]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/vc4/vc4_dsi.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 234
[thirdparty/linux.git] / drivers / gpu / drm / vc4 / vc4_dsi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2016 Broadcom
4 */
5
6 /**
7 * DOC: VC4 DSI0/DSI1 module
8 *
9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
11 * controller.
12 *
13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
14 * while the compute module brings both DSI0 and DSI1 out.
15 *
16 * This driver has been tested for DSI1 video-mode display only
17 * currently, with most of the information necessary for DSI0
18 * hopefully present.
19 */
20
21 #include <drm/drm_atomic_helper.h>
22 #include <drm/drm_edid.h>
23 #include <drm/drm_mipi_dsi.h>
24 #include <drm/drm_of.h>
25 #include <drm/drm_panel.h>
26 #include <drm/drm_probe_helper.h>
27 #include <linux/clk.h>
28 #include <linux/clk-provider.h>
29 #include <linux/completion.h>
30 #include <linux/component.h>
31 #include <linux/dmaengine.h>
32 #include <linux/i2c.h>
33 #include <linux/io.h>
34 #include <linux/of_address.h>
35 #include <linux/of_platform.h>
36 #include <linux/pm_runtime.h>
37 #include "vc4_drv.h"
38 #include "vc4_regs.h"
39
40 #define DSI_CMD_FIFO_DEPTH 16
41 #define DSI_PIX_FIFO_DEPTH 256
42 #define DSI_PIX_FIFO_WIDTH 4
43
44 #define DSI0_CTRL 0x00
45
46 /* Command packet control. */
47 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */
48 #define DSI1_TXPKT1C 0x04
49 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
50 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
51 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
52 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
53
54 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
55 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
56 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
57 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
58 /* Primary display where cmdfifo provides part of the payload and
59 * pixelvalve the rest.
60 */
61 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
62 /* Secondary display where cmdfifo provides part of the payload and
63 * pixfifo the rest.
64 */
65 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
66
67 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
68 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
69
70 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
71 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
72 /* Command only. Uses TXPKT1H and DISPLAY_NO */
73 # define DSI_TXPKT1C_CMD_CTRL_TX 0
74 /* Command with BTA for either ack or read data. */
75 # define DSI_TXPKT1C_CMD_CTRL_RX 1
76 /* Trigger according to TRIG_CMD */
77 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2
78 /* BTA alone for getting error status after a command, or a TE trigger
79 * without a previous command.
80 */
81 # define DSI_TXPKT1C_CMD_CTRL_BTA 3
82
83 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
84 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
85 # define DSI_TXPKT1C_CMD_TE_EN BIT(1)
86 # define DSI_TXPKT1C_CMD_EN BIT(0)
87
88 /* Command packet header. */
89 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */
90 #define DSI1_TXPKT1H 0x08
91 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
92 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
93 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
94 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8
95 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
96 # define DSI_TXPKT1H_BC_DT_SHIFT 0
97
98 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
99 #define DSI1_RXPKT1H 0x14
100 # define DSI_RXPKT1H_CRC_ERR BIT(31)
101 # define DSI_RXPKT1H_DET_ERR BIT(30)
102 # define DSI_RXPKT1H_ECC_ERR BIT(29)
103 # define DSI_RXPKT1H_COR_ERR BIT(28)
104 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
105 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
106 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
107 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
108 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
109 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
110 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
111 # define DSI_RXPKT1H_SHORT_1_SHIFT 16
112 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
113 # define DSI_RXPKT1H_SHORT_0_SHIFT 8
114 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
115 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
116
117 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
118 #define DSI1_RXPKT2H 0x18
119 # define DSI_RXPKT1H_DET_ERR BIT(30)
120 # define DSI_RXPKT1H_ECC_ERR BIT(29)
121 # define DSI_RXPKT1H_COR_ERR BIT(28)
122 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
123 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
124 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
125 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
126 # define DSI_RXPKT1H_DT_SHIFT 0
127
128 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
129 #define DSI1_TXPKT_CMD_FIFO 0x1c
130
131 #define DSI0_DISP0_CTRL 0x18
132 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
133 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
134 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
135 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
136 # define DSI_DISP0_LP_STOP_DISABLE 0
137 # define DSI_DISP0_LP_STOP_PERLINE 1
138 # define DSI_DISP0_LP_STOP_PERFRAME 2
139
140 /* Transmit RGB pixels and null packets only during HACTIVE, instead
141 * of going to LP-STOP.
142 */
143 # define DSI_DISP_HACTIVE_NULL BIT(10)
144 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
145 # define DSI_DISP_VBLP_CTRL BIT(9)
146 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
147 # define DSI_DISP_HFP_CTRL BIT(8)
148 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
149 # define DSI_DISP_HBP_CTRL BIT(7)
150 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
151 # define DSI_DISP0_CHANNEL_SHIFT 5
152 /* Enables end events for HSYNC/VSYNC, not just start events. */
153 # define DSI_DISP0_ST_END BIT(4)
154 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
155 # define DSI_DISP0_PFORMAT_SHIFT 2
156 # define DSI_PFORMAT_RGB565 0
157 # define DSI_PFORMAT_RGB666_PACKED 1
158 # define DSI_PFORMAT_RGB666 2
159 # define DSI_PFORMAT_RGB888 3
160 /* Default is VIDEO mode. */
161 # define DSI_DISP0_COMMAND_MODE BIT(1)
162 # define DSI_DISP0_ENABLE BIT(0)
163
164 #define DSI0_DISP1_CTRL 0x1c
165 #define DSI1_DISP1_CTRL 0x2c
166 /* Format of the data written to TXPKT_PIX_FIFO. */
167 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
168 # define DSI_DISP1_PFORMAT_SHIFT 1
169 # define DSI_DISP1_PFORMAT_16BIT 0
170 # define DSI_DISP1_PFORMAT_24BIT 1
171 # define DSI_DISP1_PFORMAT_32BIT_LE 2
172 # define DSI_DISP1_PFORMAT_32BIT_BE 3
173
174 /* DISP1 is always command mode. */
175 # define DSI_DISP1_ENABLE BIT(0)
176
177 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
178
179 #define DSI0_INT_STAT 0x24
180 #define DSI0_INT_EN 0x28
181 # define DSI1_INT_PHY_D3_ULPS BIT(30)
182 # define DSI1_INT_PHY_D3_STOP BIT(29)
183 # define DSI1_INT_PHY_D2_ULPS BIT(28)
184 # define DSI1_INT_PHY_D2_STOP BIT(27)
185 # define DSI1_INT_PHY_D1_ULPS BIT(26)
186 # define DSI1_INT_PHY_D1_STOP BIT(25)
187 # define DSI1_INT_PHY_D0_ULPS BIT(24)
188 # define DSI1_INT_PHY_D0_STOP BIT(23)
189 # define DSI1_INT_FIFO_ERR BIT(22)
190 # define DSI1_INT_PHY_DIR_RTF BIT(21)
191 # define DSI1_INT_PHY_RXLPDT BIT(20)
192 # define DSI1_INT_PHY_RXTRIG BIT(19)
193 # define DSI1_INT_PHY_D0_LPDT BIT(18)
194 # define DSI1_INT_PHY_DIR_FTR BIT(17)
195
196 /* Signaled when the clock lane enters the given state. */
197 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
198 # define DSI1_INT_PHY_CLOCK_HS BIT(15)
199 # define DSI1_INT_PHY_CLOCK_STOP BIT(14)
200
201 /* Signaled on timeouts */
202 # define DSI1_INT_PR_TO BIT(13)
203 # define DSI1_INT_TA_TO BIT(12)
204 # define DSI1_INT_LPRX_TO BIT(11)
205 # define DSI1_INT_HSTX_TO BIT(10)
206
207 /* Contention on a line when trying to drive the line low */
208 # define DSI1_INT_ERR_CONT_LP1 BIT(9)
209 # define DSI1_INT_ERR_CONT_LP0 BIT(8)
210
211 /* Control error: incorrect line state sequence on data lane 0. */
212 # define DSI1_INT_ERR_CONTROL BIT(7)
213 /* LPDT synchronization error (bits received not a multiple of 8. */
214
215 # define DSI1_INT_ERR_SYNC_ESC BIT(6)
216 /* Signaled after receiving an error packet from the display in
217 * response to a read.
