]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - drivers/gpu/drm/nouveau/dispnv50/disp.c
drm/nouveau: uvmm: rename 'umgr' to 'base'
[thirdparty/kernel/linux.git] / drivers / gpu / drm / nouveau / dispnv50 / disp.c
1 /*
2 * Copyright 2011 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 #include "handles.h"
30
31 #include <linux/dma-mapping.h>
32 #include <linux/hdmi.h>
33 #include <linux/component.h>
34 #include <linux/iopoll.h>
35
36 #include <drm/display/drm_dp_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fb_helper.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
44
45 #include <nvif/push507c.h>
46
47 #include <nvif/class.h>
48 #include <nvif/cl0002.h>
49 #include <nvif/event.h>
50 #include <nvif/if0012.h>
51 #include <nvif/if0014.h>
52 #include <nvif/timer.h>
53
54 #include <nvhw/class/cl507c.h>
55 #include <nvhw/class/cl507d.h>
56 #include <nvhw/class/cl837d.h>
57 #include <nvhw/class/cl887d.h>
58 #include <nvhw/class/cl907d.h>
59 #include <nvhw/class/cl917d.h>
60
61 #include "nouveau_drv.h"
62 #include "nouveau_dma.h"
63 #include "nouveau_gem.h"
64 #include "nouveau_connector.h"
65 #include "nouveau_encoder.h"
66 #include "nouveau_fence.h"
67 #include "nv50_display.h"
68
69 /******************************************************************************
70 * EVO channel
71 *****************************************************************************/
72
73 static int
74 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
75 const s32 *oclass, u8 head, void *data, u32 size,
76 struct nv50_chan *chan)
77 {
78 struct nvif_sclass *sclass;
79 int ret, i, n;
80
81 chan->device = device;
82
83 ret = n = nvif_object_sclass_get(disp, &sclass);
84 if (ret < 0)
85 return ret;
86
87 while (oclass[0]) {
88 for (i = 0; i < n; i++) {
89 if (sclass[i].oclass == oclass[0]) {
90 ret = nvif_object_ctor(disp, "kmsChan", 0,
91 oclass[0], data, size,
92 &chan->user);
93 if (ret == 0)
94 nvif_object_map(&chan->user, NULL, 0);
95 nvif_object_sclass_put(&sclass);
96 return ret;
97 }
98 }
99 oclass++;
100 }
101
102 nvif_object_sclass_put(&sclass);
103 return -ENOSYS;
104 }
105
106 static void
107 nv50_chan_destroy(struct nv50_chan *chan)
108 {
109 nvif_object_dtor(&chan->user);
110 }
111
112 /******************************************************************************
113 * DMA EVO channel
114 *****************************************************************************/
115
116 void
117 nv50_dmac_destroy(struct nv50_dmac *dmac)
118 {
119 nvif_object_dtor(&dmac->vram);
120 nvif_object_dtor(&dmac->sync);
121
122 nv50_chan_destroy(&dmac->base);
123
124 nvif_mem_dtor(&dmac->_push.mem);
125 }
126
127 static void
128 nv50_dmac_kick(struct nvif_push *push)
129 {
130 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
131
132 dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr;
133 if (dmac->put != dmac->cur) {
134 /* Push buffer fetches are not coherent with BAR1, we need to ensure
135 * writes have been flushed right through to VRAM before writing PUT.
136 */
137 if (dmac->push->mem.type & NVIF_MEM_VRAM) {
138 struct nvif_device *device = dmac->base.device;
139 nvif_wr32(&device->object, 0x070000, 0x00000001);
140 nvif_msec(device, 2000,
141 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
142 break;
143 );
144 }
145
146 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur);
147 dmac->put = dmac->cur;
148 }
149
150 push->bgn = push->cur;
151 }
152
153 static int
154 nv50_dmac_free(struct nv50_dmac *dmac)
155 {
156 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
157 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */
158 return get - dmac->cur - 5;
159 return dmac->max - dmac->cur;
160 }
161
162 static int
163 nv50_dmac_wind(struct nv50_dmac *dmac)
164 {
165 /* Wait for GET to depart from the beginning of the push buffer to
166 * prevent writing PUT == GET, which would be ignored by HW.
167 */
168 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
169 if (get == 0) {
170 /* Corner-case, HW idle, but non-committed work pending. */
171 if (dmac->put == 0)
172 nv50_dmac_kick(dmac->push);
173
174 if (nvif_msec(dmac->base.device, 2000,
175 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0))
176 break;
177 ) < 0)
178 return -ETIMEDOUT;
179 }
180
181 PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0));
182 dmac->cur = 0;
183 return 0;
184 }
185
186 static int
187 nv50_dmac_wait(struct nvif_push *push, u32 size)
188 {
189 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
190 int free;
191
192 if (WARN_ON(size > dmac->max))
193 return -EINVAL;
194
195 dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr;
196 if (dmac->cur + size >= dmac->max) {
197 int ret = nv50_dmac_wind(dmac);
198 if (ret)
199 return ret;
200
201 push->cur = dmac->_push.mem.object.map.ptr;
202 push->cur = push->cur + dmac->cur;
203 nv50_dmac_kick(push);
204 }
205
206 if (nvif_msec(dmac->base.device, 2000,
207 if ((free = nv50_dmac_free(dmac)) >= size)
208 break;
209 ) < 0) {
210 WARN_ON(1);
211 return -ETIMEDOUT;
212 }
213
214 push->bgn = dmac->_push.mem.object.map.ptr;
215 push->bgn = push->bgn + dmac->cur;
216 push->cur = push->bgn;
217 push->end = push->cur + free;
218 return 0;
219 }
220
221 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)");
222 static int nv50_dmac_vram_pushbuf = -1;
223 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400);
224
225 int
226 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
227 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf,
228 struct nv50_dmac *dmac)
229 {
230 struct nouveau_cli *cli = (void *)device->object.client;
231 struct nvif_disp_chan_v0 *args = data;
232 u8 type = NVIF_MEM_COHERENT;
233 int ret;
234
235 mutex_init(&dmac->lock);
236
237 /* Pascal added support for 47-bit physical addresses, but some
238 * parts of EVO still only accept 40-bit PAs.
239 *
240 * To avoid issues on systems with large amounts of RAM, and on
241 * systems where an IOMMU maps pages at a high address, we need
242 * to allocate push buffers in VRAM instead.
243 *
244 * This appears to match NVIDIA's behaviour on Pascal.
245 */
246 if ((nv50_dmac_vram_pushbuf > 0) ||
247 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL))
248 type |= NVIF_MEM_VRAM;
249
250 ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000,
251 &dmac->_push.mem);
252 if (ret)
253 return ret;
254
255 dmac->ptr = dmac->_push.mem.object.map.ptr;
256 dmac->_push.wait = nv50_dmac_wait;
257 dmac->_push.kick = nv50_dmac_kick;
258 dmac->push = &dmac->_push;
259 dmac->push->bgn = dmac->_push.mem.object.map.ptr;
260 dmac->push->cur = dmac->push->bgn;
261 dmac->push->end = dmac->push->bgn;
262 dmac->max = 0x1000/4 - 1;
263
264 /* EVO channels are affected by a HW bug where the last 12 DWORDs
265 * of the push buffer aren't able to be used safely.
266 */
267 if (disp->oclass < GV100_DISP)
268 dmac->max -= 12;
269
270 args->pushbuf = nvif_handle(&dmac->_push.mem.object);
271
272 ret = nv50_chan_create(device, disp, oclass, head, data, size,
273 &dmac->base);
274 if (ret)
275 return ret;
276
277 if (syncbuf < 0)
278 return 0;
279
280 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF,
281 NV_DMA_IN_MEMORY,
282 &(struct nv_dma_v0) {
283 .target = NV_DMA_V0_TARGET_VRAM,
284 .access = NV_DMA_V0_ACCESS_RDWR,
285 .start = syncbuf + 0x0000,
286 .limit = syncbuf + 0x0fff,
287 }, sizeof(struct nv_dma_v0),
288 &dmac->sync);
289 if (ret)
290 return ret;
291
292 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM,
293 NV_DMA_IN_MEMORY,
294 &(struct nv_dma_v0) {
295 .target = NV_DMA_V0_TARGET_VRAM,
296 .access = NV_DMA_V0_ACCESS_RDWR,
297 .start = 0,
298 .limit = device->info.ram_user - 1,
299 }, sizeof(struct nv_dma_v0),
300 &dmac->vram);
301 if (ret)
302 return ret;
303
304 return ret;
305 }
306
307 /******************************************************************************
308 * Output path helpers
309 *****************************************************************************/
310 static void
311 nv50_outp_dump_caps(struct nouveau_drm *drm,
312 struct nouveau_encoder *outp)
313 {
314 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n",
315 outp->base.base.name, outp->caps.dp_interlace);
316 }
317
318 static int
319 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
320 struct drm_crtc_state *crtc_state,
321 struct drm_connector_state *conn_state,
322 struct drm_display_mode *native_mode)
323 {
324 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
325 struct drm_display_mode *mode = &crtc_state->mode;
326 struct drm_connector *connector = conn_state->connector;
327 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
328 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
329
330 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
331 asyc->scaler.full = false;
332 if (!native_mode)
333 return 0;
334
335 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
336 switch (connector->connector_type) {
337 case DRM_MODE_CONNECTOR_LVDS:
338 case DRM_MODE_CONNECTOR_eDP:
339 /* Don't force scaler for EDID modes with
340 * same size as the native one (e.g. different
341 * refresh rate)
342 */
343 if (mode->hdisplay == native_mode->hdisplay &&
344 mode->vdisplay == native_mode->vdisplay &&
345 mode->type & DRM_MODE_TYPE_DRIVER)
346 break;
347 mode = native_mode;
348 asyc->scaler.full = true;
349 break;
350 default:
351 break;
352 }
353 } else {
354 mode = native_mode;
355 }
356
357 if (!drm_mode_equal(adjusted_mode, mode)) {
358 drm_mode_copy(adjusted_mode, mode);
359 crtc_state->mode_changed = true;
360 }
361
362 return 0;
363 }
364
365 static void
366 nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state)
367 {
368 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
369 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
370 struct drm_display_mode *mode = &asyh->state.adjusted_mode;
371 unsigned int max_rate, mode_rate;
372
373 switch (nv_encoder->dcb->type) {
374 case DCB_OUTPUT_DP:
375 max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw;
376
377 /* we don't support more than 10 anyway */
378 asyh->or.bpc = min_t(u8, asyh->or.bpc, 10);
379
380 /* reduce the bpc until it works out */
381 while (asyh->or.bpc > 6) {
382 mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8);
383 if (mode_rate <= max_rate)
384 break;
385
386 asyh->or.bpc -= 2;
387 }
388 break;
389 default:
390 break;
391 }
392 }
393
394 static int
395 nv50_outp_atomic_check(struct drm_encoder *encoder,
396 struct drm_crtc_state *crtc_state,
397 struct drm_connector_state *conn_state)
398 {
399 struct drm_connector *connector = conn_state->connector;
400 struct nouveau_connector *nv_connector = nouveau_connector(connector);
401 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
402 int ret;
403
404 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
405 nv_connector->native_mode);
406 if (ret)
407 return ret;
408
409 if (crtc_state->mode_changed || crtc_state->connectors_changed)
410 asyh->or.bpc = connector->display_info.bpc;
411
412 /* We might have to reduce the bpc */
413 nv50_outp_atomic_fix_depth(encoder, crtc_state);
414
415 return 0;
416 }
417
418 struct nouveau_connector *
419 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
