs++ = scratch_addr;
376 *cs++ = 0;
377 intel_ring_advance(rq, cs);
378
379 return 0;
380 }
381
382 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
383 {
384 struct drm_i915_private *dev_priv = engine->i915;
385 struct page *page = virt_to_page(engine->status_page.page_addr);
386 phys_addr_t phys = PFN_PHYS(page_to_pfn(page));
387 u32 addr;
388
389 addr = lower_32_bits(phys);
390 if (INTEL_GEN(dev_priv) >= 4)
391 addr |= (phys >> 28) & 0xf0;
392
393 I915_WRITE(HWS_PGA, addr);
394 }
395
396 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
397 {
398 struct drm_i915_private *dev_priv = engine->i915;
399 i915_reg_t mmio;
400
401 /* The ring status page addresses are no longer next to the rest of
402 * the ring registers as of gen7.
403 */
404 if (IS_GEN7(dev_priv)) {
405 switch (engine->id) {
406 /*
407 * No more rings exist on Gen7. Default case is only to shut up
408 * gcc switch check warning.
409 */
410 default:
411 GEM_BUG_ON(engine->id);
412 case RCS:
413 mmio = RENDER_HWS_PGA_GEN7;
414 break;
415 case BCS:
416 mmio = BLT_HWS_PGA_GEN7;
417 break;
418 case VCS:
419 mmio = BSD_HWS_PGA_GEN7;
420 break;
421 case VECS:
422 mmio = VEBOX_HWS_PGA_GEN7;
423 break;
424 }
425 } else if (IS_GEN6(dev_priv)) {
426 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
427 } else {
428 mmio = RING_HWS_PGA(engine->mmio_base);
429 }
430
431 if (INTEL_GEN(dev_priv) >= 6) {
432 u32 mask = ~0u;
433
434 /*
435 * Keep the render interrupt unmasked as this papers over
436 * lost interrupts following a reset.
437 */
438 if (engine->id == RCS)
439 mask &= ~BIT(0);
440
441 I915_WRITE(RING_HWSTAM(engine->mmio_base), mask);
442 }
443
444 I915_WRITE(mmio, engine->status_page.ggtt_offset);
445 POSTING_READ(mmio);
446
447 /* Flush the TLB for this page */
448 if (IS_GEN(dev_priv, 6, 7)) {
449 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
450
451 /* ring should be idle before issuing a sync flush*/
452 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
453
454 I915_WRITE(reg,
455 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
456 INSTPM_SYNC_FLUSH));
457 if (intel_wait_for_register(dev_priv,
458 reg, INSTPM_SYNC_FLUSH, 0,
459 1000))
460 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
461 engine->name);
462 }
463 }
464
465 static bool stop_ring(struct intel_engine_cs *engine)
466 {
467 struct drm_i915_private *dev_priv = engine->i915;
468
469 if (INTEL_GEN(dev_priv) > 2) {
470 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
471 if (intel_wait_for_register(dev_priv,
472 RING_MI_MODE(engine->mmio_base),
473 MODE_IDLE,
474 MODE_IDLE,
475 1000)) {
476 DRM_ERROR("%s : timed out trying to stop ring\n",
477 engine->name);
478 /* Sometimes we observe that the idle flag is not
479 * set even though the ring is empty. So double
480 * check before giving up.
481 */
482 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
483 return false;
484 }
485 }
486
487 I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));
488
489 I915_WRITE_HEAD(engine, 0);
490 I915_WRITE_TAIL(engine, 0);
491
492 /* The ring must be empty before it is disabled */
493 I915_WRITE_CTL(engine, 0);
494
495 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
496 }
497
498 static int init_ring_common(struct intel_engine_cs *engine)
499 {
500 struct drm_i915_private *dev_priv = engine->i915;
501 struct intel_ring *ring = engine->buffer;
502 int ret = 0;
503
504 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
505
506 if (!stop_ring(engine)) {
507 /* G45 ring initialization often fails to reset head to zero */
508 DRM_DEBUG_DRIVER("%s head not reset to zero "
509 "ctl %08x head %08x tail %08x start %08x\n",
510 engine->name,
511 I915_READ_CTL(engine),
512 I915_READ_HEAD(engine),
513 I915_READ_TAIL(engine),
514 I915_READ_START(engine));
515
516 if (!stop_ring(engine)) {
517 DRM_ERROR("failed to set %s head to zero "
518 "ctl %08x head %08x tail %08x start %08x\n",
519 engine->name,
520 I915_READ_CTL(engine),
521 I915_READ_HEAD(engine),
522 I915_READ_TAIL(engine),
523 I915_READ_START(engine));
524 ret = -EIO;
525 goto out;
526 }
527 }
528
529 if (HWS_NEEDS_PHYSICAL(dev_priv))
530 ring_setup_phys_status_page(engine);
531 else
532 intel_ring_setup_status_page(engine);
533
534 intel_engine_reset_breadcrumbs(engine);
535
536 if (HAS_LEGACY_SEMAPHORES(engine->i915)) {
537 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
538 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
539 if (HAS_VEBOX(dev_priv))
540 I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
541 }
542
543 /* Enforce ordering by reading HEAD register back */
544 I915_READ_HEAD(engine);
545
546 /* Initialize the ring. This must happen _after_ we've cleared the ring
547 * registers with the above sequence (the readback of the HEAD registers
548 * also enforces ordering), otherwise the hw might lose the new ring
549 * register values. */
550 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
551
552 /* WaClearRingBufHeadRegAtInit:ctg,elk */
553 if (I915_READ_HEAD(engine))
554 DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
555 engine->name, I915_READ_HEAD(engine));
556
557 /* Check that the ring offsets point within the ring! */
558 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
559 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
560 intel_ring_update_space(ring);
561
562 /* First wake the ring up to an empty/idle ring */
563 I915_WRITE_HEAD(engine, ring->head);
564 I915_WRITE_TAIL(engine, ring->head);
565 (void)I915_READ_TAIL(engine);
566
567 I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
568
569 /* If the head is still not zero, the ring is dead */
570 if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
571 RING_VALID, RING_VALID,
572 50)) {
573 DRM_ERROR("%s initialization failed "
574 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
575 engine->name,
576 I915_READ_CTL(engine),
577 I915_READ_CTL(engine) & RING_VALID,
578 I915_READ_HEAD(engine), ring->head,
579 I915_READ_TAIL(engine), ring->tail,
580 I915_READ_START(engine),
581 i915_ggtt_offset(ring->vma));
582 ret = -EIO;
583 goto out;
584 }
585
586 if (INTEL_GEN(dev_priv) > 2)
587 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
588
589 /* Now awake, let it get started */
590 if (ring->tail != ring->head) {
591 I915_WRITE_TAIL(engine, ring->tail);
592 (void)I915_READ_TAIL(engine);
593 }
594
595 /* Papering over lost _interrupts_ immediately following the restart */
596 intel_engine_wakeup(engine);
597 out:
598 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
599
600 return ret;
601 }
602
603 static struct i915_request *reset_prepare(struct intel_engine_cs *engine)
604 {
605 intel_engine_stop_cs(engine);
606
607 if (engine->irq_seqno_barrier)
608 engine->irq_seqno_barrier(engine);
609
610 return i915_gem_find_active_request(engine);
611 }
612
613 static void skip_request(struct i915_request *rq)
614 {
615 void *vaddr = rq->ring->vaddr;
616 u32 head;
617
618 head = rq->infix;
619 if (rq->postfix < head) {
620 memset32(vaddr + head, MI_NOOP,
621 (rq->ring->size - head) / sizeof(u32));
622 head = 0;
623 }
624 memset32(vaddr + head, MI_NOOP, (rq->postfix - head) / sizeof(u32));
625 }
626
627 static void reset_ring(struct intel_engine_cs *engine, struct i915_request *rq)
628 {
629 GEM_TRACE("%s request global=%d, current=%d\n",
630 engine->name, rq ? rq->global_seqno : 0,
631 intel_engine_get_seqno(engine));
632
633 /*
634 * Try to restore the logical GPU state to match the continuation
635 * of the request queue. If we skip the context/PD restore, then
636 * the next request may try to execute assuming that its context
637 * is valid and loaded on the GPU and so may try to access invalid
638 * memory, prompting repeated GPU hangs.