218 */
219 # define DSI1_INT_RXPKT2 BIT(5)
220 /* Signaled after receiving a packet. The header and optional short
221 * response will be in RXPKT1H, and a long response will be in the
222 * RXPKT_FIFO.
223 */
224 # define DSI1_INT_RXPKT1 BIT(4)
225 # define DSI1_INT_TXPKT2_DONE BIT(3)
226 # define DSI1_INT_TXPKT2_END BIT(2)
227 /* Signaled after all repeats of TXPKT1 are transferred. */
228 # define DSI1_INT_TXPKT1_DONE BIT(1)
229 /* Signaled after each TXPKT1 repeat is scheduled. */
230 # define DSI1_INT_TXPKT1_END BIT(0)
231
232 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
233 DSI1_INT_ERR_CONTROL | \
234 DSI1_INT_ERR_CONT_LP0 | \
235 DSI1_INT_ERR_CONT_LP1 | \
236 DSI1_INT_HSTX_TO | \
237 DSI1_INT_LPRX_TO | \
238 DSI1_INT_TA_TO | \
239 DSI1_INT_PR_TO)
240
241 #define DSI0_STAT 0x2c
242 #define DSI0_HSTX_TO_CNT 0x30
243 #define DSI0_LPRX_TO_CNT 0x34
244 #define DSI0_TA_TO_CNT 0x38
245 #define DSI0_PR_TO_CNT 0x3c
246 #define DSI0_PHYC 0x40
247 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
248 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
249 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
250 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
251 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
252 # define DSI1_PHYC_CLANE_ULPS BIT(17)
253 # define DSI1_PHYC_CLANE_ENABLE BIT(16)
254 # define DSI_PHYC_DLANE3_ULPS BIT(13)
255 # define DSI_PHYC_DLANE3_ENABLE BIT(12)
256 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
257 # define DSI0_PHYC_CLANE_ULPS BIT(9)
258 # define DSI_PHYC_DLANE2_ULPS BIT(9)
259 # define DSI0_PHYC_CLANE_ENABLE BIT(8)
260 # define DSI_PHYC_DLANE2_ENABLE BIT(8)
261 # define DSI_PHYC_DLANE1_ULPS BIT(5)
262 # define DSI_PHYC_DLANE1_ENABLE BIT(4)
263 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
264 # define DSI_PHYC_DLANE0_ULPS BIT(1)
265 # define DSI_PHYC_DLANE0_ENABLE BIT(0)
266
267 #define DSI0_HS_CLT0 0x44
268 #define DSI0_HS_CLT1 0x48
269 #define DSI0_HS_CLT2 0x4c
270 #define DSI0_HS_DLT3 0x50
271 #define DSI0_HS_DLT4 0x54
272 #define DSI0_HS_DLT5 0x58
273 #define DSI0_HS_DLT6 0x5c
274 #define DSI0_HS_DLT7 0x60
275
276 #define DSI0_PHY_AFEC0 0x64
277 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
278 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
279 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
280 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
281 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
282 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
283 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
284 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
285 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
286 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
287 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
288 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
289 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
290 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
291 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
292 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
293 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
294 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
295 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
296 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
297 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
298 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
299 # define DSI1_PHY_AFEC0_RESET BIT(13)
300 # define DSI1_PHY_AFEC0_PD BIT(12)
301 # define DSI0_PHY_AFEC0_RESET BIT(11)
302 # define DSI1_PHY_AFEC0_PD_BG BIT(11)
303 # define DSI0_PHY_AFEC0_PD BIT(10)
304 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
305 # define DSI0_PHY_AFEC0_PD_BG BIT(9)
306 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
307 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
308 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
309 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
310 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
311 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
312 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
313
314 #define DSI0_PHY_AFEC1 0x68
315 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
316 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
317 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
318 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
319 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
320 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
321
322 #define DSI0_TST_SEL 0x6c
323 #define DSI0_TST_MON 0x70
324 #define DSI0_ID 0x74
325 # define DSI_ID_VALUE 0x00647369
326
327 #define DSI1_CTRL 0x00
328 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
329 # define DSI_CTRL_HS_CLKC_SHIFT 14
330 # define DSI_CTRL_HS_CLKC_BYTE 0
331 # define DSI_CTRL_HS_CLKC_DDR2 1
332 # define DSI_CTRL_HS_CLKC_DDR 2
333
334 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
335 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
336 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
337 # define DSI_CTRL_SOFT_RESET_CFG BIT(10)
338 # define DSI_CTRL_CAL_BYTE BIT(9)
339 # define DSI_CTRL_INV_BYTE BIT(8)
340 # define DSI_CTRL_CLR_LDF BIT(7)
341 # define DSI0_CTRL_CLR_PBCF BIT(6)
342 # define DSI1_CTRL_CLR_RXF BIT(6)
343 # define DSI0_CTRL_CLR_CPBCF BIT(5)
344 # define DSI1_CTRL_CLR_PDF BIT(5)
345 # define DSI0_CTRL_CLR_PDF BIT(4)
346 # define DSI1_CTRL_CLR_CDF BIT(4)
347 # define DSI0_CTRL_CLR_CDF BIT(3)
348 # define DSI0_CTRL_CTRL2 BIT(2)
349 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
350 # define DSI0_CTRL_CTRL1 BIT(1)
351 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
352 # define DSI0_CTRL_CTRL0 BIT(0)
353 # define DSI1_CTRL_EN BIT(0)
354 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
355 DSI0_CTRL_CLR_PBCF | \
356 DSI0_CTRL_CLR_CPBCF | \
357 DSI0_CTRL_CLR_PDF | \
358 DSI0_CTRL_CLR_CDF)
359 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
360 DSI1_CTRL_CLR_RXF | \
361 DSI1_CTRL_CLR_PDF | \
362 DSI1_CTRL_CLR_CDF)
363
364 #define DSI1_TXPKT2C 0x0c
365 #define DSI1_TXPKT2H 0x10
366 #define DSI1_TXPKT_PIX_FIFO 0x20
367 #define DSI1_RXPKT_FIFO 0x24
368 #define DSI1_DISP0_CTRL 0x28
369 #define DSI1_INT_STAT 0x30
370 #define DSI1_INT_EN 0x34
371 /* State reporting bits. These mostly behave like INT_STAT, where
372 * writing a 1 clears the bit.
