]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/ipu-v3/ipu-image-convert.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 157
[thirdparty/kernel/stable.git] / drivers / gpu / ipu-v3 / ipu-image-convert.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2012-2016 Mentor Graphics Inc.
4 *
5 * Queued image conversion support, with tiling and rotation.
6 */
7
8 #include <linux/interrupt.h>
9 #include <linux/dma-mapping.h>
10 #include <video/imx-ipu-image-convert.h>
11 #include "ipu-prv.h"
12
13 /*
14 * The IC Resizer has a restriction that the output frame from the
15 * resizer must be 1024 or less in both width (pixels) and height
16 * (lines).
17 *
18 * The image converter attempts to split up a conversion when
19 * the desired output (converted) frame resolution exceeds the
20 * IC resizer limit of 1024 in either dimension.
21 *
22 * If either dimension of the output frame exceeds the limit, the
23 * dimension is split into 1, 2, or 4 equal stripes, for a maximum
24 * of 4*4 or 16 tiles. A conversion is then carried out for each
25 * tile (but taking care to pass the full frame stride length to
26 * the DMA channel's parameter memory!). IDMA double-buffering is used
27 * to convert each tile back-to-back when possible (see note below
28 * when double_buffering boolean is set).
29 *
30 * Note that the input frame must be split up into the same number
31 * of tiles as the output frame:
32 *
33 * +---------+-----+
34 * +-----+---+ | A | B |
35 * | A | B | | | |
36 * +-----+---+ --> +---------+-----+
37 * | C | D | | C | D |
38 * +-----+---+ | | |
39 * +---------+-----+
40 *
41 * Clockwise 90° rotations are handled by first rescaling into a
42 * reusable temporary tile buffer and then rotating with the 8x8
43 * block rotator, writing to the correct destination:
44 *
45 * +-----+-----+
46 * | | |
47 * +-----+---+ +---------+ | C | A |
48 * | A | B | | A,B, | | | | |
49 * +-----+---+ --> | C,D | | --> | | |
50 * | C | D | +---------+ +-----+-----+
51 * +-----+---+ | D | B |
52 * | | |
53 * +-----+-----+
54 *
55 * If the 8x8 block rotator is used, horizontal or vertical flipping
56 * is done during the rotation step, otherwise flipping is done
57 * during the scaling step.
58 * With rotation or flipping, tile order changes between input and
59 * output image. Tiles are numbered row major from top left to bottom
60 * right for both input and output image.
61 */
62
63 #define MAX_STRIPES_W 4
64 #define MAX_STRIPES_H 4
65 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
66
67 #define MIN_W 16
68 #define MIN_H 8
69 #define MAX_W 4096
70 #define MAX_H 4096
71
72 enum ipu_image_convert_type {
73 IMAGE_CONVERT_IN = 0,
74 IMAGE_CONVERT_OUT,
75 };
76
77 struct ipu_image_convert_dma_buf {
78 void *virt;
79 dma_addr_t phys;
80 unsigned long len;
81 };
82
83 struct ipu_image_convert_dma_chan {
84 int in;
85 int out;
86 int rot_in;
87 int rot_out;
88 int vdi_in_p;
89 int vdi_in;
90 int vdi_in_n;
91 };
92
93 /* dimensions of one tile */
94 struct ipu_image_tile {
95 u32 width;
96 u32 height;
97 u32 left;
98 u32 top;
99 /* size and strides are in bytes */
100 u32 size;
101 u32 stride;
102 u32 rot_stride;
103 /* start Y or packed offset of this tile */
104 u32 offset;
105 /* offset from start to tile in U plane, for planar formats */
106 u32 u_off;
107 /* offset from start to tile in V plane, for planar formats */
108 u32 v_off;
109 };
110
111 struct ipu_image_convert_image {
112 struct ipu_image base;
113 enum ipu_image_convert_type type;
114
115 const struct ipu_image_pixfmt *fmt;
116 unsigned int stride;
117
118 /* # of rows (horizontal stripes) if dest height is > 1024 */
119 unsigned int num_rows;
120 /* # of columns (vertical stripes) if dest width is > 1024 */
121 unsigned int num_cols;
122
123 struct ipu_image_tile tile[MAX_TILES];
124 };
125
126 struct ipu_image_pixfmt {
127 u32 fourcc; /* V4L2 fourcc */
128 int bpp; /* total bpp */
129 int uv_width_dec; /* decimation in width for U/V planes */
130 int uv_height_dec; /* decimation in height for U/V planes */
131 bool planar; /* planar format */
132 bool uv_swapped; /* U and V planes are swapped */
133 bool uv_packed; /* partial planar (U and V in same plane) */
134 };
135
136 struct ipu_image_convert_ctx;
137 struct ipu_image_convert_chan;
138 struct ipu_image_convert_priv;
139
140 struct ipu_image_convert_ctx {
141 struct ipu_image_convert_chan *chan;
142
143 ipu_image_convert_cb_t complete;
144 void *complete_context;
145
146 /* Source/destination image data and rotation mode */
