]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/vmwgfx/vmwgfx_fence.c
Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[thirdparty/linux.git] / drivers / gpu / drm / vmwgfx / vmwgfx_fence.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3 *
4 * Copyright 2011-2014 VMware, Inc., Palo Alto, CA., USA
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include <linux/sched/signal.h>
29
30 #include "vmwgfx_drv.h"
31
32 #define VMW_FENCE_WRAP (1 << 31)
33
34 struct vmw_fence_manager {
35 int num_fence_objects;
36 struct vmw_private *dev_priv;
37 spinlock_t lock;
38 struct list_head fence_list;
39 struct work_struct work;
40 u32 user_fence_size;
41 u32 fence_size;
42 u32 event_fence_action_size;
43 bool fifo_down;
44 struct list_head cleanup_list;
45 uint32_t pending_actions[VMW_ACTION_MAX];
46 struct mutex goal_irq_mutex;
47 bool goal_irq_on; /* Protected by @goal_irq_mutex */
48 bool seqno_valid; /* Protected by @lock, and may not be set to true
49 without the @goal_irq_mutex held. */
50 u64 ctx;
51 };
52
53 struct vmw_user_fence {
54 struct ttm_base_object base;
55 struct vmw_fence_obj fence;
56 };
57
58 /**
59 * struct vmw_event_fence_action - fence action that delivers a drm event.
60 *
61 * @e: A struct drm_pending_event that controls the event delivery.
62 * @action: A struct vmw_fence_action to hook up to a fence.
63 * @fence: A referenced pointer to the fence to keep it alive while @action
64 * hangs on it.
65 * @dev: Pointer to a struct drm_device so we can access the event stuff.
66 * @kref: Both @e and @action has destructors, so we need to refcount.
67 * @size: Size accounted for this object.
68 * @tv_sec: If non-null, the variable pointed to will be assigned
69 * current time tv_sec val when the fence signals.
70 * @tv_usec: Must be set if @tv_sec is set, and the variable pointed to will
71 * be assigned the current time tv_usec val when the fence signals.
72 */
73 struct vmw_event_fence_action {
74 struct vmw_fence_action action;
75
76 struct drm_pending_event *event;
77 struct vmw_fence_obj *fence;
78 struct drm_device *dev;
79
80 uint32_t *tv_sec;
81 uint32_t *tv_usec;
82 };
83
84 static struct vmw_fence_manager *
85 fman_from_fence(struct vmw_fence_obj *fence)
86 {
87 return container_of(fence->base.lock, struct vmw_fence_manager, lock);
88 }
89
90 /**
91 * Note on fencing subsystem usage of irqs:
92 * Typically the vmw_fences_update function is called
93 *
94 * a) When a new fence seqno has been submitted by the fifo code.
95 * b) On-demand when we have waiters. Sleeping waiters will switch on the
96 * ANY_FENCE irq and call vmw_fences_update function each time an ANY_FENCE
97 * irq is received. When the last fence waiter is gone, that IRQ is masked
98 * away.
99 *
100 * In situations where there are no waiters and we don't submit any new fences,
101 * fence objects may not be signaled. This is perfectly OK, since there are
102 * no consumers of the signaled data, but that is NOT ok when there are fence
103 * actions attached to a fence. The fencing subsystem then makes use of the
104 * FENCE_GOAL irq and sets the fence goal seqno to that of the next fence
105 * which has an action attached, and each time vmw_fences_update is called,
106 * the subsystem makes sure the fence goal seqno is updated.
107 *
108 * The fence goal seqno irq is on as long as there are unsignaled fence
109 * objects with actions attached to them.