373 */
374 #define DSI1_STAT 0x38
375 # define DSI1_STAT_PHY_D3_ULPS BIT(31)
376 # define DSI1_STAT_PHY_D3_STOP BIT(30)
377 # define DSI1_STAT_PHY_D2_ULPS BIT(29)
378 # define DSI1_STAT_PHY_D2_STOP BIT(28)
379 # define DSI1_STAT_PHY_D1_ULPS BIT(27)
380 # define DSI1_STAT_PHY_D1_STOP BIT(26)
381 # define DSI1_STAT_PHY_D0_ULPS BIT(25)
382 # define DSI1_STAT_PHY_D0_STOP BIT(24)
383 # define DSI1_STAT_FIFO_ERR BIT(23)
384 # define DSI1_STAT_PHY_RXLPDT BIT(22)
385 # define DSI1_STAT_PHY_RXTRIG BIT(21)
386 # define DSI1_STAT_PHY_D0_LPDT BIT(20)
387 /* Set when in forward direction */
388 # define DSI1_STAT_PHY_DIR BIT(19)
389 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
390 # define DSI1_STAT_PHY_CLOCK_HS BIT(17)
391 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
392 # define DSI1_STAT_PR_TO BIT(15)
393 # define DSI1_STAT_TA_TO BIT(14)
394 # define DSI1_STAT_LPRX_TO BIT(13)
395 # define DSI1_STAT_HSTX_TO BIT(12)
396 # define DSI1_STAT_ERR_CONT_LP1 BIT(11)
397 # define DSI1_STAT_ERR_CONT_LP0 BIT(10)
398 # define DSI1_STAT_ERR_CONTROL BIT(9)
399 # define DSI1_STAT_ERR_SYNC_ESC BIT(8)
400 # define DSI1_STAT_RXPKT2 BIT(7)
401 # define DSI1_STAT_RXPKT1 BIT(6)
402 # define DSI1_STAT_TXPKT2_BUSY BIT(5)
403 # define DSI1_STAT_TXPKT2_DONE BIT(4)
404 # define DSI1_STAT_TXPKT2_END BIT(3)
405 # define DSI1_STAT_TXPKT1_BUSY BIT(2)
406 # define DSI1_STAT_TXPKT1_DONE BIT(1)
407 # define DSI1_STAT_TXPKT1_END BIT(0)
408
409 #define DSI1_HSTX_TO_CNT 0x3c
410 #define DSI1_LPRX_TO_CNT 0x40
411 #define DSI1_TA_TO_CNT 0x44
412 #define DSI1_PR_TO_CNT 0x48
413 #define DSI1_PHYC 0x4c
414
415 #define DSI1_HS_CLT0 0x50
416 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
417 # define DSI_HS_CLT0_CZERO_SHIFT 18
418 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
419 # define DSI_HS_CLT0_CPRE_SHIFT 9
420 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
421 # define DSI_HS_CLT0_CPREP_SHIFT 0
422
423 #define DSI1_HS_CLT1 0x54
424 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
425 # define DSI_HS_CLT1_CTRAIL_SHIFT 9
426 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
427 # define DSI_HS_CLT1_CPOST_SHIFT 0
428
429 #define DSI1_HS_CLT2 0x58
430 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
431 # define DSI_HS_CLT2_WUP_SHIFT 0
432
433 #define DSI1_HS_DLT3 0x5c
434 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
435 # define DSI_HS_DLT3_EXIT_SHIFT 18
436 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
437 # define DSI_HS_DLT3_ZERO_SHIFT 9
438 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
439 # define DSI_HS_DLT3_PRE_SHIFT 0
440
441 #define DSI1_HS_DLT4 0x60
442 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
443 # define DSI_HS_DLT4_ANLAT_SHIFT 18
444 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
445 # define DSI_HS_DLT4_TRAIL_SHIFT 9
446 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
447 # define DSI_HS_DLT4_LPX_SHIFT 0
448
449 #define DSI1_HS_DLT5 0x64
450 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
451 # define DSI_HS_DLT5_INIT_SHIFT 0
452
453 #define DSI1_HS_DLT6 0x68
454 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
455 # define DSI_HS_DLT6_TA_GET_SHIFT 24
456 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
457 # define DSI_HS_DLT6_TA_SURE_SHIFT 16
458 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
459 # define DSI_HS_DLT6_TA_GO_SHIFT 8
460 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
461 # define DSI_HS_DLT6_LP_LPX_SHIFT 0
462
463 #define DSI1_HS_DLT7 0x6c
464 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
465 # define DSI_HS_DLT7_LP_WUP_SHIFT 0
466
467 #define DSI1_PHY_AFEC0 0x70
468
469 #define DSI1_PHY_AFEC1 0x74
470 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
471 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
472 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
473 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
474 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
475 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
476 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
477 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
478 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
479 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
480
481 #define DSI1_TST_SEL 0x78
482 #define DSI1_TST_MON 0x7c
483 #define DSI1_PHY_TST1 0x80
484 #define DSI1_PHY_TST2 0x84
485 #define DSI1_PHY_FIFO_STAT 0x88
486 /* Actually, all registers in the range that aren't otherwise claimed
487 * will return the ID.
488 */
489 #define DSI1_ID 0x8c
490
491 /* General DSI hardware state. */
492 struct vc4_dsi {
493 struct platform_device *pdev;
494
495 struct mipi_dsi_host dsi_host;
496 struct drm_encoder *encoder;
497 struct drm_bridge *bridge;
498
499 void __iomem *regs;
500
501 struct dma_chan *reg_dma_chan;
502 dma_addr_t reg_dma_paddr;
503 u32 *reg_dma_mem;
504 dma_addr_t reg_paddr;
505
506 /* Whether we're on bcm2835's DSI0 or DSI1. */
507 int port;
508
509 /* DSI channel for the panel we're connected to. */
510 u32 channel;
511 u32 lanes;
512 u32 format;
513 u32 divider;
514 u32 mode_flags;
515
516 /* Input clock from CPRMAN to the digital PHY, for the DSI
517 * escape clock.
518 */
519 struct clk *escape_clock;
520
521 /* Input clock to the analog PHY, used to generate the DSI bit
522 * clock.
523 */
524 struct clk *pll_phy_clock;
525
526 /* HS Clocks generated within the DSI analog PHY. */
527 struct clk_fixed_factor phy_clocks[3];
528
529 struct clk_hw_onecell_data *clk_onecell;
530
531 /* Pixel clock output to the pixelvalve, generated from the HS
532 * clock.