639 *
640 * If the request was guilty, we still restore the logical state
641 * in case the next request requires it (e.g. the aliasing ppgtt),
642 * but skip over the hung batch.
643 *
644 * If the request was innocent, we try to replay the request with
645 * the restored context.
646 */
647 if (rq) {
648 /* If the rq hung, jump to its breadcrumb and skip the batch */
649 rq->ring->head = intel_ring_wrap(rq->ring, rq->head);
650 if (rq->fence.error == -EIO)
651 skip_request(rq);
652 }
653 }
654
655 static void reset_finish(struct intel_engine_cs *engine)
656 {
657 }
658
659 static int intel_rcs_ctx_init(struct i915_request *rq)
660 {
661 int ret;
662
663 ret = intel_engine_emit_ctx_wa(rq);
664 if (ret != 0)
665 return ret;
666
667 ret = i915_gem_render_state_emit(rq);
668 if (ret)
669 return ret;
670
671 return 0;
672 }
673
674 static int init_render_ring(struct intel_engine_cs *engine)
675 {
676 struct drm_i915_private *dev_priv = engine->i915;
677 int ret = init_ring_common(engine);
678 if (ret)
679 return ret;
680
681 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
682 if (IS_GEN(dev_priv, 4, 6))
683 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
684
685 /* We need to disable the AsyncFlip performance optimisations in order
686 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
687 * programmed to '1' on all products.
688 *
689 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
690 */
691 if (IS_GEN(dev_priv, 6, 7))
692 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
693
694 /* Required for the hardware to program scanline values for waiting */
695 /* WaEnableFlushTlbInvalidationMode:snb */
696 if (IS_GEN6(dev_priv))
697 I915_WRITE(GFX_MODE,
698 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
699
700 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
701 if (IS_GEN7(dev_priv))
702 I915_WRITE(GFX_MODE_GEN7,
703 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
704 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
705
706 if (IS_GEN6(dev_priv)) {
707 /* From the Sandybridge PRM, volume 1 part 3, page 24:
708 * "If this bit is set, STCunit will have LRA as replacement
709 * policy. [...] This bit must be reset. LRA replacement
710 * policy is not supported."
711 */
712 I915_WRITE(CACHE_MODE_0,
713 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
714 }
715
716 if (IS_GEN(dev_priv, 6, 7))
717 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
718
719 if (INTEL_GEN(dev_priv) >= 6)
720 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
721
722 return 0;
723 }
724
725 static u32 *gen6_signal(struct i915_request *rq, u32 *cs)
726 {
727 struct drm_i915_private *dev_priv = rq->i915;
728 struct intel_engine_cs *engine;
729 enum intel_engine_id id;
730 int num_rings = 0;
731
732 for_each_engine(engine, dev_priv, id) {
733 i915_reg_t mbox_reg;
734
735 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
736 continue;
737
738 mbox_reg = rq->engine->semaphore.mbox.signal[engine->hw_id];
739 if (i915_mmio_reg_valid(mbox_reg)) {
740 *cs++ = MI_LOAD_REGISTER_IMM(1);
741 *cs++ = i915_mmio_reg_offset(mbox_reg);
742 *cs++ = rq->global_seqno;
743 num_rings++;
744 }
745 }
746 if (num_rings & 1)
747 *cs++ = MI_NOOP;
748
749 return cs;
750 }
751
752 static void cancel_requests(struct intel_engine_cs *engine)
753 {
754 struct i915_request *request;
755 unsigned long flags;
756
757 spin_lock_irqsave(&engine->timeline.lock, flags);
758
759 /* Mark all submitted requests as skipped. */
760 list_for_each_entry(request, &engine->timeline.requests, link) {
761 GEM_BUG_ON(!request->global_seqno);
762
763 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
764 &request->fence.flags))
765 continue;
766
767 dma_fence_set_error(&request->fence, -EIO);
768 }
769
770 intel_write_status_page(engine,
771 I915_GEM_HWS_INDEX,
772 intel_engine_last_submit(engine));
773
774 /* Remaining _unready_ requests will be nop'ed when submitted */
775
776 spin_unlock_irqrestore(&engine->timeline.lock, flags);
777 }
778
779 static void i9xx_submit_request(struct i915_request *request)
780 {
781 struct drm_i915_private *dev_priv = request->i915;
782
783 i915_request_submit(request);
784
785 I915_WRITE_TAIL(request->engine,
786 intel_ring_set_tail(request->ring, request->tail));
787 }
788
789 static void i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
790 {
791 *cs++ = MI_STORE_DWORD_INDEX;
792 *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
793 *cs++ = rq->global_seqno;
794 *cs++ = MI_USER_INTERRUPT;
795
796 rq->tail = intel_ring_offset(rq, cs);
797 assert_ring_tail_valid(rq->ring, rq->tail);
798 }
799
800 static const int i9xx_emit_breadcrumb_sz = 4;
801
802 static void gen6_sema_emit_breadcrumb(struct i915_request *rq, u32 *cs)
803 {
804 return i9xx_emit_breadcrumb(rq, rq->engine->semaphore.signal(rq, cs));
805 }
806
807 static int
808 gen6_ring_sync_to(struct i915_request *rq, struct i915_request *signal)
809 {
810 u32 dw1 = MI_SEMAPHORE_MBOX |
811 MI_SEMAPHORE_COMPARE |
812 MI_SEMAPHORE_REGISTER;
813 u32 wait_mbox = signal->engine->semaphore.mbox.wait[rq->engine->hw_id];
814 u32 *cs;
815
816 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
817
818 cs = intel_ring_begin(rq, 4);
819 if (IS_ERR(cs))
820 return PTR_ERR(cs);
821
822 *cs++ = dw1 | wait_mbox;
823 /* Throughout all of the GEM code, seqno passed implies our current
824 * seqno is >= the last seqno executed. However for hardware the
825 * comparison is strictly greater than.
826 */
827 *cs++ = signal->global_seqno - 1;
828 *cs++ = 0;
829 *cs++ = MI_NOOP;
830 intel_ring_advance(rq, cs);
831
832 return 0;
833 }
834
835 static void
836 gen5_seqno_barrier(struct intel_engine_cs *engine)
837 {
838 /* MI_STORE are internally buffered by the GPU and not flushed
839 * either by MI_FLUSH or SyncFlush or any other combination of
840 * MI commands.
841 *
842 * "Only the submission of the store operation is guaranteed.
843 * The write result will be complete (coherent) some time later
844 * (this is practically a finite period but there is no guaranteed
845 * latency)."
846 *
847 * Empirically, we observe that we need a delay of at least 75us to
848 * be sure that the seqno write is visible by the CPU.
849 */
850 usleep_range(125, 250);
851 }
852
853 static void
854 gen6_seqno_barrier(struct intel_engine_cs *engine)
855 {
856 struct drm_i915_private *dev_priv = engine->i915;
857
858 /* Workaround to force correct ordering between irq and seqno writes on
859 * ivb (and maybe also on snb) by reading from a CS register (like
860 * ACTHD) before reading the status page.