110 */
111
112 static void vmw_fence_obj_destroy(struct dma_fence *f)
113 {
114 struct vmw_fence_obj *fence =
115 container_of(f, struct vmw_fence_obj, base);
116
117 struct vmw_fence_manager *fman = fman_from_fence(fence);
118
119 spin_lock(&fman->lock);
120 list_del_init(&fence->head);
121 --fman->num_fence_objects;
122 spin_unlock(&fman->lock);
123 fence->destroy(fence);
124 }
125
126 static const char *vmw_fence_get_driver_name(struct dma_fence *f)
127 {
128 return "vmwgfx";
129 }
130
131 static const char *vmw_fence_get_timeline_name(struct dma_fence *f)
132 {
133 return "svga";
134 }
135
136 static bool vmw_fence_enable_signaling(struct dma_fence *f)
137 {
138 struct vmw_fence_obj *fence =
139 container_of(f, struct vmw_fence_obj, base);
140
141 struct vmw_fence_manager *fman = fman_from_fence(fence);
142 struct vmw_private *dev_priv = fman->dev_priv;
143
144 u32 *fifo_mem = dev_priv->mmio_virt;
145 u32 seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE);
146 if (seqno - fence->base.seqno < VMW_FENCE_WRAP)
147 return false;
148
149 vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC);
150
151 return true;
152 }
153
154 struct vmwgfx_wait_cb {
155 struct dma_fence_cb base;
156 struct task_struct *task;
157 };
158
159 static void
160 vmwgfx_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
161 {
162 struct vmwgfx_wait_cb *wait =
163 container_of(cb, struct vmwgfx_wait_cb, base);
164
165 wake_up_process(wait->task);
166 }
167
168 static void __vmw_fences_update(struct vmw_fence_manager *fman);
169
170 static long vmw_fence_wait(struct dma_fence *f, bool intr, signed long timeout)
171 {
172 struct vmw_fence_obj *fence =
173 container_of(f, struct vmw_fence_obj, base);
174
175 struct vmw_fence_manager *fman = fman_from_fence(fence);
176 struct vmw_private *dev_priv = fman->dev_priv;
177 struct vmwgfx_wait_cb cb;
178 long ret = timeout;
179
180 if (likely(vmw_fence_obj_signaled(fence)))
181 return timeout;
182
183 vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC);
184 vmw_seqno_waiter_add(dev_priv);
185
186 spin_lock(f->lock);
187
188 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &f->flags))
189 goto out;
190
191 if (intr && signal_pending(current)) {
192 ret = -ERESTARTSYS;
193 goto out;
194 }
195
196 cb.base.func = vmwgfx_wait_cb;
197 cb.task = current;
198 list_add(&cb.base.node, &f->cb_list);
199
200 for (;;) {
201 __vmw_fences_update(fman);
202
203 /*
204 * We can use the barrier free __set_current_state() since
205 * DMA_FENCE_FLAG_SIGNALED_BIT + wakeup is protected by the
206 * fence spinlock.
207 */
208 if (intr)
209 __set_current_state(TASK_INTERRUPTIBLE);
210 else
211 __set_current_state(TASK_UNINTERRUPTIBLE);
212
213 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &f->flags)) {
214 if (ret == 0 && timeout > 0)
215 ret = 1;
216 break;
217 }
218
219 if (intr && signal_pending(current)) {
220 ret = -ERESTARTSYS;
221 break;
222 }
223
224 if (ret == 0)
225 break;
226
227 spin_unlock(f->lock);
228
229 ret = schedule_timeout(ret);
230
231 spin_lock(f->lock);
232 }
233 __set_current_state(TASK_RUNNING);
234 if (!list_empty(&cb.base.node))
235 list_del(&cb.base.node);
236
237 out:
238 spin_unlock(f->lock);
239
240 vmw_seqno_waiter_remove(dev_priv);
241
242 return ret;
243 }
244
245 static const struct dma_fence_ops vmw_fence_ops = {
246 .get_driver_name = vmw_fence_get_driver_name,
247 .get_timeline_name = vmw_fence_get_timeline_name,
248 .enable_signaling = vmw_fence_enable_signaling,
249 .wait = vmw_fence_wait,
250 .release = vmw_fence_obj_destroy,
251 };
252
253
254 /**
255 * Execute signal actions on fences recently signaled.
256 * This is done from a workqueue so we don't have to execute
257 * signal actions from atomic context.
258 */
259
260 static void vmw_fence_work_func(struct work_struct *work)
261 {
262 struct vmw_fence_manager *fman =
263 container_of(work, struct vmw_fence_manager, work);
264 struct list_head list;
265 struct vmw_fence_action *action, *next_action;
266 bool seqno_valid;
267
268 do {
269 INIT_LIST_HEAD(&list);
270 mutex_lock(&fman->goal_irq_mutex);
271
272 spin_lock(&fman->lock);
273 list_splice_init(&fman->cleanup_list, &list);
274 seqno_valid = fman->seqno_valid;
275 spin_unlock(&fman->lock);
276
277 if (!seqno_valid && fman->goal_irq_on) {
278 fman->goal_irq_on = false;
279 vmw_goal_waiter_remove(fman->dev_priv);
280 }
281 mutex_unlock(&fman->goal_irq_mutex);
282
283 if (list_empty(&list))
284 return;
285
286 /*
287 * At this point, only we should be able to manipulate the
288 * list heads of the actions we have on the private list.
289 * hence fman::lock not held.
