]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.h
drm/i915: Allocate a common scratch page
[thirdparty/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _INTEL_RINGBUFFER_H_
3 #define _INTEL_RINGBUFFER_H_
4
5 #include <drm/drm_util.h>
6
7 #include <linux/hashtable.h>
8 #include <linux/seqlock.h>
9
10 #include "i915_gem_batch_pool.h"
11
12 #include "i915_reg.h"
13 #include "i915_pmu.h"
14 #include "i915_request.h"
15 #include "i915_selftest.h"
16 #include "i915_timeline.h"
17 #include "intel_gpu_commands.h"
18 #include "intel_workarounds.h"
19
20 struct drm_printer;
21 struct i915_sched_attr;
22
23 #define I915_CMD_HASH_ORDER 9
24
25 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
26 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
27 * to give some inclination as to some of the magic values used in the various
28 * workarounds!
29 */
30 #define CACHELINE_BYTES 64
31 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
32
33 struct intel_hw_status_page {
34 struct i915_vma *vma;
35 u32 *page_addr;
36 u32 ggtt_offset;
37 };
38
39 #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
40 #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
41
42 #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
43 #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
44
45 #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
46 #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
47
48 #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
49 #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
50
51 #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
52 #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
53
54 #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
55 #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
56
57 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
58 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
59 */
60 enum intel_engine_hangcheck_action {
61 ENGINE_IDLE = 0,
62 ENGINE_WAIT,
63 ENGINE_ACTIVE_SEQNO,
64 ENGINE_ACTIVE_HEAD,
65 ENGINE_ACTIVE_SUBUNITS,
66 ENGINE_WAIT_KICK,
67 ENGINE_DEAD,
68 };
69
70 static inline const char *
71 hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
72 {
73 switch (a) {
74 case ENGINE_IDLE:
75 return "idle";
76 case ENGINE_WAIT:
77 return "wait";
78 case ENGINE_ACTIVE_SEQNO:
79 return "active seqno";
80 case ENGINE_ACTIVE_HEAD:
81 return "active head";
82 case ENGINE_ACTIVE_SUBUNITS:
83 return "active subunits";
84 case ENGINE_WAIT_KICK:
85 return "wait kick";
86 case ENGINE_DEAD:
87 return "dead";
88 }
89
90 return "unknown";
91 }
92
93 #define I915_MAX_SLICES 3
94 #define I915_MAX_SUBSLICES 8
95
96 #define instdone_slice_mask(dev_priv__) \
97 (INTEL_GEN(dev_priv__) == 7 ? \
98 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
99
100 #define instdone_subslice_mask(dev_priv__) \
101 (INTEL_GEN(dev_priv__) == 7 ? \
102 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask[0])
103
104 #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
105 for ((slice__) = 0, (subslice__) = 0; \
106 (slice__) < I915_MAX_SLICES; \
107 (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
108 (slice__) += ((subslice__) == 0)) \
109 for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
110 (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
111
112 struct intel_instdone {
113 u32 instdone;
114 /* The following exist only in the RCS engine */
115 u32 slice_common;
116 u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
117 u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
118 };
119
120 struct intel_engine_hangcheck {
121 u64 acthd;
122 u32 seqno;
123 enum intel_engine_hangcheck_action action;
124 unsigned long action_timestamp;
125 int deadlock;
126 struct intel_instdone instdone;
127 struct i915_request *active_request;
128 bool stalled:1;
129 bool wedged:1;
130 };
131
132 struct intel_ring {
133 struct i915_vma *vma;
134 void *vaddr;
135
136 struct i915_timeline *timeline;
137 struct list_head request_list;
138 struct list_head active_link;
139
140 u32 head;
141 u32 tail;
142 u32 emit;
143
144 u32 space;
145 u32 size;
146 u32 effective_size;
147 };
148
149 struct i915_gem_context;
150 struct drm_i915_reg_table;
151
152 /*
153 * we use a single page to load ctx workarounds so all of these
154 * values are referred in terms of dwords
155 *
156 * struct i915_wa_ctx_bb:
157 * offset: specifies batch starting position, also helpful in case
158 * if we want to have multiple batches at different offsets based on
159 * some criteria. It is not a requirement at the moment but provides
160 * an option for future use.
161 * size: size of the batch in DWORDS
162 */
163 struct i915_ctx_workarounds {
164 struct i915_wa_ctx_bb {
165 u32 offset;
166 u32 size;
167 } indirect_ctx, per_ctx;
168 struct i915_vma *vma;
169 };
170
171 struct i915_request;
172
173 #define I915_MAX_VCS 4
174 #define I915_MAX_VECS 2
175
176 /*
177 * Engine IDs definitions.