861 *
862 * Note that this effectively stalls the read by the time it takes to
863 * do a memory transaction, which more or less ensures that the write
864 * from the GPU has sufficient time to invalidate the CPU cacheline.
865 * Alternatively we could delay the interrupt from the CS ring to give
866 * the write time to land, but that would incur a delay after every
867 * batch i.e. much more frequent than a delay when waiting for the
868 * interrupt (with the same net latency).
869 *
870 * Also note that to prevent whole machine hangs on gen7, we have to
871 * take the spinlock to guard against concurrent cacheline access.
872 */
873 spin_lock_irq(&dev_priv->uncore.lock);
874 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
875 spin_unlock_irq(&dev_priv->uncore.lock);
876 }
877
878 static void
879 gen5_irq_enable(struct intel_engine_cs *engine)
880 {
881 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
882 }
883
884 static void
885 gen5_irq_disable(struct intel_engine_cs *engine)
886 {
887 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
888 }
889
890 static void
891 i9xx_irq_enable(struct intel_engine_cs *engine)
892 {
893 struct drm_i915_private *dev_priv = engine->i915;
894
895 dev_priv->irq_mask &= ~engine->irq_enable_mask;
896 I915_WRITE(IMR, dev_priv->irq_mask);
897 POSTING_READ_FW(RING_IMR(engine->mmio_base));
898 }
899
900 static void
901 i9xx_irq_disable(struct intel_engine_cs *engine)
902 {
903 struct drm_i915_private *dev_priv = engine->i915;
904
905 dev_priv->irq_mask |= engine->irq_enable_mask;
906 I915_WRITE(IMR, dev_priv->irq_mask);
907 }
908
909 static void
910 i8xx_irq_enable(struct intel_engine_cs *engine)
911 {
912 struct drm_i915_private *dev_priv = engine->i915;
913
914 dev_priv->irq_mask &= ~engine->irq_enable_mask;
915 I915_WRITE16(IMR, dev_priv->irq_mask);
916 POSTING_READ16(RING_IMR(engine->mmio_base));
917 }
918
919 static void
920 i8xx_irq_disable(struct intel_engine_cs *engine)
921 {
922 struct drm_i915_private *dev_priv = engine->i915;
923
924 dev_priv->irq_mask |= engine->irq_enable_mask;
925 I915_WRITE16(IMR, dev_priv->irq_mask);
926 }
927
928 static int
929 bsd_ring_flush(struct i915_request *rq, u32 mode)
930 {
931 u32 *cs;
932
933 cs = intel_ring_begin(rq, 2);
934 if (IS_ERR(cs))
935 return PTR_ERR(cs);
936
937 *cs++ = MI_FLUSH;
938 *cs++ = MI_NOOP;
939 intel_ring_advance(rq, cs);
940 return 0;
941 }
942
943 static void
944 gen6_irq_enable(struct intel_engine_cs *engine)
945 {
946 struct drm_i915_private *dev_priv = engine->i915;
947
948 I915_WRITE_IMR(engine,
949 ~(engine->irq_enable_mask |
950 engine->irq_keep_mask));
951 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
952 }
953
954 static void
955 gen6_irq_disable(struct intel_engine_cs *engine)
956 {
957 struct drm_i915_private *dev_priv = engine->i915;
958
959 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
960 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
961 }
962
963 static void
964 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
965 {
966 struct drm_i915_private *dev_priv = engine->i915;
967
968 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
969 gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
970 }
971
972 static void
973 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
974 {
975 struct drm_i915_private *dev_priv = engine->i915;
976
977 I915_WRITE_IMR(engine, ~0);
978 gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
979 }
980
981 static int
982 i965_emit_bb_start(struct i915_request *rq,
983 u64 offset, u32 length,
984 unsigned int dispatch_flags)
985 {
986 u32 *cs;
987
988 cs = intel_ring_begin(rq, 2);
989 if (IS_ERR(cs))
990 return PTR_ERR(cs);
991
992 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
993 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
994 *cs++ = offset;
995 intel_ring_advance(rq, cs);
996
997 return 0;
998 }
999
1000 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1001 #define I830_BATCH_LIMIT SZ_256K
1002 #define I830_TLB_ENTRIES (2)
1003 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1004 static int
1005 i830_emit_bb_start(struct i915_request *rq,
1006 u64 offset, u32 len,
1007 unsigned int dispatch_flags)
1008 {
1009 u32 *cs, cs_offset = i915_scratch_offset(rq->i915);
1010
1011 GEM_BUG_ON(rq->i915->gt.scratch->size < I830_WA_SIZE);
1012
1013 cs = intel_ring_begin(rq, 6);
1014 if (IS_ERR(cs))
1015 return PTR_ERR(cs);
1016
1017 /* Evict the invalid PTE TLBs */
1018 *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1019 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1020 *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1021 *cs++ = cs_offset;
1022 *cs++ = 0xdeadbeef;
1023 *cs++ = MI_NOOP;
1024 intel_ring_advance(rq, cs);
1025
1026 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1027 if (len > I830_BATCH_LIMIT)
1028 return -ENOSPC;
1029
1030 cs = intel_ring_begin(rq, 6 + 2);
1031 if (IS_ERR(cs))
1032 return PTR_ERR(cs);
1033
1034 /* Blit the batch (which has now all relocs applied) to the
1035 * stable batch scratch bo area (so that the CS never
1036 * stumbles over its tlb invalidation bug) ...