290 */
291
292 list_for_each_entry_safe(action, next_action, &list, head) {
293 list_del_init(&action->head);
294 if (action->cleanup)
295 action->cleanup(action);
296 }
297 } while (1);
298 }
299
300 struct vmw_fence_manager *vmw_fence_manager_init(struct vmw_private *dev_priv)
301 {
302 struct vmw_fence_manager *fman = kzalloc(sizeof(*fman), GFP_KERNEL);
303
304 if (unlikely(!fman))
305 return NULL;
306
307 fman->dev_priv = dev_priv;
308 spin_lock_init(&fman->lock);
309 INIT_LIST_HEAD(&fman->fence_list);
310 INIT_LIST_HEAD(&fman->cleanup_list);
311 INIT_WORK(&fman->work, &vmw_fence_work_func);
312 fman->fifo_down = true;
313 fman->user_fence_size = ttm_round_pot(sizeof(struct vmw_user_fence)) +
314 TTM_OBJ_EXTRA_SIZE;
315 fman->fence_size = ttm_round_pot(sizeof(struct vmw_fence_obj));
316 fman->event_fence_action_size =
317 ttm_round_pot(sizeof(struct vmw_event_fence_action));
318 mutex_init(&fman->goal_irq_mutex);
319 fman->ctx = dma_fence_context_alloc(1);
320
321 return fman;
322 }
323
324 void vmw_fence_manager_takedown(struct vmw_fence_manager *fman)
325 {
326 bool lists_empty;
327
328 (void) cancel_work_sync(&fman->work);
329
330 spin_lock(&fman->lock);
331 lists_empty = list_empty(&fman->fence_list) &&
332 list_empty(&fman->cleanup_list);
333 spin_unlock(&fman->lock);
334
335 BUG_ON(!lists_empty);
336 kfree(fman);
337 }
338
339 static int vmw_fence_obj_init(struct vmw_fence_manager *fman,
340 struct vmw_fence_obj *fence, u32 seqno,
341 void (*destroy) (struct vmw_fence_obj *fence))
342 {
343 int ret = 0;
344
345 dma_fence_init(&fence->base, &vmw_fence_ops, &fman->lock,
346 fman->ctx, seqno);
347 INIT_LIST_HEAD(&fence->seq_passed_actions);
348 fence->destroy = destroy;
349
350 spin_lock(&fman->lock);
351 if (unlikely(fman->fifo_down)) {
352 ret = -EBUSY;
353 goto out_unlock;
354 }
355 list_add_tail(&fence->head, &fman->fence_list);
356 ++fman->num_fence_objects;
357
358 out_unlock:
359 spin_unlock(&fman->lock);
360 return ret;
361
362 }
363
364 static void vmw_fences_perform_actions(struct vmw_fence_manager *fman,
365 struct list_head *list)
366 {
367 struct vmw_fence_action *action, *next_action;
368
369 list_for_each_entry_safe(action, next_action, list, head) {
370 list_del_init(&action->head);
371 fman->pending_actions[action->type]--;
372 if (action->seq_passed != NULL)
373 action->seq_passed(action);
374
375 /*
376 * Add the cleanup action to the cleanup list so that
377 * it will be performed by a worker task.
378 */
379
380 list_add_tail(&action->head, &fman->cleanup_list);
381 }
382 }
383
384 /**
385 * vmw_fence_goal_new_locked - Figure out a new device fence goal
386 * seqno if needed.
387 *
388 * @fman: Pointer to a fence manager.
389 * @passed_seqno: The seqno the device currently signals as passed.
390 *
391 * This function should be called with the fence manager lock held.
392 * It is typically called when we have a new passed_seqno, and
393 * we might need to update the fence goal. It checks to see whether
394 * the current fence goal has already passed, and, in that case,
395 * scans through all unsignaled fences to get the next fence object with an
396 * action attached, and sets the seqno of that fence as a new fence goal.
397 *
398 * returns true if the device goal seqno was updated. False otherwise.
399 */
400 static bool vmw_fence_goal_new_locked(struct vmw_fence_manager *fman,
401 u32 passed_seqno)
402 {
403 u32 goal_seqno;
404 u32 *fifo_mem;
405 struct vmw_fence_obj *fence;
406
407 if (likely(!fman->seqno_valid))
408 return false;
409
410 fifo_mem = fman->dev_priv->mmio_virt;
411 goal_seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE_GOAL);
412 if (likely(passed_seqno - goal_seqno >= VMW_FENCE_WRAP))
413 return false;
414
415 fman->seqno_valid = false;
416 list_for_each_entry(fence, &fman->fence_list, head) {
417 if (!list_empty(&fence->seq_passed_actions)) {
418 fman->seqno_valid = true;
419 vmw_mmio_write(fence->base.seqno,
420 fifo_mem + SVGA_FIFO_FENCE_GOAL);
421 break;
422 }
423 }
424
425 return true;
426 }
427
428
429 /**
430 * vmw_fence_goal_check_locked - Replace the device fence goal seqno if
431 * needed.
432 *
433 * @fence: Pointer to a struct vmw_fence_obj the seqno of which should be
434 * considered as a device fence goal.
435 *
436 * This function should be called with the fence manager lock held.
437 * It is typically called when an action has been attached to a fence to
438 * check whether the seqno of that fence should be used for a fence
439 * goal interrupt. This is typically needed if the current fence goal is
440 * invalid, or has a higher seqno than that of the current fence object.
441 *
442 * returns true if the device goal seqno was updated. False otherwise.
