]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c
Merge tag 'drm-intel-fixes-2018-12-12-1' of git://anongit.freedesktop.org/drm/drm...
[thirdparty/linux.git] / drivers / gpu / drm / msm / disp / dpu1 / dpu_encoder.c
1 /*
2 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
3 * Copyright (C) 2013 Red Hat
4 * Author: Rob Clark <robdclark@gmail.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
20 #include <linux/kthread.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23
24 #include "msm_drv.h"
25 #include "dpu_kms.h"
26 #include <drm/drm_crtc.h>
27 #include <drm/drm_crtc_helper.h>
28 #include "dpu_hwio.h"
29 #include "dpu_hw_catalog.h"
30 #include "dpu_hw_intf.h"
31 #include "dpu_hw_ctl.h"
32 #include "dpu_formats.h"
33 #include "dpu_encoder_phys.h"
34 #include "dpu_crtc.h"
35 #include "dpu_trace.h"
36 #include "dpu_core_irq.h"
37
38 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
39 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
40
41 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
42 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
43
44 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
45 (p) ? (p)->parent->base.id : -1, \
46 (p) ? (p)->intf_idx - INTF_0 : -1, \
47 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
48 ##__VA_ARGS__)
49
50 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
51 (p) ? (p)->parent->base.id : -1, \
52 (p) ? (p)->intf_idx - INTF_0 : -1, \
53 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
54 ##__VA_ARGS__)
55
56 /*
57 * Two to anticipate panels that can do cmd/vid dynamic switching
58 * plan is to create all possible physical encoder types, and switch between
59 * them at runtime
60 */
61 #define NUM_PHYS_ENCODER_TYPES 2
62
63 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
64 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
65
66 #define MAX_CHANNELS_PER_ENC 2
67
68 #define IDLE_SHORT_TIMEOUT 1
69
70 #define MAX_VDISPLAY_SPLIT 1080
71
72 /**
73 * enum dpu_enc_rc_events - events for resource control state machine
74 * @DPU_ENC_RC_EVENT_KICKOFF:
75 * This event happens at NORMAL priority.
76 * Event that signals the start of the transfer. When this event is
77 * received, enable MDP/DSI core clocks. Regardless of the previous
78 * state, the resource should be in ON state at the end of this event.
79 * @DPU_ENC_RC_EVENT_FRAME_DONE:
80 * This event happens at INTERRUPT level.
81 * Event signals the end of the data transfer after the PP FRAME_DONE
82 * event. At the end of this event, a delayed work is scheduled to go to
83 * IDLE_PC state after IDLE_TIMEOUT time.
84 * @DPU_ENC_RC_EVENT_PRE_STOP:
85 * This event happens at NORMAL priority.
86 * This event, when received during the ON state, leave the RC STATE
87 * in the PRE_OFF state. It should be followed by the STOP event as
88 * part of encoder disable.
89 * If received during IDLE or OFF states, it will do nothing.
90 * @DPU_ENC_RC_EVENT_STOP:
91 * This event happens at NORMAL priority.
92 * When this event is received, disable all the MDP/DSI core clocks, and
93 * disable IRQs. It should be called from the PRE_OFF or IDLE states.
94 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
95 * PRE_OFF is expected when PRE_STOP was executed during the ON state.
96 * Resource state should be in OFF at the end of the event.
97 * @DPU_ENC_RC_EVENT_ENTER_IDLE:
98 * This event happens at NORMAL priority from a work item.
99 * Event signals that there were no frame updates for IDLE_TIMEOUT time.
100 * This would disable MDP/DSI core clocks and change the resource state
101 * to IDLE.
102 */
103 enum dpu_enc_rc_events {
104 DPU_ENC_RC_EVENT_KICKOFF = 1,
105 DPU_ENC_RC_EVENT_FRAME_DONE,
106 DPU_ENC_RC_EVENT_PRE_STOP,
107 DPU_ENC_RC_EVENT_STOP,
108 DPU_ENC_RC_EVENT_ENTER_IDLE
109 };
110
111 /*
112 * enum dpu_enc_rc_states - states that the resource control maintains
113 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
114 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
115 * @DPU_ENC_RC_STATE_ON: Resource is in ON state
116 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
117 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
118 */
119 enum dpu_enc_rc_states {
120 DPU_ENC_RC_STATE_OFF,
121 DPU_ENC_RC_STATE_PRE_OFF,
122 DPU_ENC_RC_STATE_ON,
123 DPU_ENC_RC_STATE_IDLE
124 };
125
126 /**
127 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
128 * encoders. Virtual encoder manages one "logical" display. Physical
129 * encoders manage one intf block, tied to a specific panel/sub-panel.
130 * Virtual encoder defers as much as possible to the physical encoders.
131 * Virtual encoder registers itself with the DRM Framework as the encoder.
132 * @base: drm_encoder base class for registration with DRM
133 * @enc_spin_lock: Virtual-Encoder-Wide Spin Lock for IRQ purposes
134 * @bus_scaling_client: Client handle to the bus scaling interface
135 * @num_phys_encs: Actual number of physical encoders contained.
136 * @phys_encs: Container of physical encoders managed.
137 * @cur_master: Pointer to the current master in this mode. Optimization
138 * Only valid after enable. Cleared as disable.
139 * @hw_pp Handle to the pingpong blocks used for the display. No.
140 * pingpong blocks can be different than num_phys_encs.
141 * @intfs_swapped Whether or not the phys_enc interfaces have been swapped
142 * for partial update right-only cases, such as pingpong
143 * split where virtual pingpong does not generate IRQs
144 * @crtc_vblank_cb: Callback into the upper layer / CRTC for
145 * notification of the VBLANK
146 * @crtc_vblank_cb_data: Data from upper layer for VBLANK notification
147 * @crtc_kickoff_cb: Callback into CRTC that will flush & start
148 * all CTL paths
149 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb
150 * @debugfs_root: Debug file system root file node
151 * @enc_lock: Lock around physical encoder create/destroy and
152 access.
153 * @frame_busy_mask: Bitmask tracking which phys_enc we are still
154 * busy processing current command.
155 * Bit0 = phys_encs[0] etc.
156 * @crtc_frame_event_cb: callback handler for frame event
157 * @crtc_frame_event_cb_data: callback handler private data
158 * @frame_done_timeout: frame done timeout in Hz
159 * @frame_done_timer: watchdog timer for frame done event
160 * @vsync_event_timer: vsync timer
161 * @disp_info: local copy of msm_display_info struct
162 * @idle_pc_supported: indicate if idle power collaps is supported
163 * @rc_lock: resource control mutex lock to protect
164 * virt encoder over various state changes
165 * @rc_state: resource controller state
166 * @delayed_off_work: delayed worker to schedule disabling of
167 * clks and resources after IDLE_TIMEOUT time.