1037 */
1038 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
1039 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1040 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1041 *cs++ = cs_offset;
1042 *cs++ = 4096;
1043 *cs++ = offset;
1044
1045 *cs++ = MI_FLUSH;
1046 *cs++ = MI_NOOP;
1047 intel_ring_advance(rq, cs);
1048
1049 /* ... and execute it. */
1050 offset = cs_offset;
1051 }
1052
1053 cs = intel_ring_begin(rq, 2);
1054 if (IS_ERR(cs))
1055 return PTR_ERR(cs);
1056
1057 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1058 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1059 MI_BATCH_NON_SECURE);
1060 intel_ring_advance(rq, cs);
1061
1062 return 0;
1063 }
1064
1065 static int
1066 i915_emit_bb_start(struct i915_request *rq,
1067 u64 offset, u32 len,
1068 unsigned int dispatch_flags)
1069 {
1070 u32 *cs;
1071
1072 cs = intel_ring_begin(rq, 2);
1073 if (IS_ERR(cs))
1074 return PTR_ERR(cs);
1075
1076 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1077 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1078 MI_BATCH_NON_SECURE);
1079 intel_ring_advance(rq, cs);
1080
1081 return 0;
1082 }
1083
1084 int intel_ring_pin(struct intel_ring *ring)
1085 {
1086 struct i915_vma *vma = ring->vma;
1087 enum i915_map_type map = i915_coherent_map_type(vma->vm->i915);
1088 unsigned int flags;
1089 void *addr;
1090 int ret;
1091
1092 GEM_BUG_ON(ring->vaddr);
1093
1094 flags = PIN_GLOBAL;
1095
1096 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1097 flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1098
1099 if (vma->obj->stolen)
1100 flags |= PIN_MAPPABLE;
1101 else
1102 flags |= PIN_HIGH;
1103
1104 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1105 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1106 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1107 else
1108 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1109 if (unlikely(ret))
1110 return ret;
1111 }
1112
1113 ret = i915_vma_pin(vma, 0, 0, flags);
1114 if (unlikely(ret))
1115 return ret;
1116
1117 if (i915_vma_is_map_and_fenceable(vma))
1118 addr = (void __force *)i915_vma_pin_iomap(vma);
1119 else
1120 addr = i915_gem_object_pin_map(vma->obj, map);
1121 if (IS_ERR(addr))
1122 goto err;
1123
1124 vma->obj->pin_global++;
1125
1126 ring->vaddr = addr;
1127 return 0;
1128
1129 err:
1130 i915_vma_unpin(vma);
1131 return PTR_ERR(addr);
1132 }
1133
1134 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1135 {
1136 GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
1137
1138 ring->tail = tail;
1139 ring->head = tail;
1140 ring->emit = tail;
1141 intel_ring_update_space(ring);
1142 }
1143
1144 void intel_ring_unpin(struct intel_ring *ring)
1145 {
1146 GEM_BUG_ON(!ring->vma);
1147 GEM_BUG_ON(!ring->vaddr);
1148
1149 /* Discard any unused bytes beyond that submitted to hw. */
1150 intel_ring_reset(ring, ring->tail);
1151
1152 if (i915_vma_is_map_and_fenceable(ring->vma))
1153 i915_vma_unpin_iomap(ring->vma);
1154 else
1155 i915_gem_object_unpin_map(ring->vma->obj);
1156 ring->vaddr = NULL;
1157
1158 ring->vma->obj->pin_global--;
1159 i915_vma_unpin(ring->vma);
1160 }
1161
1162 static struct i915_vma *
1163 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1164 {
1165 struct i915_address_space *vm = &dev_priv->ggtt.vm;
1166 struct drm_i915_gem_object *obj;
1167 struct i915_vma *vma;
1168
1169 obj = i915_gem_object_create_stolen(dev_priv, size);
1170 if (!obj)
1171 obj = i915_gem_object_create_internal(dev_priv, size);
1172 if (IS_ERR(obj))
1173 return ERR_CAST(obj);
1174
1175 /*
1176 * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1177 * if supported by the platform's GGTT.
1178 */
1179 if (vm->has_read_only)
1180 i915_gem_object_set_readonly(obj);
1181
1182 vma = i915_vma_instance(obj, vm, NULL);
1183 if (IS_ERR(vma))
1184 goto err;
1185
1186 return vma;
1187
1188 err:
1189 i915_gem_object_put(obj);
1190 return vma;
1191 }
1192
1193 struct intel_ring *
1194 intel_engine_create_ring(struct intel_engine_cs *engine,
1195 struct i915_timeline *timeline,
1196 int size)
1197 {
1198 struct intel_ring *ring;
1199 struct i915_vma *vma;
1200
1201 GEM_BUG_ON(!is_power_of_2(size));
1202 GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1203 GEM_BUG_ON(timeline == &engine->timeline);
1204 lockdep_assert_held(&engine->i915->drm.struct_mutex);
1205
1206 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1207 if (!ring)
1208 return ERR_PTR(-ENOMEM);
1209
1210 INIT_LIST_HEAD(&ring->request_list);
1211 ring->timeline = i915_timeline_get(timeline);
1212
1213 ring->size = size;
1214 /* Workaround an erratum on the i830 which causes a hang if
1215 * the TAIL pointer points to within the last 2 cachelines
1216 * of the buffer.
1217 */
1218 ring->effective_size = size;
1219 if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1220 ring->effective_size -= 2 * CACHELINE_BYTES;
1221
1222 intel_ring_update_space(ring);
1223
1224 vma = intel_ring_create_vma(engine->i915, size);
1225 if (IS_ERR(vma)) {
1226 kfree(ring);
1227 return ERR_CAST(vma);
1228 }
1229 ring->vma = vma;
1230
1231 return ring;
1232 }
1233
1234 void
1235 intel_ring_free(struct intel_ring *ring)
1236 {
1237 struct drm_i915_gem_object *obj = ring->vma->obj;
1238
1239 i915_vma_close(ring->vma);
1240 __i915_gem_object_release_unless_active(obj);
1241
1242 i915_timeline_put(ring->timeline);
1243 kfree(ring);
1244 }
1245
1246 static void intel_ring_context_destroy(struct intel_context *ce)
1247 {
1248 GEM_BUG_ON(ce->pin_count);
1249
1250 if (!ce->state)
1251 return;
1252
1253 GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1254 i915_gem_object_put(ce->state->obj);
1255 }
1256
1257 static int __context_pin_ppgtt(struct i915_gem_context *ctx)
1258 {
1259 struct i915_hw_ppgtt *ppgtt;
1260 int err = 0;
1261
1262 ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1263 if (ppgtt)
1264 err = gen6_ppgtt_pin(ppgtt);
1265
1266 return err;
1267 }
1268
1269 static void __context_unpin_ppgtt(struct i915_gem_context *ctx)
1270 {
1271 struct i915_hw_ppgtt *ppgtt;
1272
1273 ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1274 if (ppgtt)
1275 gen6_ppgtt_unpin(ppgtt);
1276 }
1277
1278 static int __context_pin(struct intel_context *ce)
1279 {
1280 struct i915_vma *vma;
1281 int err;
1282
1283 vma = ce->state;
1284 if (!vma)
1285 return 0;
1286
1287 /*
1288 * Clear this page out of any CPU caches for coherent swap-in/out.
1289 * We only want to do this on the first bind so that we do not stall
1290 * on an active context (which by nature is already on the GPU).
1291 */
1292 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1293 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1294 if (err)
1295 return err;
1296 }
1297
1298 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1299 if (err)
1300 return err;
1301
1302 /*
1303 * And mark is as a globally pinned object to let the shrinker know
1304 * it cannot reclaim the object until we release it.
1305 */
1306 vma->obj->pin_global++;
1307
1308 return 0;
1309 }
1310
1311 static void __context_unpin(struct intel_context *ce)
1312 {
1313 struct i915_vma *vma;
1314
1315 vma = ce->state;
1316 if (!vma)
1317 return;
1318
1319 vma->obj->pin_global--;
1320 i915_vma_unpin(vma);
1321 }
1322
1323 static void intel_ring_context_unpin(struct intel_context *ce)
1324 {
1325 __context_unpin_ppgtt(ce->gem_context);
1326 __context_unpin(ce);
1327
1328 i915_gem_context_put(ce->gem_context);
1329 }
1330
1331 static struct i915_vma *
1332 alloc_context_vma(struct intel_engine_cs *engine)
1333 {
1334 struct drm_i915_private *i915 = engine->i915;
1335 struct drm_i915_gem_object *obj;
1336 struct i915_vma *vma;
1337 int err;
1338
1339 obj = i915_gem_object_create(i915, engine->context_size);
1340 if (IS_ERR(obj))
1341 return ERR_CAST(obj);
1342
1343 if (engine->default_state) {
1344 void *defaults, *vaddr;
1345
1346 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1347 if (IS_ERR(vaddr)) {
1348 err = PTR_ERR(vaddr);
1349 goto err_obj;
1350 }
1351
1352 defaults = i915_gem_object_pin_map(engine->default_state,
1353 I915_MAP_WB);
1354 if (IS_ERR(defaults)) {
1355 err = PTR_ERR(defaults);
1356 goto err_map;
1357 }
1358
1359 memcpy(vaddr, defaults, engine->context_size);
1360
1361 i915_gem_object_unpin_map(engine->default_state);
1362 i915_gem_object_unpin_map(obj);
1363 }
1364
1365 /*
1366 * Try to make the context utilize L3 as well as LLC.