178 * Keep instances of the same type engine together.
179 */
180 enum intel_engine_id {
181 RCS = 0,
182 BCS,
183 VCS,
184 VCS2,
185 VCS3,
186 VCS4,
187 #define _VCS(n) (VCS + (n))
188 VECS,
189 VECS2
190 #define _VECS(n) (VECS + (n))
191 };
192
193 struct i915_priolist {
194 struct rb_node node;
195 struct list_head requests;
196 int priority;
197 };
198
199 struct st_preempt_hang {
200 struct completion completion;
201 bool inject_hang;
202 };
203
204 /**
205 * struct intel_engine_execlists - execlist submission queue and port state
206 *
207 * The struct intel_engine_execlists represents the combined logical state of
208 * driver and the hardware state for execlist mode of submission.
209 */
210 struct intel_engine_execlists {
211 /**
212 * @tasklet: softirq tasklet for bottom handler
213 */
214 struct tasklet_struct tasklet;
215
216 /**
217 * @default_priolist: priority list for I915_PRIORITY_NORMAL
218 */
219 struct i915_priolist default_priolist;
220
221 /**
222 * @no_priolist: priority lists disabled
223 */
224 bool no_priolist;
225
226 /**
227 * @submit_reg: gen-specific execlist submission register
228 * set to the ExecList Submission Port (elsp) register pre-Gen11 and to
229 * the ExecList Submission Queue Contents register array for Gen11+
230 */
231 u32 __iomem *submit_reg;
232
233 /**
234 * @ctrl_reg: the enhanced execlists control register, used to load the
235 * submit queue on the HW and to request preemptions to idle
236 */
237 u32 __iomem *ctrl_reg;
238
239 /**
240 * @port: execlist port states
241 *
242 * For each hardware ELSP (ExecList Submission Port) we keep
243 * track of the last request and the number of times we submitted
244 * that port to hw. We then count the number of times the hw reports
245 * a context completion or preemption. As only one context can
246 * be active on hw, we limit resubmission of context to port[0]. This
247 * is called Lite Restore, of the context.
248 */
249 struct execlist_port {
250 /**
251 * @request_count: combined request and submission count
252 */
253 struct i915_request *request_count;
254 #define EXECLIST_COUNT_BITS 2
255 #define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
256 #define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
257 #define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
258 #define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
259 #define port_set(p, packed) ((p)->request_count = (packed))
260 #define port_isset(p) ((p)->request_count)
261 #define port_index(p, execlists) ((p) - (execlists)->port)
262
263 /**
264 * @context_id: context ID for port
265 */
266 GEM_DEBUG_DECL(u32 context_id);
267
268 #define EXECLIST_MAX_PORTS 2
269 } port[EXECLIST_MAX_PORTS];
270
271 /**
272 * @active: is the HW active? We consider the HW as active after
273 * submitting any context for execution and until we have seen the
274 * last context completion event. After that, we do not expect any
275 * more events until we submit, and so can park the HW.
276 *
277 * As we have a small number of different sources from which we feed
278 * the HW, we track the state of each inside a single bitfield.
279 */
280 unsigned int active;
281 #define EXECLISTS_ACTIVE_USER 0
282 #define EXECLISTS_ACTIVE_PREEMPT 1
283 #define EXECLISTS_ACTIVE_HWACK 2
284
285 /**
286 * @port_mask: number of execlist ports - 1
287 */
288 unsigned int port_mask;
289
290 /**
291 * @queue_priority: Highest pending priority.
292 *
293 * When we add requests into the queue, or adjust the priority of
294 * executing requests, we compute the maximum priority of those
295 * pending requests. We can then use this value to determine if
296 * we need to preempt the executing requests to service the queue.
297 */
298 int queue_priority;
299
300 /**
301 * @queue: queue of requests, in priority lists
302 */
303 struct rb_root_cached queue;
304
305 /**
306 * @csb_read: control register for Context Switch buffer
307 *
308 * Note this register is always in mmio.
309 */
310 u32 __iomem *csb_read;
311
312 /**
313 * @csb_write: control register for Context Switch buffer
314 *
315 * Note this register may be either mmio or HWSP shadow.
316 */
317 u32 *csb_write;
318
319 /**
320 * @csb_status: status array for Context Switch buffer
321 *
322 * Note these register may be either mmio or HWSP shadow.
323 */
324 u32 *csb_status;
325
326 /**
327 * @preempt_complete_status: expected CSB upon completing preemption
328 */
329 u32 preempt_complete_status;
330
331 /**
332 * @csb_write_reset: reset value for CSB write pointer
333 *
334 * As the CSB write pointer maybe either in HWSP or as a field
335 * inside an mmio register, we want to reprogram it slightly
336 * differently to avoid later confusion.