147 struct ipu_image_convert_image in;
148 struct ipu_image_convert_image out;
149 enum ipu_rotate_mode rot_mode;
150 u32 downsize_coeff_h;
151 u32 downsize_coeff_v;
152 u32 image_resize_coeff_h;
153 u32 image_resize_coeff_v;
154 u32 resize_coeffs_h[MAX_STRIPES_W];
155 u32 resize_coeffs_v[MAX_STRIPES_H];
156
157 /* intermediate buffer for rotation */
158 struct ipu_image_convert_dma_buf rot_intermediate[2];
159
160 /* current buffer number for double buffering */
161 int cur_buf_num;
162
163 bool aborting;
164 struct completion aborted;
165
166 /* can we use double-buffering for this conversion operation? */
167 bool double_buffering;
168 /* num_rows * num_cols */
169 unsigned int num_tiles;
170 /* next tile to process */
171 unsigned int next_tile;
172 /* where to place converted tile in dest image */
173 unsigned int out_tile_map[MAX_TILES];
174
175 struct list_head list;
176 };
177
178 struct ipu_image_convert_chan {
179 struct ipu_image_convert_priv *priv;
180
181 enum ipu_ic_task ic_task;
182 const struct ipu_image_convert_dma_chan *dma_ch;
183
184 struct ipu_ic *ic;
185 struct ipuv3_channel *in_chan;
186 struct ipuv3_channel *out_chan;
187 struct ipuv3_channel *rotation_in_chan;
188 struct ipuv3_channel *rotation_out_chan;
189
190 /* the IPU end-of-frame irqs */
191 int out_eof_irq;
192 int rot_out_eof_irq;
193
194 spinlock_t irqlock;
195
196 /* list of convert contexts */
197 struct list_head ctx_list;
198 /* queue of conversion runs */
199 struct list_head pending_q;
200 /* queue of completed runs */
201 struct list_head done_q;
202
203 /* the current conversion run */
204 struct ipu_image_convert_run *current_run;
205 };
206
207 struct ipu_image_convert_priv {
208 struct ipu_image_convert_chan chan[IC_NUM_TASKS];
209 struct ipu_soc *ipu;
210 };
211
212 static const struct ipu_image_convert_dma_chan
213 image_convert_dma_chan[IC_NUM_TASKS] = {
214 [IC_TASK_VIEWFINDER] = {
215 .in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
216 .out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
217 .rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
218 .rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
219 .vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
220 .vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
221 .vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
222 },
223 [IC_TASK_POST_PROCESSOR] = {
224 .in = IPUV3_CHANNEL_MEM_IC_PP,
225 .out = IPUV3_CHANNEL_IC_PP_MEM,
226 .rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
227 .rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
228 },
229 };
230
231 static const struct ipu_image_pixfmt image_convert_formats[] = {
232 {
233 .fourcc = V4L2_PIX_FMT_RGB565,
234 .bpp = 16,
235 }, {
236 .fourcc = V4L2_PIX_FMT_RGB24,
237 .bpp = 24,
238 }, {
239 .fourcc = V4L2_PIX_FMT_BGR24,
240 .bpp = 24,
241 }, {
242 .fourcc = V4L2_PIX_FMT_RGB32,
243 .bpp = 32,
244 }, {
245 .fourcc = V4L2_PIX_FMT_BGR32,
246 .bpp = 32,
247 }, {
248 .fourcc = V4L2_PIX_FMT_XRGB32,
249 .bpp = 32,
250 }, {
251 .fourcc = V4L2_PIX_FMT_XBGR32,
252 .bpp = 32,
253 }, {
254 .fourcc = V4L2_PIX_FMT_YUYV,
255 .bpp = 16,
256 .uv_width_dec = 2,
257 .uv_height_dec = 1,
258 }, {
259 .fourcc = V4L2_PIX_FMT_UYVY,
260 .bpp = 16,
261 .uv_width_dec = 2,
262 .uv_height_dec = 1,
263 }, {
264 .fourcc = V4L2_PIX_FMT_YUV420,
265 .bpp = 12,
266 .planar = true,
267 .uv_width_dec = 2,
268 .uv_height_dec = 2,
269 }, {
270 .fourcc = V4L2_PIX_FMT_YVU420,
271 .bpp = 12,
272 .planar = true,
273 .uv_width_dec = 2,
274 .uv_height_dec = 2,
275 .uv_swapped = true,
276 }, {
277 .fourcc = V4L2_PIX_FMT_NV12,
278 .bpp = 12,
279 .planar = true,
280 .uv_width_dec = 2,
281 .uv_height_dec = 2,
282 .uv_packed = true,
283 }, {
284 .fourcc = V4L2_PIX_FMT_YUV422P,
285 .bpp = 16,
286 .planar = true,
287 .uv_width_dec = 2,
288 .uv_height_dec = 1,
289 }, {
290 .fourcc = V4L2_PIX_FMT_NV16,
291 .bpp = 16,
292 .planar = true,
293 .uv_width_dec = 2,
294 .uv_height_dec = 1,
295 .uv_packed = true,
296 },
297 };
298
299 static const struct ipu_image_pixfmt *get_format(u32 fourcc)
300 {
301 const struct ipu_image_pixfmt *ret = NULL;
302 unsigned int i;
303
304 for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
305 if (image_convert_formats[i].fourcc == fourcc) {
306 ret = &image_convert_formats[i];
307 break;
308 }
309 }
310
311 return ret;
312 }
313
314 static void dump_format(struct ipu_image_convert_ctx *ctx,
315 struct ipu_image_convert_image *ic_image)
316 {