443 */
444 static bool vmw_fence_goal_check_locked(struct vmw_fence_obj *fence)
445 {
446 struct vmw_fence_manager *fman = fman_from_fence(fence);
447 u32 goal_seqno;
448 u32 *fifo_mem;
449
450 if (dma_fence_is_signaled_locked(&fence->base))
451 return false;
452
453 fifo_mem = fman->dev_priv->mmio_virt;
454 goal_seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE_GOAL);
455 if (likely(fman->seqno_valid &&
456 goal_seqno - fence->base.seqno < VMW_FENCE_WRAP))
457 return false;
458
459 vmw_mmio_write(fence->base.seqno, fifo_mem + SVGA_FIFO_FENCE_GOAL);
460 fman->seqno_valid = true;
461
462 return true;
463 }
464
465 static void __vmw_fences_update(struct vmw_fence_manager *fman)
466 {
467 struct vmw_fence_obj *fence, *next_fence;
468 struct list_head action_list;
469 bool needs_rerun;
470 uint32_t seqno, new_seqno;
471 u32 *fifo_mem = fman->dev_priv->mmio_virt;
472
473 seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE);
474 rerun:
475 list_for_each_entry_safe(fence, next_fence, &fman->fence_list, head) {
476 if (seqno - fence->base.seqno < VMW_FENCE_WRAP) {
477 list_del_init(&fence->head);
478 dma_fence_signal_locked(&fence->base);
479 INIT_LIST_HEAD(&action_list);
480 list_splice_init(&fence->seq_passed_actions,
481 &action_list);
482 vmw_fences_perform_actions(fman, &action_list);
483 } else
484 break;
485 }
486
487 /*
488 * Rerun if the fence goal seqno was updated, and the
489 * hardware might have raced with that update, so that
490 * we missed a fence_goal irq.
491 */
492
493 needs_rerun = vmw_fence_goal_new_locked(fman, seqno);
494 if (unlikely(needs_rerun)) {
495 new_seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE);
496 if (new_seqno != seqno) {
497 seqno = new_seqno;
498 goto rerun;
499 }
500 }
501
502 if (!list_empty(&fman->cleanup_list))
503 (void) schedule_work(&fman->work);
504 }
505
506 void vmw_fences_update(struct vmw_fence_manager *fman)
507 {
508 spin_lock(&fman->lock);
509 __vmw_fences_update(fman);
510 spin_unlock(&fman->lock);
511 }
512
513 bool vmw_fence_obj_signaled(struct vmw_fence_obj *fence)
514 {
515 struct vmw_fence_manager *fman = fman_from_fence(fence);
516
517 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags))
518 return true;
519
520 vmw_fences_update(fman);
521
522 return dma_fence_is_signaled(&fence->base);
523 }
524
525 int vmw_fence_obj_wait(struct vmw_fence_obj *fence, bool lazy,
526 bool interruptible, unsigned long timeout)
527 {
528 long ret = dma_fence_wait_timeout(&fence->base, interruptible, timeout);
529
530 if (likely(ret > 0))
531 return 0;
532 else if (ret == 0)
533 return -EBUSY;
534 else
535 return ret;
536 }
537
538 void vmw_fence_obj_flush(struct vmw_fence_obj *fence)
539 {
540 struct vmw_private *dev_priv = fman_from_fence(fence)->dev_priv;
541
542 vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC);
543 }
544
545 static void vmw_fence_destroy(struct vmw_fence_obj *fence)
546 {
547 dma_fence_free(&fence->base);
548 }
549
550 int vmw_fence_create(struct vmw_fence_manager *fman,
551 uint32_t seqno,
552 struct vmw_fence_obj **p_fence)
553 {
554 struct vmw_fence_obj *fence;
555 int ret;
556
557 fence = kzalloc(sizeof(*fence), GFP_KERNEL);
558 if (unlikely(!fence))
559 return -ENOMEM;
560
561 ret = vmw_fence_obj_init(fman, fence, seqno,
562 vmw_fence_destroy);
563 if (unlikely(ret != 0))
564 goto out_err_init;
565
566 *p_fence = fence;
567 return 0;
568
569 out_err_init:
570 kfree(fence);
571 return ret;
572 }
573
574
575 static void vmw_user_fence_destroy(struct vmw_fence_obj *fence)
576 {
577 struct vmw_user_fence *ufence =
578 container_of(fence, struct vmw_user_fence, fence);
579 struct vmw_fence_manager *fman = fman_from_fence(fence);
580
581 ttm_base_object_kfree(ufence, base);
582 /*
583 * Free kernel space accounting.
584 */
585 ttm_mem_global_free(vmw_mem_glob(fman->dev_priv),
586 fman->user_fence_size);
587 }
588
589 static void vmw_user_fence_base_release(struct ttm_base_object **p_base)
590 {
591 struct ttm_base_object *base = *p_base;
592 struct vmw_user_fence *ufence =
593 container_of(base, struct vmw_user_fence, base);
594 struct vmw_fence_obj *fence = &ufence->fence;
595
596 *p_base = NULL;
597 vmw_fence_obj_unreference(&fence);
598 }
599
600 int vmw_user_fence_create(struct drm_file *file_priv,
601 struct vmw_fence_manager *fman,
602 uint32_t seqno,
603 struct vmw_fence_obj **p_fence,
604 uint32_t *p_handle)
605 {
606 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
607 struct vmw_user_fence *ufence;
608 struct vmw_fence_obj *tmp;
609 struct ttm_mem_global *mem_glob = vmw_mem_glob(fman->dev_priv);
610 struct ttm_operation_ctx ctx = {
611 .interruptible = false,
612 .no_wait_gpu = false
613 };
614 int ret;
615
616 /*
617 * Kernel memory space accounting, since this object may
618 * be created by a user-space request.