420 {
421 struct drm_connector *connector;
422 struct drm_connector_state *connector_state;
423 struct drm_encoder *encoder = to_drm_encoder(outp);
424 int i;
425
426 for_each_new_connector_in_state(state, connector, connector_state, i) {
427 if (connector_state->best_encoder == encoder)
428 return nouveau_connector(connector);
429 }
430
431 return NULL;
432 }
433
434 struct nouveau_connector *
435 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
436 {
437 struct drm_connector *connector;
438 struct drm_connector_state *connector_state;
439 struct drm_encoder *encoder = to_drm_encoder(outp);
440 int i;
441
442 for_each_old_connector_in_state(state, connector, connector_state, i) {
443 if (connector_state->best_encoder == encoder)
444 return nouveau_connector(connector);
445 }
446
447 return NULL;
448 }
449
450 static struct nouveau_crtc *
451 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp)
452 {
453 struct drm_crtc *crtc;
454 struct drm_crtc_state *crtc_state;
455 const u32 mask = drm_encoder_mask(&outp->base.base);
456 int i;
457
458 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
459 if (crtc_state->encoder_mask & mask)
460 return nouveau_crtc(crtc);
461 }
462
463 return NULL;
464 }
465
466 /******************************************************************************
467 * DAC
468 *****************************************************************************/
469 static void
470 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
471 {
472 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
473 struct nv50_core *core = nv50_disp(encoder->dev)->core;
474 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE);
475
476 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
477 nv_encoder->crtc = NULL;
478 }
479
480 static void
481 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
482 {
483 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
484 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
485 struct nv50_head_atom *asyh =
486 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
487 struct nv50_core *core = nv50_disp(encoder->dev)->core;
488 u32 ctrl = 0;
489
490 switch (nv_crtc->index) {
491 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break;
492 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break;
493 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break;
494 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break;
495 default:
496 WARN_ON(1);
497 break;
498 }
499
500 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT);
501
502 if (!nvif_outp_acquired(&nv_encoder->outp))
503 nvif_outp_acquire_dac(&nv_encoder->outp);
504
505 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
506 asyh->or.depth = 0;
507
508 nv_encoder->crtc = &nv_crtc->base;
509 }
510
511 static enum drm_connector_status
512 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
513 {
514 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
515 u32 loadval;
516 int ret;
517
518 loadval = nouveau_drm(encoder->dev)->vbios.dactestval;
519 if (loadval == 0)
520 loadval = 340;
521
522 ret = nvif_outp_load_detect(&nv_encoder->outp, loadval);
523 if (ret <= 0)
524 return connector_status_disconnected;
525
526 return connector_status_connected;
527 }
528
529 static const struct drm_encoder_helper_funcs
530 nv50_dac_help = {
531 .atomic_check = nv50_outp_atomic_check,
532 .atomic_enable = nv50_dac_atomic_enable,
533 .atomic_disable = nv50_dac_atomic_disable,
534 .detect = nv50_dac_detect
535 };
536
537 static void
538 nv50_dac_destroy(struct drm_encoder *encoder)
539 {
540 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
541
542 nvif_outp_dtor(&nv_encoder->outp);
543
544 drm_encoder_cleanup(encoder);
545 kfree(encoder);
546 }
547
548 static const struct drm_encoder_funcs
549 nv50_dac_func = {
550 .destroy = nv50_dac_destroy,
551 };
552
553 static int
554 nv50_dac_create(struct nouveau_encoder *nv_encoder)
555 {
556 struct drm_connector *connector = &nv_encoder->conn->base;
557 struct nouveau_drm *drm = nouveau_drm(connector->dev);
558 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
559 struct nvkm_i2c_bus *bus;
560 struct drm_encoder *encoder;
561 struct dcb_output *dcbe = nv_encoder->dcb;
562 int type = DRM_MODE_ENCODER_DAC;
563
564 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
565 if (bus)
566 nv_encoder->i2c = &bus->i2c;
567
568 encoder = to_drm_encoder(nv_encoder);
569 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
570 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
571 drm_encoder_helper_add(encoder, &nv50_dac_help);
572
573 drm_connector_attach_encoder(connector, encoder);
574 return 0;
575 }
576
577 /*
578 * audio component binding for ELD notification
579 */
580 static void
581 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
582 int dev_id)
583 {
584 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
585 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
586 port, dev_id);
587 }
588
589 static int
590 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
591 bool *enabled, unsigned char *buf, int max_bytes)
592 {
593 struct drm_device *drm_dev = dev_get_drvdata(kdev);
594 struct nouveau_drm *drm = nouveau_drm(drm_dev);
595 struct drm_encoder *encoder;
596 struct nouveau_encoder *nv_encoder;
597 struct nouveau_crtc *nv_crtc;
598 int ret = 0;
599
600 *enabled = false;
601
602 mutex_lock(&drm->audio.lock);
603
604 drm_for_each_encoder(encoder, drm->dev) {
605 struct nouveau_connector *nv_connector = NULL;
606
607 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
608 continue; /* TODO */
609
610 nv_encoder = nouveau_encoder(encoder);
611 nv_connector = nv_encoder->conn;
612 nv_crtc = nouveau_crtc(nv_encoder->crtc);
613
614 if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id)
615 continue;
616
617 *enabled = nv_encoder->audio.enabled;
618 if (*enabled) {
619 ret = drm_eld_size(nv_connector->base.eld);
620 memcpy(buf, nv_connector->base.eld,
621 min(max_bytes, ret));
622 }
623 break;
624 }
625
626 mutex_unlock(&drm->audio.lock);
627
628 return ret;
629 }
630
631 static const struct drm_audio_component_ops nv50_audio_component_ops = {
632 .get_eld = nv50_audio_component_get_eld,
633 };
634
635 static int
636 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
637 void *data)
638 {
639 struct drm_device *drm_dev = dev_get_drvdata(kdev);
640 struct nouveau_drm *drm = nouveau_drm(drm_dev);
641 struct drm_audio_component *acomp = data;
642
643 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
644 return -ENOMEM;
645
646 drm_modeset_lock_all(drm_dev);
647 acomp->ops = &nv50_audio_component_ops;
648 acomp->dev = kdev;
649 drm->audio.component = acomp;
650 drm_modeset_unlock_all(drm_dev);
651 return 0;
652 }
653
654 static void
655 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
656 void *data)
657 {
658 struct drm_device *drm_dev = dev_get_drvdata(kdev);
659 struct nouveau_drm *drm = nouveau_drm(drm_dev);
660 struct drm_audio_component *acomp = data;
661
662 drm_modeset_lock_all(drm_dev);
663 drm->audio.component = NULL;
664 acomp->ops = NULL;
665 acomp->dev = NULL;
666 drm_modeset_unlock_all(drm_dev);
667 }
668
669 static const struct component_ops nv50_audio_component_bind_ops = {
670 .bind = nv50_audio_component_bind,
671 .unbind = nv50_audio_component_unbind,
672 };
673
674 static void
675 nv50_audio_component_init(struct nouveau_drm *drm)
676 {
677 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
678 return;
679
680 drm->audio.component_registered = true;
681 mutex_init(&drm->audio.lock);
682 }
683
684 static void
685 nv50_audio_component_fini(struct nouveau_drm *drm)
686 {
687 if (!drm->audio.component_registered)
688 return;
689
690 component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
691 drm->audio.component_registered = false;
692 mutex_destroy(&drm->audio.lock);
693 }
694
695 /******************************************************************************
696 * Audio
697 *****************************************************************************/
698 static bool
699 nv50_audio_supported(struct drm_encoder *encoder)
700 {
701 struct nv50_disp *disp = nv50_disp(encoder->dev);
702
703 if (disp->disp->object.oclass <= GT200_DISP ||
704 disp->disp->object.oclass == GT206_DISP)
705 return false;
706
707 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
708 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
709
710 switch (nv_encoder->dcb->type) {
711 case DCB_OUTPUT_TMDS:
712 case DCB_OUTPUT_DP:
713 break;
714 default:
715 return false;
716 }
717 }
718
719 return true;
720 }
721
722 static void
723 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
724 {
725 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
726 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
727 struct nvif_outp *outp = &nv_encoder->outp;
728
729 if (!nv50_audio_supported(encoder))
730 return;
731
732 mutex_lock(&drm->audio.lock);
733 if (nv_encoder->audio.enabled) {
734 nv_encoder->audio.enabled = false;
735 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0);
736 }
737 mutex_unlock(&drm->audio.lock);
738
739 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
740 }
741
742 static void
743 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
744 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
745 struct drm_display_mode *mode)
746 {
747 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
748 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
749 struct nvif_outp *outp = &nv_encoder->outp;
750
751 if (!nv50_audio_supported(encoder) || !drm_detect_monitor_audio(nv_connector->edid))
752 return;
753
754 mutex_lock(&drm->audio.lock);
755
756 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld,
757 drm_eld_size(nv_connector->base.eld));
758 nv_encoder->audio.enabled = true;
759
760 mutex_unlock(&drm->audio.lock);
761
762 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
763 }
764
765 /******************************************************************************
766 * HDMI
767 *****************************************************************************/
768 static void
769 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
770 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
771 struct drm_display_mode *mode, bool hda)
772 {
773 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
774 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
775 struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi;
776 union hdmi_infoframe infoframe = { 0 };
777 const u8 rekey = 56; /* binary driver, and tegra, constant */
778 u32 max_ac_packet;
779 struct {
780 struct nvif_outp_infoframe_v0 infoframe;
781 u8 data[17];
782 } args = { 0 };
783 int ret, size;
784
785 max_ac_packet = mode->htotal - mode->hdisplay;
786 max_ac_packet -= rekey;
787 max_ac_packet -= 18; /* constant from tegra */
788 max_ac_packet /= 32;
789
790 if (nv_encoder->i2c && hdmi->scdc.scrambling.supported) {
791 const bool high_tmds_clock_ratio = mode->clock > 340000;
792 u8 scdc;
793
794 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc);
795 if (ret < 0) {
796 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
797 return;
798 }
799