168 * @vsync_event_work: worker to handle vsync event for autorefresh
169 * @topology: topology of the display
170 * @mode_set_complete: flag to indicate modeset completion
171 * @idle_timeout: idle timeout duration in milliseconds
172 */
173 struct dpu_encoder_virt {
174 struct drm_encoder base;
175 spinlock_t enc_spinlock;
176 uint32_t bus_scaling_client;
177
178 unsigned int num_phys_encs;
179 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
180 struct dpu_encoder_phys *cur_master;
181 struct dpu_encoder_phys *cur_slave;
182 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
183
184 bool intfs_swapped;
185
186 void (*crtc_vblank_cb)(void *);
187 void *crtc_vblank_cb_data;
188
189 struct dentry *debugfs_root;
190 struct mutex enc_lock;
191 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
192 void (*crtc_frame_event_cb)(void *, u32 event);
193 void *crtc_frame_event_cb_data;
194
195 atomic_t frame_done_timeout;
196 struct timer_list frame_done_timer;
197 struct timer_list vsync_event_timer;
198
199 struct msm_display_info disp_info;
200
201 bool idle_pc_supported;
202 struct mutex rc_lock;
203 enum dpu_enc_rc_states rc_state;
204 struct kthread_delayed_work delayed_off_work;
205 struct kthread_work vsync_event_work;
206 struct msm_display_topology topology;
207 bool mode_set_complete;
208
209 u32 idle_timeout;
210 };
211
212 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
213 static inline int _dpu_encoder_power_enable(struct dpu_encoder_virt *dpu_enc,
214 bool enable)
215 {
216 struct drm_encoder *drm_enc;
217 struct msm_drm_private *priv;
218 struct dpu_kms *dpu_kms;
219
220 if (!dpu_enc) {
221 DPU_ERROR("invalid dpu enc\n");
222 return -EINVAL;
223 }
224
225 drm_enc = &dpu_enc->base;
226 if (!drm_enc->dev || !drm_enc->dev->dev_private) {
227 DPU_ERROR("drm device invalid\n");
228 return -EINVAL;
229 }
230
231 priv = drm_enc->dev->dev_private;
232 if (!priv->kms) {
233 DPU_ERROR("invalid kms\n");
234 return -EINVAL;
235 }
236
237 dpu_kms = to_dpu_kms(priv->kms);
238
239 if (enable)
240 pm_runtime_get_sync(&dpu_kms->pdev->dev);
241 else
242 pm_runtime_put_sync(&dpu_kms->pdev->dev);
243
244 return 0;
245 }
246
247 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
248 enum dpu_intr_idx intr_idx)
249 {
250 DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
251 DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
252 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
253
254 if (phys_enc->parent_ops->handle_frame_done)
255 phys_enc->parent_ops->handle_frame_done(
256 phys_enc->parent, phys_enc,
257 DPU_ENCODER_FRAME_EVENT_ERROR);
258 }
259
260 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
261 int32_t hw_id, struct dpu_encoder_wait_info *info);
262
263 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
264 enum dpu_intr_idx intr_idx,
265 struct dpu_encoder_wait_info *wait_info)
266 {
267 struct dpu_encoder_irq *irq;
268 u32 irq_status;
269 int ret;
270
271 if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) {
272 DPU_ERROR("invalid params\n");
273 return -EINVAL;
274 }
275 irq = &phys_enc->irq[intr_idx];
276
277 /* note: do master / slave checking outside */
278
279 /* return EWOULDBLOCK since we know the wait isn't necessary */
280 if (phys_enc->enable_state == DPU_ENC_DISABLED) {
281 DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
282 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
283 irq->irq_idx);
284 return -EWOULDBLOCK;
285 }
286
287 if (irq->irq_idx < 0) {
288 DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
289 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
290 irq->name);
291 return 0;
292 }
293
294 DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
295 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
296 irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
297 atomic_read(wait_info->atomic_cnt));
298
299 ret = dpu_encoder_helper_wait_event_timeout(
300 DRMID(phys_enc->parent),
301 irq->hw_idx,
302 wait_info);
303
304 if (ret <= 0) {
305 irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
306 irq->irq_idx, true);
307 if (irq_status) {
308 unsigned long flags;
309
310 DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
311 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
312 DRMID(phys_enc->parent), intr_idx,
313 irq->hw_idx, irq->irq_idx,
314 phys_enc->hw_pp->idx - PINGPONG_0,
315 atomic_read(wait_info->atomic_cnt));
316 local_irq_save(flags);
317 irq->cb.func(phys_enc, irq->irq_idx);
318 local_irq_restore(flags);
319 ret = 0;
320 } else {
321 ret = -ETIMEDOUT;
322 DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
323 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
324 DRMID(phys_enc->parent), intr_idx,
325 irq->hw_idx, irq->irq_idx,
326 phys_enc->hw_pp->idx - PINGPONG_0,
327 atomic_read(wait_info->atomic_cnt));
328 }
329 } else {
330 ret = 0;
331 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
332 intr_idx, irq->hw_idx, irq->irq_idx,
333 phys_enc->hw_pp->idx - PINGPONG_0,
334 atomic_read(wait_info->atomic_cnt));
335 }
336
337 return ret;
338 }
339
340 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
341 enum dpu_intr_idx intr_idx)
342 {
343 struct dpu_encoder_irq *irq;
344 int ret = 0;
345
346 if (!phys_enc || intr_idx >= INTR_IDX_MAX) {
347 DPU_ERROR("invalid params\n");
348 return -EINVAL;
349 }
350 irq = &phys_enc->irq[intr_idx];
351
352 if (irq->irq_idx >= 0) {
353 DPU_DEBUG_PHYS(phys_enc,
354 "skipping already registered irq %s type %d\n",
355 irq->name, irq->intr_type);
356 return 0;
357 }
358
359 irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms,
360 irq->intr_type, irq->hw_idx);
361 if (irq->irq_idx < 0) {
362 DPU_ERROR_PHYS(phys_enc,
363 "failed to lookup IRQ index for %s type:%d\n",
364 irq->name, irq->intr_type);
365 return -EINVAL;
366 }
367
368 ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
369 &irq->cb);
370 if (ret) {
371 DPU_ERROR_PHYS(phys_enc,
372 "failed to register IRQ callback for %s\n",
373 irq->name);
374 irq->irq_idx = -EINVAL;
375 return ret;
376 }
377
378 ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1);
379 if (ret) {
380 DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
381 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
382 irq->irq_idx);
383 dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
384 irq->irq_idx, &irq->cb);
385 irq->irq_idx = -EINVAL;
386 return ret;
387 }
388
389 trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
390 irq->hw_idx, irq->irq_idx);
391
392 return ret;
393 }
394
395 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
396 enum dpu_intr_idx intr_idx)
397 {
398 struct dpu_encoder_irq *irq;
399 int ret;
400
401 if (!phys_enc) {
402 DPU_ERROR("invalid encoder\n");
403 return -EINVAL;
404 }
405 irq = &phys_enc->irq[intr_idx];
406
407 /* silently skip irqs that weren't registered */
408 if (irq->irq_idx < 0) {
409 DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
410 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
411 irq->irq_idx);
412 return 0;
413 }
414
415 ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1);
416 if (ret) {
417 DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
418 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
419 irq->irq_idx, ret);
420 }
421
422 ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
423 &irq->cb);
424 if (ret) {
425 DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
426 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
427 irq->irq_idx, ret);
428 }
429
430 trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
431 irq->hw_idx, irq->irq_idx);
432
433 irq->irq_idx = -EINVAL;
434
435 return 0;
436 }
437
438 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
439 struct dpu_encoder_hw_resources *hw_res)
440 {
441 struct dpu_encoder_virt *dpu_enc = NULL;
442 int i = 0;
443
444 dpu_enc = to_dpu_encoder_virt(drm_enc);
445 DPU_DEBUG_ENC(dpu_enc, "\n");
446
447 /* Query resources used by phys encs, expected to be without overlap */
448 memset(hw_res, 0, sizeof(*hw_res));
449
450 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
451 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
452
453 if (phys && phys->ops.get_hw_resources)
454 phys->ops.get_hw_resources(phys, hw_res);
455 }
456 }
457
458 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
459 {
460 struct dpu_encoder_virt *dpu_enc = NULL;
461 int i = 0;
462
463 if (!drm_enc) {
464 DPU_ERROR("invalid encoder\n");
465 return;
466 }
467
468 dpu_enc = to_dpu_encoder_virt(drm_enc);
469 DPU_DEBUG_ENC(dpu_enc, "\n");
470
471 mutex_lock(&dpu_enc->enc_lock);
472
473 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
474 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
475
476 if (phys && phys->ops.destroy) {
477 phys->ops.destroy(phys);
478 --dpu_enc->num_phys_encs;
479 dpu_enc->phys_encs[i] = NULL;
480 }
481 }
482
483 if (dpu_enc->num_phys_encs)
484 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
485 dpu_enc->num_phys_encs);
486 dpu_enc->num_phys_encs = 0;
487 mutex_unlock(&dpu_enc->enc_lock);
488
489 drm_encoder_cleanup(drm_enc);
490 mutex_destroy(&dpu_enc->enc_lock);
491 }
492
493 void dpu_encoder_helper_split_config(
494 struct dpu_encoder_phys *phys_enc,
495 enum dpu_intf interface)
496 {
497 struct dpu_encoder_virt *dpu_enc;
498 struct split_pipe_cfg cfg = { 0 };
499 struct dpu_hw_mdp *hw_mdptop;
500 struct msm_display_info *disp_info;
501
502 if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) {
503 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0);
504 return;
505 }
506
507 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
508 hw_mdptop = phys_enc->hw_mdptop;
509 disp_info = &dpu_enc->disp_info;
510
511 if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
512 return;
513
514 /**
515 * disable split modes since encoder will be operating in as the only
516 * encoder, either for the entire use case in the case of, for example,
517 * single DSI, or for this frame in the case of left/right only partial
518 * update.
