]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.h
drm/amd/display: Check hpd_gpio for NULL before accessing it
[thirdparty/kernel/stable.git] / drivers / gpu / drm / i915 / intel_ringbuffer.h
1 /* SPDX-License-Identifier: MIT */
2 #ifndef _INTEL_RINGBUFFER_H_
3 #define _INTEL_RINGBUFFER_H_
4
5 #include <drm/drm_util.h>
6
7 #include <linux/hashtable.h>
8 #include <linux/seqlock.h>
9
10 #include "i915_gem_batch_pool.h"
11
12 #include "i915_reg.h"
13 #include "i915_pmu.h"
14 #include "i915_request.h"
15 #include "i915_selftest.h"
16 #include "i915_timeline.h"
17 #include "intel_gpu_commands.h"
18 #include "intel_workarounds.h"
19
20 struct drm_printer;
21 struct i915_sched_attr;
22
23 #define I915_CMD_HASH_ORDER 9
24
25 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
26 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
27 * to give some inclination as to some of the magic values used in the various
28 * workarounds!
29 */
30 #define CACHELINE_BYTES 64
31 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
32
33 struct intel_hw_status_page {
34 struct i915_vma *vma;
35 u32 *page_addr;
36 u32 ggtt_offset;
37 };
38
39 #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
40 #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
41
42 #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
43 #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
44
45 #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
46 #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
47
48 #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
49 #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
50
51 #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
52 #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
53
54 #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
55 #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
56
57 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
58 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
59 */
60 enum intel_engine_hangcheck_action {
61 ENGINE_IDLE = 0,
62 ENGINE_WAIT,
63 ENGINE_ACTIVE_SEQNO,
64 ENGINE_ACTIVE_HEAD,
65 ENGINE_ACTIVE_SUBUNITS,
66 ENGINE_WAIT_KICK,
67 ENGINE_DEAD,
68 };
69
70 static inline const char *
71 hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
72 {
73 switch (a) {
74 case ENGINE_IDLE:
75 return "idle";
76 case ENGINE_WAIT:
77 return "wait";
78 case ENGINE_ACTIVE_SEQNO:
79 return "active seqno";
80 case ENGINE_ACTIVE_HEAD:
81 return "active head";
82 case ENGINE_ACTIVE_SUBUNITS:
83 return "active subunits";
84 case ENGINE_WAIT_KICK:
85 return "wait kick";
86 case ENGINE_DEAD:
87 return "dead";
88 }
89
90 return "unknown";
91 }
92
93 #define I915_MAX_SLICES 3
94 #define I915_MAX_SUBSLICES 8
95
96 #define instdone_slice_mask(dev_priv__) \
97 (IS_GEN7(dev_priv__) ? \
98 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
99
100 #define instdone_subslice_mask(dev_priv__) \
101 (IS_GEN7(dev_priv__) ? \
102 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask[0])
103
104 #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
105 for ((slice__) = 0, (subslice__) = 0; \
106 (slice__) < I915_MAX_SLICES; \
107 (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
108 (slice__) += ((subslice__) == 0)) \
109 for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
110 (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
111
112 struct intel_instdone {
113 u32 instdone;
114 /* The following exist only in the RCS engine */
115 u32 slice_common;
116 u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
117 u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
118 };
119
120 struct intel_engine_hangcheck {
121 u64 acthd;
122 u32 seqno;
123 enum intel_engine_hangcheck_action action;
124 unsigned long action_timestamp;
125 int deadlock;
126 struct intel_instdone instdone;
127 struct i915_request *active_request;
128 bool stalled:1;
129 bool wedged:1;
130 };
131
132 struct intel_ring {
133 struct i915_vma *vma;
134 void *vaddr;
135
136 struct i915_timeline *timeline;
137 struct list_head request_list;
138 struct list_head active_link;
139
140 u32 head;
141 u32 tail;
142 u32 emit;
143
144 u32 space;
145 u32 size;
146 u32 effective_size;
147 };
148
149 struct i915_gem_context;
150 struct drm_i915_reg_table;
151
152 /*
153 * we use a single page to load ctx workarounds so all of these
154 * values are referred in terms of dwords
155 *
156 * struct i915_wa_ctx_bb:
157 * offset: specifies batch starting position, also helpful in case
158 * if we want to have multiple batches at different offsets based on
159 * some criteria. It is not a requirement at the moment but provides
160 * an option for future use.
161 * size: size of the batch in DWORDS
162 */
163 struct i915_ctx_workarounds {
164 struct i915_wa_ctx_bb {
165 u32 offset;
166 u32 size;
167 } indirect_ctx, per_ctx;
168 struct i915_vma *vma;
169 };
170
171 struct i915_request;
172
173 #define I915_MAX_VCS 4
174 #define I915_MAX_VECS 2
175
176 /*
177 * Engine IDs definitions.