800 scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
801 if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates)
802 scdc |= SCDC_SCRAMBLING_ENABLE;
803 if (high_tmds_clock_ratio)
804 scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40;
805
806 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc);
807 if (ret < 0)
808 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
809 scdc, ret);
810 }
811
812 ret = nvif_outp_hdmi(&nv_encoder->outp, nv_crtc->index, true, max_ac_packet, rekey,
813 mode->clock, hdmi->scdc.supported, hdmi->scdc.scrambling.supported,
814 hdmi->scdc.scrambling.low_rates);
815 if (ret)
816 return;
817
818 /* AVI InfoFrame. */
819 args.infoframe.version = 0;
820 args.infoframe.head = nv_crtc->index;
821
822 if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) {
823 drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode,
824 HDMI_QUANTIZATION_RANGE_FULL);
825
826 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data));
827 } else {
828 size = 0;
829 }
830
831 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, &args.infoframe, size);
832
833 /* Vendor InfoFrame. */
834 memset(&args.data, 0, sizeof(args.data));
835 if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi,
836 &nv_connector->base, mode))
837 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data));
838 else
839 size = 0;
840
841 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, &args.infoframe, size);
842
843 nv_encoder->hdmi.enabled = true;
844 }
845
846 /******************************************************************************
847 * MST
848 *****************************************************************************/
849 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
850 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
851 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
852
853 struct nv50_mstc {
854 struct nv50_mstm *mstm;
855 struct drm_dp_mst_port *port;
856 struct drm_connector connector;
857
858 struct drm_display_mode *native;
859 struct edid *edid;
860 };
861
862 struct nv50_msto {
863 struct drm_encoder encoder;
864
865 /* head is statically assigned on msto creation */
866 struct nv50_head *head;
867 struct nv50_mstc *mstc;
868 bool disabled;
869 bool enabled;
870
871 u32 display_id;
872 };
873
874 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder)
875 {
876 struct nv50_msto *msto;
877
878 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
879 return nouveau_encoder(encoder);
880
881 msto = nv50_msto(encoder);
882 if (!msto->mstc)
883 return NULL;
884 return msto->mstc->mstm->outp;
885 }
886
887 static void
888 nv50_msto_cleanup(struct drm_atomic_state *state,
889 struct drm_dp_mst_topology_state *new_mst_state,
890 struct drm_dp_mst_topology_mgr *mgr,
891 struct nv50_msto *msto)
892 {
893 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
894 struct drm_dp_mst_atomic_payload *new_payload =
895 drm_atomic_get_mst_payload_state(new_mst_state, msto->mstc->port);
896 struct drm_dp_mst_topology_state *old_mst_state =
897 drm_atomic_get_old_mst_topology_state(state, mgr);
898 const struct drm_dp_mst_atomic_payload *old_payload =
899 drm_atomic_get_mst_payload_state(old_mst_state, msto->mstc->port);
900 struct nv50_mstc *mstc = msto->mstc;
901 struct nv50_mstm *mstm = mstc->mstm;
902
903 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
904
905 if (msto->disabled) {
906 if (msto->head->func->display_id) {
907 nvif_outp_dp_mst_id_put(&mstm->outp->outp, msto->display_id);
908 msto->display_id = 0;
909 }
910
911 msto->mstc = NULL;
912 msto->disabled = false;
913 drm_dp_remove_payload_part2(mgr, new_mst_state, old_payload, new_payload);
914 } else if (msto->enabled) {
915 drm_dp_add_payload_part2(mgr, state, new_payload);
916 msto->enabled = false;
917 }
918 }
919
920 static void
921 nv50_msto_prepare(struct drm_atomic_state *state,
922 struct drm_dp_mst_topology_state *mst_state,
923 struct drm_dp_mst_topology_mgr *mgr,
924 struct nv50_msto *msto)
925 {
926 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
927 struct nv50_mstc *mstc = msto->mstc;
928 struct nv50_mstm *mstm = mstc->mstm;
929 struct drm_dp_mst_atomic_payload *payload;
930 int ret = 0;
931
932 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
933
934 payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port);
935
936 if (msto->disabled) {
937 drm_dp_remove_payload_part1(mgr, mst_state, payload);
938 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0);
939 ret = 1;
940 } else {
941 if (msto->enabled)
942 ret = drm_dp_add_payload_part1(mgr, mst_state, payload);
943 }
944
945 if (ret == 0) {
946 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index,
947 payload->vc_start_slot, payload->time_slots,
948 payload->pbn, payload->time_slots * mst_state->pbn_div);
949 } else {
950 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0);
951 }
952 }
953
954 static int
955 nv50_msto_atomic_check(struct drm_encoder *encoder,
956 struct drm_crtc_state *crtc_state,
957 struct drm_connector_state *conn_state)
958 {
959 struct drm_atomic_state *state = crtc_state->state;
960 struct drm_connector *connector = conn_state->connector;
961 struct drm_dp_mst_topology_state *mst_state;
962 struct nv50_mstc *mstc = nv50_mstc(connector);
963 struct nv50_mstm *mstm = mstc->mstm;
964 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
965 int slots;
966 int ret;
967
968 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
969 mstc->native);
970 if (ret)
971 return ret;
972
973 if (!drm_atomic_crtc_needs_modeset(crtc_state))
974 return 0;
975
976 /*
977 * When restoring duplicated states, we need to make sure that the bw
978 * remains the same and avoid recalculating it, as the connector's bpc
979 * may have changed after the state was duplicated
980 */
981 if (!state->duplicated) {
982 const int clock = crtc_state->adjusted_mode.clock;
983
984 asyh->or.bpc = connector->display_info.bpc;
985 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3,
986 false);
987 }
988
989 mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr);
990 if (IS_ERR(mst_state))
991 return PTR_ERR(mst_state);
992
993 if (!mst_state->pbn_div) {
994 struct nouveau_encoder *outp = mstc->mstm->outp;
995
996 mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr,
997 outp->dp.link_bw, outp->dp.link_nr);
998 }
999
1000 slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn);
1001 if (slots < 0)
1002 return slots;
1003
1004 asyh->dp.tu = slots;
1005
1006 return 0;
1007 }
1008
1009 static u8
1010 nv50_dp_bpc_to_depth(unsigned int bpc)
1011 {
1012 switch (bpc) {
1013 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444;
1014 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444;
1015 case 10:
1016 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444;
1017 }
1018 }
1019
1020 static void
1021 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1022 {
1023 struct nv50_msto *msto = nv50_msto(encoder);
1024 struct nv50_head *head = msto->head;
1025 struct nv50_head_atom *asyh =
1026 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base));
1027 struct nv50_mstc *mstc = NULL;
1028 struct nv50_mstm *mstm = NULL;
1029 struct drm_connector *connector;
1030 struct drm_connector_list_iter conn_iter;
1031 u8 proto;
1032
1033 drm_connector_list_iter_begin(encoder->dev, &conn_iter);
1034 drm_for_each_connector_iter(connector, &conn_iter) {
1035 if (connector->state->best_encoder == &msto->encoder) {
1036 mstc = nv50_mstc(connector);
1037 mstm = mstc->mstm;
1038 break;
1039 }
1040 }
1041 drm_connector_list_iter_end(&conn_iter);
1042
1043 if (WARN_ON(!mstc))
1044 return;
1045
1046 if (!mstm->links++) {
1047 nvif_outp_acquire_sor(&mstm->outp->outp, false /*TODO: MST audio... */);
1048 nouveau_dp_train(mstm->outp, true, 0, 0);
1049 }
1050
1051 if (head->func->display_id) {
1052 if (!WARN_ON(nvif_outp_dp_mst_id_get(&mstm->outp->outp, &msto->display_id)))
1053 head->func->display_id(head, msto->display_id);
1054 }
1055
1056 if (mstm->outp->outp.or.link & 1)
1057 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1058 else
1059 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1060
1061 mstm->outp->update(mstm->outp, head->base.index, asyh, proto,
1062 nv50_dp_bpc_to_depth(asyh->or.bpc));
1063
1064 msto->mstc = mstc;
1065 msto->enabled = true;
1066 mstm->modified = true;
1067 }
1068
1069 static void
1070 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1071 {
1072 struct nv50_msto *msto = nv50_msto(encoder);
1073 struct nv50_mstc *mstc = msto->mstc;
1074 struct nv50_mstm *mstm = mstc->mstm;
1075
1076 if (msto->head->func->display_id)
1077 msto->head->func->display_id(msto->head, 0);
1078
1079 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
1080 mstm->modified = true;
1081 if (!--mstm->links)
1082 mstm->disabled = true;
1083 msto->disabled = true;
1084 }
1085
1086 static const struct drm_encoder_helper_funcs
1087 nv50_msto_help = {
1088 .atomic_disable = nv50_msto_atomic_disable,
1089 .atomic_enable = nv50_msto_atomic_enable,
1090 .atomic_check = nv50_msto_atomic_check,
1091 };
1092
1093 static void
1094 nv50_msto_destroy(struct drm_encoder *encoder)
1095 {
1096 struct nv50_msto *msto = nv50_msto(encoder);
1097 drm_encoder_cleanup(&msto->encoder);
1098 kfree(msto);
1099 }
1100
1101 static const struct drm_encoder_funcs
1102 nv50_msto = {
1103 .destroy = nv50_msto_destroy,
1104 };
1105
1106 static struct nv50_msto *
1107 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
1108 {
1109 struct nv50_msto *msto;
1110 int ret;
1111
1112 msto = kzalloc(sizeof(*msto), GFP_KERNEL);
1113 if (!msto)
1114 return ERR_PTR(-ENOMEM);
1115
1116 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
1117 DRM_MODE_ENCODER_DPMST, "mst-%d", id);
1118 if (ret) {
1119 kfree(msto);
1120 return ERR_PTR(ret);
1121 }
1122
1123 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
1124 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
1125 msto->head = head;
1126 return msto;
1127 }
1128
1129 static struct drm_encoder *
1130 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
1131 struct drm_atomic_state *state)
1132 {
1133 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state,
1134 connector);
1135 struct nv50_mstc *mstc = nv50_mstc(connector);
1136 struct drm_crtc *crtc = connector_state->crtc;
1137
1138 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1139 return NULL;
1140
1141 return &nv50_head(crtc)->msto->encoder;
1142 }
1143
1144 static enum drm_mode_status
1145 nv50_mstc_mode_valid(struct drm_connector *connector,
1146 struct drm_display_mode *mode)
1147 {
1148 struct nv50_mstc *mstc = nv50_mstc(connector);
1149 struct nouveau_encoder *outp = mstc->mstm->outp;
1150
1151 /* TODO: calculate the PBN from the dotclock and validate against the
1152 * MSTB's max possible PBN
1153 */
1154
1155 return nv50_dp_mode_valid(outp, mode, NULL);
1156 }
1157
1158 static int
1159 nv50_mstc_get_modes(struct drm_connector *connector)
1160 {
1161 struct nv50_mstc *mstc = nv50_mstc(connector);
1162 int ret = 0;
1163
1164 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
1165 drm_connector_update_edid_property(&mstc->connector, mstc->edid);
1166 if (mstc->edid)