519 */
520 if (phys_enc->split_role == ENC_ROLE_SOLO) {
521 if (hw_mdptop->ops.setup_split_pipe)
522 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
523 return;
524 }
525
526 cfg.en = true;
527 cfg.mode = phys_enc->intf_mode;
528 cfg.intf = interface;
529
530 if (cfg.en && phys_enc->ops.needs_single_flush &&
531 phys_enc->ops.needs_single_flush(phys_enc))
532 cfg.split_flush_en = true;
533
534 if (phys_enc->split_role == ENC_ROLE_MASTER) {
535 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
536
537 if (hw_mdptop->ops.setup_split_pipe)
538 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
539 }
540 }
541
542 static void _dpu_encoder_adjust_mode(struct drm_connector *connector,
543 struct drm_display_mode *adj_mode)
544 {
545 struct drm_display_mode *cur_mode;
546
547 if (!connector || !adj_mode)
548 return;
549
550 list_for_each_entry(cur_mode, &connector->modes, head) {
551 if (cur_mode->vdisplay == adj_mode->vdisplay &&
552 cur_mode->hdisplay == adj_mode->hdisplay &&
553 cur_mode->vrefresh == adj_mode->vrefresh) {
554 adj_mode->private = cur_mode->private;
555 adj_mode->private_flags |= cur_mode->private_flags;
556 }
557 }
558 }
559
560 static struct msm_display_topology dpu_encoder_get_topology(
561 struct dpu_encoder_virt *dpu_enc,
562 struct dpu_kms *dpu_kms,
563 struct drm_display_mode *mode)
564 {
565 struct msm_display_topology topology;
566 int i, intf_count = 0;
567
568 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
569 if (dpu_enc->phys_encs[i])
570 intf_count++;
571
572 /* User split topology for width > 1080 */
573 topology.num_lm = (mode->vdisplay > MAX_VDISPLAY_SPLIT) ? 2 : 1;
574 topology.num_enc = 0;
575 topology.num_intf = intf_count;
576
577 return topology;
578 }
579 static int dpu_encoder_virt_atomic_check(
580 struct drm_encoder *drm_enc,
581 struct drm_crtc_state *crtc_state,
582 struct drm_connector_state *conn_state)
583 {
584 struct dpu_encoder_virt *dpu_enc;
585 struct msm_drm_private *priv;
586 struct dpu_kms *dpu_kms;
587 const struct drm_display_mode *mode;
588 struct drm_display_mode *adj_mode;
589 struct msm_display_topology topology;
590 int i = 0;
591 int ret = 0;
592
593 if (!drm_enc || !crtc_state || !conn_state) {
594 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
595 drm_enc != 0, crtc_state != 0, conn_state != 0);
596 return -EINVAL;
597 }
598
599 dpu_enc = to_dpu_encoder_virt(drm_enc);
600 DPU_DEBUG_ENC(dpu_enc, "\n");
601
602 priv = drm_enc->dev->dev_private;
603 dpu_kms = to_dpu_kms(priv->kms);
604 mode = &crtc_state->mode;
605 adj_mode = &crtc_state->adjusted_mode;
606 trace_dpu_enc_atomic_check(DRMID(drm_enc));
607
608 /*
609 * display drivers may populate private fields of the drm display mode
610 * structure while registering possible modes of a connector with DRM.
611 * These private fields are not populated back while DRM invokes
612 * the mode_set callbacks. This module retrieves and populates the
613 * private fields of the given mode.
614 */
615 _dpu_encoder_adjust_mode(conn_state->connector, adj_mode);
616
617 /* perform atomic check on the first physical encoder (master) */
618 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
619 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
620
621 if (phys && phys->ops.atomic_check)
622 ret = phys->ops.atomic_check(phys, crtc_state,
623 conn_state);
624 else if (phys && phys->ops.mode_fixup)
625 if (!phys->ops.mode_fixup(phys, mode, adj_mode))
626 ret = -EINVAL;
627
628 if (ret) {
629 DPU_ERROR_ENC(dpu_enc,
630 "mode unsupported, phys idx %d\n", i);
631 break;
632 }
633 }
634
635 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
636
637 /* Reserve dynamic resources now. Indicating AtomicTest phase */
638 if (!ret) {
639 /*
640 * Avoid reserving resources when mode set is pending. Topology
641 * info may not be available to complete reservation.
642 */
643 if (drm_atomic_crtc_needs_modeset(crtc_state)
644 && dpu_enc->mode_set_complete) {
645 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state,
646 topology, true);
647 dpu_enc->mode_set_complete = false;
648 }
649 }
650
651 if (!ret)
652 drm_mode_set_crtcinfo(adj_mode, 0);
653
654 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags,
655 adj_mode->private_flags);
656
657 return ret;
658 }
659
660 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
661 struct msm_display_info *disp_info)
662 {
663 struct dpu_vsync_source_cfg vsync_cfg = { 0 };
664 struct msm_drm_private *priv;
665 struct dpu_kms *dpu_kms;
666 struct dpu_hw_mdp *hw_mdptop;
667 struct drm_encoder *drm_enc;
668 int i;
669
670 if (!dpu_enc || !disp_info) {
671 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
672 dpu_enc != NULL, disp_info != NULL);
673 return;
674 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
675 DPU_ERROR("invalid num phys enc %d/%d\n",
676 dpu_enc->num_phys_encs,
677 (int) ARRAY_SIZE(dpu_enc->hw_pp));
678 return;
679 }
680
681 drm_enc = &dpu_enc->base;
682 /* this pointers are checked in virt_enable_helper */
683 priv = drm_enc->dev->dev_private;
684
685 dpu_kms = to_dpu_kms(priv->kms);
686 if (!dpu_kms) {
687 DPU_ERROR("invalid dpu_kms\n");
688 return;
689 }
690
691 hw_mdptop = dpu_kms->hw_mdp;
692 if (!hw_mdptop) {
693 DPU_ERROR("invalid mdptop\n");
694 return;
695 }
696
697 if (hw_mdptop->ops.setup_vsync_source &&
698 disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
699 for (i = 0; i < dpu_enc->num_phys_encs; i++)
700 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
701
702 vsync_cfg.pp_count = dpu_enc->num_phys_encs;
703 if (disp_info->is_te_using_watchdog_timer)
704 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
705 else
706 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
707
708 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
709 }
710 }
711
712 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
713 {
714 struct dpu_encoder_virt *dpu_enc;
715 int i;
716
717 if (!drm_enc) {
718 DPU_ERROR("invalid encoder\n");
719 return;
720 }
721
722 dpu_enc = to_dpu_encoder_virt(drm_enc);
723
724 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
725 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
726 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
727
728 if (phys && phys->ops.irq_control)
729 phys->ops.irq_control(phys, enable);
730 }
731
732 }
733
734 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
735 bool enable)
736 {
737 struct msm_drm_private *priv;
738 struct dpu_kms *dpu_kms;
739 struct dpu_encoder_virt *dpu_enc;
740
741 dpu_enc = to_dpu_encoder_virt(drm_enc);
742 priv = drm_enc->dev->dev_private;
743 dpu_kms = to_dpu_kms(priv->kms);
744
745 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
746
747 if (!dpu_enc->cur_master) {
748 DPU_ERROR("encoder master not set\n");
749 return;
750 }
751
752 if (enable) {
753 /* enable DPU core clks */
754 pm_runtime_get_sync(&dpu_kms->pdev->dev);
755
756 /* enable all the irq */
757 _dpu_encoder_irq_control(drm_enc, true);
758
759 } else {
760 /* disable all the irq */
761 _dpu_encoder_irq_control(drm_enc, false);
762
763 /* disable DPU core clks */
764 pm_runtime_put_sync(&dpu_kms->pdev->dev);
765 }
766
767 }
768
769 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
770 u32 sw_event)
771 {
772 struct dpu_encoder_virt *dpu_enc;
773 struct msm_drm_private *priv;
774 struct msm_drm_thread *disp_thread;
775 bool is_vid_mode = false;
776
777 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private ||
778 !drm_enc->crtc) {
779 DPU_ERROR("invalid parameters\n");
780 return -EINVAL;
781 }
782 dpu_enc = to_dpu_encoder_virt(drm_enc);
783 priv = drm_enc->dev->dev_private;
784 is_vid_mode = dpu_enc->disp_info.capabilities &
785 MSM_DISPLAY_CAP_VID_MODE;
786
787 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->disp_thread)) {
788 DPU_ERROR("invalid crtc index\n");
789 return -EINVAL;
790 }
791 disp_thread = &priv->disp_thread[drm_enc->crtc->index];
792
793 /*
794 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
795 * events and return early for other events (ie wb display).