337 */
338 u32 csb_write_reset;
339
340 /**
341 * @csb_head: context status buffer head
342 */
343 u8 csb_head;
344
345 I915_SELFTEST_DECLARE(struct st_preempt_hang preempt_hang;)
346 };
347
348 #define INTEL_ENGINE_CS_MAX_NAME 8
349
350 struct intel_engine_cs {
351 struct drm_i915_private *i915;
352 char name[INTEL_ENGINE_CS_MAX_NAME];
353
354 enum intel_engine_id id;
355 unsigned int hw_id;
356 unsigned int guc_id;
357
358 u8 uabi_id;
359 u8 uabi_class;
360
361 u8 class;
362 u8 instance;
363 u32 context_size;
364 u32 mmio_base;
365
366 struct intel_ring *buffer;
367
368 struct i915_timeline timeline;
369
370 struct drm_i915_gem_object *default_state;
371 void *pinned_default_state;
372
373 unsigned long irq_posted;
374 #define ENGINE_IRQ_BREADCRUMB 0
375
376 /* Rather than have every client wait upon all user interrupts,
377 * with the herd waking after every interrupt and each doing the
378 * heavyweight seqno dance, we delegate the task (of being the
379 * bottom-half of the user interrupt) to the first client. After
380 * every interrupt, we wake up one client, who does the heavyweight
381 * coherent seqno read and either goes back to sleep (if incomplete),
382 * or wakes up all the completed clients in parallel, before then
383 * transferring the bottom-half status to the next client in the queue.
384 *
385 * Compared to walking the entire list of waiters in a single dedicated
386 * bottom-half, we reduce the latency of the first waiter by avoiding
387 * a context switch, but incur additional coherent seqno reads when
388 * following the chain of request breadcrumbs. Since it is most likely
389 * that we have a single client waiting on each seqno, then reducing
390 * the overhead of waking that client is much preferred.
391 */
392 struct intel_breadcrumbs {
393 spinlock_t irq_lock; /* protects irq_*; irqsafe */
394 struct intel_wait *irq_wait; /* oldest waiter by retirement */
395
396 spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
397 struct rb_root waiters; /* sorted by retirement, priority */
398 struct list_head signals; /* sorted by retirement */
399 struct task_struct *signaler; /* used for fence signalling */
400
401 struct timer_list fake_irq; /* used after a missed interrupt */
402 struct timer_list hangcheck; /* detect missed interrupts */
403
404 unsigned int hangcheck_interrupts;
405 unsigned int irq_enabled;
406 unsigned int irq_count;
407
408 bool irq_armed : 1;
409 I915_SELFTEST_DECLARE(bool mock : 1);
410 } breadcrumbs;
411
412 struct {
413 /**
414 * @enable: Bitmask of enable sample events on this engine.
415 *
416 * Bits correspond to sample event types, for instance
417 * I915_SAMPLE_QUEUED is bit 0 etc.
418 */
419 u32 enable;
420 /**
421 * @enable_count: Reference count for the enabled samplers.
422 *
423 * Index number corresponds to the bit number from @enable.
424 */
425 unsigned int enable_count[I915_PMU_SAMPLE_BITS];
426 /**
427 * @sample: Counter values for sampling events.
428 *
429 * Our internal timer stores the current counters in this field.
430 */
431 #define I915_ENGINE_SAMPLE_MAX (I915_SAMPLE_SEMA + 1)
432 struct i915_pmu_sample sample[I915_ENGINE_SAMPLE_MAX];
433 } pmu;
434
435 /*
436 * A pool of objects to use as shadow copies of client batch buffers
437 * when the command parser is enabled. Prevents the client from
438 * modifying the batch contents after software parsing.