1167 ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
1168
1169 /*
1170 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc
1171 * to 8 to save bandwidth on the topology. In the future, we'll want
1172 * to properly fix this by dynamically selecting the highest possible
1173 * bpc that would fit in the topology
1174 */
1175 if (connector->display_info.bpc)
1176 connector->display_info.bpc =
1177 clamp(connector->display_info.bpc, 6U, 8U);
1178 else
1179 connector->display_info.bpc = 8;
1180
1181 if (mstc->native)
1182 drm_mode_destroy(mstc->connector.dev, mstc->native);
1183 mstc->native = nouveau_conn_native_mode(&mstc->connector);
1184 return ret;
1185 }
1186
1187 static int
1188 nv50_mstc_atomic_check(struct drm_connector *connector,
1189 struct drm_atomic_state *state)
1190 {
1191 struct nv50_mstc *mstc = nv50_mstc(connector);
1192 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
1193
1194 return drm_dp_atomic_release_time_slots(state, mgr, mstc->port);
1195 }
1196
1197 static int
1198 nv50_mstc_detect(struct drm_connector *connector,
1199 struct drm_modeset_acquire_ctx *ctx, bool force)
1200 {
1201 struct nv50_mstc *mstc = nv50_mstc(connector);
1202 int ret;
1203
1204 if (drm_connector_is_unregistered(connector))
1205 return connector_status_disconnected;
1206
1207 ret = pm_runtime_get_sync(connector->dev->dev);
1208 if (ret < 0 && ret != -EACCES) {
1209 pm_runtime_put_autosuspend(connector->dev->dev);
1210 return connector_status_disconnected;
1211 }
1212
1213 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
1214 mstc->port);
1215 if (ret != connector_status_connected)
1216 goto out;
1217
1218 out:
1219 pm_runtime_mark_last_busy(connector->dev->dev);
1220 pm_runtime_put_autosuspend(connector->dev->dev);
1221 return ret;
1222 }
1223
1224 static const struct drm_connector_helper_funcs
1225 nv50_mstc_help = {
1226 .get_modes = nv50_mstc_get_modes,
1227 .mode_valid = nv50_mstc_mode_valid,
1228 .atomic_best_encoder = nv50_mstc_atomic_best_encoder,
1229 .atomic_check = nv50_mstc_atomic_check,
1230 .detect_ctx = nv50_mstc_detect,
1231 };
1232
1233 static void
1234 nv50_mstc_destroy(struct drm_connector *connector)
1235 {
1236 struct nv50_mstc *mstc = nv50_mstc(connector);
1237
1238 drm_connector_cleanup(&mstc->connector);
1239 drm_dp_mst_put_port_malloc(mstc->port);
1240
1241 kfree(mstc);
1242 }
1243
1244 static const struct drm_connector_funcs
1245 nv50_mstc = {
1246 .reset = nouveau_conn_reset,
1247 .fill_modes = drm_helper_probe_single_connector_modes,
1248 .destroy = nv50_mstc_destroy,
1249 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1250 .atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1251 .atomic_set_property = nouveau_conn_atomic_set_property,
1252 .atomic_get_property = nouveau_conn_atomic_get_property,
1253 };
1254
1255 static int
1256 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1257 const char *path, struct nv50_mstc **pmstc)
1258 {
1259 struct drm_device *dev = mstm->outp->base.base.dev;
1260 struct drm_crtc *crtc;
1261 struct nv50_mstc *mstc;
1262 int ret;
1263
1264 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1265 return -ENOMEM;
1266 mstc->mstm = mstm;
1267 mstc->port = port;
1268
1269 ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1270 DRM_MODE_CONNECTOR_DisplayPort);
1271 if (ret) {
1272 kfree(*pmstc);
1273 *pmstc = NULL;
1274 return ret;
1275 }
1276
1277 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1278
1279 mstc->connector.funcs->reset(&mstc->connector);
1280 nouveau_conn_attach_properties(&mstc->connector);
1281
1282 drm_for_each_crtc(crtc, dev) {
1283 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1284 continue;
1285
1286 drm_connector_attach_encoder(&mstc->connector,
1287 &nv50_head(crtc)->msto->encoder);
1288 }
1289
1290 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1291 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1292 drm_connector_set_path_property(&mstc->connector, path);
1293 drm_dp_mst_get_port_malloc(port);
1294 return 0;
1295 }
1296
1297 static void
1298 nv50_mstm_cleanup(struct drm_atomic_state *state,
1299 struct drm_dp_mst_topology_state *mst_state,
1300 struct nv50_mstm *mstm)
1301 {
1302 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1303 struct drm_encoder *encoder;
1304
1305 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1306 drm_dp_check_act_status(&mstm->mgr);
1307
1308 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1309 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1310 struct nv50_msto *msto = nv50_msto(encoder);
1311 struct nv50_mstc *mstc = msto->mstc;
1312 if (mstc && mstc->mstm == mstm)
1313 nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto);
1314 }
1315 }
1316
1317 if (mstm->disabled) {
1318 nouveau_dp_power_down(mstm->outp);
1319 nvif_outp_release(&mstm->outp->outp);
1320 mstm->disabled = false;
1321 }
1322
1323 mstm->modified = false;
1324 }
1325
1326 static void
1327 nv50_mstm_prepare(struct drm_atomic_state *state,
1328 struct drm_dp_mst_topology_state *mst_state,
1329 struct nv50_mstm *mstm)
1330 {
1331 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1332 struct drm_encoder *encoder;
1333
1334 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1335
1336 /* Disable payloads first */
1337 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1338 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1339 struct nv50_msto *msto = nv50_msto(encoder);
1340 struct nv50_mstc *mstc = msto->mstc;
1341 if (mstc && mstc->mstm == mstm && msto->disabled)
1342 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1343 }
1344 }
1345
1346 /* Add payloads for new heads, while also updating the start slots of any unmodified (but
1347 * active) heads that may have had their VC slots shifted left after the previous step
1348 */
1349 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1350 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1351 struct nv50_msto *msto = nv50_msto(encoder);
1352 struct nv50_mstc *mstc = msto->mstc;
1353 if (mstc && mstc->mstm == mstm && !msto->disabled)
1354 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1355 }
1356 }
1357 }
1358
1359 static struct drm_connector *
1360 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1361 struct drm_dp_mst_port *port, const char *path)
1362 {
1363 struct nv50_mstm *mstm = nv50_mstm(mgr);
1364 struct nv50_mstc *mstc;
1365 int ret;
1366
1367 ret = nv50_mstc_new(mstm, port, path, &mstc);
1368 if (ret)
1369 return NULL;
1370
1371 return &mstc->connector;
1372 }
1373
1374 static const struct drm_dp_mst_topology_cbs
1375 nv50_mstm = {
1376 .add_connector = nv50_mstm_add_connector,
1377 };
1378
1379 bool
1380 nv50_mstm_service(struct nouveau_drm *drm,
1381 struct nouveau_connector *nv_connector,
1382 struct nv50_mstm *mstm)
1383 {
1384 struct drm_dp_aux *aux = &nv_connector->aux;
1385 bool handled = true, ret = true;
1386 int rc;
1387 u8 esi[8] = {};
1388
1389 while (handled) {
1390 u8 ack[8] = {};
1391
1392 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1393 if (rc != 8) {
1394 ret = false;
1395 break;
1396 }
1397
1398 drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled);
1399 if (!handled)
1400 break;
1401
1402 rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]);
1403
1404 if (rc != 1) {
1405 ret = false;
1406 break;
1407 }
1408
1409 drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr);
1410 }
1411
1412 if (!ret)
1413 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n",
1414 nv_connector->base.name, rc);
1415
1416 return ret;
1417 }
1418
1419 void
1420 nv50_mstm_remove(struct nv50_mstm *mstm)
1421 {
1422 mstm->is_mst = false;
1423 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1424 }
1425
1426 int
1427 nv50_mstm_detect(struct nouveau_encoder *outp)
1428 {
1429 struct nv50_mstm *mstm = outp->dp.mstm;
1430 struct drm_dp_aux *aux;
1431 int ret;
1432
1433 if (!mstm || !mstm->can_mst)
1434 return 0;
1435
1436 aux = mstm->mgr.aux;
1437
1438 /* Clear any leftover MST state we didn't set ourselves by first
1439 * disabling MST if it was already enabled
1440 */
1441 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1442 if (ret < 0)
1443 return ret;
1444
1445 /* And start enabling */
1446 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true);
1447 if (ret)
1448 return ret;
1449
1450 mstm->is_mst = true;
1451 return 1;
1452 }
1453
1454 static void
1455 nv50_mstm_fini(struct nouveau_encoder *outp)
1456 {
1457 struct nv50_mstm *mstm = outp->dp.mstm;
1458
1459 if (!mstm)
1460 return;
1461
1462 /* Don't change the MST state of this connector until we've finished
1463 * resuming, since we can't safely grab hpd_irq_lock in our resume
1464 * path to protect mstm->is_mst without potentially deadlocking
1465 */
1466 mutex_lock(&outp->dp.hpd_irq_lock);
1467 mstm->suspended = true;
1468 mutex_unlock(&outp->dp.hpd_irq_lock);
1469
1470 if (mstm->is_mst)
1471 drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1472 }
1473
1474 static void
1475 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime)
1476 {
1477 struct nv50_mstm *mstm = outp->dp.mstm;
1478 int ret = 0;
1479
1480 if (!mstm)
1481 return;
1482
1483 if (mstm->is_mst) {
1484 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
1485 if (ret == -1)
1486 nv50_mstm_remove(mstm);
1487 }
1488
1489 mutex_lock(&outp->dp.hpd_irq_lock);
1490 mstm->suspended = false;
1491 mutex_unlock(&outp->dp.hpd_irq_lock);
1492
1493 if (ret == -1)
1494 drm_kms_helper_hotplug_event(mstm->mgr.dev);
1495 }
1496
1497 static void
1498 nv50_mstm_del(struct nv50_mstm **pmstm)
1499 {
1500 struct nv50_mstm *mstm = *pmstm;
1501 if (mstm) {
1502 drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1503 kfree(*pmstm);
1504 *pmstm = NULL;
1505 }
1506 }
1507
1508 static int
1509 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1510 int conn_base_id, struct nv50_mstm **pmstm)
1511 {
1512 const int max_payloads = hweight8(outp->dcb->heads);
1513 struct drm_device *dev = outp->base.base.dev;
1514 struct nv50_mstm *mstm;
1515 int ret;
1516
1517 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1518 return -ENOMEM;
1519 mstm->outp = outp;
1520 mstm->mgr.cbs = &nv50_mstm;
1521
1522 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1523 max_payloads, conn_base_id);
1524 if (ret)
1525 return ret;
1526
1527 return 0;
1528 }
1529
1530 /******************************************************************************
1531 * SOR
1532 *****************************************************************************/
1533 static void
1534 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1535 struct nv50_head_atom *asyh, u8 proto, u8 depth)
1536 {
1537 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1538 struct nv50_core *core = disp->core;
1539
1540 if (!asyh) {
1541 nv_encoder->ctrl &= ~BIT(head);
1542 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE))
1543 nv_encoder->ctrl = 0;
1544 } else {
1545 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto);
1546 nv_encoder->ctrl |= BIT(head);
1547 asyh->or.depth = depth;
1548 }
1549
1550 core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh);
1551 }
1552
1553 /* TODO: Should we extend this to PWM-only backlights?