796 */
797 if (!dpu_enc->idle_pc_supported &&
798 (sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
799 sw_event != DPU_ENC_RC_EVENT_STOP &&
800 sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
801 return 0;
802
803 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
804 dpu_enc->rc_state, "begin");
805
806 switch (sw_event) {
807 case DPU_ENC_RC_EVENT_KICKOFF:
808 /* cancel delayed off work, if any */
809 if (kthread_cancel_delayed_work_sync(
810 &dpu_enc->delayed_off_work))
811 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
812 sw_event);
813
814 mutex_lock(&dpu_enc->rc_lock);
815
816 /* return if the resource control is already in ON state */
817 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
818 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
819 DRMID(drm_enc), sw_event);
820 mutex_unlock(&dpu_enc->rc_lock);
821 return 0;
822 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
823 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
824 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
825 DRMID(drm_enc), sw_event,
826 dpu_enc->rc_state);
827 mutex_unlock(&dpu_enc->rc_lock);
828 return -EINVAL;
829 }
830
831 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
832 _dpu_encoder_irq_control(drm_enc, true);
833 else
834 _dpu_encoder_resource_control_helper(drm_enc, true);
835
836 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
837
838 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
839 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
840 "kickoff");
841
842 mutex_unlock(&dpu_enc->rc_lock);
843 break;
844
845 case DPU_ENC_RC_EVENT_FRAME_DONE:
846 /*
847 * mutex lock is not used as this event happens at interrupt
848 * context. And locking is not required as, the other events
849 * like KICKOFF and STOP does a wait-for-idle before executing
850 * the resource_control
851 */
852 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
853 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
854 DRMID(drm_enc), sw_event,
855 dpu_enc->rc_state);
856 return -EINVAL;
857 }
858
859 /*
860 * schedule off work item only when there are no
861 * frames pending
862 */
863 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
864 DRM_DEBUG_KMS("id:%d skip schedule work\n",
865 DRMID(drm_enc));
866 return 0;
867 }
868
869 kthread_queue_delayed_work(
870 &disp_thread->worker,
871 &dpu_enc->delayed_off_work,
872 msecs_to_jiffies(dpu_enc->idle_timeout));
873
874 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
875 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
876 "frame done");
877 break;
878
879 case DPU_ENC_RC_EVENT_PRE_STOP:
880 /* cancel delayed off work, if any */
881 if (kthread_cancel_delayed_work_sync(
882 &dpu_enc->delayed_off_work))
883 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
884 sw_event);
885
886 mutex_lock(&dpu_enc->rc_lock);
887
888 if (is_vid_mode &&
889 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
890 _dpu_encoder_irq_control(drm_enc, true);
891 }
892 /* skip if is already OFF or IDLE, resources are off already */
893 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
894 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
895 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
896 DRMID(drm_enc), sw_event,
897 dpu_enc->rc_state);
898 mutex_unlock(&dpu_enc->rc_lock);
899 return 0;
900 }
901
902 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
903
904 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
905 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
906 "pre stop");
907
908 mutex_unlock(&dpu_enc->rc_lock);
909 break;
910
911 case DPU_ENC_RC_EVENT_STOP:
912 mutex_lock(&dpu_enc->rc_lock);
913
914 /* return if the resource control is already in OFF state */
915 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
916 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
917 DRMID(drm_enc), sw_event);
918 mutex_unlock(&dpu_enc->rc_lock);
919 return 0;
920 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
921 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
922 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
923 mutex_unlock(&dpu_enc->rc_lock);
924 return -EINVAL;
925 }
926
927 /**
928 * expect to arrive here only if in either idle state or pre-off
929 * and in IDLE state the resources are already disabled
930 */
931 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
932 _dpu_encoder_resource_control_helper(drm_enc, false);
933
934 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
935
936 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
937 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
938 "stop");
939
940 mutex_unlock(&dpu_enc->rc_lock);
941 break;
942
943 case DPU_ENC_RC_EVENT_ENTER_IDLE:
944 mutex_lock(&dpu_enc->rc_lock);
945
946 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
947 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
948 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
949 mutex_unlock(&dpu_enc->rc_lock);
950 return 0;
951 }
952
953 /*
954 * if we are in ON but a frame was just kicked off,
955 * ignore the IDLE event, it's probably a stale timer event
956 */
957 if (dpu_enc->frame_busy_mask[0]) {
958 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
959 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
960 mutex_unlock(&dpu_enc->rc_lock);
961 return 0;
962 }
963
964 if (is_vid_mode)
965 _dpu_encoder_irq_control(drm_enc, false);
966 else
967 _dpu_encoder_resource_control_helper(drm_enc, false);
968
969 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
970
971 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
972 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
973 "idle");
974
975 mutex_unlock(&dpu_enc->rc_lock);
976 break;
977
978 default:
979 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
980 sw_event);
981 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
982 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
983 "error");
984 break;
985 }
986
987 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
988 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
989 "end");
990 return 0;
991 }
992
993 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
994 struct drm_display_mode *mode,
995 struct drm_display_mode *adj_mode)
996 {
997 struct dpu_encoder_virt *dpu_enc;
998 struct msm_drm_private *priv;
999 struct dpu_kms *dpu_kms;
1000 struct list_head *connector_list;
1001 struct drm_connector *conn = NULL, *conn_iter;
1002 struct dpu_rm_hw_iter pp_iter, ctl_iter;
1003 struct msm_display_topology topology;
1004 struct dpu_hw_ctl *hw_ctl[MAX_CHANNELS_PER_ENC] = { NULL };
1005 int i = 0, ret;
1006
1007 if (!drm_enc) {
1008 DPU_ERROR("invalid encoder\n");
1009 return;
1010 }
1011
1012 dpu_enc = to_dpu_encoder_virt(drm_enc);
1013 DPU_DEBUG_ENC(dpu_enc, "\n");
1014
1015 priv = drm_enc->dev->dev_private;
1016 dpu_kms = to_dpu_kms(priv->kms);
1017 connector_list = &dpu_kms->dev->mode_config.connector_list;
1018
1019 trace_dpu_enc_mode_set(DRMID(drm_enc));
1020
1021 list_for_each_entry(conn_iter, connector_list, head)
1022 if (conn_iter->encoder == drm_enc)
1023 conn = conn_iter;
1024
1025 if (!conn) {
1026 DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
1027 return;
1028 } else if (!conn->state) {
1029 DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
1030 return;
1031 }
1032
1033 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
1034
1035 /* Reserve dynamic resources now. Indicating non-AtomicTest phase */
1036 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_enc->crtc->state,
1037 topology, false);
1038 if (ret) {
1039 DPU_ERROR_ENC(dpu_enc,
1040 "failed to reserve hw resources, %d\n", ret);
1041 return;
1042 }
1043
1044 dpu_rm_init_hw_iter(&pp_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG);
1045 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1046 dpu_enc->hw_pp[i] = NULL;
1047 if (!dpu_rm_get_hw(&dpu_kms->rm, &pp_iter))
1048 break;
1049 dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) pp_iter.hw;
1050 }
1051
1052 dpu_rm_init_hw_iter(&ctl_iter, drm_enc->base.id, DPU_HW_BLK_CTL);
1053 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1054 if (!dpu_rm_get_hw(&dpu_kms->rm, &ctl_iter))
1055 break;
1056 hw_ctl[i] = (struct dpu_hw_ctl *)ctl_iter.hw;
1057 }
1058
1059 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1060 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1061
1062 if (phys) {
1063 if (!dpu_enc->hw_pp[i]) {
1064 DPU_ERROR_ENC(dpu_enc, "no pp block assigned"
1065 "at idx: %d\n", i);
1066 return;
1067 }
1068
1069 if (!hw_ctl[i]) {
1070 DPU_ERROR_ENC(dpu_enc, "no ctl block assigned"
1071 "at idx: %d\n", i);
1072 return;
1073 }
1074
1075 phys->hw_pp = dpu_enc->hw_pp[i];
1076 phys->hw_ctl = hw_ctl[i];
1077
1078 phys->connector = conn->state->connector;
1079 if (phys->ops.mode_set)
1080 phys->ops.mode_set(phys, mode, adj_mode);
1081 }
1082 }
1083
1084 dpu_enc->mode_set_complete = true;
1085 }
1086
1087 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1088 {
1089 struct dpu_encoder_virt *dpu_enc = NULL;
1090 struct msm_drm_private *priv;
1091 struct dpu_kms *dpu_kms;
1092
1093 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) {
1094 DPU_ERROR("invalid parameters\n");
1095 return;
1096 }
1097
1098 priv = drm_enc->dev->dev_private;
1099 dpu_kms = to_dpu_kms(priv->kms);
1100 if (!dpu_kms) {
1101 DPU_ERROR("invalid dpu_kms\n");
1102 return;
1103 }
1104
1105 dpu_enc = to_dpu_encoder_virt(drm_enc);
1106 if (!dpu_enc || !dpu_enc->cur_master) {
1107 DPU_ERROR("invalid dpu encoder/master\n");
1108 return;
1109 }
1110
1111 if (dpu_enc->cur_master->hw_mdptop &&
1112 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc)
1113 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc(
1114 dpu_enc->cur_master->hw_mdptop,
1115 dpu_kms->catalog);
1116
1117 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1118 }
1119
1120 void dpu_encoder_virt_restore(struct drm_encoder *drm_enc)
1121 {
1122 struct dpu_encoder_virt *dpu_enc = NULL;
1123 int i;
1124
1125 if (!drm_enc) {
1126 DPU_ERROR("invalid encoder\n");
1127 return;
1128 }
1129 dpu_enc = to_dpu_encoder_virt(drm_enc);
1130
1131 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1132 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1133
1134 if (phys && (phys != dpu_enc->cur_master) && phys->ops.restore)
1135 phys->ops.restore(phys);
1136 }
1137
1138 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1139 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1140
1141 _dpu_encoder_virt_enable_helper(drm_enc);
1142 }
1143
1144 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1145 {
1146 struct dpu_encoder_virt *dpu_enc = NULL;
1147 int ret = 0;
1148 struct drm_display_mode *cur_mode = NULL;
1149
1150 if (!drm_enc) {
1151 DPU_ERROR("invalid encoder\n");
1152 return;
1153 }
1154 dpu_enc = to_dpu_encoder_virt(drm_enc);
1155 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1156
1157 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1158 cur_mode->vdisplay);
1159
1160 /* always enable slave encoder before master */