439 */
440 struct i915_gem_batch_pool batch_pool;
441
442 struct intel_hw_status_page status_page;
443 struct i915_ctx_workarounds wa_ctx;
444 struct i915_wa_list wa_list;
445
446 u32 irq_keep_mask; /* always keep these interrupts */
447 u32 irq_enable_mask; /* bitmask to enable ring interrupt */
448 void (*irq_enable)(struct intel_engine_cs *engine);
449 void (*irq_disable)(struct intel_engine_cs *engine);
450
451 int (*init_hw)(struct intel_engine_cs *engine);
452
453 struct {
454 struct i915_request *(*prepare)(struct intel_engine_cs *engine);
455 void (*reset)(struct intel_engine_cs *engine,
456 struct i915_request *rq);
457 void (*finish)(struct intel_engine_cs *engine);
458 } reset;
459
460 void (*park)(struct intel_engine_cs *engine);
461 void (*unpark)(struct intel_engine_cs *engine);
462
463 void (*set_default_submission)(struct intel_engine_cs *engine);
464
465 struct intel_context *(*context_pin)(struct intel_engine_cs *engine,
466 struct i915_gem_context *ctx);
467
468 int (*request_alloc)(struct i915_request *rq);
469 int (*init_context)(struct i915_request *rq);
470
471 int (*emit_flush)(struct i915_request *request, u32 mode);
472 #define EMIT_INVALIDATE BIT(0)
473 #define EMIT_FLUSH BIT(1)
474 #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
475 int (*emit_bb_start)(struct i915_request *rq,
476 u64 offset, u32 length,
477 unsigned int dispatch_flags);
478 #define I915_DISPATCH_SECURE BIT(0)
479 #define I915_DISPATCH_PINNED BIT(1)
480 void (*emit_breadcrumb)(struct i915_request *rq, u32 *cs);
481 int emit_breadcrumb_sz;
482
483 /* Pass the request to the hardware queue (e.g. directly into
484 * the legacy ringbuffer or to the end of an execlist).
485 *
486 * This is called from an atomic context with irqs disabled; must
487 * be irq safe.
488 */
489 void (*submit_request)(struct i915_request *rq);
490
491 /* Call when the priority on a request has changed and it and its
492 * dependencies may need rescheduling. Note the request itself may
493 * not be ready to run!
494 *
495 * Called under the struct_mutex.
496 */
497 void (*schedule)(struct i915_request *request,
498 const struct i915_sched_attr *attr);
499
500 /*
501 * Cancel all requests on the hardware, or queued for execution.
502 * This should only cancel the ready requests that have been
503 * submitted to the engine (via the engine->submit_request callback).
504 * This is called when marking the device as wedged.
505 */
506 void (*cancel_requests)(struct intel_engine_cs *engine);
507
508 /* Some chipsets are not quite as coherent as advertised and need
509 * an expensive kick to force a true read of the up-to-date seqno.
510 * However, the up-to-date seqno is not always required and the last
511 * seen value is good enough. Note that the seqno will always be
512 * monotonic, even if not coherent.
513 */
514 void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
515 void (*cleanup)(struct intel_engine_cs *engine);
516
517 /* GEN8 signal/wait table - never trust comments!
518 * signal to signal to signal to signal to signal to
519 * RCS VCS BCS VECS VCS2
520 * --------------------------------------------------------------------
521 * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
522 * |-------------------------------------------------------------------
523 * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
524 * |-------------------------------------------------------------------
525 * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
526 * |-------------------------------------------------------------------
527 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
528 * |-------------------------------------------------------------------
529 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
530 * |-------------------------------------------------------------------
531 *
532 * Generalization:
533 * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
534 * ie. transpose of g(x, y)
535 *
536 * sync from sync from sync from sync from sync from
537 * RCS VCS BCS VECS VCS2
538 * --------------------------------------------------------------------
539 * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
540 * |-------------------------------------------------------------------
541 * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
542 * |-------------------------------------------------------------------
543 * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
544 * |-------------------------------------------------------------------
545 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
546 * |-------------------------------------------------------------------
547 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
548 * |-------------------------------------------------------------------
549 *
550 * Generalization:
551 * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
552 * ie. transpose of f(x, y)
553 */
554 struct {
555 #define GEN6_SEMAPHORE_LAST VECS_HW
556 #define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
557 #define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
558 struct {
559 /* our mbox written by others */
560 u32 wait[GEN6_NUM_SEMAPHORES];
561 /* mboxes this ring signals to */
562 i915_reg_t signal[GEN6_NUM_SEMAPHORES];
563 } mbox;
564
565 /* AKA wait() */
566 int (*sync_to)(struct i915_request *rq,
567 struct i915_request *signal);
568 u32 *(*signal)(struct i915_request *rq, u32 *cs);
569 } semaphore;
570
571 struct intel_engine_execlists execlists;
572
573 /* Contexts are pinned whilst they are active on the GPU. The last
574 * context executed remains active whilst the GPU is idle - the
575 * switch away and write to the context object only occurs on the
576 * next execution. Contexts are only unpinned on retirement of the
577 * following request ensuring that we can always write to the object
578 * on the context switch even after idling. Across suspend, we switch
579 * to the kernel context and trash it as the save may not happen
580 * before the hardware is powered down.
581 */
582 struct intel_context *last_retired_context;
583
584 /* status_notifier: list of callbacks for context-switch changes */
585 struct atomic_notifier_head context_status_notifier;
586
587 struct intel_engine_hangcheck hangcheck;
588
589 #define I915_ENGINE_NEEDS_CMD_PARSER BIT(0)
590 #define I915_ENGINE_SUPPORTS_STATS BIT(1)
591 #define I915_ENGINE_HAS_PREEMPTION BIT(2)
592 unsigned int flags;
593
594 /*
595 * Table of commands the command parser needs to know about
596 * for this engine.