619 */
620
621 ret = ttm_mem_global_alloc(mem_glob, fman->user_fence_size,
622 &ctx);
623 if (unlikely(ret != 0))
624 return ret;
625
626 ufence = kzalloc(sizeof(*ufence), GFP_KERNEL);
627 if (unlikely(!ufence)) {
628 ret = -ENOMEM;
629 goto out_no_object;
630 }
631
632 ret = vmw_fence_obj_init(fman, &ufence->fence, seqno,
633 vmw_user_fence_destroy);
634 if (unlikely(ret != 0)) {
635 kfree(ufence);
636 goto out_no_object;
637 }
638
639 /*
640 * The base object holds a reference which is freed in
641 * vmw_user_fence_base_release.
642 */
643 tmp = vmw_fence_obj_reference(&ufence->fence);
644 ret = ttm_base_object_init(tfile, &ufence->base, false,
645 VMW_RES_FENCE,
646 &vmw_user_fence_base_release, NULL);
647
648
649 if (unlikely(ret != 0)) {
650 /*
651 * Free the base object's reference
652 */
653 vmw_fence_obj_unreference(&tmp);
654 goto out_err;
655 }
656
657 *p_fence = &ufence->fence;
658 *p_handle = ufence->base.handle;
659
660 return 0;
661 out_err:
662 tmp = &ufence->fence;
663 vmw_fence_obj_unreference(&tmp);
664 out_no_object:
665 ttm_mem_global_free(mem_glob, fman->user_fence_size);
666 return ret;
667 }
668
669
670 /**
671 * vmw_wait_dma_fence - Wait for a dma fence
672 *
673 * @fman: pointer to a fence manager
674 * @fence: DMA fence to wait on
675 *
676 * This function handles the case when the fence is actually a fence
677 * array. If that's the case, it'll wait on each of the child fence
678 */
679 int vmw_wait_dma_fence(struct vmw_fence_manager *fman,
680 struct dma_fence *fence)
681 {
682 struct dma_fence_array *fence_array;
683 int ret = 0;
684 int i;
685
686
687 if (dma_fence_is_signaled(fence))
688 return 0;
689
690 if (!dma_fence_is_array(fence))
691 return dma_fence_wait(fence, true);
692
693 /* From i915: Note that if the fence-array was created in
694 * signal-on-any mode, we should *not* decompose it into its individual
695 * fences. However, we don't currently store which mode the fence-array
696 * is operating in. Fortunately, the only user of signal-on-any is
697 * private to amdgpu and we should not see any incoming fence-array
698 * from sync-file being in signal-on-any mode.
699 */
700
701 fence_array = to_dma_fence_array(fence);
702 for (i = 0; i < fence_array->num_fences; i++) {
703 struct dma_fence *child = fence_array->fences[i];
704
705 ret = dma_fence_wait(child, true);
706
707 if (ret < 0)
708 return ret;
709 }
710
711 return 0;
712 }
713
714
715 /**
716 * vmw_fence_fifo_down - signal all unsignaled fence objects.
717 */
718
719 void vmw_fence_fifo_down(struct vmw_fence_manager *fman)
720 {
721 struct list_head action_list;
722 int ret;
723
724 /*
725 * The list may be altered while we traverse it, so always
726 * restart when we've released the fman->lock.
727 */
728
729 spin_lock(&fman->lock);
730 fman->fifo_down = true;
731 while (!list_empty(&fman->fence_list)) {
732 struct vmw_fence_obj *fence =
733 list_entry(fman->fence_list.prev, struct vmw_fence_obj,
734 head);
735 dma_fence_get(&fence->base);
736 spin_unlock(&fman->lock);
737
738 ret = vmw_fence_obj_wait(fence, false, false,
739 VMW_FENCE_WAIT_TIMEOUT);
740
741 if (unlikely(ret != 0)) {
742 list_del_init(&fence->head);
743 dma_fence_signal(&fence->base);
744 INIT_LIST_HEAD(&action_list);
745 list_splice_init(&fence->seq_passed_actions,
746 &action_list);
747 vmw_fences_perform_actions(fman, &action_list);
748 }
749
750 BUG_ON(!list_empty(&fence->head));
751 dma_fence_put(&fence->base);
752 spin_lock(&fman->lock);
753 }
754 spin_unlock(&fman->lock);
755 }
756
757 void vmw_fence_fifo_up(struct vmw_fence_manager *fman)
758 {
759 spin_lock(&fman->lock);
760 fman->fifo_down = false;
761 spin_unlock(&fman->lock);
762 }
763
764
765 /**
766 * vmw_fence_obj_lookup - Look up a user-space fence object
767 *
768 * @tfile: A struct ttm_object_file identifying the caller.