178 * Keep instances of the same type engine together.
179 */
180 enum intel_engine_id {
181 RCS = 0,
182 BCS,
183 VCS,
184 VCS2,
185 VCS3,
186 VCS4,
187 #define _VCS(n) (VCS + (n))
188 VECS,
189 VECS2
190 #define _VECS(n) (VECS + (n))
191 };
192
193 struct i915_priolist {
194 struct list_head requests[I915_PRIORITY_COUNT];
195 struct rb_node node;
196 unsigned long used;
197 int priority;
198 };
199
200 #define priolist_for_each_request(it, plist, idx) \
201 for (idx = 0; idx < ARRAY_SIZE((plist)->requests); idx++) \
202 list_for_each_entry(it, &(plist)->requests[idx], sched.link)
203
204 #define priolist_for_each_request_consume(it, n, plist, idx) \
205 for (; (idx = ffs((plist)->used)); (plist)->used &= ~BIT(idx - 1)) \
206 list_for_each_entry_safe(it, n, \
207 &(plist)->requests[idx - 1], \
208 sched.link)
209
210 struct st_preempt_hang {
211 struct completion completion;
212 bool inject_hang;
213 };
214
215 /**
216 * struct intel_engine_execlists - execlist submission queue and port state
217 *
218 * The struct intel_engine_execlists represents the combined logical state of
219 * driver and the hardware state for execlist mode of submission.
220 */
221 struct intel_engine_execlists {
222 /**
223 * @tasklet: softirq tasklet for bottom handler
224 */
225 struct tasklet_struct tasklet;
226
227 /**
228 * @default_priolist: priority list for I915_PRIORITY_NORMAL
229 */
230 struct i915_priolist default_priolist;
231
232 /**
233 * @no_priolist: priority lists disabled
234 */
235 bool no_priolist;
236
237 /**
238 * @submit_reg: gen-specific execlist submission register
239 * set to the ExecList Submission Port (elsp) register pre-Gen11 and to
240 * the ExecList Submission Queue Contents register array for Gen11+
241 */
242 u32 __iomem *submit_reg;
243
244 /**
245 * @ctrl_reg: the enhanced execlists control register, used to load the
246 * submit queue on the HW and to request preemptions to idle
247 */
248 u32 __iomem *ctrl_reg;
249
250 /**
251 * @port: execlist port states
252 *
253 * For each hardware ELSP (ExecList Submission Port) we keep
254 * track of the last request and the number of times we submitted
255 * that port to hw. We then count the number of times the hw reports
256 * a context completion or preemption. As only one context can
257 * be active on hw, we limit resubmission of context to port[0]. This
258 * is called Lite Restore, of the context.
259 */
260 struct execlist_port {
261 /**
262 * @request_count: combined request and submission count
263 */
264 struct i915_request *request_count;
265 #define EXECLIST_COUNT_BITS 2
266 #define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
267 #define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
268 #define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
269 #define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
270 #define port_set(p, packed) ((p)->request_count = (packed))
271 #define port_isset(p) ((p)->request_count)
272 #define port_index(p, execlists) ((p) - (execlists)->port)
273
274 /**
275 * @context_id: context ID for port
276 */
277 GEM_DEBUG_DECL(u32 context_id);
278
279 #define EXECLIST_MAX_PORTS 2
280 } port[EXECLIST_MAX_PORTS];
281
282 /**
283 * @active: is the HW active? We consider the HW as active after
284 * submitting any context for execution and until we have seen the
285 * last context completion event. After that, we do not expect any
286 * more events until we submit, and so can park the HW.
287 *
288 * As we have a small number of different sources from which we feed
289 * the HW, we track the state of each inside a single bitfield.
290 */
291 unsigned int active;
292 #define EXECLISTS_ACTIVE_USER 0
293 #define EXECLISTS_ACTIVE_PREEMPT 1
294 #define EXECLISTS_ACTIVE_HWACK 2
295
296 /**
297 * @port_mask: number of execlist ports - 1
298 */
299 unsigned int port_mask;
300
301 /**
302 * @queue_priority: Highest pending priority.
303 *
304 * When we add requests into the queue, or adjust the priority of
305 * executing requests, we compute the maximum priority of those
306 * pending requests. We can then use this value to determine if
307 * we need to preempt the executing requests to service the queue.
308 */
309 int queue_priority;
310
311 /**
312 * @queue: queue of requests, in priority lists
313 */
314 struct rb_root_cached queue;
315
316 /**
317 * @csb_write: control register for Context Switch buffer
318 *
319 * Note this register may be either mmio or HWSP shadow.