597 */
598 DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
599
600 /*
601 * Table of registers allowed in commands that read/write registers.
602 */
603 const struct drm_i915_reg_table *reg_tables;
604 int reg_table_count;
605
606 /*
607 * Returns the bitmask for the length field of the specified command.
608 * Return 0 for an unrecognized/invalid command.
609 *
610 * If the command parser finds an entry for a command in the engine's
611 * cmd_tables, it gets the command's length based on the table entry.
612 * If not, it calls this function to determine the per-engine length
613 * field encoding for the command (i.e. different opcode ranges use
614 * certain bits to encode the command length in the header).
615 */
616 u32 (*get_cmd_length_mask)(u32 cmd_header);
617
618 struct {
619 /**
620 * @lock: Lock protecting the below fields.
621 */
622 seqlock_t lock;
623 /**
624 * @enabled: Reference count indicating number of listeners.
625 */
626 unsigned int enabled;
627 /**
628 * @active: Number of contexts currently scheduled in.
629 */
630 unsigned int active;
631 /**
632 * @enabled_at: Timestamp when busy stats were enabled.
633 */
634 ktime_t enabled_at;
635 /**
636 * @start: Timestamp of the last idle to active transition.
637 *
638 * Idle is defined as active == 0, active is active > 0.
639 */
640 ktime_t start;
641 /**
642 * @total: Total time this engine was busy.
643 *
644 * Accumulated time not counting the most recent block in cases
645 * where engine is currently busy (active > 0).
646 */
647 ktime_t total;
648 } stats;
649 };
650
651 static inline bool
652 intel_engine_needs_cmd_parser(const struct intel_engine_cs *engine)
653 {
654 return engine->flags & I915_ENGINE_NEEDS_CMD_PARSER;
655 }
656
657 static inline bool
658 intel_engine_supports_stats(const struct intel_engine_cs *engine)
659 {
660 return engine->flags & I915_ENGINE_SUPPORTS_STATS;
661 }
662
663 static inline bool
664 intel_engine_has_preemption(const struct intel_engine_cs *engine)
665 {
666 return engine->flags & I915_ENGINE_HAS_PREEMPTION;
667 }
668
669 static inline bool __execlists_need_preempt(int prio, int last)
670 {
671 return prio > max(0, last);
672 }
673
674 static inline void
675 execlists_set_active(struct intel_engine_execlists *execlists,
676 unsigned int bit)
677 {
678 __set_bit(bit, (unsigned long *)&execlists->active);
679 }
680
681 static inline bool
682 execlists_set_active_once(struct intel_engine_execlists *execlists,
683 unsigned int bit)
684 {
685 return !__test_and_set_bit(bit, (unsigned long *)&execlists->active);
686 }
687
688 static inline void
689 execlists_clear_active(struct intel_engine_execlists *execlists,
690 unsigned int bit)
691 {
692 __clear_bit(bit, (unsigned long *)&execlists->active);
693 }
694
695 static inline void
696 execlists_clear_all_active(struct intel_engine_execlists *execlists)
697 {
698 execlists->active = 0;
699 }
700
701 static inline bool
702 execlists_is_active(const struct intel_engine_execlists *execlists,
703 unsigned int bit)
704 {
705 return test_bit(bit, (unsigned long *)&execlists->active);
706 }
707
708 void execlists_user_begin(struct intel_engine_execlists *execlists,
709 const struct execlist_port *port);
710 void execlists_user_end(struct intel_engine_execlists *execlists);
711
712 void
713 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists);
714
715 void
716 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);
717
718 static inline unsigned int
719 execlists_num_ports(const struct intel_engine_execlists * const execlists)
720 {
721 return execlists->port_mask + 1;
722 }
723
724 static inline struct execlist_port *
725 execlists_port_complete(struct intel_engine_execlists * const execlists,
726 struct execlist_port * const port)
727 {
728 const unsigned int m = execlists->port_mask;
729
730 GEM_BUG_ON(port_index(port, execlists) != 0);
731 GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
732
733 memmove(port, port + 1, m * sizeof(struct execlist_port));
734 memset(port + m, 0, sizeof(struct execlist_port));
735
736 return port;
737 }
738
739 static inline unsigned int
740 intel_engine_flag(const struct intel_engine_cs *engine)
741 {
742 return BIT(engine->id);
743 }
744
745 static inline u32
746 intel_read_status_page(const struct intel_engine_cs *engine, int reg)
747 {
748 /* Ensure that the compiler doesn't optimize away the load. */
749 return READ_ONCE(engine->status_page.page_addr[reg]);
750 }
751
752 static inline void
753 intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
754 {
755 /* Writing into the status page should be done sparingly. Since
756 * we do when we are uncertain of the device state, we take a bit
757 * of extra paranoia to try and ensure that the HWS takes the value
758 * we give and that it doesn't end up trapped inside the CPU!