769 * @handle: A handle identifying the fence object.
770 * @return: A struct vmw_user_fence base ttm object on success or
771 * an error pointer on failure.
772 *
773 * The fence object is looked up and type-checked. The caller needs
774 * to have opened the fence object first, but since that happens on
775 * creation and fence objects aren't shareable, that's not an
776 * issue currently.
777 */
778 static struct ttm_base_object *
779 vmw_fence_obj_lookup(struct ttm_object_file *tfile, u32 handle)
780 {
781 struct ttm_base_object *base = ttm_base_object_lookup(tfile, handle);
782
783 if (!base) {
784 pr_err("Invalid fence object handle 0x%08lx.\n",
785 (unsigned long)handle);
786 return ERR_PTR(-EINVAL);
787 }
788
789 if (base->refcount_release != vmw_user_fence_base_release) {
790 pr_err("Invalid fence object handle 0x%08lx.\n",
791 (unsigned long)handle);
792 ttm_base_object_unref(&base);
793 return ERR_PTR(-EINVAL);
794 }
795
796 return base;
797 }
798
799
800 int vmw_fence_obj_wait_ioctl(struct drm_device *dev, void *data,
801 struct drm_file *file_priv)
802 {
803 struct drm_vmw_fence_wait_arg *arg =
804 (struct drm_vmw_fence_wait_arg *)data;
805 unsigned long timeout;
806 struct ttm_base_object *base;
807 struct vmw_fence_obj *fence;
808 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
809 int ret;
810 uint64_t wait_timeout = ((uint64_t)arg->timeout_us * HZ);
811
812 /*
813 * 64-bit division not present on 32-bit systems, so do an
814 * approximation. (Divide by 1000000).
815 */
816
817 wait_timeout = (wait_timeout >> 20) + (wait_timeout >> 24) -
818 (wait_timeout >> 26);
819
820 if (!arg->cookie_valid) {
821 arg->cookie_valid = 1;
822 arg->kernel_cookie = jiffies + wait_timeout;
823 }
824
825 base = vmw_fence_obj_lookup(tfile, arg->handle);
826 if (IS_ERR(base))
827 return PTR_ERR(base);
828
829 fence = &(container_of(base, struct vmw_user_fence, base)->fence);
830
831 timeout = jiffies;
832 if (time_after_eq(timeout, (unsigned long)arg->kernel_cookie)) {
833 ret = ((vmw_fence_obj_signaled(fence)) ?
834 0 : -EBUSY);
835 goto out;
836 }
837
838 timeout = (unsigned long)arg->kernel_cookie - timeout;
839
840 ret = vmw_fence_obj_wait(fence, arg->lazy, true, timeout);
841
842 out:
843 ttm_base_object_unref(&base);
844
845 /*
846 * Optionally unref the fence object.
847 */
848
849 if (ret == 0 && (arg->wait_options & DRM_VMW_WAIT_OPTION_UNREF))
850 return ttm_ref_object_base_unref(tfile, arg->handle,
851 TTM_REF_USAGE);
852 return ret;
853 }
854
855 int vmw_fence_obj_signaled_ioctl(struct drm_device *dev, void *data,
856 struct drm_file *file_priv)
857 {
858 struct drm_vmw_fence_signaled_arg *arg =
859 (struct drm_vmw_fence_signaled_arg *) data;
860 struct ttm_base_object *base;
861 struct vmw_fence_obj *fence;
862 struct vmw_fence_manager *fman;
863 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
864 struct vmw_private *dev_priv = vmw_priv(dev);
865
866 base = vmw_fence_obj_lookup(tfile, arg->handle);
867 if (IS_ERR(base))
868 return PTR_ERR(base);
869
870 fence = &(container_of(base, struct vmw_user_fence, base)->fence);
871 fman = fman_from_fence(fence);
872
873 arg->signaled = vmw_fence_obj_signaled(fence);
874
875 arg->signaled_flags = arg->flags;
876 spin_lock(&fman->lock);
877 arg->passed_seqno = dev_priv->last_read_seqno;
878 spin_unlock(&fman->lock);
879
880 ttm_base_object_unref(&base);
881
882 return 0;
883 }
884
885
886 int vmw_fence_obj_unref_ioctl(struct drm_device *dev, void *data,
887 struct drm_file *file_priv)
888 {
889 struct drm_vmw_fence_arg *arg =
890 (struct drm_vmw_fence_arg *) data;
891
892 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
893 arg->handle,
894 TTM_REF_USAGE);
895 }
896
897 /**
898 * vmw_event_fence_action_seq_passed
899 *
900 * @action: The struct vmw_fence_action embedded in a struct
901 * vmw_event_fence_action.
902 *
903 * This function is called when the seqno of the fence where @action is
904 * attached has passed. It queues the event on the submitter's event list.
905 * This function is always called from atomic context.