533 */
534 struct clk *pixel_clock;
535
536 struct completion xfer_completion;
537 int xfer_result;
538
539 struct debugfs_regset32 regset;
540 };
541
542 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
543
544 static inline void
545 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
546 {
547 struct dma_chan *chan = dsi->reg_dma_chan;
548 struct dma_async_tx_descriptor *tx;
549 dma_cookie_t cookie;
550 int ret;
551
552 /* DSI0 should be able to write normally. */
553 if (!chan) {
554 writel(val, dsi->regs + offset);
555 return;
556 }
557
558 *dsi->reg_dma_mem = val;
559
560 tx = chan->device->device_prep_dma_memcpy(chan,
561 dsi->reg_paddr + offset,
562 dsi->reg_dma_paddr,
563 4, 0);
564 if (!tx) {
565 DRM_ERROR("Failed to set up DMA register write\n");
566 return;
567 }
568
569 cookie = tx->tx_submit(tx);
570 ret = dma_submit_error(cookie);
571 if (ret) {
572 DRM_ERROR("Failed to submit DMA: %d\n", ret);
573 return;
574 }
575 ret = dma_sync_wait(chan, cookie);
576 if (ret)
577 DRM_ERROR("Failed to wait for DMA: %d\n", ret);
578 }
579
580 #define DSI_READ(offset) readl(dsi->regs + (offset))
581 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
582 #define DSI_PORT_READ(offset) \
583 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
584 #define DSI_PORT_WRITE(offset, val) \
585 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
586 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
587
588 /* VC4 DSI encoder KMS struct */
589 struct vc4_dsi_encoder {
590 struct vc4_encoder base;
591 struct vc4_dsi *dsi;
592 };
593
594 static inline struct vc4_dsi_encoder *
595 to_vc4_dsi_encoder(struct drm_encoder *encoder)
596 {
597 return container_of(encoder, struct vc4_dsi_encoder, base.base);
598 }
599
600 static const struct debugfs_reg32 dsi0_regs[] = {
601 VC4_REG32(DSI0_CTRL),
602 VC4_REG32(DSI0_STAT),
603 VC4_REG32(DSI0_HSTX_TO_CNT),
604 VC4_REG32(DSI0_LPRX_TO_CNT),
605 VC4_REG32(DSI0_TA_TO_CNT),
606 VC4_REG32(DSI0_PR_TO_CNT),
607 VC4_REG32(DSI0_DISP0_CTRL),
608 VC4_REG32(DSI0_DISP1_CTRL),
609 VC4_REG32(DSI0_INT_STAT),
610 VC4_REG32(DSI0_INT_EN),
611 VC4_REG32(DSI0_PHYC),
612 VC4_REG32(DSI0_HS_CLT0),
613 VC4_REG32(DSI0_HS_CLT1),
614 VC4_REG32(DSI0_HS_CLT2),
615 VC4_REG32(DSI0_HS_DLT3),
616 VC4_REG32(DSI0_HS_DLT4),
617 VC4_REG32(DSI0_HS_DLT5),
618 VC4_REG32(DSI0_HS_DLT6),
619 VC4_REG32(DSI0_HS_DLT7),
620 VC4_REG32(DSI0_PHY_AFEC0),
621 VC4_REG32(DSI0_PHY_AFEC1),
622 VC4_REG32(DSI0_ID),
623 };
624
625 static const struct debugfs_reg32 dsi1_regs[] = {
626 VC4_REG32(DSI1_CTRL),
627 VC4_REG32(DSI1_STAT),
628 VC4_REG32(DSI1_HSTX_TO_CNT),
629 VC4_REG32(DSI1_LPRX_TO_CNT),
630 VC4_REG32(DSI1_TA_TO_CNT),
631 VC4_REG32(DSI1_PR_TO_CNT),
632 VC4_REG32(DSI1_DISP0_CTRL),
633 VC4_REG32(DSI1_DISP1_CTRL),
634 VC4_REG32(DSI1_INT_STAT),
635 VC4_REG32(DSI1_INT_EN),
636 VC4_REG32(DSI1_PHYC),
637 VC4_REG32(DSI1_HS_CLT0),
638 VC4_REG32(DSI1_HS_CLT1),
639 VC4_REG32(DSI1_HS_CLT2),
640 VC4_REG32(DSI1_HS_DLT3),
641 VC4_REG32(DSI1_HS_DLT4),
642 VC4_REG32(DSI1_HS_DLT5),
643 VC4_REG32(DSI1_HS_DLT6),
644 VC4_REG32(DSI1_HS_DLT7),
645 VC4_REG32(DSI1_PHY_AFEC0),
646 VC4_REG32(DSI1_PHY_AFEC1),
647 VC4_REG32(DSI1_ID),
648 };
649
650 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
651 {
652 drm_encoder_cleanup(encoder);
653 }
654
655 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
656 .destroy = vc4_dsi_encoder_destroy,
657 };
658
659 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
660 {
661 u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
662
663 if (latch)
664 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
665 else
666 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
667
668 DSI_PORT_WRITE(PHY_AFEC0, afec0);
669 }
670
671 /* Enters or exits Ultra Low Power State. */
672 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
673 {
674 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
675 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
676 DSI_PHYC_DLANE0_ULPS |
677 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
678 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
679 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
680 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
681 DSI1_STAT_PHY_D0_ULPS |
682 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
683 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
684 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
685 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
686 DSI1_STAT_PHY_D0_STOP |
687 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
688 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
689 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
690 int ret;
691 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
692 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
693
694 if (ulps == ulps_currently_enabled)
695 return;
696
697 DSI_PORT_WRITE(STAT, stat_ulps);
698 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
699 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
700 if (ret) {
701 dev_warn(&dsi->pdev->dev,
702 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
703 DSI_PORT_READ(STAT));
704 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
705 vc4_dsi_latch_ulps(dsi, false);
706 return;
707 }
708
709 /* The DSI module can't be disabled while the module is
710 * generating ULPS state. So, to be able to disable the
711 * module, we have the AFE latch the ULPS state and continue
712 * on to having the module enter STOP.
713 */
714 vc4_dsi_latch_ulps(dsi, ulps);
715
716 DSI_PORT_WRITE(STAT, stat_stop);
717 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
718 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
719 if (ret) {
720 dev_warn(&dsi->pdev->dev,
721 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
722 DSI_PORT_READ(STAT));
723 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
724 return;
725 }
726 }
727
728 static u32
729 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
730 {
731 /* The HS timings have to be rounded up to a multiple of 8
732 * because we're using the byte clock.
733 */
734 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
735 }
736
737 /* ESC always runs at 100Mhz. */
738 #define ESC_TIME_NS 10
739
740 static u32
741 dsi_esc_timing(u32 ns)
742 {
743 return DIV_ROUND_UP(ns, ESC_TIME_NS);
744 }
745
746 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
747 {
748 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
749 struct vc4_dsi *dsi = vc4_encoder->dsi;
750 struct device *dev = &dsi->pdev->dev;
751
752 drm_bridge_disable(dsi->bridge);
753 vc4_dsi_ulps(dsi, true);
754 drm_bridge_post_disable(dsi->bridge);
755
756 clk_disable_unprepare(dsi->pll_phy_clock);
757 clk_disable_unprepare(dsi->escape_clock);
758 clk_disable_unprepare(dsi->pixel_clock);
759
760 pm_runtime_put(dev);
761 }
762
763 /* Extends the mode's blank intervals to handle BCM2835's integer-only
764 * DSI PLL divider.
765 *
766 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
767 * driver since most peripherals are hanging off of the PLLD_PER
768 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
769 * the pixel clock), only has an integer divider off of DSI.
770 *
771 * To get our panel mode to refresh at the expected 60Hz, we need to
772 * extend the horizontal blank time. This means we drive a
773 * higher-than-expected clock rate to the panel, but that's what the
774 * firmware does too.