1367 *
1368 * On VLV we don't have L3 controls in the PTEs so we
1369 * shouldn't touch the cache level, especially as that
1370 * would make the object snooped which might have a
1371 * negative performance impact.
1372 *
1373 * Snooping is required on non-llc platforms in execlist
1374 * mode, but since all GGTT accesses use PAT entry 0 we
1375 * get snooping anyway regardless of cache_level.
1376 *
1377 * This is only applicable for Ivy Bridge devices since
1378 * later platforms don't have L3 control bits in the PTE.
1379 */
1380 if (IS_IVYBRIDGE(i915)) {
1381 /* Ignore any error, regard it as a simple optimisation */
1382 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1383 }
1384
1385 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
1386 if (IS_ERR(vma)) {
1387 err = PTR_ERR(vma);
1388 goto err_obj;
1389 }
1390
1391 return vma;
1392
1393 err_map:
1394 i915_gem_object_unpin_map(obj);
1395 err_obj:
1396 i915_gem_object_put(obj);
1397 return ERR_PTR(err);
1398 }
1399
1400 static struct intel_context *
1401 __ring_context_pin(struct intel_engine_cs *engine,
1402 struct i915_gem_context *ctx,
1403 struct intel_context *ce)
1404 {
1405 int err;
1406
1407 if (!ce->state && engine->context_size) {
1408 struct i915_vma *vma;
1409
1410 vma = alloc_context_vma(engine);
1411 if (IS_ERR(vma)) {
1412 err = PTR_ERR(vma);
1413 goto err;
1414 }
1415
1416 ce->state = vma;
1417 }
1418
1419 err = __context_pin(ce);
1420 if (err)
1421 goto err;
1422
1423 err = __context_pin_ppgtt(ce->gem_context);
1424 if (err)
1425 goto err_unpin;
1426
1427 i915_gem_context_get(ctx);
1428
1429 /* One ringbuffer to rule them all */
1430 GEM_BUG_ON(!engine->buffer);
1431 ce->ring = engine->buffer;
1432
1433 return ce;
1434
1435 err_unpin:
1436 __context_unpin(ce);
1437 err:
1438 ce->pin_count = 0;
1439 return ERR_PTR(err);
1440 }
1441
1442 static const struct intel_context_ops ring_context_ops = {
1443 .unpin = intel_ring_context_unpin,
1444 .destroy = intel_ring_context_destroy,
1445 };
1446
1447 static struct intel_context *
1448 intel_ring_context_pin(struct intel_engine_cs *engine,
1449 struct i915_gem_context *ctx)
1450 {
1451 struct intel_context *ce = to_intel_context(ctx, engine);
1452
1453 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1454
1455 if (likely(ce->pin_count++))
1456 return ce;
1457 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1458
1459 ce->ops = &ring_context_ops;
1460
1461 return __ring_context_pin(engine, ctx, ce);
1462 }
1463
1464 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1465 {
1466 struct i915_timeline *timeline;
1467 struct intel_ring *ring;
1468 int err;
1469
1470 intel_engine_setup_common(engine);
1471
1472 timeline = i915_timeline_create(engine->i915, engine->name);
1473 if (IS_ERR(timeline)) {
1474 err = PTR_ERR(timeline);
1475 goto err;
1476 }
1477
1478 ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
1479 i915_timeline_put(timeline);
1480 if (IS_ERR(ring)) {
1481 err = PTR_ERR(ring);
1482 goto err;
1483 }
1484
1485 err = intel_ring_pin(ring);
1486 if (err)
1487 goto err_ring;
1488
1489 GEM_BUG_ON(engine->buffer);
1490 engine->buffer = ring;
1491
1492 err = intel_engine_init_common(engine);
1493 if (err)
1494 goto err_unpin;
1495
1496 return 0;
1497
1498 err_unpin:
1499 intel_ring_unpin(ring);
1500 err_ring:
1501 intel_ring_free(ring);
1502 err:
1503 intel_engine_cleanup_common(engine);
1504 return err;
1505 }
1506
1507 void intel_engine_cleanup(struct intel_engine_cs *engine)
1508 {
1509 struct drm_i915_private *dev_priv = engine->i915;
1510
1511 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1512 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1513
1514 intel_ring_unpin(engine->buffer);
1515 intel_ring_free(engine->buffer);
1516
1517 if (engine->cleanup)
1518 engine->cleanup(engine);
1519
1520 intel_engine_cleanup_common(engine);
1521
1522 dev_priv->engine[engine->id] = NULL;
1523 kfree(engine);
1524 }
1525
1526 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1527 {
1528 struct intel_engine_cs *engine;
1529 enum intel_engine_id id;
1530
1531 /* Restart from the beginning of the rings for convenience */
1532 for_each_engine(engine, dev_priv, id)
1533 intel_ring_reset(engine->buffer, 0);
1534 }
1535
1536 static int load_pd_dir(struct i915_request *rq,
1537 const struct i915_hw_ppgtt *ppgtt)
1538 {
1539 const struct intel_engine_cs * const engine = rq->engine;
1540 u32 *cs;
1541
1542 cs = intel_ring_begin(rq, 6);
1543 if (IS_ERR(cs))
1544 return PTR_ERR(cs);
1545
1546 *cs++ = MI_LOAD_REGISTER_IMM(1);
1547 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1548 *cs++ = PP_DIR_DCLV_2G;
1549
1550 *cs++ = MI_LOAD_REGISTER_IMM(1);
1551 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1552 *cs++ = ppgtt->pd.base.ggtt_offset << 10;
1553
1554 intel_ring_advance(rq, cs);
1555
1556 return 0;
1557 }
1558
1559 static int flush_pd_dir(struct i915_request *rq)
1560 {
1561 const struct intel_engine_cs * const engine = rq->engine;
1562 u32 *cs;
1563
1564 cs = intel_ring_begin(rq, 4);
1565 if (IS_ERR(cs))
1566 return PTR_ERR(cs);
1567
1568 /* Stall until the page table load is complete */
1569 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1570 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1571 *cs++ = i915_scratch_offset(rq->i915);
1572 *cs++ = MI_NOOP;
1573
1574 intel_ring_advance(rq, cs);
1575 return 0;
1576 }
1577
1578 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1579 {
1580 struct drm_i915_private *i915 = rq->i915;
1581 struct intel_engine_cs *engine = rq->engine;
1582 enum intel_engine_id id;
1583 const int num_rings =
1584 /* Use an extended w/a on gen7 if signalling from other rings */
1585 (HAS_LEGACY_SEMAPHORES(i915) && IS_GEN7(i915)) ?
1586 INTEL_INFO(i915)->num_rings - 1 :
1587 0;
1588 bool force_restore = false;
1589 int len;
1590 u32 *cs;
1591
1592 flags |= MI_MM_SPACE_GTT;
1593 if (IS_HASWELL(i915))
1594 /* These flags are for resource streamer on HSW+ */
1595 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1596 else
1597 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1598
1599 len = 4;
1600 if (IS_GEN7(i915))
1601 len += 2 + (num_rings ? 4*num_rings + 6 : 0);
1602 if (flags & MI_FORCE_RESTORE) {
1603 GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1604 flags &= ~MI_FORCE_RESTORE;
1605 force_restore = true;
1606 len += 2;
1607 }
1608
1609 cs = intel_ring_begin(rq, len);
1610 if (IS_ERR(cs))
1611 return PTR_ERR(cs);
1612
1613 /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1614 if (IS_GEN7(i915)) {
1615 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1616 if (num_rings) {
1617 struct intel_engine_cs *signaller;
1618
1619 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1620 for_each_engine(signaller, i915, id) {
1621 if (signaller == engine)
1622 continue;
1623
1624 *cs++ = i915_mmio_reg_offset(
1625 RING_PSMI_CTL(signaller->mmio_base));
1626 *cs++ = _MASKED_BIT_ENABLE(
1627 GEN6_PSMI_SLEEP_MSG_DISABLE);
1628 }
1629 }
1630 }
1631
1632 if (force_restore) {
1633 /*
1634 * The HW doesn't handle being told to restore the current
1635 * context very well. Quite often it likes goes to go off and
1636 * sulk, especially when it is meant to be reloading PP_DIR.