1161 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1162 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1163
1164 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1165 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1166
1167 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1168 if (ret) {
1169 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1170 ret);
1171 return;
1172 }
1173
1174 _dpu_encoder_virt_enable_helper(drm_enc);
1175 }
1176
1177 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1178 {
1179 struct dpu_encoder_virt *dpu_enc = NULL;
1180 struct msm_drm_private *priv;
1181 struct dpu_kms *dpu_kms;
1182 struct drm_display_mode *mode;
1183 int i = 0;
1184
1185 if (!drm_enc) {
1186 DPU_ERROR("invalid encoder\n");
1187 return;
1188 } else if (!drm_enc->dev) {
1189 DPU_ERROR("invalid dev\n");
1190 return;
1191 } else if (!drm_enc->dev->dev_private) {
1192 DPU_ERROR("invalid dev_private\n");
1193 return;
1194 }
1195
1196 mode = &drm_enc->crtc->state->adjusted_mode;
1197
1198 dpu_enc = to_dpu_encoder_virt(drm_enc);
1199 DPU_DEBUG_ENC(dpu_enc, "\n");
1200
1201 priv = drm_enc->dev->dev_private;
1202 dpu_kms = to_dpu_kms(priv->kms);
1203
1204 trace_dpu_enc_disable(DRMID(drm_enc));
1205
1206 /* wait for idle */
1207 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1208
1209 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1210
1211 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1212 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1213
1214 if (phys && phys->ops.disable)
1215 phys->ops.disable(phys);
1216 }
1217
1218 /* after phys waits for frame-done, should be no more frames pending */
1219 if (atomic_xchg(&dpu_enc->frame_done_timeout, 0)) {
1220 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1221 del_timer_sync(&dpu_enc->frame_done_timer);
1222 }
1223
1224 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1225
1226 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1227 if (dpu_enc->phys_encs[i])
1228 dpu_enc->phys_encs[i]->connector = NULL;
1229 }
1230
1231 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1232
1233 dpu_rm_release(&dpu_kms->rm, drm_enc);
1234 }
1235
1236 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1237 enum dpu_intf_type type, u32 controller_id)
1238 {
1239 int i = 0;
1240
1241 for (i = 0; i < catalog->intf_count; i++) {
1242 if (catalog->intf[i].type == type
1243 && catalog->intf[i].controller_id == controller_id) {
1244 return catalog->intf[i].id;
1245 }
1246 }
1247
1248 return INTF_MAX;
1249 }
1250
1251 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1252 struct dpu_encoder_phys *phy_enc)
1253 {
1254 struct dpu_encoder_virt *dpu_enc = NULL;
1255 unsigned long lock_flags;
1256
1257 if (!drm_enc || !phy_enc)
1258 return;
1259
1260 DPU_ATRACE_BEGIN("encoder_vblank_callback");
1261 dpu_enc = to_dpu_encoder_virt(drm_enc);
1262
1263 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1264 if (dpu_enc->crtc_vblank_cb)
1265 dpu_enc->crtc_vblank_cb(dpu_enc->crtc_vblank_cb_data);
1266 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1267
1268 atomic_inc(&phy_enc->vsync_cnt);
1269 DPU_ATRACE_END("encoder_vblank_callback");
1270 }
1271
1272 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1273 struct dpu_encoder_phys *phy_enc)
1274 {
1275 if (!phy_enc)
1276 return;
1277
1278 DPU_ATRACE_BEGIN("encoder_underrun_callback");
1279 atomic_inc(&phy_enc->underrun_cnt);
1280 trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1281 atomic_read(&phy_enc->underrun_cnt));
1282 DPU_ATRACE_END("encoder_underrun_callback");
1283 }
1284
1285 void dpu_encoder_register_vblank_callback(struct drm_encoder *drm_enc,
1286 void (*vbl_cb)(void *), void *vbl_data)
1287 {
1288 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1289 unsigned long lock_flags;
1290 bool enable;
1291 int i;
1292
1293 enable = vbl_cb ? true : false;
1294
1295 if (!drm_enc) {
1296 DPU_ERROR("invalid encoder\n");
1297 return;
1298 }
1299 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1300
1301 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1302 dpu_enc->crtc_vblank_cb = vbl_cb;
1303 dpu_enc->crtc_vblank_cb_data = vbl_data;
1304 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1305
1306 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1307 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1308
1309 if (phys && phys->ops.control_vblank_irq)
1310 phys->ops.control_vblank_irq(phys, enable);
1311 }
1312 }
1313
1314 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1315 void (*frame_event_cb)(void *, u32 event),
1316 void *frame_event_cb_data)
1317 {
1318 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1319 unsigned long lock_flags;
1320 bool enable;
1321
1322 enable = frame_event_cb ? true : false;
1323
1324 if (!drm_enc) {
1325 DPU_ERROR("invalid encoder\n");
1326 return;
1327 }
1328 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1329
1330 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1331 dpu_enc->crtc_frame_event_cb = frame_event_cb;
1332 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1333 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1334 }
1335
1336 static void dpu_encoder_frame_done_callback(
1337 struct drm_encoder *drm_enc,
1338 struct dpu_encoder_phys *ready_phys, u32 event)
1339 {
1340 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1341 unsigned int i;
1342
1343 if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1344 | DPU_ENCODER_FRAME_EVENT_ERROR
1345 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1346
1347 if (!dpu_enc->frame_busy_mask[0]) {
1348 /**
1349 * suppress frame_done without waiter,
1350 * likely autorefresh
1351 */
1352 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1353 event, ready_phys->intf_idx);
1354 return;
1355 }
1356
1357 /* One of the physical encoders has become idle */
1358 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1359 if (dpu_enc->phys_encs[i] == ready_phys) {
1360 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1361 dpu_enc->frame_busy_mask[0]);
1362 clear_bit(i, dpu_enc->frame_busy_mask);
1363 }
1364 }
1365
1366 if (!dpu_enc->frame_busy_mask[0]) {
1367 atomic_set(&dpu_enc->frame_done_timeout, 0);
1368 del_timer(&dpu_enc->frame_done_timer);
1369
1370 dpu_encoder_resource_control(drm_enc,
1371 DPU_ENC_RC_EVENT_FRAME_DONE);
1372
1373 if (dpu_enc->crtc_frame_event_cb)
1374 dpu_enc->crtc_frame_event_cb(
1375 dpu_enc->crtc_frame_event_cb_data,
1376 event);
1377 }
1378 } else {
1379 if (dpu_enc->crtc_frame_event_cb)
1380 dpu_enc->crtc_frame_event_cb(
1381 dpu_enc->crtc_frame_event_cb_data, event);
1382 }
1383 }
1384
1385 static void dpu_encoder_off_work(struct kthread_work *work)
1386 {
1387 struct dpu_encoder_virt *dpu_enc = container_of(work,
1388 struct dpu_encoder_virt, delayed_off_work.work);
1389
1390 if (!dpu_enc) {
1391 DPU_ERROR("invalid dpu encoder\n");
1392 return;
1393 }
1394
1395 dpu_encoder_resource_control(&dpu_enc->base,
1396 DPU_ENC_RC_EVENT_ENTER_IDLE);
1397
1398 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1399 DPU_ENCODER_FRAME_EVENT_IDLE);
1400 }
1401
1402 /**
1403 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1404 * drm_enc: Pointer to drm encoder structure
1405 * phys: Pointer to physical encoder structure
1406 * extra_flush_bits: Additional bit mask to include in flush trigger
1407 */
1408 static inline void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1409 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1410 {
1411 struct dpu_hw_ctl *ctl;
1412 int pending_kickoff_cnt;
1413 u32 ret = UINT_MAX;
1414
1415 if (!drm_enc || !phys) {
1416 DPU_ERROR("invalid argument(s), drm_enc %d, phys_enc %d\n",
1417 drm_enc != 0, phys != 0);
1418 return;
1419 }
1420
1421 if (!phys->hw_pp) {
1422 DPU_ERROR("invalid pingpong hw\n");
1423 return;
1424 }
1425
1426 ctl = phys->hw_ctl;
1427 if (!ctl || !ctl->ops.trigger_flush) {
1428 DPU_ERROR("missing trigger cb\n");
1429 return;
1430 }
1431
1432 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1433
1434 if (extra_flush_bits && ctl->ops.update_pending_flush)
1435 ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1436
1437 ctl->ops.trigger_flush(ctl);
1438
1439 if (ctl->ops.get_pending_flush)
1440 ret = ctl->ops.get_pending_flush(ctl);
1441
1442 trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1443 pending_kickoff_cnt, ctl->idx,
1444 extra_flush_bits, ret);
1445 }
1446
1447 /**
1448 * _dpu_encoder_trigger_start - trigger start for a physical encoder
1449 * phys: Pointer to physical encoder structure
1450 */
1451 static inline void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1452 {
1453 if (!phys) {
1454 DPU_ERROR("invalid argument(s)\n");
1455 return;
1456 }
1457
1458 if (!phys->hw_pp) {
1459 DPU_ERROR("invalid pingpong hw\n");
1460 return;
1461 }
1462
1463 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1464 phys->ops.trigger_start(phys);
1465 }
1466
1467 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1468 {
1469 struct dpu_hw_ctl *ctl;
1470
1471 if (!phys_enc) {
1472 DPU_ERROR("invalid encoder\n");
1473 return;
1474 }
1475
1476 ctl = phys_enc->hw_ctl;
1477 if (ctl && ctl->ops.trigger_start) {
1478 ctl->ops.trigger_start(ctl);
1479 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1480 }
1481 }
1482
1483 static int dpu_encoder_helper_wait_event_timeout(
1484 int32_t drm_id,
1485 int32_t hw_id,
1486 struct dpu_encoder_wait_info *info)
1487 {
1488 int rc = 0;
1489 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1490 s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1491 s64 time;
1492
1493 do {
1494 rc = wait_event_timeout(*(info->wq),
1495 atomic_read(info->atomic_cnt) == 0, jiffies);
1496 time = ktime_to_ms(ktime_get());
1497
1498 trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time,
1499 expected_time,
1500 atomic_read(info->atomic_cnt));
1501 /* If we timed out, counter is valid and time is less, wait again */
1502 } while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1503 (time < expected_time));
1504
1505 return rc;
1506 }
1507
1508 void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1509 {
1510 struct dpu_encoder_virt *dpu_enc;
1511 struct dpu_hw_ctl *ctl;
1512 int rc;
1513
1514 if (!phys_enc) {
1515 DPU_ERROR("invalid encoder\n");
1516 return;
1517 }
1518 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1519 ctl = phys_enc->hw_ctl;
1520
1521 if (!ctl || !ctl->ops.reset)
1522 return;
1523
1524 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent),
1525 ctl->idx);
1526
1527 rc = ctl->ops.reset(ctl);
1528 if (rc) {
1529 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx);
1530 dpu_dbg_dump(false, __func__, true, true);
1531 }
1532
1533 phys_enc->enable_state = DPU_ENC_ENABLED;
1534 }
1535
1536 /**
1537 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1538 * Iterate through the physical encoders and perform consolidated flush
1539 * and/or control start triggering as needed. This is done in the virtual
1540 * encoder rather than the individual physical ones in order to handle
1541 * use cases that require visibility into multiple physical encoders at
1542 * a time.