759 */
760 if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
761 mb();
762 clflush(&engine->status_page.page_addr[reg]);
763 engine->status_page.page_addr[reg] = value;
764 clflush(&engine->status_page.page_addr[reg]);
765 mb();
766 } else {
767 WRITE_ONCE(engine->status_page.page_addr[reg], value);
768 }
769 }
770
771 /*
772 * Reads a dword out of the status page, which is written to from the command
773 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
774 * MI_STORE_DATA_IMM.
775 *
776 * The following dwords have a reserved meaning:
777 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
778 * 0x04: ring 0 head pointer
779 * 0x05: ring 1 head pointer (915-class)
780 * 0x06: ring 2 head pointer (915-class)
781 * 0x10-0x1b: Context status DWords (GM45)
782 * 0x1f: Last written status offset. (GM45)
783 * 0x20-0x2f: Reserved (Gen6+)
784 *
785 * The area from dword 0x30 to 0x3ff is available for driver usage.
786 */
787 #define I915_GEM_HWS_INDEX 0x30
788 #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
789 #define I915_GEM_HWS_PREEMPT_INDEX 0x32
790 #define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
791 #define I915_GEM_HWS_SCRATCH_INDEX 0x40
792 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
793
794 #define I915_HWS_CSB_BUF0_INDEX 0x10
795 #define I915_HWS_CSB_WRITE_INDEX 0x1f
796 #define CNL_HWS_CSB_WRITE_INDEX 0x2f
797
798 struct intel_ring *
799 intel_engine_create_ring(struct intel_engine_cs *engine,
800 struct i915_timeline *timeline,
801 int size);
802 int intel_ring_pin(struct intel_ring *ring);
803 void intel_ring_reset(struct intel_ring *ring, u32 tail);
804 unsigned int intel_ring_update_space(struct intel_ring *ring);
805 void intel_ring_unpin(struct intel_ring *ring);
806 void intel_ring_free(struct intel_ring *ring);
807
808 void intel_engine_stop(struct intel_engine_cs *engine);
809 void intel_engine_cleanup(struct intel_engine_cs *engine);
810
811 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
812
813 int __must_check intel_ring_cacheline_align(struct i915_request *rq);
814
815 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes);
816 u32 __must_check *intel_ring_begin(struct i915_request *rq, unsigned int n);
817
818 static inline void intel_ring_advance(struct i915_request *rq, u32 *cs)
819 {
820 /* Dummy function.
821 *
822 * This serves as a placeholder in the code so that the reader
823 * can compare against the preceding intel_ring_begin() and
824 * check that the number of dwords emitted matches the space
825 * reserved for the command packet (i.e. the value passed to
826 * intel_ring_begin()).
827 */
828 GEM_BUG_ON((rq->ring->vaddr + rq->ring->emit) != cs);
829 }
830
831 static inline u32 intel_ring_wrap(const struct intel_ring *ring, u32 pos)
832 {
833 return pos & (ring->size - 1);
834 }
835
836 static inline bool
837 intel_ring_offset_valid(const struct intel_ring *ring,
838 unsigned int pos)
839 {
840 if (pos & -ring->size) /* must be strictly within the ring */
841 return false;
842
843 if (!IS_ALIGNED(pos, 8)) /* must be qword aligned */
844 return false;
845
846 return true;
847 }
848
849 static inline u32 intel_ring_offset(const struct i915_request *rq, void *addr)
850 {
851 /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
852 u32 offset = addr - rq->ring->vaddr;
853 GEM_BUG_ON(offset > rq->ring->size);
854 return intel_ring_wrap(rq->ring, offset);
855 }
856
857 static inline void
858 assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
859 {
860 GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
861
862 /*
863 * "Ring Buffer Use"
864 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6
865 * Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
866 * Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
867 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
868 * same cacheline, the Head Pointer must not be greater than the Tail
869 * Pointer."
870 *
871 * We use ring->head as the last known location of the actual RING_HEAD,
872 * it may have advanced but in the worst case it is equally the same
873 * as ring->head and so we should never program RING_TAIL to advance
874 * into the same cacheline as ring->head.