1637 * A very simple fix to force the reload is to simply switch
1638 * away from the current context and back again.
1639 *
1640 * Note that the kernel_context will contain random state
1641 * following the INHIBIT_RESTORE. We accept this since we
1642 * never use the kernel_context state; it is merely a
1643 * placeholder we use to flush other contexts.
1644 */
1645 *cs++ = MI_SET_CONTEXT;
1646 *cs++ = i915_ggtt_offset(to_intel_context(i915->kernel_context,
1647 engine)->state) |
1648 MI_MM_SPACE_GTT |
1649 MI_RESTORE_INHIBIT;
1650 }
1651
1652 *cs++ = MI_NOOP;
1653 *cs++ = MI_SET_CONTEXT;
1654 *cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1655 /*
1656 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1657 * WaMiSetContext_Hang:snb,ivb,vlv
1658 */
1659 *cs++ = MI_NOOP;
1660
1661 if (IS_GEN7(i915)) {
1662 if (num_rings) {
1663 struct intel_engine_cs *signaller;
1664 i915_reg_t last_reg = {}; /* keep gcc quiet */
1665
1666 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1667 for_each_engine(signaller, i915, id) {
1668 if (signaller == engine)
1669 continue;
1670
1671 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1672 *cs++ = i915_mmio_reg_offset(last_reg);
1673 *cs++ = _MASKED_BIT_DISABLE(
1674 GEN6_PSMI_SLEEP_MSG_DISABLE);
1675 }
1676
1677 /* Insert a delay before the next switch! */
1678 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1679 *cs++ = i915_mmio_reg_offset(last_reg);
1680 *cs++ = i915_scratch_offset(rq->i915);
1681 *cs++ = MI_NOOP;
1682 }
1683 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1684 }
1685
1686 intel_ring_advance(rq, cs);
1687
1688 return 0;
1689 }
1690
1691 static int remap_l3(struct i915_request *rq, int slice)
1692 {
1693 u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1694 int i;
1695
1696 if (!remap_info)
1697 return 0;
1698
1699 cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1700 if (IS_ERR(cs))
1701 return PTR_ERR(cs);
1702
1703 /*
1704 * Note: We do not worry about the concurrent register cacheline hang
1705 * here because no other code should access these registers other than
1706 * at initialization time.
1707 */
1708 *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1709 for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1710 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1711 *cs++ = remap_info[i];
1712 }
1713 *cs++ = MI_NOOP;
1714 intel_ring_advance(rq, cs);
1715
1716 return 0;
1717 }
1718
1719 static int switch_context(struct i915_request *rq)
1720 {
1721 struct intel_engine_cs *engine = rq->engine;
1722 struct i915_gem_context *ctx = rq->gem_context;
1723 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1724 unsigned int unwind_mm = 0;
1725 u32 hw_flags = 0;
1726 int ret, i;
1727
1728 lockdep_assert_held(&rq->i915->drm.struct_mutex);
1729 GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1730
1731 if (ppgtt) {
1732 int loops;
1733
1734 /*
1735 * Baytail takes a little more convincing that it really needs
1736 * to reload the PD between contexts. It is not just a little
1737 * longer, as adding more stalls after the load_pd_dir (i.e.
1738 * adding a long loop around flush_pd_dir) is not as effective
1739 * as reloading the PD umpteen times. 32 is derived from
1740 * experimentation (gem_exec_parallel/fds) and has no good
1741 * explanation.
1742 */
1743 loops = 1;
1744 if (engine->id == BCS && IS_VALLEYVIEW(engine->i915))
1745 loops = 32;
1746
1747 do {
1748 ret = load_pd_dir(rq, ppgtt);
1749 if (ret)
1750 goto err;
1751 } while (--loops);
1752
1753 if (intel_engine_flag(engine) & ppgtt->pd_dirty_rings) {
1754 unwind_mm = intel_engine_flag(engine);
1755 ppgtt->pd_dirty_rings &= ~unwind_mm;
1756 hw_flags = MI_FORCE_RESTORE;
1757 }
1758 }
1759
1760 if (rq->hw_context->state) {
1761 GEM_BUG_ON(engine->id != RCS);
1762
1763 /*
1764 * The kernel context(s) is treated as pure scratch and is not
1765 * expected to retain any state (as we sacrifice it during
1766 * suspend and on resume it may be corrupted). This is ok,
1767 * as nothing actually executes using the kernel context; it
1768 * is purely used for flushing user contexts.
1769 */
1770 if (i915_gem_context_is_kernel(ctx))
1771 hw_flags = MI_RESTORE_INHIBIT;
1772
1773 ret = mi_set_context(rq, hw_flags);
1774 if (ret)
1775 goto err_mm;
1776 }
1777
1778 if (ppgtt) {
1779 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1780 if (ret)
1781 goto err_mm;
1782
1783 ret = flush_pd_dir(rq);
1784 if (ret)
1785 goto err_mm;
1786
1787 /*
1788 * Not only do we need a full barrier (post-sync write) after
1789 * invalidating the TLBs, but we need to wait a little bit
1790 * longer. Whether this is merely delaying us, or the
1791 * subsequent flush is a key part of serialising with the
1792 * post-sync op, this extra pass appears vital before a
1793 * mm switch!
1794 */
1795 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1796 if (ret)
1797 goto err_mm;
1798
1799 ret = engine->emit_flush(rq, EMIT_FLUSH);
1800 if (ret)
1801 goto err_mm;
1802 }
1803
1804 if (ctx->remap_slice) {
1805 for (i = 0; i < MAX_L3_SLICES; i++) {
1806 if (!(ctx->remap_slice & BIT(i)))
1807 continue;
1808
1809 ret = remap_l3(rq, i);
1810 if (ret)
1811 goto err_mm;
1812 }
1813
1814 ctx->remap_slice = 0;
1815 }
1816
1817 return 0;
1818
1819 err_mm:
1820 if (unwind_mm)
1821 ppgtt->pd_dirty_rings |= unwind_mm;
1822 err:
1823 return ret;
1824 }
1825
1826 static int ring_request_alloc(struct i915_request *request)
1827 {
1828 int ret;
1829
1830 GEM_BUG_ON(!request->hw_context->pin_count);
1831
1832 /* Flush enough space to reduce the likelihood of waiting after
1833 * we start building the request - in which case we will just
1834 * have to repeat work.