1543 * dpu_enc: Pointer to virtual encoder structure
1544 */
1545 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1546 {
1547 struct dpu_hw_ctl *ctl;
1548 uint32_t i, pending_flush;
1549 unsigned long lock_flags;
1550
1551 if (!dpu_enc) {
1552 DPU_ERROR("invalid encoder\n");
1553 return;
1554 }
1555
1556 pending_flush = 0x0;
1557
1558 /* update pending counts and trigger kickoff ctl flush atomically */
1559 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1560
1561 /* don't perform flush/start operations for slave encoders */
1562 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1563 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1564
1565 if (!phys || phys->enable_state == DPU_ENC_DISABLED)
1566 continue;
1567
1568 ctl = phys->hw_ctl;
1569 if (!ctl)
1570 continue;
1571
1572 if (phys->split_role != ENC_ROLE_SLAVE)
1573 set_bit(i, dpu_enc->frame_busy_mask);
1574 if (!phys->ops.needs_single_flush ||
1575 !phys->ops.needs_single_flush(phys))
1576 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1577 else if (ctl->ops.get_pending_flush)
1578 pending_flush |= ctl->ops.get_pending_flush(ctl);
1579 }
1580
1581 /* for split flush, combine pending flush masks and send to master */
1582 if (pending_flush && dpu_enc->cur_master) {
1583 _dpu_encoder_trigger_flush(
1584 &dpu_enc->base,
1585 dpu_enc->cur_master,
1586 pending_flush);
1587 }
1588
1589 _dpu_encoder_trigger_start(dpu_enc->cur_master);
1590
1591 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1592 }
1593
1594 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1595 {
1596 struct dpu_encoder_virt *dpu_enc;
1597 struct dpu_encoder_phys *phys;
1598 unsigned int i;
1599 struct dpu_hw_ctl *ctl;
1600 struct msm_display_info *disp_info;
1601
1602 if (!drm_enc) {
1603 DPU_ERROR("invalid encoder\n");
1604 return;
1605 }
1606 dpu_enc = to_dpu_encoder_virt(drm_enc);
1607 disp_info = &dpu_enc->disp_info;
1608
1609 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1610 phys = dpu_enc->phys_encs[i];
1611
1612 if (phys && phys->hw_ctl) {
1613 ctl = phys->hw_ctl;
1614 if (ctl->ops.clear_pending_flush)
1615 ctl->ops.clear_pending_flush(ctl);
1616
1617 /* update only for command mode primary ctl */
1618 if ((phys == dpu_enc->cur_master) &&
1619 (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1620 && ctl->ops.trigger_pending)
1621 ctl->ops.trigger_pending(ctl);
1622 }
1623 }
1624 }
1625
1626 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1627 struct drm_display_mode *mode)
1628 {
1629 u64 pclk_rate;
1630 u32 pclk_period;
1631 u32 line_time;
1632
1633 /*
1634 * For linetime calculation, only operate on master encoder.
1635 */
1636 if (!dpu_enc->cur_master)
1637 return 0;
1638
1639 if (!dpu_enc->cur_master->ops.get_line_count) {
1640 DPU_ERROR("get_line_count function not defined\n");
1641 return 0;
1642 }
1643
1644 pclk_rate = mode->clock; /* pixel clock in kHz */
1645 if (pclk_rate == 0) {
1646 DPU_ERROR("pclk is 0, cannot calculate line time\n");
1647 return 0;
1648 }
1649
1650 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1651 if (pclk_period == 0) {
1652 DPU_ERROR("pclk period is 0\n");
1653 return 0;
1654 }
1655
1656 /*
1657 * Line time calculation based on Pixel clock and HTOTAL.
1658 * Final unit is in ns.
1659 */
1660 line_time = (pclk_period * mode->htotal) / 1000;
1661 if (line_time == 0) {
1662 DPU_ERROR("line time calculation is 0\n");
1663 return 0;
1664 }
1665
1666 DPU_DEBUG_ENC(dpu_enc,
1667 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1668 pclk_rate, pclk_period, line_time);
1669
1670 return line_time;
1671 }
1672
1673 static int _dpu_encoder_wakeup_time(struct drm_encoder *drm_enc,
1674 ktime_t *wakeup_time)
1675 {
1676 struct drm_display_mode *mode;
1677 struct dpu_encoder_virt *dpu_enc;
1678 u32 cur_line;
1679 u32 line_time;
1680 u32 vtotal, time_to_vsync;
1681 ktime_t cur_time;
1682
1683 dpu_enc = to_dpu_encoder_virt(drm_enc);
1684
1685 if (!drm_enc->crtc || !drm_enc->crtc->state) {
1686 DPU_ERROR("crtc/crtc state object is NULL\n");
1687 return -EINVAL;
1688 }
1689 mode = &drm_enc->crtc->state->adjusted_mode;
1690
1691 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1692 if (!line_time)
1693 return -EINVAL;
1694
1695 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1696
1697 vtotal = mode->vtotal;
1698 if (cur_line >= vtotal)
1699 time_to_vsync = line_time * vtotal;
1700 else
1701 time_to_vsync = line_time * (vtotal - cur_line);
1702
1703 if (time_to_vsync == 0) {
1704 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1705 vtotal);
1706 return -EINVAL;
1707 }
1708
1709 cur_time = ktime_get();
1710 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1711
1712 DPU_DEBUG_ENC(dpu_enc,
1713 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1714 cur_line, vtotal, time_to_vsync,
1715 ktime_to_ms(cur_time),
1716 ktime_to_ms(*wakeup_time));
1717 return 0;
1718 }
1719
1720 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1721 {
1722 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1723 vsync_event_timer);
1724 struct drm_encoder *drm_enc = &dpu_enc->base;
1725 struct msm_drm_private *priv;
1726 struct msm_drm_thread *event_thread;
1727
1728 if (!drm_enc->dev || !drm_enc->dev->dev_private ||
1729 !drm_enc->crtc) {
1730 DPU_ERROR("invalid parameters\n");
1731 return;
1732 }
1733
1734 priv = drm_enc->dev->dev_private;
1735
1736 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1737 DPU_ERROR("invalid crtc index\n");
1738 return;
1739 }
1740 event_thread = &priv->event_thread[drm_enc->crtc->index];
1741 if (!event_thread) {
1742 DPU_ERROR("event_thread not found for crtc:%d\n",
1743 drm_enc->crtc->index);
1744 return;
1745 }
1746
1747 del_timer(&dpu_enc->vsync_event_timer);
1748 }
1749
1750 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1751 {
1752 struct dpu_encoder_virt *dpu_enc = container_of(work,
1753 struct dpu_encoder_virt, vsync_event_work);
1754 ktime_t wakeup_time;
1755
1756 if (!dpu_enc) {
1757 DPU_ERROR("invalid dpu encoder\n");
1758 return;
1759 }
1760
1761 if (_dpu_encoder_wakeup_time(&dpu_enc->base, &wakeup_time))
1762 return;
1763
1764 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1765 mod_timer(&dpu_enc->vsync_event_timer,
1766 nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1767 }
1768
1769 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc,
1770 struct dpu_encoder_kickoff_params *params)
1771 {
1772 struct dpu_encoder_virt *dpu_enc;
1773 struct dpu_encoder_phys *phys;
1774 bool needs_hw_reset = false;
1775 unsigned int i;
1776