775 */
776 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
777 const struct drm_display_mode *mode,
778 struct drm_display_mode *adjusted_mode)
779 {
780 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
781 struct vc4_dsi *dsi = vc4_encoder->dsi;
782 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
783 unsigned long parent_rate = clk_get_rate(phy_parent);
784 unsigned long pixel_clock_hz = mode->clock * 1000;
785 unsigned long pll_clock = pixel_clock_hz * dsi->divider;
786 int divider;
787
788 /* Find what divider gets us a faster clock than the requested
789 * pixel clock.
790 */
791 for (divider = 1; divider < 8; divider++) {
792 if (parent_rate / divider < pll_clock) {
793 divider--;
794 break;
795 }
796 }
797
798 /* Now that we've picked a PLL divider, calculate back to its
799 * pixel clock.
800 */
801 pll_clock = parent_rate / divider;
802 pixel_clock_hz = pll_clock / dsi->divider;
803
804 adjusted_mode->clock = pixel_clock_hz / 1000;
805
806 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
807 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
808 mode->clock;
809 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
810 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
811
812 return true;
813 }
814
815 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
816 {
817 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
818 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
819 struct vc4_dsi *dsi = vc4_encoder->dsi;
820 struct device *dev = &dsi->pdev->dev;
821 bool debug_dump_regs = false;
822 unsigned long hs_clock;
823 u32 ui_ns;
824 /* Minimum LP state duration in escape clock cycles. */
825 u32 lpx = dsi_esc_timing(60);
826 unsigned long pixel_clock_hz = mode->clock * 1000;
827 unsigned long dsip_clock;
828 unsigned long phy_clock;
829 int ret;
830
831 ret = pm_runtime_get_sync(dev);
832 if (ret) {
833 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
834 return;
835 }
836
837 if (debug_dump_regs) {
838 struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
839 dev_info(&dsi->pdev->dev, "DSI regs before:\n");
840 drm_print_regset32(&p, &dsi->regset);
841 }
842
843 /* Round up the clk_set_rate() request slightly, since
844 * PLLD_DSI1 is an integer divider and its rate selection will
845 * never round up.
846 */
847 phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
848 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
849 if (ret) {
850 dev_err(&dsi->pdev->dev,
851 "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
852 }
853
854 /* Reset the DSI and all its fifos. */
855 DSI_PORT_WRITE(CTRL,
856 DSI_CTRL_SOFT_RESET_CFG |
857 DSI_PORT_BIT(CTRL_RESET_FIFOS));
858
859 DSI_PORT_WRITE(CTRL,
860 DSI_CTRL_HSDT_EOT_DISABLE |
861 DSI_CTRL_RX_LPDT_EOT_DISABLE);
862
863 /* Clear all stat bits so we see what has happened during enable. */
864 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
865
866 /* Set AFE CTR00/CTR1 to release powerdown of analog. */
867 if (dsi->port == 0) {
868 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
869 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
870
871 if (dsi->lanes < 2)
872 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
873
874 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
875 afec0 |= DSI0_PHY_AFEC0_RESET;
876
877 DSI_PORT_WRITE(PHY_AFEC0, afec0);
878
879 DSI_PORT_WRITE(PHY_AFEC1,
880 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
881 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
882 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
883 } else {
884 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
885 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
886 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
887 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
888 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
889 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
890 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
891
892 if (dsi->lanes < 4)
893 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
894 if (dsi->lanes < 3)
895 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
896 if (dsi->lanes < 2)
897 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
898
899 afec0 |= DSI1_PHY_AFEC0_RESET;
900
901 DSI_PORT_WRITE(PHY_AFEC0, afec0);
902
903 DSI_PORT_WRITE(PHY_AFEC1, 0);
904
905 /* AFEC reset hold time */
906 mdelay(1);
907 }
908
909 ret = clk_prepare_enable(dsi->escape_clock);
910 if (ret) {
911 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
912 return;
913 }
914
915 ret = clk_prepare_enable(dsi->pll_phy_clock);
916 if (ret) {
917 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
918 return;
919 }
920
921 hs_clock = clk_get_rate(dsi->pll_phy_clock);
922
923 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
924 * not the pixel clock rate. DSIxP take from the APHY's byte,
925 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
926 * that rate. Separately, a value derived from PIX_CLK_DIV
927 * and HS_CLKC is fed into the PV to divide down to the actual
928 * pixel clock for pushing pixels into DSI.
929 */
930 dsip_clock = phy_clock / 8;
931 ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
932 if (ret) {
933 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
934 dsip_clock, ret);
935 }
936
937 ret = clk_prepare_enable(dsi->pixel_clock);
938 if (ret) {
939 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
940 return;
941 }
942
943 /* How many ns one DSI unit interval is. Note that the clock
944 * is DDR, so there's an extra divide by 2.
945 */
946 ui_ns = DIV_ROUND_UP(500000000, hs_clock);
947
948 DSI_PORT_WRITE(HS_CLT0,
949 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
950 DSI_HS_CLT0_CZERO) |
951 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
952 DSI_HS_CLT0_CPRE) |
953 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
954 DSI_HS_CLT0_CPREP));
955
956 DSI_PORT_WRITE(HS_CLT1,
957 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
958 DSI_HS_CLT1_CTRAIL) |
959 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
960 DSI_HS_CLT1_CPOST));
961
962 DSI_PORT_WRITE(HS_CLT2,
963 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
964 DSI_HS_CLT2_WUP));
965
966 DSI_PORT_WRITE(HS_DLT3,
967 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
968 DSI_HS_DLT3_EXIT) |
969 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
970 DSI_HS_DLT3_ZERO) |
971 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
972 DSI_HS_DLT3_PRE));
973
974 DSI_PORT_WRITE(HS_DLT4,
975 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
976 DSI_HS_DLT4_LPX) |
977 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
978 dsi_hs_timing(ui_ns, 60, 4)),
979 DSI_HS_DLT4_TRAIL) |
980 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
981
982 /* T_INIT is how long STOP is driven after power-up to
983 * indicate to the slave (also coming out of power-up) that
984 * master init is complete, and should be greater than the
985 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
986 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
987 * T_INIT,SLAVE, while allowing protocols on top of it to give
988 * greater minimums. The vc4 firmware uses an extremely
989 * conservative 5ms, and we maintain that here.
990 */
991 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
992 5 * 1000 * 1000, 0),
993 DSI_HS_DLT5_INIT));
994
995 DSI_PORT_WRITE(HS_DLT6,
996 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
997 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
998 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
999 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1000
1001 DSI_PORT_WRITE(HS_DLT7,
1002 VC4_SET_FIELD(dsi_esc_timing(1000000),
1003 DSI_HS_DLT7_LP_WUP));
1004
1005 DSI_PORT_WRITE(PHYC,
1006 DSI_PHYC_DLANE0_ENABLE |
1007 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1008 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1009 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1010 DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1011 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1012 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1013 (dsi->port == 0 ?
1014 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1015 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1016
1017 DSI_PORT_WRITE(CTRL,
1018 DSI_PORT_READ(CTRL) |
1019 DSI_CTRL_CAL_BYTE);
1020
1021 /* HS timeout in HS clock cycles: disabled. */
1022 DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1023 /* LP receive timeout in HS clocks. */
1024 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1025 /* Bus turnaround timeout */
1026 DSI_PORT_WRITE(TA_TO_CNT, 100000);
1027 /* Display reset sequence timeout */
1028 DSI_PORT_WRITE(PR_TO_CNT, 100000);
1029
1030 /* Set up DISP1 for transferring long command payloads through
1031 * the pixfifo.