1835 */
1836 request->reserved_space += LEGACY_REQUEST_SIZE;
1837
1838 ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1839 if (ret)
1840 return ret;
1841
1842 ret = switch_context(request);
1843 if (ret)
1844 return ret;
1845
1846 request->reserved_space -= LEGACY_REQUEST_SIZE;
1847 return 0;
1848 }
1849
1850 static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1851 {
1852 struct i915_request *target;
1853 long timeout;
1854
1855 lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1856
1857 if (intel_ring_update_space(ring) >= bytes)
1858 return 0;
1859
1860 GEM_BUG_ON(list_empty(&ring->request_list));
1861 list_for_each_entry(target, &ring->request_list, ring_link) {
1862 /* Would completion of this request free enough space? */
1863 if (bytes <= __intel_ring_space(target->postfix,
1864 ring->emit, ring->size))
1865 break;
1866 }
1867
1868 if (WARN_ON(&target->ring_link == &ring->request_list))
1869 return -ENOSPC;
1870
1871 timeout = i915_request_wait(target,
1872 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1873 MAX_SCHEDULE_TIMEOUT);
1874 if (timeout < 0)
1875 return timeout;
1876
1877 i915_request_retire_upto(target);
1878
1879 intel_ring_update_space(ring);
1880 GEM_BUG_ON(ring->space < bytes);
1881 return 0;
1882 }
1883
1884 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes)
1885 {
1886 GEM_BUG_ON(bytes > ring->effective_size);
1887 if (unlikely(bytes > ring->effective_size - ring->emit))
1888 bytes += ring->size - ring->emit;
1889
1890 if (unlikely(bytes > ring->space)) {
1891 int ret = wait_for_space(ring, bytes);
1892 if (unlikely(ret))
1893 return ret;
1894 }
1895
1896 GEM_BUG_ON(ring->space < bytes);
1897 return 0;
1898 }
1899
1900 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1901 {
1902 struct intel_ring *ring = rq->ring;
1903 const unsigned int remain_usable = ring->effective_size - ring->emit;
1904 const unsigned int bytes = num_dwords * sizeof(u32);
1905 unsigned int need_wrap = 0;
1906 unsigned int total_bytes;
1907 u32 *cs;
1908
1909 /* Packets must be qword aligned. */
1910 GEM_BUG_ON(num_dwords & 1);
1911
1912 total_bytes = bytes + rq->reserved_space;
1913 GEM_BUG_ON(total_bytes > ring->effective_size);
1914
1915 if (unlikely(total_bytes > remain_usable)) {
1916 const int remain_actual = ring->size - ring->emit;
1917
1918 if (bytes > remain_usable) {
1919 /*
1920 * Not enough space for the basic request. So need to
1921 * flush out the remainder and then wait for
1922 * base + reserved.
1923 */
1924 total_bytes += remain_actual;
1925 need_wrap = remain_actual | 1;
1926 } else {
1927 /*
1928 * The base request will fit but the reserved space
1929 * falls off the end. So we don't need an immediate
1930 * wrap and only need to effectively wait for the
1931 * reserved size from the start of ringbuffer.
1932 */
1933 total_bytes = rq->reserved_space + remain_actual;
1934 }
1935 }
1936
1937 if (unlikely(total_bytes > ring->space)) {
1938 int ret;
1939
1940 /*
1941 * Space is reserved in the ringbuffer for finalising the
1942 * request, as that cannot be allowed to fail. During request
1943 * finalisation, reserved_space is set to 0 to stop the
1944 * overallocation and the assumption is that then we never need
1945 * to wait (which has the risk of failing with EINTR).
1946 *
1947 * See also i915_request_alloc() and i915_request_add().
1948 */
1949 GEM_BUG_ON(!rq->reserved_space);
1950
1951 ret = wait_for_space(ring, total_bytes);
1952 if (unlikely(ret))
1953 return ERR_PTR(ret);
1954 }
1955
1956 if (unlikely(need_wrap)) {
1957 need_wrap &= ~1;
1958 GEM_BUG_ON(need_wrap > ring->space);
1959 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1960 GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1961
1962 /* Fill the tail with MI_NOOP */
1963 memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1964 ring->space -= need_wrap;
1965 ring->emit = 0;
1966 }
1967
1968 GEM_BUG_ON(ring->emit > ring->size - bytes);
1969 GEM_BUG_ON(ring->space < bytes);
1970 cs = ring->vaddr + ring->emit;
1971 GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1972 ring->emit += bytes;
1973 ring->space -= bytes;
1974
1975 return cs;
1976 }
1977
1978 /* Align the ring tail to a cacheline boundary */
1979 int intel_ring_cacheline_align(struct i915_request *rq)
1980 {
1981 int num_dwords;
1982 void *cs;
1983
1984 num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1985 if (num_dwords == 0)
1986 return 0;
1987
1988 num_dwords = CACHELINE_DWORDS - num_dwords;
1989 GEM_BUG_ON(num_dwords & 1);
1990
1991 cs = intel_ring_begin(rq, num_dwords);
1992 if (IS_ERR(cs))
1993 return PTR_ERR(cs);
1994
1995 memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
1996 intel_ring_advance(rq, cs);
1997
1998 GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
1999 return 0;
2000 }
2001
2002 static void gen6_bsd_submit_request(struct i915_request *request)
2003 {
2004 struct drm_i915_private *dev_priv = request->i915;
2005
2006 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2007
2008 /* Every tail move must follow the sequence below */
2009
2010 /* Disable notification that the ring is IDLE. The GT
2011 * will then assume that it is busy and bring it out of rc6.
2012 */
2013 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2014 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2015
2016 /* Clear the context id. Here be magic! */
2017 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2018
2019 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2020 if (__intel_wait_for_register_fw(dev_priv,
2021 GEN6_BSD_SLEEP_PSMI_CONTROL,
2022 GEN6_BSD_SLEEP_INDICATOR,
2023 0,
2024 1000, 0, NULL))
2025 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2026
2027 /* Now that the ring is fully powered up, update the tail */
2028 i9xx_submit_request(request);
2029
2030 /* Let the ring send IDLE messages to the GT again,
2031 * and so let it sleep to conserve power when idle.
2032 */
2033 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2034 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2035
2036 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2037 }
2038
2039 static int mi_flush_dw(struct i915_request *rq, u32 flags)
2040 {
2041 u32 cmd, *cs;
2042
2043 cs = intel_ring_begin(rq, 4);
2044 if (IS_ERR(cs))
2045 return PTR_ERR(cs);
2046
2047 cmd = MI_FLUSH_DW;
2048
2049 /*
2050 * We always require a command barrier so that subsequent
2051 * commands, such as breadcrumb interrupts, are strictly ordered
2052 * wrt the contents of the write cache being flushed to memory
2053 * (and thus being coherent from the CPU).
2054 */
2055 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2056
2057 /*
2058 * Bspec vol 1c.3 - blitter engine command streamer:
2059 * "If ENABLED, all TLBs will be invalidated once the flush
2060 * operation is complete. This bit is only valid when the
2061 * Post-Sync Operation field is a value of 1h or 3h."