906 */
907 static void vmw_event_fence_action_seq_passed(struct vmw_fence_action *action)
908 {
909 struct vmw_event_fence_action *eaction =
910 container_of(action, struct vmw_event_fence_action, action);
911 struct drm_device *dev = eaction->dev;
912 struct drm_pending_event *event = eaction->event;
913
914 if (unlikely(event == NULL))
915 return;
916
917 spin_lock_irq(&dev->event_lock);
918
919 if (likely(eaction->tv_sec != NULL)) {
920 struct timespec64 ts;
921
922 ktime_get_ts64(&ts);
923 /* monotonic time, so no y2038 overflow */
924 *eaction->tv_sec = ts.tv_sec;
925 *eaction->tv_usec = ts.tv_nsec / NSEC_PER_USEC;
926 }
927
928 drm_send_event_locked(dev, eaction->event);
929 eaction->event = NULL;
930 spin_unlock_irq(&dev->event_lock);
931 }
932
933 /**
934 * vmw_event_fence_action_cleanup
935 *
936 * @action: The struct vmw_fence_action embedded in a struct
937 * vmw_event_fence_action.
938 *
939 * This function is the struct vmw_fence_action destructor. It's typically
940 * called from a workqueue.
941 */
942 static void vmw_event_fence_action_cleanup(struct vmw_fence_action *action)
943 {
944 struct vmw_event_fence_action *eaction =
945 container_of(action, struct vmw_event_fence_action, action);
946
947 vmw_fence_obj_unreference(&eaction->fence);
948 kfree(eaction);
949 }
950
951
952 /**
953 * vmw_fence_obj_add_action - Add an action to a fence object.
954 *
955 * @fence - The fence object.
956 * @action - The action to add.
957 *
958 * Note that the action callbacks may be executed before this function
959 * returns.
960 */
961 static void vmw_fence_obj_add_action(struct vmw_fence_obj *fence,
962 struct vmw_fence_action *action)
963 {
964 struct vmw_fence_manager *fman = fman_from_fence(fence);
965 bool run_update = false;
966
967 mutex_lock(&fman->goal_irq_mutex);
968 spin_lock(&fman->lock);
969
970 fman->pending_actions[action->type]++;
971 if (dma_fence_is_signaled_locked(&fence->base)) {
972 struct list_head action_list;
973
974 INIT_LIST_HEAD(&action_list);
975 list_add_tail(&action->head, &action_list);
976 vmw_fences_perform_actions(fman, &action_list);
977 } else {
978 list_add_tail(&action->head, &fence->seq_passed_actions);
979
980 /*
981 * This function may set fman::seqno_valid, so it must
982 * be run with the goal_irq_mutex held.
983 */
984 run_update = vmw_fence_goal_check_locked(fence);
985 }
986
987 spin_unlock(&fman->lock);
988
989 if (run_update) {
990 if (!fman->goal_irq_on) {
991 fman->goal_irq_on = true;
992 vmw_goal_waiter_add(fman->dev_priv);
993 }
994 vmw_fences_update(fman);
995 }
996 mutex_unlock(&fman->goal_irq_mutex);
997
998 }
999
1000 /**
1001 * vmw_event_fence_action_create - Post an event for sending when a fence
1002 * object seqno has passed.
1003 *
1004 * @file_priv: The file connection on which the event should be posted.
1005 * @fence: The fence object on which to post the event.
1006 * @event: Event to be posted. This event should've been alloced
1007 * using k[mz]alloc, and should've been completely initialized.
1008 * @interruptible: Interruptible waits if possible.
1009 *
1010 * As a side effect, the object pointed to by @event may have been
1011 * freed when this function returns. If this function returns with
1012 * an error code, the caller needs to free that object.