1554 * As well, should we add a DRM helper for waiting for the backlight to acknowledge
1555 * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a
1556 * fixed time delay from the vbios…
1557 */
1558 static void
1559 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1560 {
1561 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1562 struct nv50_head *head = nv50_head(nv_encoder->crtc);
1563 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder);
1564 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1565 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
1566 struct nouveau_backlight *backlight = nv_connector->backlight;
1567 #endif
1568 struct drm_dp_aux *aux = &nv_connector->aux;
1569 int ret;
1570
1571 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1572 if (backlight && backlight->uses_dpcd) {
1573 ret = drm_edp_backlight_disable(aux, &backlight->edp_info);
1574 if (ret < 0)
1575 NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n",
1576 nv_connector->base.base.id, nv_connector->base.name, ret);
1577 }
1578 #endif
1579
1580 if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS && nv_encoder->hdmi.enabled) {
1581 nvif_outp_hdmi(&nv_encoder->outp, head->base.index,
1582 false, 0, 0, 0, false, false, false);
1583 nv_encoder->hdmi.enabled = false;
1584 }
1585
1586 if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1587 nouveau_dp_power_down(nv_encoder);
1588
1589 if (head->func->display_id)
1590 head->func->display_id(head, 0);
1591
1592 nv_encoder->update(nv_encoder, head->base.index, NULL, 0, 0);
1593 nv50_audio_disable(encoder, &head->base);
1594 nv_encoder->crtc = NULL;
1595 }
1596
1597 static void
1598 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1599 {
1600 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1601 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1602 struct nv50_head_atom *asyh =
1603 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1604 struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1605 struct nv50_disp *disp = nv50_disp(encoder->dev);
1606 struct nv50_head *head = nv50_head(&nv_crtc->base);
1607 struct nvif_outp *outp = &nv_encoder->outp;
1608 struct drm_device *dev = encoder->dev;
1609 struct nouveau_drm *drm = nouveau_drm(dev);
1610 struct nouveau_connector *nv_connector;
1611 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1612 struct nouveau_backlight *backlight;
1613 #endif
1614 struct nvbios *bios = &drm->vbios;
1615 bool lvds_dual = false, lvds_8bpc = false, hda = false;
1616 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM;
1617 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT;
1618
1619 nv_connector = nv50_outp_get_new_connector(state, nv_encoder);
1620 nv_encoder->crtc = &nv_crtc->base;
1621
1622 if ((disp->disp->object.oclass == GT214_DISP ||
1623 disp->disp->object.oclass >= GF110_DISP) &&
1624 nv_encoder->dcb->type != DCB_OUTPUT_LVDS &&
1625 drm_detect_monitor_audio(nv_connector->edid))
1626 hda = true;
1627
1628 if (!nvif_outp_acquired(outp))
1629 nvif_outp_acquire_sor(outp, hda);
1630
1631 switch (nv_encoder->dcb->type) {
1632 case DCB_OUTPUT_TMDS:
1633 if (disp->disp->object.oclass != NV50_DISP &&
1634 drm_detect_hdmi_monitor(nv_connector->edid))
1635 nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda);
1636
1637 if (nv_encoder->outp.or.link & 1) {
1638 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A;
1639 /* Only enable dual-link if:
1640 * - Need to (i.e. rate > 165MHz)
1641 * - DCB says we can
1642 * - Not an HDMI monitor, since there's no dual-link
1643 * on HDMI.
1644 */
1645 if (mode->clock >= 165000 &&
1646 nv_encoder->dcb->duallink_possible &&
1647 !drm_detect_hdmi_monitor(nv_connector->edid))
1648 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS;
1649 } else {
1650 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B;
1651 }
1652 break;
1653 case DCB_OUTPUT_LVDS:
1654 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM;
1655
1656 if (bios->fp_no_ddc) {
1657 lvds_dual = bios->fp.dual_link;
1658 lvds_8bpc = bios->fp.if_is_24bit;
1659 } else {
1660 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1661 if (((u8 *)nv_connector->edid)[121] == 2)
1662 lvds_dual = true;
1663 } else
1664 if (mode->clock >= bios->fp.duallink_transition_clk) {
1665 lvds_dual = true;
1666 }
1667
1668 if (lvds_dual) {
1669 if (bios->fp.strapless_is_24bit & 2)
1670 lvds_8bpc = true;
1671 } else {
1672 if (bios->fp.strapless_is_24bit & 1)
1673 lvds_8bpc = true;
1674 }
1675
1676 if (asyh->or.bpc == 8)
1677 lvds_8bpc = true;
1678 }
1679
1680 nvif_outp_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc);
1681 break;
1682 case DCB_OUTPUT_DP:
1683 nouveau_dp_train(nv_encoder, false, mode->clock, asyh->or.bpc);
1684 depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
1685
1686 if (nv_encoder->outp.or.link & 1)
1687 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1688 else
1689 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1690
1691 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1692 backlight = nv_connector->backlight;
1693 if (backlight && backlight->uses_dpcd)
1694 drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info,
1695 (u16)backlight->dev->props.brightness);
1696 #endif
1697
1698 break;
1699 default:
1700 BUG();
1701 break;
1702 }
1703
1704 if (head->func->display_id)
1705 head->func->display_id(head, BIT(nv_encoder->outp.id));
1706
1707 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1708 }
1709
1710 static const struct drm_encoder_helper_funcs
1711 nv50_sor_help = {
1712 .atomic_check = nv50_outp_atomic_check,
1713 .atomic_enable = nv50_sor_atomic_enable,
1714 .atomic_disable = nv50_sor_atomic_disable,
1715 };
1716
1717 static void
1718 nv50_sor_destroy(struct drm_encoder *encoder)
1719 {
1720 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1721
1722 nv50_mstm_del(&nv_encoder->dp.mstm);
1723 drm_encoder_cleanup(encoder);
1724
1725 if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1726 mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1727
1728 nvif_outp_dtor(&nv_encoder->outp);
1729 kfree(encoder);
1730 }
1731
1732 static const struct drm_encoder_funcs
1733 nv50_sor_func = {
1734 .destroy = nv50_sor_destroy,
1735 };
1736
1737 static int
1738 nv50_sor_create(struct nouveau_encoder *nv_encoder)
1739 {
1740 struct drm_connector *connector = &nv_encoder->conn->base;
1741 struct nouveau_connector *nv_connector = nouveau_connector(connector);
1742 struct nouveau_drm *drm = nouveau_drm(connector->dev);
1743 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1744 struct drm_encoder *encoder;
1745 struct dcb_output *dcbe = nv_encoder->dcb;
1746 struct nv50_disp *disp = nv50_disp(connector->dev);
1747 int type, ret;
1748
1749 switch (dcbe->type) {
1750 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1751 case DCB_OUTPUT_TMDS:
1752 case DCB_OUTPUT_DP:
1753 default:
1754 type = DRM_MODE_ENCODER_TMDS;
1755 break;
1756 }
1757
1758 nv_encoder->update = nv50_sor_update;
1759
1760 encoder = to_drm_encoder(nv_encoder);
1761 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1762 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1763 drm_encoder_helper_add(encoder, &nv50_sor_help);
1764
1765 drm_connector_attach_encoder(connector, encoder);
1766
1767 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1768 nv50_outp_dump_caps(drm, nv_encoder);
1769
1770 if (dcbe->type == DCB_OUTPUT_DP) {
1771 mutex_init(&nv_encoder->dp.hpd_irq_lock);
1772
1773 if (disp->disp->object.oclass < GF110_DISP) {
1774 /* HW has no support for address-only
1775 * transactions, so we're required to
1776 * use custom I2C-over-AUX code.
1777 */
1778 struct nvkm_i2c_aux *aux;
1779
1780 aux = nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1781 if (!aux)
1782 return -EINVAL;
1783
1784 nv_encoder->i2c = &aux->i2c;
1785 } else {
1786 nv_encoder->i2c = &nv_connector->aux.ddc;
1787 }
1788
1789 if (nv_connector->type != DCB_CONNECTOR_eDP && nv_encoder->outp.info.dp.mst) {
1790 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
1791 16, nv_connector->base.base.id,
1792 &nv_encoder->dp.mstm);
1793 if (ret)
1794 return ret;
1795 }
1796 } else
1797 if (nv_encoder->outp.info.ddc != NVIF_OUTP_DDC_INVALID) {
1798 struct nvkm_i2c_bus *bus =
1799 nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1800 if (bus)
1801 nv_encoder->i2c = &bus->i2c;
1802 }
1803
1804 return 0;
1805 }
1806
1807 /******************************************************************************
1808 * PIOR
1809 *****************************************************************************/
1810 static int
1811 nv50_pior_atomic_check(struct drm_encoder *encoder,
1812 struct drm_crtc_state *crtc_state,
1813 struct drm_connector_state *conn_state)
1814 {
1815 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1816 if (ret)
1817 return ret;
1818 crtc_state->adjusted_mode.clock *= 2;
1819 return 0;
1820 }
1821
1822 static void
1823 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1824 {
1825 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1826 struct nv50_core *core = nv50_disp(encoder->dev)->core;
1827 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE);
1828
1829 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
1830 nv_encoder->crtc = NULL;
1831 }
1832
1833 static void
1834 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1835 {
1836 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1837 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1838 struct nv50_head_atom *asyh =
1839 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1840 struct nv50_core *core = nv50_disp(encoder->dev)->core;
1841 u32 ctrl = 0;
1842
1843 switch (nv_crtc->index) {
1844 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break;
1845 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break;
1846 default:
1847 WARN_ON(1);
1848 break;
1849 }
1850
1851 switch (asyh->or.bpc) {
1852 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break;
1853 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break;
1854 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break;
1855 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break;
1856 }
1857