1032 */
1033 DSI_PORT_WRITE(DISP1_CTRL,
1034 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1035 DSI_DISP1_PFORMAT) |
1036 DSI_DISP1_ENABLE);
1037
1038 /* Ungate the block. */
1039 if (dsi->port == 0)
1040 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1041 else
1042 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1043
1044 /* Bring AFE out of reset. */
1045 if (dsi->port == 0) {
1046 } else {
1047 DSI_PORT_WRITE(PHY_AFEC0,
1048 DSI_PORT_READ(PHY_AFEC0) &
1049 ~DSI1_PHY_AFEC0_RESET);
1050 }
1051
1052 vc4_dsi_ulps(dsi, false);
1053
1054 drm_bridge_pre_enable(dsi->bridge);
1055
1056 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1057 DSI_PORT_WRITE(DISP0_CTRL,
1058 VC4_SET_FIELD(dsi->divider,
1059 DSI_DISP0_PIX_CLK_DIV) |
1060 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1061 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1062 DSI_DISP0_LP_STOP_CTRL) |
1063 DSI_DISP0_ST_END |
1064 DSI_DISP0_ENABLE);
1065 } else {
1066 DSI_PORT_WRITE(DISP0_CTRL,
1067 DSI_DISP0_COMMAND_MODE |
1068 DSI_DISP0_ENABLE);
1069 }
1070
1071 drm_bridge_enable(dsi->bridge);
1072
1073 if (debug_dump_regs) {
1074 struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1075 dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1076 drm_print_regset32(&p, &dsi->regset);
1077 }
1078 }
1079
1080 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1081 const struct mipi_dsi_msg *msg)
1082 {
1083 struct vc4_dsi *dsi = host_to_dsi(host);
1084 struct mipi_dsi_packet packet;
1085 u32 pkth = 0, pktc = 0;
1086 int i, ret;
1087 bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1088 u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1089
1090 mipi_dsi_create_packet(&packet, msg);
1091
1092 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1093 pkth |= VC4_SET_FIELD(packet.header[1] |
1094 (packet.header[2] << 8),
1095 DSI_TXPKT1H_BC_PARAM);
1096 if (is_long) {
1097 /* Divide data across the various FIFOs we have available.
1098 * The command FIFO takes byte-oriented data, but is of
1099 * limited size. The pixel FIFO (never actually used for
1100 * pixel data in reality) is word oriented, and substantially
1101 * larger. So, we use the pixel FIFO for most of the data,
1102 * sending the residual bytes in the command FIFO at the start.
1103 *
1104 * With this arrangement, the command FIFO will never get full.
1105 */
1106 if (packet.payload_length <= 16) {
1107 cmd_fifo_len = packet.payload_length;
1108 pix_fifo_len = 0;
1109 } else {
1110 cmd_fifo_len = (packet.payload_length %
1111 DSI_PIX_FIFO_WIDTH);
1112 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1113 DSI_PIX_FIFO_WIDTH);
1114 }
1115
1116 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1117
1118 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1119 }
1120
1121 if (msg->rx_len) {
1122 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1123 DSI_TXPKT1C_CMD_CTRL);
1124 } else {
1125 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1126 DSI_TXPKT1C_CMD_CTRL);
1127 }
1128
1129 for (i = 0; i < cmd_fifo_len; i++)
1130 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1131 for (i = 0; i < pix_fifo_len; i++) {
1132 const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1133
1134 DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1135 pix[0] |
1136 pix[1] << 8 |
1137 pix[2] << 16 |
1138 pix[3] << 24);
1139 }
1140
1141 if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1142 pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1143 if (is_long)
1144 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1145
1146 /* Send one copy of the packet. Larger repeats are used for pixel
1147 * data in command mode.
1148 */
1149 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1150
1151 pktc |= DSI_TXPKT1C_CMD_EN;
1152 if (pix_fifo_len) {
1153 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1154 DSI_TXPKT1C_DISPLAY_NO);
1155 } else {
1156 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1157 DSI_TXPKT1C_DISPLAY_NO);
1158 }
1159
1160 /* Enable the appropriate interrupt for the transfer completion. */
1161 dsi->xfer_result = 0;
1162 reinit_completion(&dsi->xfer_completion);
1163 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1164 if (msg->rx_len) {
1165 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1166 DSI1_INT_PHY_DIR_RTF));
1167 } else {
1168 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1169 DSI1_INT_TXPKT1_DONE));
1170 }
1171
1172 /* Send the packet. */
1173 DSI_PORT_WRITE(TXPKT1H, pkth);
1174 DSI_PORT_WRITE(TXPKT1C, pktc);
1175
1176 if (!wait_for_completion_timeout(&dsi->xfer_completion,
1177 msecs_to_jiffies(1000))) {
1178 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1179 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1180 DSI_PORT_READ(INT_STAT));
1181 ret = -ETIMEDOUT;
1182 } else {
1183 ret = dsi->xfer_result;
1184 }
1185
1186 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1187
1188 if (ret)
1189 goto reset_fifo_and_return;
1190
1191 if (ret == 0 && msg->rx_len) {
1192 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1193 u8 *msg_rx = msg->rx_buf;
1194
1195 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1196 u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1197 DSI_RXPKT1H_BC_PARAM);
1198
1199 if (rxlen != msg->rx_len) {
1200 DRM_ERROR("DSI returned %db, expecting %db\n",
1201 rxlen, (int)msg->rx_len);
1202 ret = -ENXIO;
1203 goto reset_fifo_and_return;
1204 }
1205
1206 for (i = 0; i < msg->rx_len; i++)
1207 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1208 } else {
1209 /* FINISHME: Handle AWER */
1210
1211 msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1212 DSI_RXPKT1H_SHORT_0);
1213 if (msg->rx_len > 1) {
1214 msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1215 DSI_RXPKT1H_SHORT_1);
1216 }
1217 }
1218 }
1219
1220 return ret;
1221
1222 reset_fifo_and_return:
1223 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1224
1225 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1226 udelay(1);
1227 DSI_PORT_WRITE(CTRL,
1228 DSI_PORT_READ(CTRL) |
1229 DSI_PORT_BIT(CTRL_RESET_FIFOS));
1230
1231 DSI_PORT_WRITE(TXPKT1C, 0);
1232 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1233 return ret;
1234 }
1235
1236 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1237 struct mipi_dsi_device *device)
1238 {
1239 struct vc4_dsi *dsi = host_to_dsi(host);
1240
1241 dsi->lanes = device->lanes;
1242 dsi->channel = device->channel;
1243 dsi->mode_flags = device->mode_flags;
1244
1245 switch (device->format) {
1246 case MIPI_DSI_FMT_RGB888:
1247 dsi->format = DSI_PFORMAT_RGB888;
1248 dsi->divider = 24 / dsi->lanes;
1249 break;
1250 case MIPI_DSI_FMT_RGB666:
1251 dsi->format = DSI_PFORMAT_RGB666;
1252 dsi->divider = 24 / dsi->lanes;
1253 break;
1254 case MIPI_DSI_FMT_RGB666_PACKED:
1255 dsi->format = DSI_PFORMAT_RGB666_PACKED;
1256 dsi->divider = 18 / dsi->lanes;
1257 break;
1258 case MIPI_DSI_FMT_RGB565:
1259 dsi->format = DSI_PFORMAT_RGB565;
1260 dsi->divider = 16 / dsi->lanes;
1261 break;
1262 default:
1263 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1264 dsi->format);
1265 return 0;
1266 }
1267
1268 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1269 dev_err(&dsi->pdev->dev,
1270 "Only VIDEO mode panels supported currently.\n");
1271 return 0;
1272 }
1273
1274 return 0;
1275 }
1276
1277 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1278 struct mipi_dsi_device *device)
1279 {
1280 return 0;
1281 }
1282
1283 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1284 .attach = vc4_dsi_host_attach,
1285 .detach = vc4_dsi_host_detach,
1286 .transfer = vc4_dsi_host_transfer,
1287 };
1288
1289 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1290 .disable = vc4_dsi_encoder_disable,
1291 .enable = vc4_dsi_encoder_enable,
1292 .mode_fixup = vc4_dsi_encoder_mode_fixup,
1293 };
1294
1295 static const struct of_device_id vc4_dsi_dt_match[] = {
1296 { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1297 {}
1298 };
1299
1300 static void dsi_handle_error(struct vc4_dsi *dsi,
1301 irqreturn_t *ret, u32 stat, u32 bit,
1302 const char *type)
1303 {
1304 if (!(stat & bit))
1305 return;
1306
1307 DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1308 *ret = IRQ_HANDLED;
1309 }
1310
1311 /*
1312 * Initial handler for port 1 where we need the reg_dma workaround.