320 */
321 u32 *csb_write;
322
323 /**
324 * @csb_status: status array for Context Switch buffer
325 *
326 * Note these register may be either mmio or HWSP shadow.
327 */
328 u32 *csb_status;
329
330 /**
331 * @preempt_complete_status: expected CSB upon completing preemption
332 */
333 u32 preempt_complete_status;
334
335 /**
336 * @csb_head: context status buffer head
337 */
338 u8 csb_head;
339
340 I915_SELFTEST_DECLARE(struct st_preempt_hang preempt_hang;)
341 };
342
343 #define INTEL_ENGINE_CS_MAX_NAME 8
344
345 struct intel_engine_cs {
346 struct drm_i915_private *i915;
347 char name[INTEL_ENGINE_CS_MAX_NAME];
348
349 enum intel_engine_id id;
350 unsigned int hw_id;
351 unsigned int guc_id;
352
353 u8 uabi_id;
354 u8 uabi_class;
355
356 u8 class;
357 u8 instance;
358 u32 context_size;
359 u32 mmio_base;
360
361 struct intel_ring *buffer;
362
363 struct i915_timeline timeline;
364
365 struct drm_i915_gem_object *default_state;
366 void *pinned_default_state;
367
368 unsigned long irq_posted;
369 #define ENGINE_IRQ_BREADCRUMB 0
370
371 /* Rather than have every client wait upon all user interrupts,
372 * with the herd waking after every interrupt and each doing the
373 * heavyweight seqno dance, we delegate the task (of being the
374 * bottom-half of the user interrupt) to the first client. After
375 * every interrupt, we wake up one client, who does the heavyweight
376 * coherent seqno read and either goes back to sleep (if incomplete),
377 * or wakes up all the completed clients in parallel, before then
378 * transferring the bottom-half status to the next client in the queue.
379 *
380 * Compared to walking the entire list of waiters in a single dedicated
381 * bottom-half, we reduce the latency of the first waiter by avoiding
382 * a context switch, but incur additional coherent seqno reads when
383 * following the chain of request breadcrumbs. Since it is most likely
384 * that we have a single client waiting on each seqno, then reducing
385 * the overhead of waking that client is much preferred.
386 */
387 struct intel_breadcrumbs {
388 spinlock_t irq_lock; /* protects irq_*; irqsafe */
389 struct intel_wait *irq_wait; /* oldest waiter by retirement */
390
391 spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
392 struct rb_root waiters; /* sorted by retirement, priority */
393 struct list_head signals; /* sorted by retirement */
394 struct task_struct *signaler; /* used for fence signalling */
395
396 struct timer_list fake_irq; /* used after a missed interrupt */
397 struct timer_list hangcheck; /* detect missed interrupts */
398
399 unsigned int hangcheck_interrupts;
400 unsigned int irq_enabled;
401 unsigned int irq_count;
402
403 bool irq_armed : 1;
404 I915_SELFTEST_DECLARE(bool mock : 1);
405 } breadcrumbs;
406
407 struct {
408 /**
409 * @enable: Bitmask of enable sample events on this engine.
410 *
411 * Bits correspond to sample event types, for instance
412 * I915_SAMPLE_QUEUED is bit 0 etc.
413 */
414 u32 enable;
415 /**
416 * @enable_count: Reference count for the enabled samplers.
417 *
418 * Index number corresponds to the bit number from @enable.
419 */
420 unsigned int enable_count[I915_PMU_SAMPLE_BITS];
421 /**
422 * @sample: Counter values for sampling events.
423 *
424 * Our internal timer stores the current counters in this field.
425 */
426 #define I915_ENGINE_SAMPLE_MAX (I915_SAMPLE_SEMA + 1)
427 struct i915_pmu_sample sample[I915_ENGINE_SAMPLE_MAX];
428 } pmu;
429
430 /*
431 * A pool of objects to use as shadow copies of client batch buffers
432 * when the command parser is enabled. Prevents the client from
433 * modifying the batch contents after software parsing.