875 */
876 #define cacheline(a) round_down(a, CACHELINE_BYTES)
877 GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
878 tail < ring->head);
879 #undef cacheline
880 }
881
882 static inline unsigned int
883 intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
884 {
885 /* Whilst writes to the tail are strictly order, there is no
886 * serialisation between readers and the writers. The tail may be
887 * read by i915_request_retire() just as it is being updated
888 * by execlists, as although the breadcrumb is complete, the context
889 * switch hasn't been seen.
890 */
891 assert_ring_tail_valid(ring, tail);
892 ring->tail = tail;
893 return tail;
894 }
895
896 void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
897
898 void intel_engine_setup_common(struct intel_engine_cs *engine);
899 int intel_engine_init_common(struct intel_engine_cs *engine);
900 void intel_engine_cleanup_common(struct intel_engine_cs *engine);
901
902 int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
903 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
904 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
905 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
906
907 int intel_engine_stop_cs(struct intel_engine_cs *engine);
908 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine);
909
910 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine);
911 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine);
912
913 static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
914 {
915 /*
916 * We are only peeking at the tail of the submit queue (and not the
917 * queue itself) in order to gain a hint as to the current active
918 * state of the engine. Callers are not expected to be taking
919 * engine->timeline->lock, nor are they expected to be concerned
920 * wtih serialising this hint with anything, so document it as
921 * a hint and nothing more.
922 */
923 return READ_ONCE(engine->timeline.seqno);
924 }
925
926 static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
927 {
928 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
929 }
930
931 static inline bool intel_engine_signaled(struct intel_engine_cs *engine,
932 u32 seqno)
933 {
934 return i915_seqno_passed(intel_engine_get_seqno(engine), seqno);
935 }
936
937 static inline bool intel_engine_has_completed(struct intel_engine_cs *engine,
938 u32 seqno)
939 {
940 GEM_BUG_ON(!seqno);
941 return intel_engine_signaled(engine, seqno);
942 }
943
944 static inline bool intel_engine_has_started(struct intel_engine_cs *engine,
945 u32 seqno)
946 {
947 GEM_BUG_ON(!seqno);
948 return intel_engine_signaled(engine, seqno - 1);
949 }
950
951 void intel_engine_get_instdone(struct intel_engine_cs *engine,
952 struct intel_instdone *instdone);
953
954 /*
955 * Arbitrary size for largest possible 'add request' sequence. The code paths
956 * are complex and variable. Empirical measurement shows that the worst case
957 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
958 * we need to allocate double the largest single packet within that emission
959 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
960 */
961 #define MIN_SPACE_FOR_ADD_REQUEST 336
962
963 static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
964 {
965 return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
966 }
967
968 static inline u32 intel_hws_preempt_done_address(struct intel_engine_cs *engine)
969 {
970 return engine->status_page.ggtt_offset + I915_GEM_HWS_PREEMPT_ADDR;
971 }
972
973 /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
974 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
975
976 static inline void intel_wait_init(struct intel_wait *wait)
977 {
978 wait->tsk = current;
979 wait->request = NULL;
980 }
981
982 static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
983 {
984 wait->tsk = current;
985 wait->seqno = seqno;
986 }
987
988 static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
989 {
990 return wait->seqno;
991 }
992
993 static inline bool
994 intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
995 {
996 wait->seqno = seqno;
997 return intel_wait_has_seqno(wait);
998 }
999
1000 static inline bool
1001 intel_wait_update_request(struct intel_wait *wait,
1002 const struct i915_request *rq)
1003 {
1004 return intel_wait_update_seqno(wait, i915_request_global_seqno(rq));
1005 }
1006
1007 static inline bool
1008 intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
1009 {
1010 return wait->seqno == seqno;
1011 }
1012
1013 static inline bool
1014 intel_wait_check_request(const struct intel_wait *wait,
1015 const struct i915_request *rq)
1016 {
1017 return intel_wait_check_seqno(wait, i915_request_global_seqno(rq));
1018 }
1019
1020 static inline bool intel_wait_complete(const struct intel_wait *wait)
1021 {
1022 return RB_EMPTY_NODE(&wait->node);
1023 }
1024
1025 bool intel_engine_add_wait(struct intel_engine_cs *engine,
1026 struct intel_wait *wait);
1027 void intel_engine_remove_wait(struct intel_engine_cs *engine,
1028 struct intel_wait *wait);
1029 bool intel_engine_enable_signaling(struct i915_request *request, bool wakeup);
1030 void intel_engine_cancel_signaling(struct i915_request *request);
1031
1032 static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
1033 {
1034 return READ_ONCE(engine->breadcrumbs.irq_wait);
1035 }
1036
1037 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
1038 #define ENGINE_WAKEUP_WAITER BIT(0)
1039 #define ENGINE_WAKEUP_ASLEEP BIT(1)
1040
1041 void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine);
1042 void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine);
1043
1044 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
1045 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
1046
1047 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
1048 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
1049
1050 static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
1051 {
1052 memset(batch, 0, 6 * sizeof(u32));
1053
1054 batch[0] = GFX_OP_PIPE_CONTROL(6);
1055 batch[1] = flags;
1056 batch[2] = offset;
1057
1058 return batch + 6;
1059 }
1060
1061 static inline u32 *
1062 gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset)
1063 {
1064 /* We're using qword write, offset should be aligned to 8 bytes. */
1065 GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
1066
1067 /* w/a for post sync ops following a GPGPU operation we
1068 * need a prior CS_STALL, which is emitted by the flush
1069 * following the batch.