1313 * The register DMA writes sleep, so we can't do it in the top half.
1314 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1315 * parent interrupt contrller until our interrupt thread is done.
1316 */
1317 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1318 {
1319 struct vc4_dsi *dsi = data;
1320 u32 stat = DSI_PORT_READ(INT_STAT);
1321
1322 if (!stat)
1323 return IRQ_NONE;
1324
1325 return IRQ_WAKE_THREAD;
1326 }
1327
1328 /*
1329 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1330 * 1 where we need the reg_dma workaround.
1331 */
1332 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1333 {
1334 struct vc4_dsi *dsi = data;
1335 u32 stat = DSI_PORT_READ(INT_STAT);
1336 irqreturn_t ret = IRQ_NONE;
1337
1338 DSI_PORT_WRITE(INT_STAT, stat);
1339
1340 dsi_handle_error(dsi, &ret, stat,
1341 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1342 dsi_handle_error(dsi, &ret, stat,
1343 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1344 dsi_handle_error(dsi, &ret, stat,
1345 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1346 dsi_handle_error(dsi, &ret, stat,
1347 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1348 dsi_handle_error(dsi, &ret, stat,
1349 DSI1_INT_HSTX_TO, "HSTX timeout");
1350 dsi_handle_error(dsi, &ret, stat,
1351 DSI1_INT_LPRX_TO, "LPRX timeout");
1352 dsi_handle_error(dsi, &ret, stat,
1353 DSI1_INT_TA_TO, "turnaround timeout");
1354 dsi_handle_error(dsi, &ret, stat,
1355 DSI1_INT_PR_TO, "peripheral reset timeout");
1356
1357 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1358 complete(&dsi->xfer_completion);
1359 ret = IRQ_HANDLED;
1360 } else if (stat & DSI1_INT_HSTX_TO) {
1361 complete(&dsi->xfer_completion);
1362 dsi->xfer_result = -ETIMEDOUT;
1363 ret = IRQ_HANDLED;
1364 }
1365
1366 return ret;
1367 }
1368
1369 /**
1370 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1371 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1372 * @dsi: DSI encoder
1373 */
1374 static int
1375 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1376 {
1377 struct device *dev = &dsi->pdev->dev;
1378 const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1379 static const struct {
1380 const char *dsi0_name, *dsi1_name;
1381 int div;
1382 } phy_clocks[] = {
1383 { "dsi0_byte", "dsi1_byte", 8 },
1384 { "dsi0_ddr2", "dsi1_ddr2", 4 },
1385 { "dsi0_ddr", "dsi1_ddr", 2 },
1386 };
1387 int i;
1388
1389 dsi->clk_onecell = devm_kzalloc(dev,
1390 sizeof(*dsi->clk_onecell) +
1391 ARRAY_SIZE(phy_clocks) *
1392 sizeof(struct clk_hw *),
1393 GFP_KERNEL);
1394 if (!dsi->clk_onecell)
1395 return -ENOMEM;
1396 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1397
1398 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1399 struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1400 struct clk_init_data init;
1401 int ret;
1402
1403 /* We just use core fixed factor clock ops for the PHY
1404 * clocks. The clocks are actually gated by the
1405 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1406 * setting if we use the DDR/DDR2 clocks. However,
1407 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1408 * setting both our parent DSI PLL's rate and this
1409 * clock's rate, so it knows if DDR/DDR2 are going to
1410 * be used and could enable the gates itself.
1411 */
1412 fix->mult = 1;
1413 fix->div = phy_clocks[i].div;
1414 fix->hw.init = &init;
1415
1416 memset(&init, 0, sizeof(init));
1417 init.parent_names = &parent_name;
1418 init.num_parents = 1;
1419 if (dsi->port == 1)
1420 init.name = phy_clocks[i].dsi1_name;
1421 else
1422 init.name = phy_clocks[i].dsi0_name;
1423 init.ops = &clk_fixed_factor_ops;
1424
1425 ret = devm_clk_hw_register(dev, &fix->hw);
1426 if (ret)
1427 return ret;
1428
1429 dsi->clk_onecell->hws[i] = &fix->hw;
1430 }
1431
1432 return of_clk_add_hw_provider(dev->of_node,
1433 of_clk_hw_onecell_get,
1434 dsi->clk_onecell);
1435 }
1436
1437 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1438 {
1439 struct platform_device *pdev = to_platform_device(dev);
1440 struct drm_device *drm = dev_get_drvdata(master);
1441 struct vc4_dev *vc4 = to_vc4_dev(drm);
1442 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1443 struct vc4_dsi_encoder *vc4_dsi_encoder;
1444 struct drm_panel *panel;
1445 const struct of_device_id *match;
1446 dma_cap_mask_t dma_mask;
1447 int ret;
1448
1449 match = of_match_device(vc4_dsi_dt_match, dev);
1450 if (!match)
1451 return -ENODEV;
1452
1453 dsi->port = (uintptr_t)match->data;
1454
1455 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1456 GFP_KERNEL);
1457 if (!vc4_dsi_encoder)
1458 return -ENOMEM;
1459 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1460 vc4_dsi_encoder->dsi = dsi;
1461 dsi->encoder = &vc4_dsi_encoder->base.base;
1462
1463 dsi->regs = vc4_ioremap_regs(pdev, 0);
1464 if (IS_ERR(dsi->regs))
1465 return PTR_ERR(dsi->regs);
1466
1467 dsi->regset.base = dsi->regs;
1468 if (dsi->port == 0) {
1469 dsi->regset.regs = dsi0_regs;
1470 dsi->regset.nregs = ARRAY_SIZE(dsi0_regs);
1471 } else {
1472 dsi->regset.regs = dsi1_regs;
1473 dsi->regset.nregs = ARRAY_SIZE(dsi1_regs);
1474 }
1475
1476 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1477 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1478 DSI_PORT_READ(ID), DSI_ID_VALUE);
1479 return -ENODEV;
1480 }
1481
1482 /* DSI1 has a broken AXI slave that doesn't respond to writes
1483 * from the ARM. It does handle writes from the DMA engine,
1484 * so set up a channel for talking to it.