2062 */
2063 cmd |= flags;
2064
2065 *cs++ = cmd;
2066 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2067 *cs++ = 0;
2068 *cs++ = MI_NOOP;
2069
2070 intel_ring_advance(rq, cs);
2071
2072 return 0;
2073 }
2074
2075 static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
2076 {
2077 return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
2078 }
2079
2080 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
2081 {
2082 return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
2083 }
2084
2085 static int
2086 hsw_emit_bb_start(struct i915_request *rq,
2087 u64 offset, u32 len,
2088 unsigned int dispatch_flags)
2089 {
2090 u32 *cs;
2091
2092 cs = intel_ring_begin(rq, 2);
2093 if (IS_ERR(cs))
2094 return PTR_ERR(cs);
2095
2096 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2097 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
2098 /* bit0-7 is the length on GEN6+ */
2099 *cs++ = offset;
2100 intel_ring_advance(rq, cs);
2101
2102 return 0;
2103 }
2104
2105 static int
2106 gen6_emit_bb_start(struct i915_request *rq,
2107 u64 offset, u32 len,
2108 unsigned int dispatch_flags)
2109 {
2110 u32 *cs;
2111
2112 cs = intel_ring_begin(rq, 2);
2113 if (IS_ERR(cs))
2114 return PTR_ERR(cs);
2115
2116 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2117 0 : MI_BATCH_NON_SECURE_I965);
2118 /* bit0-7 is the length on GEN6+ */
2119 *cs++ = offset;
2120 intel_ring_advance(rq, cs);
2121
2122 return 0;
2123 }
2124
2125 /* Blitter support (SandyBridge+) */
2126
2127 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
2128 {
2129 return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
2130 }
2131
2132 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2133 struct intel_engine_cs *engine)
2134 {
2135 int i;
2136
2137 if (!HAS_LEGACY_SEMAPHORES(dev_priv))
2138 return;
2139
2140 GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
2141 engine->semaphore.sync_to = gen6_ring_sync_to;
2142 engine->semaphore.signal = gen6_signal;
2143
2144 /*
2145 * The current semaphore is only applied on pre-gen8
2146 * platform. And there is no VCS2 ring on the pre-gen8
2147 * platform. So the semaphore between RCS and VCS2 is
2148 * initialized as INVALID.
2149 */
2150 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2151 static const struct {
2152 u32 wait_mbox;
2153 i915_reg_t mbox_reg;
2154 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2155 [RCS_HW] = {
2156 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
2157 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
2158 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2159 },
2160 [VCS_HW] = {
2161 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
2162 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
2163 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2164 },
2165 [BCS_HW] = {
2166 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
2167 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
2168 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2169 },
2170 [VECS_HW] = {
2171 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2172 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2173 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2174 },
2175 };
2176 u32 wait_mbox;
2177 i915_reg_t mbox_reg;
2178
2179 if (i == engine->hw_id) {
2180 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2181 mbox_reg = GEN6_NOSYNC;
2182 } else {
2183 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2184 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2185 }
2186
2187 engine->semaphore.mbox.wait[i] = wait_mbox;
2188 engine->semaphore.mbox.signal[i] = mbox_reg;
2189 }
2190 }
2191
2192 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2193 struct intel_engine_cs *engine)
2194 {
2195 if (INTEL_GEN(dev_priv) >= 6) {
2196 engine->irq_enable = gen6_irq_enable;
2197 engine->irq_disable = gen6_irq_disable;
2198 engine->irq_seqno_barrier = gen6_seqno_barrier;
2199 } else if (INTEL_GEN(dev_priv) >= 5) {
2200 engine->irq_enable = gen5_irq_enable;
2201 engine->irq_disable = gen5_irq_disable;
2202 engine->irq_seqno_barrier = gen5_seqno_barrier;
2203 } else if (INTEL_GEN(dev_priv) >= 3) {
2204 engine->irq_enable = i9xx_irq_enable;
2205 engine->irq_disable = i9xx_irq_disable;
2206 } else {
2207 engine->irq_enable = i8xx_irq_enable;
2208 engine->irq_disable = i8xx_irq_disable;
2209 }
2210 }
2211
2212 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2213 {
2214 engine->submit_request = i9xx_submit_request;
2215 engine->cancel_requests = cancel_requests;
2216
2217 engine->park = NULL;
2218 engine->unpark = NULL;
2219 }
2220
2221 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2222 {
2223 i9xx_set_default_submission(engine);
2224 engine->submit_request = gen6_bsd_submit_request;
2225 }
2226
2227 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2228 struct intel_engine_cs *engine)
2229 {
2230 /* gen8+ are only supported with execlists */
2231 GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
2232
2233 intel_ring_init_irq(dev_priv, engine);
2234 intel_ring_init_semaphores(dev_priv, engine);
2235
2236 engine->init_hw = init_ring_common;
2237 engine->reset.prepare = reset_prepare;
2238 engine->reset.reset = reset_ring;
2239 engine->reset.finish = reset_finish;
2240
2241 engine->context_pin = intel_ring_context_pin;
2242 engine->request_alloc = ring_request_alloc;
2243
2244 engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2245 engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2246 if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
2247 int num_rings;
2248
2249 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2250
2251 num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2252 engine->emit_breadcrumb_sz += num_rings * 3;
2253 if (num_rings & 1)
2254 engine->emit_breadcrumb_sz++;
2255 }
2256
2257 engine->set_default_submission = i9xx_set_default_submission;
2258
2259 if (INTEL_GEN(dev_priv) >= 6)
2260 engine->emit_bb_start = gen6_emit_bb_start;
2261 else if (INTEL_GEN(dev_priv) >= 4)
2262 engine->emit_bb_start = i965_emit_bb_start;
2263 else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2264 engine->emit_bb_start = i830_emit_bb_start;
2265 else
2266 engine->emit_bb_start = i915_emit_bb_start;
2267 }
2268
2269 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2270 {
2271 struct drm_i915_private *dev_priv = engine->i915;
2272 int ret;
2273
2274 intel_ring_default_vfuncs(dev_priv, engine);
2275
2276 if (HAS_L3_DPF(dev_priv))
2277 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2278
2279 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2280
2281 if (INTEL_GEN(dev_priv) >= 6) {
2282 engine->init_context = intel_rcs_ctx_init;
2283 engine->emit_flush = gen7_render_ring_flush;
2284 if (IS_GEN6(dev_priv))
2285 engine->emit_flush = gen6_render_ring_flush;
2286 } else if (IS_GEN5(dev_priv)) {
2287 engine->emit_flush = gen4_render_ring_flush;
2288 } else {
2289 if (INTEL_GEN(dev_priv) < 4)
2290 engine->emit_flush = gen2_render_ring_flush;
2291 else
2292 engine->emit_flush = gen4_render_ring_flush;
2293 engine->irq_enable_mask = I915_USER_INTERRUPT;
2294 }
2295
2296 if (IS_HASWELL(dev_priv))
2297 engine->emit_bb_start = hsw_emit_bb_start;
2298
2299 engine->init_hw = init_render_ring;
2300
2301 ret = intel_init_ring_buffer(engine);
2302 if (ret)
2303 return ret;
2304
2305 return 0;
2306 }
2307
2308 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2309 {
2310 struct drm_i915_private *dev_priv = engine->i915;
2311
2312 intel_ring_default_vfuncs(dev_priv, engine);
2313
2314 if (INTEL_GEN(dev_priv) >= 6) {
2315 /* gen6 bsd needs a special wa for tail updates */
2316 if (IS_GEN6(dev_priv))
2317 engine->set_default_submission = gen6_bsd_set_default_submission;
2318 engine->emit_flush = gen6_bsd_ring_flush;
2319 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2320 } else {
2321 engine->emit_flush = bsd_ring_flush;
2322 if (IS_GEN5(dev_priv))
2323 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2324 else
2325 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2326 }
2327
2328 return intel_init_ring_buffer(engine);
2329 }
2330
2331 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2332 {
2333 struct drm_i915_private *dev_priv = engine->i915;
2334
2335 intel_ring_default_vfuncs(dev_priv, engine);
2336
2337 engine->emit_flush = gen6_ring_flush;
2338 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2339
2340 return intel_init_ring_buffer(engine);
2341 }
2342
2343 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2344 {
2345 struct drm_i915_private *dev_priv = engine->i915;
2346
2347 intel_ring_default_vfuncs(dev_priv, engine);
2348
2349 engine->emit_flush = gen6_ring_flush;
2350 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2351 engine->irq_enable = hsw_vebox_irq_enable;
2352 engine->irq_disable = hsw_vebox_irq_disable;
2353
2354 return intel_init_ring_buffer(engine);
2355 }