434 */
435 struct i915_gem_batch_pool batch_pool;
436
437 struct intel_hw_status_page status_page;
438 struct i915_ctx_workarounds wa_ctx;
439 struct i915_wa_list ctx_wa_list;
440 struct i915_wa_list wa_list;
441 struct i915_wa_list whitelist;
442
443 u32 irq_keep_mask; /* always keep these interrupts */
444 u32 irq_enable_mask; /* bitmask to enable ring interrupt */
445 void (*irq_enable)(struct intel_engine_cs *engine);
446 void (*irq_disable)(struct intel_engine_cs *engine);
447
448 int (*init_hw)(struct intel_engine_cs *engine);
449
450 struct {
451 struct i915_request *(*prepare)(struct intel_engine_cs *engine);
452 void (*reset)(struct intel_engine_cs *engine,
453 struct i915_request *rq);
454 void (*finish)(struct intel_engine_cs *engine);
455 } reset;
456
457 void (*park)(struct intel_engine_cs *engine);
458 void (*unpark)(struct intel_engine_cs *engine);
459
460 void (*set_default_submission)(struct intel_engine_cs *engine);
461
462 struct intel_context *(*context_pin)(struct intel_engine_cs *engine,
463 struct i915_gem_context *ctx);
464
465 int (*request_alloc)(struct i915_request *rq);
466 int (*init_context)(struct i915_request *rq);
467
468 int (*emit_flush)(struct i915_request *request, u32 mode);
469 #define EMIT_INVALIDATE BIT(0)
470 #define EMIT_FLUSH BIT(1)
471 #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
472 int (*emit_bb_start)(struct i915_request *rq,
473 u64 offset, u32 length,
474 unsigned int dispatch_flags);
475 #define I915_DISPATCH_SECURE BIT(0)
476 #define I915_DISPATCH_PINNED BIT(1)
477 void (*emit_breadcrumb)(struct i915_request *rq, u32 *cs);
478 int emit_breadcrumb_sz;
479
480 /* Pass the request to the hardware queue (e.g. directly into
481 * the legacy ringbuffer or to the end of an execlist).
482 *
483 * This is called from an atomic context with irqs disabled; must
484 * be irq safe.
485 */
486 void (*submit_request)(struct i915_request *rq);
487
488 /*
489 * Call when the priority on a request has changed and it and its
490 * dependencies may need rescheduling. Note the request itself may
491 * not be ready to run!
492 */
493 void (*schedule)(struct i915_request *request,
494 const struct i915_sched_attr *attr);
495
496 /*
497 * Cancel all requests on the hardware, or queued for execution.
498 * This should only cancel the ready requests that have been
499 * submitted to the engine (via the engine->submit_request callback).
500 * This is called when marking the device as wedged.
501 */
502 void (*cancel_requests)(struct intel_engine_cs *engine);
503
504 /* Some chipsets are not quite as coherent as advertised and need
505 * an expensive kick to force a true read of the up-to-date seqno.
506 * However, the up-to-date seqno is not always required and the last
507 * seen value is good enough. Note that the seqno will always be
508 * monotonic, even if not coherent.
509 */
510 void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
511 void (*cleanup)(struct intel_engine_cs *engine);
512
513 /* GEN8 signal/wait table - never trust comments!
514 * signal to signal to signal to signal to signal to
515 * RCS VCS BCS VECS VCS2
516 * --------------------------------------------------------------------
517 * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
518 * |-------------------------------------------------------------------
519 * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
520 * |-------------------------------------------------------------------
521 * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
522 * |-------------------------------------------------------------------
523 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
524 * |-------------------------------------------------------------------
525 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
526 * |-------------------------------------------------------------------
527 *
528 * Generalization:
529 * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
530 * ie. transpose of g(x, y)
531 *
532 * sync from sync from sync from sync from sync from
533 * RCS VCS BCS VECS VCS2
534 * --------------------------------------------------------------------
535 * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
536 * |-------------------------------------------------------------------
537 * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
538 * |-------------------------------------------------------------------
539 * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
540 * |-------------------------------------------------------------------
541 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
542 * |-------------------------------------------------------------------
543 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
544 * |-------------------------------------------------------------------
545 *
546 * Generalization:
547 * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
548 * ie. transpose of f(x, y)
549 */
550 struct {
551 #define GEN6_SEMAPHORE_LAST VECS_HW
552 #define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
553 #define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
554 struct {
555 /* our mbox written by others */
556 u32 wait[GEN6_NUM_SEMAPHORES];
557 /* mboxes this ring signals to */
558 i915_reg_t signal[GEN6_NUM_SEMAPHORES];
559 } mbox;
560
561 /* AKA wait() */
562 int (*sync_to)(struct i915_request *rq,
563 struct i915_request *signal);
564 u32 *(*signal)(struct i915_request *rq, u32 *cs);
565 } semaphore;
566
567 struct intel_engine_execlists execlists;
568
569 /* Contexts are pinned whilst they are active on the GPU. The last
570 * context executed remains active whilst the GPU is idle - the
571 * switch away and write to the context object only occurs on the
572 * next execution. Contexts are only unpinned on retirement of the
573 * following request ensuring that we can always write to the object
574 * on the context switch even after idling. Across suspend, we switch
575 * to the kernel context and trash it as the save may not happen
576 * before the hardware is powered down.