1858 if (!nvif_outp_acquired(&nv_encoder->outp))
1859 nvif_outp_acquire_pior(&nv_encoder->outp);
1860
1861 switch (nv_encoder->dcb->type) {
1862 case DCB_OUTPUT_TMDS:
1863 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1864 break;
1865 case DCB_OUTPUT_DP:
1866 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1867 nouveau_dp_train(nv_encoder, false, asyh->state.adjusted_mode.clock, 6);
1868 break;
1869 default:
1870 BUG();
1871 break;
1872 }
1873
1874 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
1875 nv_encoder->crtc = &nv_crtc->base;
1876 }
1877
1878 static const struct drm_encoder_helper_funcs
1879 nv50_pior_help = {
1880 .atomic_check = nv50_pior_atomic_check,
1881 .atomic_enable = nv50_pior_atomic_enable,
1882 .atomic_disable = nv50_pior_atomic_disable,
1883 };
1884
1885 static void
1886 nv50_pior_destroy(struct drm_encoder *encoder)
1887 {
1888 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1889
1890 nvif_outp_dtor(&nv_encoder->outp);
1891
1892 drm_encoder_cleanup(encoder);
1893 kfree(encoder);
1894 }
1895
1896 static const struct drm_encoder_funcs
1897 nv50_pior_func = {
1898 .destroy = nv50_pior_destroy,
1899 };
1900
1901 static int
1902 nv50_pior_create(struct nouveau_encoder *nv_encoder)
1903 {
1904 struct drm_connector *connector = &nv_encoder->conn->base;
1905 struct drm_device *dev = connector->dev;
1906 struct nouveau_drm *drm = nouveau_drm(dev);
1907 struct nv50_disp *disp = nv50_disp(dev);
1908 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1909 struct nvkm_i2c_bus *bus = NULL;
1910 struct nvkm_i2c_aux *aux = NULL;
1911 struct i2c_adapter *ddc;
1912 struct drm_encoder *encoder;
1913 struct dcb_output *dcbe = nv_encoder->dcb;
1914 int type;
1915
1916 switch (dcbe->type) {
1917 case DCB_OUTPUT_TMDS:
1918 bus = nvkm_i2c_bus_find(i2c, nv_encoder->outp.info.ddc);
1919 ddc = bus ? &bus->i2c : NULL;
1920 type = DRM_MODE_ENCODER_TMDS;
1921 break;
1922 case DCB_OUTPUT_DP:
1923 aux = nvkm_i2c_aux_find(i2c, nv_encoder->outp.info.dp.aux);
1924 ddc = aux ? &aux->i2c : NULL;
1925 type = DRM_MODE_ENCODER_TMDS;
1926 break;
1927 default:
1928 return -ENODEV;
1929 }
1930
1931 nv_encoder->i2c = ddc;
1932
1933 encoder = to_drm_encoder(nv_encoder);
1934 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
1935 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
1936 drm_encoder_helper_add(encoder, &nv50_pior_help);
1937
1938 drm_connector_attach_encoder(connector, encoder);
1939
1940 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1941 nv50_outp_dump_caps(drm, nv_encoder);
1942
1943 return 0;
1944 }
1945
1946 /******************************************************************************
1947 * Atomic
1948 *****************************************************************************/
1949
1950 static void
1951 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
1952 {
1953 struct drm_dp_mst_topology_mgr *mgr;
1954 struct drm_dp_mst_topology_state *mst_state;
1955 struct nouveau_drm *drm = nouveau_drm(state->dev);
1956 struct nv50_disp *disp = nv50_disp(drm->dev);
1957 struct nv50_atom *atom = nv50_atom(state);
1958 struct nv50_core *core = disp->core;
1959 struct nv50_outp_atom *outp;
1960 struct nv50_mstm *mstm;
1961 int i;
1962
1963 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
1964
1965 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
1966 mstm = nv50_mstm(mgr);
1967 if (mstm->modified)
1968 nv50_mstm_prepare(state, mst_state, mstm);
1969 }
1970
1971 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
1972 core->func->update(core, interlock, true);
1973 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
1974 disp->core->chan.base.device))
1975 NV_ERROR(drm, "core notifier timeout\n");
1976
1977 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
1978 mstm = nv50_mstm(mgr);
1979 if (mstm->modified)
1980 nv50_mstm_cleanup(state, mst_state, mstm);
1981 }
1982
1983 list_for_each_entry(outp, &atom->outp, head) {
1984 if (outp->encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
1985 struct nouveau_encoder *nv_encoder = nouveau_encoder(outp->encoder);
1986
1987 if (outp->enabled) {
1988 nv50_audio_enable(outp->encoder, nouveau_crtc(nv_encoder->crtc),
1989 nv_encoder->conn, NULL, NULL);
1990 outp->enabled = outp->disabled = false;
1991 } else {
1992 if (outp->disabled) {
1993 nvif_outp_release(&nv_encoder->outp);
1994 outp->disabled = false;
1995 }
1996 }
1997 }
1998 }
1999 }
2000
2001 static void
2002 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
2003 {
2004 struct drm_plane_state *new_plane_state;
2005 struct drm_plane *plane;
2006 int i;
2007
2008 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2009 struct nv50_wndw *wndw = nv50_wndw(plane);
2010 if (interlock[wndw->interlock.type] & wndw->interlock.data) {
2011 if (wndw->func->update)
2012 wndw->func->update(wndw, interlock);
2013 }
2014 }
2015 }
2016
2017 static void
2018 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
2019 {
2020 struct drm_device *dev = state->dev;
2021 struct drm_crtc_state *new_crtc_state, *old_crtc_state;
2022 struct drm_crtc *crtc;
2023 struct drm_plane_state *new_plane_state;
2024 struct drm_plane *plane;
2025 struct nouveau_drm *drm = nouveau_drm(dev);
2026 struct nv50_disp *disp = nv50_disp(dev);
2027 struct nv50_atom *atom = nv50_atom(state);
2028 struct nv50_core *core = disp->core;
2029 struct nv50_outp_atom *outp, *outt;
2030 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
2031 int i;
2032 bool flushed = false;
2033
2034 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
2035 nv50_crc_atomic_stop_reporting(state);
2036 drm_atomic_helper_wait_for_fences(dev, state, false);
2037 drm_atomic_helper_wait_for_dependencies(state);
2038 drm_dp_mst_atomic_wait_for_dependencies(state);
2039 drm_atomic_helper_update_legacy_modeset_state(dev, state);
2040 drm_atomic_helper_calc_timestamping_constants(state);
2041
2042 if (atom->lock_core)
2043 mutex_lock(&disp->mutex);
2044
2045 /* Disable head(s). */
2046 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2047 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2048 struct nv50_head *head = nv50_head(crtc);
2049
2050 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
2051 asyh->clr.mask, asyh->set.mask);
2052
2053 if (old_crtc_state->active && !new_crtc_state->active) {
2054 pm_runtime_put_noidle(dev->dev);
2055 drm_crtc_vblank_off(crtc);
2056 }
2057
2058 if (asyh->clr.mask) {
2059 nv50_head_flush_clr(head, asyh, atom->flush_disable);
2060 interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2061 }
2062 }
2063
2064 /* Disable plane(s). */
2065 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2066 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2067 struct nv50_wndw *wndw = nv50_wndw(plane);
2068
2069 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
2070 asyw->clr.mask, asyw->set.mask);
2071 if (!asyw->clr.mask)
2072 continue;
2073
2074 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
2075 }
2076
2077 /* Disable output path(s). */
2078 list_for_each_entry(outp, &atom->outp, head) {
2079 const struct drm_encoder_helper_funcs *help;
2080 struct drm_encoder *encoder;
2081
2082 encoder = outp->encoder;
2083 help = encoder->helper_private;
2084
2085 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
2086 outp->clr.mask, outp->set.mask);
2087
2088 if (outp->clr.mask) {
2089 help->atomic_disable(encoder, state);
2090 outp->disabled = true;
2091 interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2092 }
2093 }
2094
2095 /* Flush disable. */
2096 if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2097 if (atom->flush_disable) {
2098 nv50_disp_atomic_commit_wndw(state, interlock);
2099 nv50_disp_atomic_commit_core(state, interlock);
2100 memset(interlock, 0x00, sizeof(interlock));
2101
2102 flushed = true;
2103 }
2104 }
2105
2106 if (flushed)
2107 nv50_crc_atomic_release_notifier_contexts(state);
2108 nv50_crc_atomic_init_notifier_contexts(state);
2109
2110 /* Update output path(s). */
2111 list_for_each_entry(outp, &atom->outp, head) {
2112 const struct drm_encoder_helper_funcs *help;
2113 struct drm_encoder *encoder;
2114
2115 encoder = outp->encoder;
2116 help = encoder->helper_private;
2117
2118 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
2119 outp->set.mask, outp->clr.mask);
2120
2121 if (outp->set.mask) {
2122 help->atomic_enable(encoder, state);
2123 outp->enabled = true;
2124 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2125 }
2126 }
2127
2128 /* Update head(s). */
2129 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2130 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2131 struct nv50_head *head = nv50_head(crtc);
2132
2133 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2134 asyh->set.mask, asyh->clr.mask);
2135
2136 if (asyh->set.mask) {
2137 nv50_head_flush_set(head, asyh);
2138 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2139 }
2140
2141 if (new_crtc_state->active) {
2142 if (!old_crtc_state->active) {
2143 drm_crtc_vblank_on(crtc);
2144 pm_runtime_get_noresume(dev->dev);
2145 }
2146 if (new_crtc_state->event)
2147 drm_crtc_vblank_get(crtc);
2148 }
2149 }
2150
2151 /* Update window->head assignment.
2152 *
2153 * This has to happen in an update that's not interlocked with
2154 * any window channels to avoid hitting HW error checks.
2155 *
2156 *TODO: Proper handling of window ownership (Turing apparently
2157 * supports non-fixed mappings).
2158 */
2159 if (core->assign_windows) {
2160 core->func->wndw.owner(core);
2161 nv50_disp_atomic_commit_core(state, interlock);
2162 core->assign_windows = false;
2163 interlock[NV50_DISP_INTERLOCK_CORE] = 0;
2164 }
2165
2166 /* Finish updating head(s)...
2167 *
2168 * NVD is rather picky about both where window assignments can change,
2169 * *and* about certain core and window channel states matching.
2170 *
2171 * The EFI GOP driver on newer GPUs configures window channels with a
2172 * different output format to what we do, and the core channel update
2173 * in the assign_windows case above would result in a state mismatch.
2174 *
2175 * Delay some of the head update until after that point to workaround
2176 * the issue. This only affects the initial modeset.