1777 if (!drm_enc || !params) {
1778 DPU_ERROR("invalid args\n");
1779 return;
1780 }
1781 dpu_enc = to_dpu_encoder_virt(drm_enc);
1782
1783 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1784
1785 /* prepare for next kickoff, may include waiting on previous kickoff */
1786 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1787 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1788 phys = dpu_enc->phys_encs[i];
1789 if (phys) {
1790 if (phys->ops.prepare_for_kickoff)
1791 phys->ops.prepare_for_kickoff(phys, params);
1792 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1793 needs_hw_reset = true;
1794 }
1795 }
1796 DPU_ATRACE_END("enc_prepare_for_kickoff");
1797
1798 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1799
1800 /* if any phys needs reset, reset all phys, in-order */
1801 if (needs_hw_reset) {
1802 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1803 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1804 phys = dpu_enc->phys_encs[i];
1805 if (phys && phys->ops.hw_reset)
1806 phys->ops.hw_reset(phys);
1807 }
1808 }
1809 }
1810
1811 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1812 {
1813 struct dpu_encoder_virt *dpu_enc;
1814 struct dpu_encoder_phys *phys;
1815 ktime_t wakeup_time;
1816 unsigned int i;
1817
1818 if (!drm_enc) {
1819 DPU_ERROR("invalid encoder\n");
1820 return;
1821 }
1822 DPU_ATRACE_BEGIN("encoder_kickoff");
1823 dpu_enc = to_dpu_encoder_virt(drm_enc);
1824
1825 trace_dpu_enc_kickoff(DRMID(drm_enc));
1826
1827 atomic_set(&dpu_enc->frame_done_timeout,
1828 DPU_FRAME_DONE_TIMEOUT * 1000 /
1829 drm_enc->crtc->state->adjusted_mode.vrefresh);
1830 mod_timer(&dpu_enc->frame_done_timer, jiffies +
1831 ((atomic_read(&dpu_enc->frame_done_timeout) * HZ) / 1000));
1832
1833 /* All phys encs are ready to go, trigger the kickoff */
1834 _dpu_encoder_kickoff_phys(dpu_enc);
1835
1836 /* allow phys encs to handle any post-kickoff business */
1837 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1838 phys = dpu_enc->phys_encs[i];
1839 if (phys && phys->ops.handle_post_kickoff)
1840 phys->ops.handle_post_kickoff(phys);
1841 }
1842
1843 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1844 !_dpu_encoder_wakeup_time(drm_enc, &wakeup_time)) {
1845 trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1846 ktime_to_ms(wakeup_time));
1847 mod_timer(&dpu_enc->vsync_event_timer,
1848 nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1849 }
1850
1851 DPU_ATRACE_END("encoder_kickoff");
1852 }
1853
1854 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1855 {
1856 struct dpu_encoder_virt *dpu_enc;
1857 struct dpu_encoder_phys *phys;
1858 int i;
1859
1860 if (!drm_enc) {
1861 DPU_ERROR("invalid encoder\n");
1862 return;
1863 }
1864 dpu_enc = to_dpu_encoder_virt(drm_enc);
1865
1866 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1867 phys = dpu_enc->phys_encs[i];
1868 if (phys && phys->ops.prepare_commit)
1869 phys->ops.prepare_commit(phys);
1870 }
1871 }
1872
1873 #ifdef CONFIG_DEBUG_FS
1874 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1875 {
1876 struct dpu_encoder_virt *dpu_enc;
1877 int i;
1878
1879 if (!s || !s->private)
1880 return -EINVAL;
1881
1882 dpu_enc = s->private;
1883
1884 mutex_lock(&dpu_enc->enc_lock);
1885 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1886 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1887
1888 if (!phys)
1889 continue;
1890
1891 seq_printf(s, "intf:%d vsync:%8d underrun:%8d ",
1892 phys->intf_idx - INTF_0,
1893 atomic_read(&phys->vsync_cnt),
1894 atomic_read(&phys->underrun_cnt));
1895
1896 switch (phys->intf_mode) {
1897 case INTF_MODE_VIDEO:
1898 seq_puts(s, "mode: video\n");
1899 break;
1900 case INTF_MODE_CMD:
1901 seq_puts(s, "mode: command\n");
1902 break;
1903 default:
1904 seq_puts(s, "mode: ???\n");
1905 break;
1906 }
1907 }
1908 mutex_unlock(&dpu_enc->enc_lock);
1909
1910 return 0;
1911 }
1912
1913 static int _dpu_encoder_debugfs_status_open(struct inode *inode,
1914 struct file *file)
1915 {
1916 return single_open(file, _dpu_encoder_status_show, inode->i_private);
1917 }
1918
1919 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1920 {
1921 struct dpu_encoder_virt *dpu_enc;
1922 struct msm_drm_private *priv;
1923 struct dpu_kms *dpu_kms;
1924 int i;
1925
1926 static const struct file_operations debugfs_status_fops = {
1927 .open = _dpu_encoder_debugfs_status_open,
1928 .read = seq_read,
1929 .llseek = seq_lseek,
1930 .release = single_release,
1931 };
1932
1933 char name[DPU_NAME_SIZE];
1934
1935 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) {
1936 DPU_ERROR("invalid encoder or kms\n");
1937 return -EINVAL;
1938 }
1939
1940 dpu_enc = to_dpu_encoder_virt(drm_enc);
1941 priv = drm_enc->dev->dev_private;
1942 dpu_kms = to_dpu_kms(priv->kms);
1943
1944 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1945
1946 /* create overall sub-directory for the encoder */
1947 dpu_enc->debugfs_root = debugfs_create_dir(name,
1948 drm_enc->dev->primary->debugfs_root);
1949 if (!dpu_enc->debugfs_root)
1950 return -ENOMEM;
1951
1952 /* don't error check these */
1953 debugfs_create_file("status", 0600,
1954 dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops);
1955
1956 for (i = 0; i < dpu_enc->num_phys_encs; i++)
1957 if (dpu_enc->phys_encs[i] &&
1958 dpu_enc->phys_encs[i]->ops.late_register)
1959 dpu_enc->phys_encs[i]->ops.late_register(
1960 dpu_enc->phys_encs[i],
1961 dpu_enc->debugfs_root);
1962
1963 return 0;
1964 }
1965
1966 static void _dpu_encoder_destroy_debugfs(struct drm_encoder *drm_enc)
1967 {
1968 struct dpu_encoder_virt *dpu_enc;
1969
1970 if (!drm_enc)
1971 return;
1972
1973 dpu_enc = to_dpu_encoder_virt(drm_enc);
1974 debugfs_remove_recursive(dpu_enc->debugfs_root);
1975 }
1976 #else
1977 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1978 {
1979 return 0;
1980 }
1981
1982 static void _dpu_encoder_destroy_debugfs(struct drm_encoder *drm_enc)
1983 {
1984 }
1985 #endif
1986
1987 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1988 {
1989 return _dpu_encoder_init_debugfs(encoder);
1990 }
1991
1992 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
1993 {
1994 _dpu_encoder_destroy_debugfs(encoder);
1995 }
1996
1997 static int dpu_encoder_virt_add_phys_encs(
1998 u32 display_caps,
1999 struct dpu_encoder_virt *dpu_enc,
2000 struct dpu_enc_phys_init_params *params)
2001 {
2002 struct dpu_encoder_phys *enc = NULL;
2003
2004 DPU_DEBUG_ENC(dpu_enc, "\n");
2005
2006 /*
2007 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2008 * in this function, check up-front.