577 */
578 struct intel_context *last_retired_context;
579
580 /* status_notifier: list of callbacks for context-switch changes */
581 struct atomic_notifier_head context_status_notifier;
582
583 struct intel_engine_hangcheck hangcheck;
584
585 #define I915_ENGINE_NEEDS_CMD_PARSER BIT(0)
586 #define I915_ENGINE_SUPPORTS_STATS BIT(1)
587 #define I915_ENGINE_HAS_PREEMPTION BIT(2)
588 unsigned int flags;
589
590 /*
591 * Table of commands the command parser needs to know about
592 * for this engine.
593 */
594 DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
595
596 /*
597 * Table of registers allowed in commands that read/write registers.
598 */
599 const struct drm_i915_reg_table *reg_tables;
600 int reg_table_count;
601
602 /*
603 * Returns the bitmask for the length field of the specified command.
604 * Return 0 for an unrecognized/invalid command.
605 *
606 * If the command parser finds an entry for a command in the engine's
607 * cmd_tables, it gets the command's length based on the table entry.
608 * If not, it calls this function to determine the per-engine length
609 * field encoding for the command (i.e. different opcode ranges use
610 * certain bits to encode the command length in the header).
611 */
612 u32 (*get_cmd_length_mask)(u32 cmd_header);
613
614 struct {
615 /**
616 * @lock: Lock protecting the below fields.
617 */
618 seqlock_t lock;
619 /**
620 * @enabled: Reference count indicating number of listeners.
621 */
622 unsigned int enabled;
623 /**
624 * @active: Number of contexts currently scheduled in.
625 */
626 unsigned int active;
627 /**
628 * @enabled_at: Timestamp when busy stats were enabled.
629 */
630 ktime_t enabled_at;
631 /**
632 * @start: Timestamp of the last idle to active transition.
633 *
634 * Idle is defined as active == 0, active is active > 0.
635 */
636 ktime_t start;
637 /**
638 * @total: Total time this engine was busy.
639 *
640 * Accumulated time not counting the most recent block in cases
641 * where engine is currently busy (active > 0).
642 */
643 ktime_t total;
644 } stats;
645 };
646
647 static inline bool
648 intel_engine_needs_cmd_parser(const struct intel_engine_cs *engine)
649 {
650 return engine->flags & I915_ENGINE_NEEDS_CMD_PARSER;
651 }
652
653 static inline bool
654 intel_engine_supports_stats(const struct intel_engine_cs *engine)
655 {
656 return engine->flags & I915_ENGINE_SUPPORTS_STATS;
657 }
658
659 static inline bool
660 intel_engine_has_preemption(const struct intel_engine_cs *engine)
661 {
662 return engine->flags & I915_ENGINE_HAS_PREEMPTION;
663 }
664
665 static inline bool __execlists_need_preempt(int prio, int last)
666 {
667 return prio > max(0, last);
668 }
669
670 static inline void
671 execlists_set_active(struct intel_engine_execlists *execlists,
672 unsigned int bit)
673 {
674 __set_bit(bit, (unsigned long *)&execlists->active);
675 }
676
677 static inline bool
678 execlists_set_active_once(struct intel_engine_execlists *execlists,
679 unsigned int bit)
680 {
681 return !__test_and_set_bit(bit, (unsigned long *)&execlists->active);
682 }
683
684 static inline void
685 execlists_clear_active(struct intel_engine_execlists *execlists,
686 unsigned int bit)
687 {
688 __clear_bit(bit, (unsigned long *)&execlists->active);
689 }
690
691 static inline void
692 execlists_clear_all_active(struct intel_engine_execlists *execlists)
693 {
694 execlists->active = 0;
695 }
696
697 static inline bool
698 execlists_is_active(const struct intel_engine_execlists *execlists,
699 unsigned int bit)
700 {
701 return test_bit(bit, (unsigned long *)&execlists->active);
702 }
703
704 void execlists_user_begin(struct intel_engine_execlists *execlists,
705 const struct execlist_port *port);
706 void execlists_user_end(struct intel_engine_execlists *execlists);
707
708 void
709 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists);
710
711 void
712 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);
713
714 static inline unsigned int
715 execlists_num_ports(const struct intel_engine_execlists * const execlists)
716 {
717 return execlists->port_mask + 1;
718 }
719
720 static inline struct execlist_port *
721 execlists_port_complete(struct intel_engine_execlists * const execlists,
722 struct execlist_port * const port)
723 {
724 const unsigned int m = execlists->port_mask;
725
726 GEM_BUG_ON(port_index(port, execlists) != 0);
727 GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
728
729 memmove(port, port + 1, m * sizeof(struct execlist_port));
730 memset(port + m, 0, sizeof(struct execlist_port));
731
732 return port;
733 }
734
735 static inline unsigned int
736 intel_engine_flag(const struct intel_engine_cs *engine)
737 {
738 return BIT(engine->id);
739 }
740
741 static inline u32
742 intel_read_status_page(const struct intel_engine_cs *engine, int reg)
743 {
744 /* Ensure that the compiler doesn't optimize away the load. */
745 return READ_ONCE(engine->status_page.page_addr[reg]);
746 }
747
748 static inline void
749 intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
750 {
751 /* Writing into the status page should be done sparingly. Since
752 * we do when we are uncertain of the device state, we take a bit
753 * of extra paranoia to try and ensure that the HWS takes the value
754 * we give and that it doesn't end up trapped inside the CPU!