2177 *
2178 * TODO: handle this better when adding flexible window mapping
2179 */
2180 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2181 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2182 struct nv50_head *head = nv50_head(crtc);
2183
2184 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2185 asyh->set.mask, asyh->clr.mask);
2186
2187 if (asyh->set.mask) {
2188 nv50_head_flush_set_wndw(head, asyh);
2189 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2190 }
2191 }
2192
2193 /* Update plane(s). */
2194 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2195 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2196 struct nv50_wndw *wndw = nv50_wndw(plane);
2197
2198 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
2199 asyw->set.mask, asyw->clr.mask);
2200 if ( !asyw->set.mask &&
2201 (!asyw->clr.mask || atom->flush_disable))
2202 continue;
2203
2204 nv50_wndw_flush_set(wndw, interlock, asyw);
2205 }
2206
2207 /* Flush update. */
2208 nv50_disp_atomic_commit_wndw(state, interlock);
2209
2210 if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2211 if (interlock[NV50_DISP_INTERLOCK_BASE] ||
2212 interlock[NV50_DISP_INTERLOCK_OVLY] ||
2213 interlock[NV50_DISP_INTERLOCK_WNDW] ||
2214 !atom->state.legacy_cursor_update)
2215 nv50_disp_atomic_commit_core(state, interlock);
2216 else
2217 disp->core->func->update(disp->core, interlock, false);
2218 }
2219
2220 if (atom->lock_core)
2221 mutex_unlock(&disp->mutex);
2222
2223 list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2224 list_del(&outp->head);
2225 kfree(outp);
2226 }
2227
2228 /* Wait for HW to signal completion. */
2229 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2230 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2231 struct nv50_wndw *wndw = nv50_wndw(plane);
2232 int ret = nv50_wndw_wait_armed(wndw, asyw);
2233 if (ret)
2234 NV_ERROR(drm, "%s: timeout\n", plane->name);
2235 }
2236
2237 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2238 if (new_crtc_state->event) {
2239 unsigned long flags;
2240 /* Get correct count/ts if racing with vblank irq */
2241 if (new_crtc_state->active)
2242 drm_crtc_accurate_vblank_count(crtc);
2243 spin_lock_irqsave(&crtc->dev->event_lock, flags);
2244 drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
2245 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2246
2247 new_crtc_state->event = NULL;
2248 if (new_crtc_state->active)
2249 drm_crtc_vblank_put(crtc);
2250 }
2251 }
2252
2253 nv50_crc_atomic_start_reporting(state);
2254 if (!flushed)
2255 nv50_crc_atomic_release_notifier_contexts(state);
2256
2257 drm_atomic_helper_commit_hw_done(state);
2258 drm_atomic_helper_cleanup_planes(dev, state);
2259 drm_atomic_helper_commit_cleanup_done(state);
2260 drm_atomic_state_put(state);
2261
2262 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */
2263 pm_runtime_mark_last_busy(dev->dev);
2264 pm_runtime_put_autosuspend(dev->dev);
2265 }
2266
2267 static void
2268 nv50_disp_atomic_commit_work(struct work_struct *work)
2269 {
2270 struct drm_atomic_state *state =
2271 container_of(work, typeof(*state), commit_work);
2272 nv50_disp_atomic_commit_tail(state);
2273 }
2274
2275 static int
2276 nv50_disp_atomic_commit(struct drm_device *dev,
2277 struct drm_atomic_state *state, bool nonblock)
2278 {
2279 struct drm_plane_state *new_plane_state;
2280 struct drm_plane *plane;
2281 int ret, i;
2282
2283 ret = pm_runtime_get_sync(dev->dev);
2284 if (ret < 0 && ret != -EACCES) {
2285 pm_runtime_put_autosuspend(dev->dev);
2286 return ret;
2287 }
2288
2289 ret = drm_atomic_helper_setup_commit(state, nonblock);
2290 if (ret)
2291 goto done;
2292
2293 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2294
2295 ret = drm_atomic_helper_prepare_planes(dev, state);
2296 if (ret)
2297 goto done;
2298
2299 if (!nonblock) {
2300 ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2301 if (ret)
2302 goto err_cleanup;
2303 }
2304
2305 ret = drm_atomic_helper_swap_state(state, true);
2306 if (ret)
2307 goto err_cleanup;
2308
2309 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2310 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2311 struct nv50_wndw *wndw = nv50_wndw(plane);
2312
2313 if (asyw->set.image)
2314 nv50_wndw_ntfy_enable(wndw, asyw);
2315 }
2316
2317 drm_atomic_state_get(state);
2318
2319 /*
2320 * Grab another RPM ref for the commit tail, which will release the
2321 * ref when it's finished
2322 */
2323 pm_runtime_get_noresume(dev->dev);
2324
2325 if (nonblock)
2326 queue_work(system_unbound_wq, &state->commit_work);
2327 else
2328 nv50_disp_atomic_commit_tail(state);
2329
2330 err_cleanup:
2331 if (ret)
2332 drm_atomic_helper_cleanup_planes(dev, state);
2333 done:
2334 pm_runtime_put_autosuspend(dev->dev);
2335 return ret;
2336 }
2337
2338 static struct nv50_outp_atom *
2339 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2340 {
2341 struct nv50_outp_atom *outp;
2342
2343 list_for_each_entry(outp, &atom->outp, head) {
2344 if (outp->encoder == encoder)
2345 return outp;
2346 }
2347
2348 outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2349 if (!outp)
2350 return ERR_PTR(-ENOMEM);
2351
2352 list_add(&outp->head, &atom->outp);
2353 outp->encoder = encoder;
2354 return outp;
2355 }
2356
2357 static int
2358 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2359 struct drm_connector_state *old_connector_state)
2360 {
2361 struct drm_encoder *encoder = old_connector_state->best_encoder;
2362 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2363 struct drm_crtc *crtc;
2364 struct nv50_outp_atom *outp;
2365
2366 if (!(crtc = old_connector_state->crtc))
2367 return 0;
2368
2369 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2370 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2371 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2372 outp = nv50_disp_outp_atomic_add(atom, encoder);
2373 if (IS_ERR(outp))
2374 return PTR_ERR(outp);
2375
2376 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST ||
2377 nouveau_encoder(outp->encoder)->dcb->type == DCB_OUTPUT_DP)
2378 atom->flush_disable = true;
2379 outp->clr.ctrl = true;
2380 atom->lock_core = true;
2381 }
2382
2383 return 0;
2384 }
2385
2386 static int
2387 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2388 struct drm_connector_state *connector_state)
2389 {
2390 struct drm_encoder *encoder = connector_state->best_encoder;
2391 struct drm_crtc_state *new_crtc_state;
2392 struct drm_crtc *crtc;
2393 struct nv50_outp_atom *outp;
2394
2395 if (!(crtc = connector_state->crtc))
2396 return 0;
2397
2398 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2399 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2400 outp = nv50_disp_outp_atomic_add(atom, encoder);
2401 if (IS_ERR(outp))
2402 return PTR_ERR(outp);
2403
2404 outp->set.ctrl = true;
2405 atom->lock_core = true;
2406 }
2407
2408 return 0;
2409 }
2410
2411 static int
2412 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2413 {
2414 struct nv50_atom *atom = nv50_atom(state);
2415 struct nv50_core *core = nv50_disp(dev)->core;
2416 struct drm_connector_state *old_connector_state, *new_connector_state;
2417 struct drm_connector *connector;
2418 struct drm_crtc_state *new_crtc_state;
2419 struct drm_crtc *crtc;
2420 struct nv50_head *head;
2421 struct nv50_head_atom *asyh;
2422 int ret, i;
2423
2424 if (core->assign_windows && core->func->head->static_wndw_map) {
2425 drm_for_each_crtc(crtc, dev) {
2426 new_crtc_state = drm_atomic_get_crtc_state(state,
2427 crtc);
2428 if (IS_ERR(new_crtc_state))
2429 return PTR_ERR(new_crtc_state);
2430
2431 head = nv50_head(crtc);
2432 asyh = nv50_head_atom(new_crtc_state);
2433 core->func->head->static_wndw_map(head, asyh);
2434 }
2435 }
2436
2437 /* We need to handle colour management on a per-plane basis. */
2438 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2439 if (new_crtc_state->color_mgmt_changed) {
2440 ret = drm_atomic_add_affected_planes(state, crtc);
2441 if (ret)
2442 return ret;
2443 }
2444 }
2445
2446 ret = drm_atomic_helper_check(dev, state);
2447 if (ret)
2448 return ret;
2449
2450 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2451 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2452 if (ret)
2453 return ret;
2454
2455 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2456 if (ret)
2457 return ret;
2458 }
2459
2460 ret = drm_dp_mst_atomic_check(state);
2461 if (ret)
2462 return ret;
2463
2464 nv50_crc_atomic_check_outp(atom);
2465
2466 return 0;
2467 }
2468
2469 static void
2470 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2471 {
2472 struct nv50_atom *atom = nv50_atom(state);
2473 struct nv50_outp_atom *outp, *outt;
2474
2475 list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2476 list_del(&outp->head);
2477 kfree(outp);
2478 }
2479
2480 drm_atomic_state_default_clear(state);
2481 }
2482
2483 static void
2484 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2485 {
2486 struct nv50_atom *atom = nv50_atom(state);
2487 drm_atomic_state_default_release(&atom->state);
2488 kfree(atom);
2489 }
2490
2491 static struct drm_atomic_state *
2492 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2493 {
2494 struct nv50_atom *atom;
2495 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2496 drm_atomic_state_init(dev, &atom->state) < 0) {
2497 kfree(atom);
2498 return NULL;
2499 }
2500 INIT_LIST_HEAD(&atom->outp);
2501 return &atom->state;
2502 }
2503
2504 static const struct drm_mode_config_funcs
2505 nv50_disp_func = {
2506 .fb_create = nouveau_user_framebuffer_create,
2507 .output_poll_changed = drm_fb_helper_output_poll_changed,
2508 .atomic_check = nv50_disp_atomic_check,
2509 .atomic_commit = nv50_disp_atomic_commit,
2510 .atomic_state_alloc = nv50_disp_atomic_state_alloc,
2511 .atomic_state_clear = nv50_disp_atomic_state_clear,
2512 .atomic_state_free = nv50_disp_atomic_state_free,
2513 };
2514
2515 static const struct drm_mode_config_helper_funcs
2516 nv50_disp_helper_func = {
2517 .atomic_commit_setup = drm_dp_mst_atomic_setup_commit,
2518 };
2519
2520 /******************************************************************************
2521 * Init
2522 *****************************************************************************/
2523
2524 static void
2525 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend)
2526 {
2527 struct nouveau_drm *drm = nouveau_drm(dev);
2528 struct drm_encoder *encoder;
2529
2530 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2531 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
2532 nv50_mstm_fini(nouveau_encoder(encoder));
2533 }
2534
2535 if (!runtime)
2536 cancel_work_sync(&drm->hpd_work);
2537 }
2538
2539 static inline void
2540 nv50_display_read_hw_or_state(struct drm_device *dev, struct nv50_disp *disp,
2541 struct nouveau_encoder *outp)
2542 {
2543 struct drm_crtc *crtc;
2544 struct drm_connector_list_iter conn_iter;
2545 struct drm_connector *conn;
2546 struct nv50_head_atom *armh;
2547 const u32 encoder_mask = drm_encoder_mask(&outp->base.base);
2548 bool found_conn = false, found_head = false;
2549 u8 proto;
2550 int head_idx;
2551 int ret;
2552
2553 switch (outp->dcb->type) {
2554 case DCB_OUTPUT_TMDS:
2555 ret = nvif_outp_inherit_tmds(&outp->outp, &proto);
2556 break;
2557 case DCB_OUTPUT_DP:
2558 ret = nvif_outp_inherit_dp(&outp->outp, &proto);
2559 break;
2560 case DCB_OUTPUT_LVDS:
2561 ret = nvif_outp_inherit_lvds(&outp->outp, &proto);
2562 break;
2563 case DCB_OUTPUT_ANALOG:
2564 ret = nvif_outp_inherit_rgb_crt(&outp->outp, &proto);
2565 break;
2566 default:
2567 drm_dbg_kms(dev, "Readback for %s not implemented yet, skipping\n",
2568 outp->base.base.name);
2569 drm_WARN_ON(dev, true);
2570 return;
2571 }
2572
2573 if (ret < 0)
2574 return;
2575
2576 head_idx = ret;
2577