2009 */
2010 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2011 ARRAY_SIZE(dpu_enc->phys_encs)) {
2012 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2013 dpu_enc->num_phys_encs);
2014 return -EINVAL;
2015 }
2016
2017 if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
2018 enc = dpu_encoder_phys_vid_init(params);
2019
2020 if (IS_ERR_OR_NULL(enc)) {
2021 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2022 PTR_ERR(enc));
2023 return enc == 0 ? -EINVAL : PTR_ERR(enc);
2024 }
2025
2026 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2027 ++dpu_enc->num_phys_encs;
2028 }
2029
2030 if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
2031 enc = dpu_encoder_phys_cmd_init(params);
2032
2033 if (IS_ERR_OR_NULL(enc)) {
2034 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2035 PTR_ERR(enc));
2036 return enc == 0 ? -EINVAL : PTR_ERR(enc);
2037 }
2038
2039 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2040 ++dpu_enc->num_phys_encs;
2041 }
2042
2043 if (params->split_role == ENC_ROLE_SLAVE)
2044 dpu_enc->cur_slave = enc;
2045 else
2046 dpu_enc->cur_master = enc;
2047
2048 return 0;
2049 }
2050
2051 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2052 .handle_vblank_virt = dpu_encoder_vblank_callback,
2053 .handle_underrun_virt = dpu_encoder_underrun_callback,
2054 .handle_frame_done = dpu_encoder_frame_done_callback,
2055 };
2056
2057 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2058 struct dpu_kms *dpu_kms,
2059 struct msm_display_info *disp_info)
2060 {
2061 int ret = 0;
2062 int i = 0;
2063 enum dpu_intf_type intf_type;
2064 struct dpu_enc_phys_init_params phys_params;
2065
2066 if (!dpu_enc || !dpu_kms) {
2067 DPU_ERROR("invalid arg(s), enc %d kms %d\n",
2068 dpu_enc != 0, dpu_kms != 0);
2069 return -EINVAL;
2070 }
2071
2072 dpu_enc->cur_master = NULL;
2073
2074 memset(&phys_params, 0, sizeof(phys_params));
2075 phys_params.dpu_kms = dpu_kms;
2076 phys_params.parent = &dpu_enc->base;
2077 phys_params.parent_ops = &dpu_encoder_parent_ops;
2078 phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2079
2080 DPU_DEBUG("\n");
2081
2082 switch (disp_info->intf_type) {
2083 case DRM_MODE_ENCODER_DSI:
2084 intf_type = INTF_DSI;
2085 break;
2086 default:
2087 DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n");
2088 return -EINVAL;
2089 }
2090
2091 WARN_ON(disp_info->num_of_h_tiles < 1);
2092
2093 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2094
2095 if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2096 (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2097 dpu_enc->idle_pc_supported =
2098 dpu_kms->catalog->caps->has_idle_pc;
2099
2100 mutex_lock(&dpu_enc->enc_lock);
2101 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2102 /*
2103 * Left-most tile is at index 0, content is controller id
2104 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2105 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2106 */
2107 u32 controller_id = disp_info->h_tile_instance[i];
2108
2109 if (disp_info->num_of_h_tiles > 1) {
2110 if (i == 0)
2111 phys_params.split_role = ENC_ROLE_MASTER;
2112 else
2113 phys_params.split_role = ENC_ROLE_SLAVE;
2114 } else {
2115 phys_params.split_role = ENC_ROLE_SOLO;
2116 }
2117
2118 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2119 i, controller_id, phys_params.split_role);
2120
2121 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2122 intf_type,
2123 controller_id);
2124 if (phys_params.intf_idx == INTF_MAX) {
2125 DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2126 intf_type, controller_id);
2127 ret = -EINVAL;
2128 }
2129
2130 if (!ret) {
2131 ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2132 dpu_enc,
2133 &phys_params);
2134 if (ret)
2135 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2136 }
2137 }
2138
2139 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2140 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2141
2142 if (phys) {
2143 atomic_set(&phys->vsync_cnt, 0);
2144 atomic_set(&phys->underrun_cnt, 0);
2145 }
2146 }
2147 mutex_unlock(&dpu_enc->enc_lock);
2148
2149 return ret;
2150 }
2151
2152 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2153 {
2154 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2155 frame_done_timer);
2156 struct drm_encoder *drm_enc = &dpu_enc->base;
2157 struct msm_drm_private *priv;
2158 u32 event;
2159
2160 if (!drm_enc->dev || !drm_enc->dev->dev_private) {
2161 DPU_ERROR("invalid parameters\n");
2162 return;
2163 }
2164 priv = drm_enc->dev->dev_private;
2165
2166 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2167 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2168 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2169 return;
2170 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout, 0)) {
2171 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2172 return;
2173 }
2174
2175 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2176
2177 event = DPU_ENCODER_FRAME_EVENT_ERROR;
2178 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2179 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2180 }
2181
2182 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2183 .mode_set = dpu_encoder_virt_mode_set,
2184 .disable = dpu_encoder_virt_disable,
2185 .enable = dpu_kms_encoder_enable,
2186 .atomic_check = dpu_encoder_virt_atomic_check,
2187
2188 /* This is called by dpu_kms_encoder_enable */
2189 .commit = dpu_encoder_virt_enable,
2190 };
2191
2192 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2193 .destroy = dpu_encoder_destroy,
2194 .late_register = dpu_encoder_late_register,
2195 .early_unregister = dpu_encoder_early_unregister,
2196 };
2197
2198 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2199 struct msm_display_info *disp_info)
2200 {
2201 struct msm_drm_private *priv = dev->dev_private;
2202 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2203 struct drm_encoder *drm_enc = NULL;
2204 struct dpu_encoder_virt *dpu_enc = NULL;
2205 int ret = 0;
2206
2207 dpu_enc = to_dpu_encoder_virt(enc);
2208
2209 mutex_init(&dpu_enc->enc_lock);
2210 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2211 if (ret)
2212 goto fail;
2213
2214 spin_lock_init(&dpu_enc->enc_spinlock);
2215
2216 atomic_set(&dpu_enc->frame_done_timeout, 0);
2217 timer_setup(&dpu_enc->frame_done_timer,
2218 dpu_encoder_frame_done_timeout, 0);
2219
2220 if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2221 timer_setup(&dpu_enc->vsync_event_timer,
2222 dpu_encoder_vsync_event_handler,
2223 0);
2224
2225
2226 mutex_init(&dpu_enc->rc_lock);
2227 kthread_init_delayed_work(&dpu_enc->delayed_off_work,
2228 dpu_encoder_off_work);
2229 dpu_enc->idle_timeout = IDLE_TIMEOUT;
2230
2231 kthread_init_work(&dpu_enc->vsync_event_work,
2232 dpu_encoder_vsync_event_work_handler);
2233
2234 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2235
2236 DPU_DEBUG_ENC(dpu_enc, "created\n");
2237
2238 return ret;
2239
2240 fail:
2241 DPU_ERROR("failed to create encoder\n");
2242 if (drm_enc)
2243 dpu_encoder_destroy(drm_enc);
2244
2245 return ret;
2246
2247
2248 }
2249
2250 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2251 int drm_enc_mode)
2252 {
2253 struct dpu_encoder_virt *dpu_enc = NULL;
2254 int rc = 0;
2255
2256 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2257 if (!dpu_enc)
2258 return ERR_PTR(ENOMEM);
2259
2260 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2261 drm_enc_mode, NULL);
2262 if (rc) {
2263 devm_kfree(dev->dev, dpu_enc);
2264 return ERR_PTR(rc);
2265 }
2266
2267 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2268
2269 return &dpu_enc->base;
2270 }
2271
2272 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2273 enum msm_event_wait event)
2274 {
2275 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2276 struct dpu_encoder_virt *dpu_enc = NULL;
2277 int i, ret = 0;
2278
2279 if (!drm_enc) {
2280 DPU_ERROR("invalid encoder\n");
2281 return -EINVAL;
2282 }
2283 dpu_enc = to_dpu_encoder_virt(drm_enc);
2284 DPU_DEBUG_ENC(dpu_enc, "\n");
2285
2286 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2287 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2288 if (!phys)
2289 continue;
2290
2291 switch (event) {
2292 case MSM_ENC_COMMIT_DONE:
2293 fn_wait = phys->ops.wait_for_commit_done;
2294 break;
2295 case MSM_ENC_TX_COMPLETE:
2296 fn_wait = phys->ops.wait_for_tx_complete;
2297 break;
2298 case MSM_ENC_VBLANK:
2299 fn_wait = phys->ops.wait_for_vblank;
2300 break;
2301 default:
2302 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2303 event);
2304 return -EINVAL;
2305 };
2306
2307 if (fn_wait) {
2308 DPU_ATRACE_BEGIN("wait_for_completion_event");
2309 ret = fn_wait(phys);
2310 DPU_ATRACE_END("wait_for_completion_event");
2311 if (ret)
2312 return ret;
2313 }
2314 }
2315
2316 return ret;
2317 }
2318
2319 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2320 {
2321 struct dpu_encoder_virt *dpu_enc = NULL;
2322 int i;
2323
2324 if (!encoder) {
2325 DPU_ERROR("invalid encoder\n");
2326 return INTF_MODE_NONE;
2327 }
2328 dpu_enc = to_dpu_encoder_virt(encoder);
2329
2330 if (dpu_enc->cur_master)
2331 return dpu_enc->cur_master->intf_mode;
2332
2333 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2334 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2335
2336 if (phys)
2337 return phys->intf_mode;
2338 }
2339
2340 return INTF_MODE_NONE;
2341 }