755 */
756 if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
757 mb();
758 clflush(&engine->status_page.page_addr[reg]);
759 engine->status_page.page_addr[reg] = value;
760 clflush(&engine->status_page.page_addr[reg]);
761 mb();
762 } else {
763 WRITE_ONCE(engine->status_page.page_addr[reg], value);
764 }
765 }
766
767 /*
768 * Reads a dword out of the status page, which is written to from the command
769 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
770 * MI_STORE_DATA_IMM.
771 *
772 * The following dwords have a reserved meaning:
773 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
774 * 0x04: ring 0 head pointer
775 * 0x05: ring 1 head pointer (915-class)
776 * 0x06: ring 2 head pointer (915-class)
777 * 0x10-0x1b: Context status DWords (GM45)
778 * 0x1f: Last written status offset. (GM45)
779 * 0x20-0x2f: Reserved (Gen6+)
780 *
781 * The area from dword 0x30 to 0x3ff is available for driver usage.
782 */
783 #define I915_GEM_HWS_INDEX 0x30
784 #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
785 #define I915_GEM_HWS_PREEMPT_INDEX 0x32
786 #define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
787 #define I915_GEM_HWS_SCRATCH_INDEX 0x40
788 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
789
790 #define I915_HWS_CSB_BUF0_INDEX 0x10
791 #define I915_HWS_CSB_WRITE_INDEX 0x1f
792 #define CNL_HWS_CSB_WRITE_INDEX 0x2f
793
794 struct intel_ring *
795 intel_engine_create_ring(struct intel_engine_cs *engine,
796 struct i915_timeline *timeline,
797 int size);
798 int intel_ring_pin(struct intel_ring *ring);
799 void intel_ring_reset(struct intel_ring *ring, u32 tail);
800 unsigned int intel_ring_update_space(struct intel_ring *ring);
801 void intel_ring_unpin(struct intel_ring *ring);
802 void intel_ring_free(struct intel_ring *ring);
803
804 void intel_engine_stop(struct intel_engine_cs *engine);
805 void intel_engine_cleanup(struct intel_engine_cs *engine);
806
807 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
808
809 int __must_check intel_ring_cacheline_align(struct i915_request *rq);
810
811 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes);
812 u32 __must_check *intel_ring_begin(struct i915_request *rq, unsigned int n);
813
814 static inline void intel_ring_advance(struct i915_request *rq, u32 *cs)
815 {
816 /* Dummy function.
817 *
818 * This serves as a placeholder in the code so that the reader
819 * can compare against the preceding intel_ring_begin() and
820 * check that the number of dwords emitted matches the space
821 * reserved for the command packet (i.e. the value passed to
822 * intel_ring_begin()).
823 */
824 GEM_BUG_ON((rq->ring->vaddr + rq->ring->emit) != cs);
825 }
826
827 static inline u32 intel_ring_wrap(const struct intel_ring *ring, u32 pos)
828 {
829 return pos & (ring->size - 1);
830 }
831
832 static inline bool
833 intel_ring_offset_valid(const struct intel_ring *ring,
834 unsigned int pos)
835 {
836 if (pos & -ring->size) /* must be strictly within the ring */
837 return false;
838
839 if (!IS_ALIGNED(pos, 8)) /* must be qword aligned */
840 return false;
841
842 return true;
843 }
844
845 static inline u32 intel_ring_offset(const struct i915_request *rq, void *addr)
846 {
847 /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
848 u32 offset = addr - rq->ring->vaddr;
849 GEM_BUG_ON(offset > rq->ring->size);
850 return intel_ring_wrap(rq->ring, offset);
851 }
852
853 static inline void
854 assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
855 {
856 GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
857
858 /*
859 * "Ring Buffer Use"
860 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6
861 * Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
862 * Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
863 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
864 * same cacheline, the Head Pointer must not be greater than the Tail
865 * Pointer."
866 *
867 * We use ring->head as the last known location of the actual RING_HEAD,
868 * it may have advanced but in the worst case it is equally the same
869 * as ring->head and so we should never program RING_TAIL to advance
870 * into the same cacheline as ring->head.