1485 */
1486 if (dsi->port == 1) {
1487 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1488 &dsi->reg_dma_paddr,
1489 GFP_KERNEL);
1490 if (!dsi->reg_dma_mem) {
1491 DRM_ERROR("Failed to get DMA memory\n");
1492 return -ENOMEM;
1493 }
1494
1495 dma_cap_zero(dma_mask);
1496 dma_cap_set(DMA_MEMCPY, dma_mask);
1497 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1498 if (IS_ERR(dsi->reg_dma_chan)) {
1499 ret = PTR_ERR(dsi->reg_dma_chan);
1500 if (ret != -EPROBE_DEFER)
1501 DRM_ERROR("Failed to get DMA channel: %d\n",
1502 ret);
1503 return ret;
1504 }
1505
1506 /* Get the physical address of the device's registers. The
1507 * struct resource for the regs gives us the bus address
1508 * instead.
1509 */
1510 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1511 0, NULL, NULL));
1512 }
1513
1514 init_completion(&dsi->xfer_completion);
1515 /* At startup enable error-reporting interrupts and nothing else. */
1516 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1517 /* Clear any existing interrupt state. */
1518 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1519
1520 if (dsi->reg_dma_mem)
1521 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1522 vc4_dsi_irq_defer_to_thread_handler,
1523 vc4_dsi_irq_handler,
1524 IRQF_ONESHOT,
1525 "vc4 dsi", dsi);
1526 else
1527 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1528 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1529 if (ret) {
1530 if (ret != -EPROBE_DEFER)
1531 dev_err(dev, "Failed to get interrupt: %d\n", ret);
1532 return ret;
1533 }
1534
1535 dsi->escape_clock = devm_clk_get(dev, "escape");
1536 if (IS_ERR(dsi->escape_clock)) {
1537 ret = PTR_ERR(dsi->escape_clock);
1538 if (ret != -EPROBE_DEFER)
1539 dev_err(dev, "Failed to get escape clock: %d\n", ret);
1540 return ret;
1541 }
1542
1543 dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1544 if (IS_ERR(dsi->pll_phy_clock)) {
1545 ret = PTR_ERR(dsi->pll_phy_clock);
1546 if (ret != -EPROBE_DEFER)
1547 dev_err(dev, "Failed to get phy clock: %d\n", ret);
1548 return ret;
1549 }
1550
1551 dsi->pixel_clock = devm_clk_get(dev, "pixel");
1552 if (IS_ERR(dsi->pixel_clock)) {
1553 ret = PTR_ERR(dsi->pixel_clock);
1554 if (ret != -EPROBE_DEFER)
1555 dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1556 return ret;
1557 }
1558
1559 ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1560 &panel, &dsi->bridge);
1561 if (ret) {
1562 /* If the bridge or panel pointed by dev->of_node is not
1563 * enabled, just return 0 here so that we don't prevent the DRM
1564 * dev from being registered. Of course that means the DSI
1565 * encoder won't be exposed, but that's not a problem since
1566 * nothing is connected to it.
1567 */
1568 if (ret == -ENODEV)
1569 return 0;
1570
1571 return ret;
1572 }
1573
1574 if (panel) {
1575 dsi->bridge = devm_drm_panel_bridge_add(dev, panel,
1576 DRM_MODE_CONNECTOR_DSI);
1577 if (IS_ERR(dsi->bridge))
1578 return PTR_ERR(dsi->bridge);
1579 }
1580
1581 /* The esc clock rate is supposed to always be 100Mhz. */
1582 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1583 if (ret) {
1584 dev_err(dev, "Failed to set esc clock: %d\n", ret);
1585 return ret;
1586 }
1587
1588 ret = vc4_dsi_init_phy_clocks(dsi);
1589 if (ret)
1590 return ret;
1591
1592 if (dsi->port == 1)
1593 vc4->dsi1 = dsi;
1594
1595 drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1596 DRM_MODE_ENCODER_DSI, NULL);
1597 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1598
1599 ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
1600 if (ret) {
1601 dev_err(dev, "bridge attach failed: %d\n", ret);
1602 return ret;
1603 }
1604 /* Disable the atomic helper calls into the bridge. We
1605 * manually call the bridge pre_enable / enable / etc. calls
1606 * from our driver, since we need to sequence them within the
1607 * encoder's enable/disable paths.
1608 */
1609 dsi->encoder->bridge = NULL;
1610
1611 if (dsi->port == 0)
1612 vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset);
1613 else
1614 vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset);
1615
1616 pm_runtime_enable(dev);
1617
1618 return 0;
1619 }
1620
1621 static void vc4_dsi_unbind(struct device *dev, struct device *master,
1622 void *data)
1623 {
1624 struct drm_device *drm = dev_get_drvdata(master);
1625 struct vc4_dev *vc4 = to_vc4_dev(drm);
1626 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1627
1628 if (dsi->bridge)
1629 pm_runtime_disable(dev);
1630
1631 vc4_dsi_encoder_destroy(dsi->encoder);
1632
1633 if (dsi->port == 1)
1634 vc4->dsi1 = NULL;
1635 }
1636
1637 static const struct component_ops vc4_dsi_ops = {
1638 .bind = vc4_dsi_bind,
1639 .unbind = vc4_dsi_unbind,
1640 };
1641
1642 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1643 {
1644 struct device *dev = &pdev->dev;
1645 struct vc4_dsi *dsi;
1646 int ret;
1647
1648 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1649 if (!dsi)
1650 return -ENOMEM;
1651 dev_set_drvdata(dev, dsi);
1652
1653 dsi->pdev = pdev;
1654
1655 /* Note, the initialization sequence for DSI and panels is
1656 * tricky. The component bind above won't get past its
1657 * -EPROBE_DEFER until the panel/bridge probes. The
1658 * panel/bridge will return -EPROBE_DEFER until it has a
1659 * mipi_dsi_host to register its device to. So, we register
1660 * the host during pdev probe time, so vc4 as a whole can then
1661 * -EPROBE_DEFER its component bind process until the panel
1662 * successfully attaches.
1663 */
1664 dsi->dsi_host.ops = &vc4_dsi_host_ops;
1665 dsi->dsi_host.dev = dev;
1666 mipi_dsi_host_register(&dsi->dsi_host);
1667
1668 ret = component_add(&pdev->dev, &vc4_dsi_ops);
1669 if (ret) {
1670 mipi_dsi_host_unregister(&dsi->dsi_host);
1671 return ret;
1672 }
1673
1674 return 0;
1675 }
1676
1677 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1678 {
1679 struct device *dev = &pdev->dev;
1680 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1681
1682 component_del(&pdev->dev, &vc4_dsi_ops);
1683 mipi_dsi_host_unregister(&dsi->dsi_host);
1684
1685 return 0;
1686 }
1687
1688 struct platform_driver vc4_dsi_driver = {
1689 .probe = vc4_dsi_dev_probe,
1690 .remove = vc4_dsi_dev_remove,
1691 .driver = {
1692 .name = "vc4_dsi",
1693 .of_match_table = vc4_dsi_dt_match,
1694 },
1695 };