1013 */
1014
1015 int vmw_event_fence_action_queue(struct drm_file *file_priv,
1016 struct vmw_fence_obj *fence,
1017 struct drm_pending_event *event,
1018 uint32_t *tv_sec,
1019 uint32_t *tv_usec,
1020 bool interruptible)
1021 {
1022 struct vmw_event_fence_action *eaction;
1023 struct vmw_fence_manager *fman = fman_from_fence(fence);
1024
1025 eaction = kzalloc(sizeof(*eaction), GFP_KERNEL);
1026 if (unlikely(!eaction))
1027 return -ENOMEM;
1028
1029 eaction->event = event;
1030
1031 eaction->action.seq_passed = vmw_event_fence_action_seq_passed;
1032 eaction->action.cleanup = vmw_event_fence_action_cleanup;
1033 eaction->action.type = VMW_ACTION_EVENT;
1034
1035 eaction->fence = vmw_fence_obj_reference(fence);
1036 eaction->dev = fman->dev_priv->dev;
1037 eaction->tv_sec = tv_sec;
1038 eaction->tv_usec = tv_usec;
1039
1040 vmw_fence_obj_add_action(fence, &eaction->action);
1041
1042 return 0;
1043 }
1044
1045 struct vmw_event_fence_pending {
1046 struct drm_pending_event base;
1047 struct drm_vmw_event_fence event;
1048 };
1049
1050 static int vmw_event_fence_action_create(struct drm_file *file_priv,
1051 struct vmw_fence_obj *fence,
1052 uint32_t flags,
1053 uint64_t user_data,
1054 bool interruptible)
1055 {
1056 struct vmw_event_fence_pending *event;
1057 struct vmw_fence_manager *fman = fman_from_fence(fence);
1058 struct drm_device *dev = fman->dev_priv->dev;
1059 int ret;
1060
1061 event = kzalloc(sizeof(*event), GFP_KERNEL);
1062 if (unlikely(!event)) {
1063 DRM_ERROR("Failed to allocate an event.\n");
1064 ret = -ENOMEM;
1065 goto out_no_space;
1066 }
1067
1068 event->event.base.type = DRM_VMW_EVENT_FENCE_SIGNALED;
1069 event->event.base.length = sizeof(*event);
1070 event->event.user_data = user_data;
1071
1072 ret = drm_event_reserve_init(dev, file_priv, &event->base, &event->event.base);
1073
1074 if (unlikely(ret != 0)) {
1075 DRM_ERROR("Failed to allocate event space for this file.\n");
1076 kfree(event);
1077 goto out_no_space;
1078 }
1079
1080 if (flags & DRM_VMW_FE_FLAG_REQ_TIME)
1081 ret = vmw_event_fence_action_queue(file_priv, fence,
1082 &event->base,
1083 &event->event.tv_sec,
1084 &event->event.tv_usec,
1085 interruptible);
1086 else
1087 ret = vmw_event_fence_action_queue(file_priv, fence,
1088 &event->base,
1089 NULL,
1090 NULL,
1091 interruptible);
1092 if (ret != 0)
1093 goto out_no_queue;
1094
1095 return 0;
1096
1097 out_no_queue:
1098 drm_event_cancel_free(dev, &event->base);
1099 out_no_space:
1100 return ret;
1101 }
1102
1103 int vmw_fence_event_ioctl(struct drm_device *dev, void *data,
1104 struct drm_file *file_priv)
1105 {
1106 struct vmw_private *dev_priv = vmw_priv(dev);
1107 struct drm_vmw_fence_event_arg *arg =
1108 (struct drm_vmw_fence_event_arg *) data;
1109 struct vmw_fence_obj *fence = NULL;
1110 struct vmw_fpriv *vmw_fp = vmw_fpriv(file_priv);
1111 struct ttm_object_file *tfile = vmw_fp->tfile;
1112 struct drm_vmw_fence_rep __user *user_fence_rep =
1113 (struct drm_vmw_fence_rep __user *)(unsigned long)
1114 arg->fence_rep;
1115 uint32_t handle;
1116 int ret;
1117
1118 /*
1119 * Look up an existing fence object,
1120 * and if user-space wants a new reference,
1121 * add one.
1122 */
1123 if (arg->handle) {
1124 struct ttm_base_object *base =
1125 vmw_fence_obj_lookup(tfile, arg->handle);
1126
1127 if (IS_ERR(base))
1128 return PTR_ERR(base);
1129
1130 fence = &(container_of(base, struct vmw_user_fence,
1131 base)->fence);
1132 (void) vmw_fence_obj_reference(fence);
1133
1134 if (user_fence_rep != NULL) {
1135 ret = ttm_ref_object_add(vmw_fp->tfile, base,
1136 TTM_REF_USAGE, NULL, false);
1137 if (unlikely(ret != 0)) {
1138 DRM_ERROR("Failed to reference a fence "
1139 "object.\n");
1140 goto out_no_ref_obj;
1141 }
1142 handle = base->handle;
1143 }
1144 ttm_base_object_unref(&base);
1145 }
1146
1147 /*
1148 * Create a new fence object.
1149 */
1150 if (!fence) {
1151 ret = vmw_execbuf_fence_commands(file_priv, dev_priv,
1152 &fence,
1153 (user_fence_rep) ?
1154 &handle : NULL);
1155 if (unlikely(ret != 0)) {
1156 DRM_ERROR("Fence event failed to create fence.\n");
1157 return ret;
1158 }
1159 }
1160
1161 BUG_ON(fence == NULL);
1162
1163 ret = vmw_event_fence_action_create(file_priv, fence,
1164 arg->flags,
1165 arg->user_data,
1166 true);
1167 if (unlikely(ret != 0)) {
1168 if (ret != -ERESTARTSYS)
1169 DRM_ERROR("Failed to attach event to fence.\n");
1170 goto out_no_create;
1171 }
1172
1173 vmw_execbuf_copy_fence_user(dev_priv, vmw_fp, 0, user_fence_rep, fence,
1174 handle, -1, NULL);
1175 vmw_fence_obj_unreference(&fence);
1176 return 0;
1177 out_no_create:
1178 if (user_fence_rep != NULL)
1179 ttm_ref_object_base_unref(tfile, handle, TTM_REF_USAGE);
1180 out_no_ref_obj:
1181 vmw_fence_obj_unreference(&fence);
1182 return ret;
1183 }