871 */
872 #define cacheline(a) round_down(a, CACHELINE_BYTES)
873 GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
874 tail < ring->head);
875 #undef cacheline
876 }
877
878 static inline unsigned int
879 intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
880 {
881 /* Whilst writes to the tail are strictly order, there is no
882 * serialisation between readers and the writers. The tail may be
883 * read by i915_request_retire() just as it is being updated
884 * by execlists, as although the breadcrumb is complete, the context
885 * switch hasn't been seen.
886 */
887 assert_ring_tail_valid(ring, tail);
888 ring->tail = tail;
889 return tail;
890 }
891
892 void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
893
894 void intel_engine_setup_common(struct intel_engine_cs *engine);
895 int intel_engine_init_common(struct intel_engine_cs *engine);
896 void intel_engine_cleanup_common(struct intel_engine_cs *engine);
897
898 int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
899 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
900 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
901 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
902
903 int intel_engine_stop_cs(struct intel_engine_cs *engine);
904 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine);
905
906 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine);
907 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine);
908
909 static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
910 {
911 /*
912 * We are only peeking at the tail of the submit queue (and not the
913 * queue itself) in order to gain a hint as to the current active
914 * state of the engine. Callers are not expected to be taking
915 * engine->timeline->lock, nor are they expected to be concerned
916 * wtih serialising this hint with anything, so document it as
917 * a hint and nothing more.
918 */
919 return READ_ONCE(engine->timeline.seqno);
920 }
921
922 static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
923 {
924 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
925 }
926
927 static inline bool intel_engine_signaled(struct intel_engine_cs *engine,
928 u32 seqno)
929 {
930 return i915_seqno_passed(intel_engine_get_seqno(engine), seqno);
931 }
932
933 static inline bool intel_engine_has_completed(struct intel_engine_cs *engine,
934 u32 seqno)
935 {
936 GEM_BUG_ON(!seqno);
937 return intel_engine_signaled(engine, seqno);
938 }
939
940 static inline bool intel_engine_has_started(struct intel_engine_cs *engine,
941 u32 seqno)
942 {
943 GEM_BUG_ON(!seqno);
944 return intel_engine_signaled(engine, seqno - 1);
945 }
946
947 void intel_engine_get_instdone(struct intel_engine_cs *engine,
948 struct intel_instdone *instdone);
949
950 /*
951 * Arbitrary size for largest possible 'add request' sequence. The code paths
952 * are complex and variable. Empirical measurement shows that the worst case
953 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
954 * we need to allocate double the largest single packet within that emission
955 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
956 */
957 #define MIN_SPACE_FOR_ADD_REQUEST 336
958
959 static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
960 {
961 return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
962 }
963
964 static inline u32 intel_hws_preempt_done_address(struct intel_engine_cs *engine)
965 {
966 return engine->status_page.ggtt_offset + I915_GEM_HWS_PREEMPT_ADDR;
967 }
968
969 /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
970 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
971
972 static inline void intel_wait_init(struct intel_wait *wait)
973 {
974 wait->tsk = current;
975 wait->request = NULL;
976 }
977
978 static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
979 {
980 wait->tsk = current;
981 wait->seqno = seqno;
982 }
983
984 static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
985 {
986 return wait->seqno;
987 }
988
989 static inline bool
990 intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
991 {
992 wait->seqno = seqno;
993 return intel_wait_has_seqno(wait);
994 }
995
996 static inline bool
997 intel_wait_update_request(struct intel_wait *wait,
998 const struct i915_request *rq)
999 {
1000 return intel_wait_update_seqno(wait, i915_request_global_seqno(rq));
1001 }
1002
1003 static inline bool
1004 intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
1005 {
1006 return wait->seqno == seqno;
1007 }
1008
1009 static inline bool
1010 intel_wait_check_request(const struct intel_wait *wait,
1011 const struct i915_request *rq)
1012 {
1013 return intel_wait_check_seqno(wait, i915_request_global_seqno(rq));
1014 }
1015
1016 static inline bool intel_wait_complete(const struct intel_wait *wait)
1017 {
1018 return RB_EMPTY_NODE(&wait->node);
1019 }
1020
1021 bool intel_engine_add_wait(struct intel_engine_cs *engine,
1022 struct intel_wait *wait);
1023 void intel_engine_remove_wait(struct intel_engine_cs *engine,
1024 struct intel_wait *wait);
1025 bool intel_engine_enable_signaling(struct i915_request *request, bool wakeup);
1026 void intel_engine_cancel_signaling(struct i915_request *request);
1027
1028 static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
1029 {
1030 return READ_ONCE(engine->breadcrumbs.irq_wait);
1031 }
1032
1033 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
1034 #define ENGINE_WAKEUP_WAITER BIT(0)
1035 #define ENGINE_WAKEUP_ASLEEP BIT(1)
1036
1037 void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine);
1038 void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine);
1039
1040 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
1041 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
1042
1043 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
1044 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
1045
1046 static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
1047 {
1048 memset(batch, 0, 6 * sizeof(u32));
1049
1050 batch[0] = GFX_OP_PIPE_CONTROL(6);
1051 batch[1] = flags;
1052 batch[2] = offset;
1053
1054 return batch + 6;
1055 }
1056
1057 static inline u32 *
1058 gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset)
1059 {
1060 /* We're using qword write, offset should be aligned to 8 bytes. */
1061 GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
1062
1063 /* w/a for post sync ops following a GPGPU operation we
1064 * need a prior CS_STALL, which is emitted by the flush
1065 * following the batch.