2578 drm_for_each_crtc(crtc, dev) {
2579 if (crtc->index != head_idx)
2580 continue;
2581
2582 armh = nv50_head_atom(crtc->state);
2583 found_head = true;
2584 break;
2585 }
2586 if (drm_WARN_ON(dev, !found_head))
2587 return;
2588
2589 /* Figure out which connector is being used by this encoder */
2590 drm_connector_list_iter_begin(dev, &conn_iter);
2591 nouveau_for_each_non_mst_connector_iter(conn, &conn_iter) {
2592 if (nouveau_connector(conn)->index == outp->dcb->connector) {
2593 found_conn = true;
2594 break;
2595 }
2596 }
2597 drm_connector_list_iter_end(&conn_iter);
2598 if (drm_WARN_ON(dev, !found_conn))
2599 return;
2600
2601 armh->state.encoder_mask = encoder_mask;
2602 armh->state.connector_mask = drm_connector_mask(conn);
2603 armh->state.active = true;
2604 armh->state.enable = true;
2605 pm_runtime_get_noresume(dev->dev);
2606
2607 outp->crtc = crtc;
2608 outp->ctrl = NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto) | BIT(crtc->index);
2609
2610 drm_connector_get(conn);
2611 conn->state->crtc = crtc;
2612 conn->state->best_encoder = &outp->base.base;
2613 }
2614
2615 /* Read back the currently programmed display state */
2616 static void
2617 nv50_display_read_hw_state(struct nouveau_drm *drm)
2618 {
2619 struct drm_device *dev = drm->dev;
2620 struct drm_encoder *encoder;
2621 struct drm_modeset_acquire_ctx ctx;
2622 struct nv50_disp *disp = nv50_disp(dev);
2623 int ret;
2624
2625 DRM_MODESET_LOCK_ALL_BEGIN(dev, ctx, 0, ret);
2626
2627 drm_for_each_encoder(encoder, dev) {
2628 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
2629 continue;
2630
2631 nv50_display_read_hw_or_state(dev, disp, nouveau_encoder(encoder));
2632 }
2633
2634 DRM_MODESET_LOCK_ALL_END(dev, ctx, ret);
2635 }
2636
2637 static int
2638 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2639 {
2640 struct nv50_core *core = nv50_disp(dev)->core;
2641 struct drm_encoder *encoder;
2642
2643 if (resume || runtime)
2644 core->func->init(core);
2645
2646 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2647 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2648 struct nouveau_encoder *nv_encoder =
2649 nouveau_encoder(encoder);
2650 nv50_mstm_init(nv_encoder, runtime);
2651 }
2652 }
2653
2654 if (!resume)
2655 nv50_display_read_hw_state(nouveau_drm(dev));
2656
2657 return 0;
2658 }
2659
2660 static void
2661 nv50_display_destroy(struct drm_device *dev)
2662 {
2663 struct nv50_disp *disp = nv50_disp(dev);
2664
2665 nv50_audio_component_fini(nouveau_drm(dev));
2666
2667 nvif_object_unmap(&disp->caps);
2668 nvif_object_dtor(&disp->caps);
2669 nv50_core_del(&disp->core);
2670
2671 nouveau_bo_unmap(disp->sync);
2672 if (disp->sync)
2673 nouveau_bo_unpin(disp->sync);
2674 nouveau_bo_ref(NULL, &disp->sync);
2675
2676 nouveau_display(dev)->priv = NULL;
2677 kfree(disp);
2678 }
2679
2680 int
2681 nv50_display_create(struct drm_device *dev)
2682 {
2683 struct nouveau_drm *drm = nouveau_drm(dev);
2684 struct drm_connector *connector, *tmp;
2685 struct nv50_disp *disp;
2686 int ret, i;
2687 bool has_mst = false;
2688
2689 disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2690 if (!disp)
2691 return -ENOMEM;
2692
2693 mutex_init(&disp->mutex);
2694
2695 nouveau_display(dev)->priv = disp;
2696 nouveau_display(dev)->dtor = nv50_display_destroy;
2697 nouveau_display(dev)->init = nv50_display_init;
2698 nouveau_display(dev)->fini = nv50_display_fini;
2699 disp->disp = &nouveau_display(dev)->disp;
2700 dev->mode_config.funcs = &nv50_disp_func;
2701 dev->mode_config.helper_private = &nv50_disp_helper_func;
2702 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2703 dev->mode_config.normalize_zpos = true;
2704
2705 /* small shared memory area we use for notifiers and semaphores */
2706 ret = nouveau_bo_new(&drm->client, 4096, 0x1000,
2707 NOUVEAU_GEM_DOMAIN_VRAM,
2708 0, 0x0000, NULL, NULL, &disp->sync);
2709 if (!ret) {
2710 ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true);
2711 if (!ret) {
2712 ret = nouveau_bo_map(disp->sync);
2713 if (ret)
2714 nouveau_bo_unpin(disp->sync);
2715 }
2716 if (ret)
2717 nouveau_bo_ref(NULL, &disp->sync);
2718 }
2719
2720 if (ret)
2721 goto out;
2722
2723 /* allocate master evo channel */
2724 ret = nv50_core_new(drm, &disp->core);
2725 if (ret)
2726 goto out;
2727
2728 disp->core->func->init(disp->core);
2729 if (disp->core->func->caps_init) {
2730 ret = disp->core->func->caps_init(drm, disp);
2731 if (ret)
2732 goto out;
2733 }
2734
2735 /* Assign the correct format modifiers */
2736 if (disp->disp->object.oclass >= TU102_DISP)
2737 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
2738 else
2739 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI)
2740 nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
2741 else
2742 nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
2743
2744 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later
2745 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The
2746 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to
2747 * small page allocations in prepare_fb(). When this is implemented, we should also force
2748 * large pages (128K) for ovly fbs in order to fix Kepler ovlys.
2749 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using
2750 * large pages.
2751 */
2752 if (disp->disp->object.oclass >= GM107_DISP) {
2753 dev->mode_config.cursor_width = 256;
2754 dev->mode_config.cursor_height = 256;
2755 } else if (disp->disp->object.oclass >= GK104_DISP) {
2756 dev->mode_config.cursor_width = 128;
2757 dev->mode_config.cursor_height = 128;
2758 } else {
2759 dev->mode_config.cursor_width = 64;
2760 dev->mode_config.cursor_height = 64;
2761 }
2762
2763 /* create encoder/connector objects based on VBIOS DCB table */
2764 for_each_set_bit(i, &disp->disp->outp_mask, sizeof(disp->disp->outp_mask) * 8) {
2765 struct nouveau_encoder *outp;
2766
2767 outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2768 if (!outp)
2769 break;
2770
2771 ret = nvif_outp_ctor(disp->disp, "kmsOutp", i, &outp->outp);
2772 if (ret) {
2773 kfree(outp);
2774 continue;
2775 }
2776
2777 connector = nouveau_connector_create(dev, outp->outp.info.conn);
2778 if (IS_ERR(connector)) {
2779 nvif_outp_dtor(&outp->outp);
2780 kfree(outp);
2781 continue;
2782 }
2783
2784 outp->base.base.possible_crtcs = outp->outp.info.heads;
2785 outp->base.base.possible_clones = 0;
2786 outp->conn = nouveau_connector(connector);
2787
2788 outp->dcb = kzalloc(sizeof(*outp->dcb), GFP_KERNEL);
2789 if (!outp->dcb)
2790 break;
2791
2792 switch (outp->outp.info.proto) {
2793 case NVIF_OUTP_RGB_CRT:
2794 outp->dcb->type = DCB_OUTPUT_ANALOG;
2795 outp->dcb->crtconf.maxfreq = outp->outp.info.rgb_crt.freq_max;
2796 break;
2797 case NVIF_OUTP_TMDS:
2798 outp->dcb->type = DCB_OUTPUT_TMDS;
2799 outp->dcb->duallink_possible = outp->outp.info.tmds.dual;
2800 break;
2801 case NVIF_OUTP_LVDS:
2802 outp->dcb->type = DCB_OUTPUT_LVDS;
2803 outp->dcb->lvdsconf.use_acpi_for_edid = outp->outp.info.lvds.acpi_edid;
2804 break;
2805 case NVIF_OUTP_DP:
2806 outp->dcb->type = DCB_OUTPUT_DP;
2807 outp->dcb->dpconf.link_nr = outp->outp.info.dp.link_nr;
2808 outp->dcb->dpconf.link_bw = outp->outp.info.dp.link_bw;
2809 if (outp->outp.info.dp.mst)
2810 has_mst = true;
2811 break;
2812 default:
2813 WARN_ON(1);
2814 continue;
2815 }
2816
2817 outp->dcb->heads = outp->outp.info.heads;
2818 outp->dcb->connector = outp->outp.info.conn;
2819 outp->dcb->i2c_index = outp->outp.info.ddc;
2820
2821 switch (outp->outp.info.type) {
2822 case NVIF_OUTP_DAC : ret = nv50_dac_create(outp); break;
2823 case NVIF_OUTP_SOR : ret = nv50_sor_create(outp); break;
2824 case NVIF_OUTP_PIOR: ret = nv50_pior_create(outp); break;
2825 default:
2826 WARN_ON(1);
2827 continue;
2828 }
2829
2830 if (ret) {
2831 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2832 i, outp->outp.info.type, outp->outp.info.proto, ret);
2833 }
2834 }
2835
2836 /* cull any connectors we created that don't have an encoder */
2837 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2838 if (connector->possible_encoders)
2839 continue;
2840
2841 NV_WARN(drm, "%s has no encoders, removing\n",
2842 connector->name);
2843 connector->funcs->destroy(connector);
2844 }
2845
2846 /* create crtc objects to represent the hw heads */
2847 for_each_set_bit(i, &disp->disp->head_mask, sizeof(disp->disp->head_mask) * 8) {
2848 struct nv50_head *head;
2849
2850 head = nv50_head_create(dev, i);
2851 if (IS_ERR(head)) {
2852 ret = PTR_ERR(head);
2853 goto out;
2854 }
2855
2856 if (has_mst) {
2857 head->msto = nv50_msto_new(dev, head, i);
2858 if (IS_ERR(head->msto)) {
2859 ret = PTR_ERR(head->msto);
2860 head->msto = NULL;
2861 goto out;
2862 }
2863
2864 /*
2865 * FIXME: This is a hack to workaround the following
2866 * issues:
2867 *
2868 * https://gitlab.gnome.org/GNOME/mutter/issues/759
2869 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277
2870 *
2871 * Once these issues are closed, this should be
2872 * removed
2873 */
2874 head->msto->encoder.possible_crtcs = disp->disp->head_mask;
2875 }
2876 }
2877
2878 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2879 dev->vblank_disable_immediate = true;
2880
2881 nv50_audio_component_init(drm);
2882
2883 out:
2884 if (ret)
2885 nv50_display_destroy(dev);
2886 return ret;
2887 }
2888
2889 /******************************************************************************
2890 * Format modifiers
2891 *****************************************************************************/
2892
2893 /****************************************************************
2894 * Log2(block height) ----------------------------+ *
2895 * Page Kind ----------------------------------+ | *
2896 * Gob Height/Page Kind Generation ------+ | | *
2897 * Sector layout -------+ | | | *
2898 * Compression ------+ | | | | */
2899 const u64 disp50xx_modifiers[] = { /* | | | | | */
2900 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
2901 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
2902 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
2903 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
2904 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
2905 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
2906 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
2907 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
2908 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
2909 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
2910 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
2911 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
2912 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
2913 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
2914 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
2915 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
2916 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
2917 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
2918 DRM_FORMAT_MOD_LINEAR,
2919 DRM_FORMAT_MOD_INVALID
2920 };
2921
2922 /****************************************************************
2923 * Log2(block height) ----------------------------+ *
2924 * Page Kind ----------------------------------+ | *
2925 * Gob Height/Page Kind Generation ------+ | | *
2926 * Sector layout -------+ | | | *
2927 * Compression ------+ | | | | */
2928 const u64 disp90xx_modifiers[] = { /* | | | | | */
2929 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
2930 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
2931 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
2932 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
2933 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
2934 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
2935 DRM_FORMAT_MOD_LINEAR,
2936 DRM_FORMAT_MOD_INVALID
2937 };