1070 */
1071 *cs++ = GFX_OP_PIPE_CONTROL(6);
1072 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1073 PIPE_CONTROL_QW_WRITE;
1074 *cs++ = gtt_offset;
1075 *cs++ = 0;
1076 *cs++ = value;
1077 /* We're thrashing one dword of HWS. */
1078 *cs++ = 0;
1079
1080 return cs;
1081 }
1082
1083 static inline u32 *
1084 gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset)
1085 {
1086 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1087 GEM_BUG_ON(gtt_offset & (1 << 5));
1088 /* Offset should be aligned to 8 bytes for both (QW/DW) write types */
1089 GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
1090
1091 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1092 *cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT;
1093 *cs++ = 0;
1094 *cs++ = value;
1095
1096 return cs;
1097 }
1098
1099 void intel_engines_sanitize(struct drm_i915_private *i915);
1100
1101 bool intel_engine_is_idle(struct intel_engine_cs *engine);
1102 bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
1103
1104 bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine);
1105 void intel_engine_lost_context(struct intel_engine_cs *engine);
1106
1107 void intel_engines_park(struct drm_i915_private *i915);
1108 void intel_engines_unpark(struct drm_i915_private *i915);
1109
1110 void intel_engines_reset_default_submission(struct drm_i915_private *i915);
1111 unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915);
1112
1113 bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
1114
1115 __printf(3, 4)
1116 void intel_engine_dump(struct intel_engine_cs *engine,
1117 struct drm_printer *m,
1118 const char *header, ...);
1119
1120 struct intel_engine_cs *
1121 intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance);
1122
1123 static inline void intel_engine_context_in(struct intel_engine_cs *engine)
1124 {
1125 unsigned long flags;
1126
1127 if (READ_ONCE(engine->stats.enabled) == 0)
1128 return;
1129
1130 write_seqlock_irqsave(&engine->stats.lock, flags);
1131
1132 if (engine->stats.enabled > 0) {
1133 if (engine->stats.active++ == 0)
1134 engine->stats.start = ktime_get();
1135 GEM_BUG_ON(engine->stats.active == 0);
1136 }
1137
1138 write_sequnlock_irqrestore(&engine->stats.lock, flags);
1139 }
1140
1141 static inline void intel_engine_context_out(struct intel_engine_cs *engine)
1142 {
1143 unsigned long flags;
1144
1145 if (READ_ONCE(engine->stats.enabled) == 0)
1146 return;
1147
1148 write_seqlock_irqsave(&engine->stats.lock, flags);
1149
1150 if (engine->stats.enabled > 0) {
1151 ktime_t last;
1152
1153 if (engine->stats.active && --engine->stats.active == 0) {
1154 /*
1155 * Decrement the active context count and in case GPU
1156 * is now idle add up to the running total.
1157 */
1158 last = ktime_sub(ktime_get(), engine->stats.start);
1159
1160 engine->stats.total = ktime_add(engine->stats.total,
1161 last);
1162 } else if (engine->stats.active == 0) {
1163 /*
1164 * After turning on engine stats, context out might be
1165 * the first event in which case we account from the
1166 * time stats gathering was turned on.
1167 */
1168 last = ktime_sub(ktime_get(), engine->stats.enabled_at);
1169
1170 engine->stats.total = ktime_add(engine->stats.total,
1171 last);
1172 }
1173 }
1174
1175 write_sequnlock_irqrestore(&engine->stats.lock, flags);
1176 }
1177
1178 int intel_enable_engine_stats(struct intel_engine_cs *engine);
1179 void intel_disable_engine_stats(struct intel_engine_cs *engine);
1180
1181 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine);
1182
1183 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1184
1185 static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
1186 {
1187 if (!execlists->preempt_hang.inject_hang)
1188 return false;
1189
1190 complete(&execlists->preempt_hang.completion);
1191 return true;
1192 }
1193
1194 #else
1195
1196 static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
1197 {
1198 return false;
1199 }
1200
1201 #endif
1202
1203 #endif /* _INTEL_RINGBUFFER_H_ */