1066 */
1067 *cs++ = GFX_OP_PIPE_CONTROL(6);
1068 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1069 PIPE_CONTROL_QW_WRITE;
1070 *cs++ = gtt_offset;
1071 *cs++ = 0;
1072 *cs++ = value;
1073 /* We're thrashing one dword of HWS. */
1074 *cs++ = 0;
1075
1076 return cs;
1077 }
1078
1079 static inline u32 *
1080 gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset)
1081 {
1082 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1083 GEM_BUG_ON(gtt_offset & (1 << 5));
1084 /* Offset should be aligned to 8 bytes for both (QW/DW) write types */
1085 GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
1086
1087 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1088 *cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT;
1089 *cs++ = 0;
1090 *cs++ = value;
1091
1092 return cs;
1093 }
1094
1095 void intel_engines_sanitize(struct drm_i915_private *i915);
1096
1097 bool intel_engine_is_idle(struct intel_engine_cs *engine);
1098 bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
1099
1100 bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine);
1101 void intel_engine_lost_context(struct intel_engine_cs *engine);
1102
1103 void intel_engines_park(struct drm_i915_private *i915);
1104 void intel_engines_unpark(struct drm_i915_private *i915);
1105
1106 void intel_engines_reset_default_submission(struct drm_i915_private *i915);
1107 unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915);
1108
1109 bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
1110
1111 __printf(3, 4)
1112 void intel_engine_dump(struct intel_engine_cs *engine,
1113 struct drm_printer *m,
1114 const char *header, ...);
1115
1116 struct intel_engine_cs *
1117 intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance);
1118
1119 static inline void intel_engine_context_in(struct intel_engine_cs *engine)
1120 {
1121 unsigned long flags;
1122
1123 if (READ_ONCE(engine->stats.enabled) == 0)
1124 return;
1125
1126 write_seqlock_irqsave(&engine->stats.lock, flags);
1127
1128 if (engine->stats.enabled > 0) {
1129 if (engine->stats.active++ == 0)
1130 engine->stats.start = ktime_get();
1131 GEM_BUG_ON(engine->stats.active == 0);
1132 }
1133
1134 write_sequnlock_irqrestore(&engine->stats.lock, flags);
1135 }
1136
1137 static inline void intel_engine_context_out(struct intel_engine_cs *engine)
1138 {
1139 unsigned long flags;
1140
1141 if (READ_ONCE(engine->stats.enabled) == 0)
1142 return;
1143
1144 write_seqlock_irqsave(&engine->stats.lock, flags);
1145
1146 if (engine->stats.enabled > 0) {
1147 ktime_t last;
1148
1149 if (engine->stats.active && --engine->stats.active == 0) {
1150 /*
1151 * Decrement the active context count and in case GPU
1152 * is now idle add up to the running total.
1153 */
1154 last = ktime_sub(ktime_get(), engine->stats.start);
1155
1156 engine->stats.total = ktime_add(engine->stats.total,
1157 last);
1158 } else if (engine->stats.active == 0) {
1159 /*
1160 * After turning on engine stats, context out might be
1161 * the first event in which case we account from the
1162 * time stats gathering was turned on.
1163 */
1164 last = ktime_sub(ktime_get(), engine->stats.enabled_at);
1165
1166 engine->stats.total = ktime_add(engine->stats.total,
1167 last);
1168 }
1169 }
1170
1171 write_sequnlock_irqrestore(&engine->stats.lock, flags);
1172 }
1173
1174 int intel_enable_engine_stats(struct intel_engine_cs *engine);
1175 void intel_disable_engine_stats(struct intel_engine_cs *engine);
1176
1177 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine);
1178
1179 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1180
1181 static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
1182 {
1183 if (!execlists->preempt_hang.inject_hang)
1184 return false;
1185
1186 complete(&execlists->preempt_hang.completion);
1187 return true;
1188 }
1189
1190 #else
1191
1192 static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
1193 {
1194 return false;
1195 }
1196
1197 #endif
1198
1199 #endif /* _INTEL_RINGBUFFER_H_ */