317 struct ipu_image_convert_chan *chan = ctx->chan;
318 struct ipu_image_convert_priv *priv = chan->priv;
319
320 dev_dbg(priv->ipu->dev,
321 "task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
322 chan->ic_task, ctx,
323 ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
324 ic_image->base.pix.width, ic_image->base.pix.height,
325 ic_image->num_cols, ic_image->num_rows,
326 ic_image->fmt->fourcc & 0xff,
327 (ic_image->fmt->fourcc >> 8) & 0xff,
328 (ic_image->fmt->fourcc >> 16) & 0xff,
329 (ic_image->fmt->fourcc >> 24) & 0xff);
330 }
331
332 int ipu_image_convert_enum_format(int index, u32 *fourcc)
333 {
334 const struct ipu_image_pixfmt *fmt;
335
336 if (index >= (int)ARRAY_SIZE(image_convert_formats))
337 return -EINVAL;
338
339 /* Format found */
340 fmt = &image_convert_formats[index];
341 *fourcc = fmt->fourcc;
342 return 0;
343 }
344 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
345
346 static void free_dma_buf(struct ipu_image_convert_priv *priv,
347 struct ipu_image_convert_dma_buf *buf)
348 {
349 if (buf->virt)
350 dma_free_coherent(priv->ipu->dev,
351 buf->len, buf->virt, buf->phys);
352 buf->virt = NULL;
353 buf->phys = 0;
354 }
355
356 static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
357 struct ipu_image_convert_dma_buf *buf,
358 int size)
359 {
360 buf->len = PAGE_ALIGN(size);
361 buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
362 GFP_DMA | GFP_KERNEL);
363 if (!buf->virt) {
364 dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
365 return -ENOMEM;
366 }
367
368 return 0;
369 }
370
371 static inline int num_stripes(int dim)
372 {
373 return (dim - 1) / 1024 + 1;
374 }
375
376 /*
377 * Calculate downsizing coefficients, which are the same for all tiles,
378 * and bilinear resizing coefficients, which are used to find the best
379 * seam positions.
380 */
381 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
382 struct ipu_image *in,
383 struct ipu_image *out)
384 {
385 u32 downsized_width = in->rect.width;
386 u32 downsized_height = in->rect.height;
387 u32 downsize_coeff_v = 0;
388 u32 downsize_coeff_h = 0;
389 u32 resized_width = out->rect.width;
390 u32 resized_height = out->rect.height;
391 u32 resize_coeff_h;
392 u32 resize_coeff_v;
393
394 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
395 resized_width = out->rect.height;
396 resized_height = out->rect.width;
397 }
398
399 /* Do not let invalid input lead to an endless loop below */
400 if (WARN_ON(resized_width == 0 || resized_height == 0))
401 return -EINVAL;
402
403 while (downsized_width >= resized_width * 2) {
404 downsized_width >>= 1;
405 downsize_coeff_h++;
406 }
407
408 while (downsized_height >= resized_height * 2) {
409 downsized_height >>= 1;
410 downsize_coeff_v++;
411 }
412
413 /*
414 * Calculate the bilinear resizing coefficients that could be used if
415 * we were converting with a single tile. The bottom right output pixel
416 * should sample as close as possible to the bottom right input pixel
417 * out of the decimator, but not overshoot it:
418 */
419 resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
420 resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
421
422 dev_dbg(ctx->chan->priv->ipu->dev,
423 "%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
424 __func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
425 resize_coeff_v, ctx->in.num_cols, ctx->in.num_rows);
426
427 if (downsize_coeff_h > 2 || downsize_coeff_v > 2 ||
428 resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
429 return -EINVAL;
430
431 ctx->downsize_coeff_h = downsize_coeff_h;
432 ctx->downsize_coeff_v = downsize_coeff_v;
433 ctx->image_resize_coeff_h = resize_coeff_h;
434 ctx->image_resize_coeff_v = resize_coeff_v;
435
436 return 0;
437 }
438
439 #define round_closest(x, y) round_down((x) + (y)/2, (y))
440
441 /*
442 * Find the best aligned seam position in the inverval [out_start, out_end].
443 * Rotation and image offsets are out of scope.
444 *
445 * @out_start: start of inverval, must be within 1024 pixels / lines
446 * of out_end
447 * @out_end: end of interval, smaller than or equal to out_edge
448 * @in_edge: input right / bottom edge
449 * @out_edge: output right / bottom edge
450 * @in_align: input alignment, either horizontal 8-byte line start address
451 * alignment, or pixel alignment due to image format
452 * @out_align: output alignment, either horizontal 8-byte line start address
453 * alignment, or pixel alignment due to image format or rotator
454 * block size
455 * @in_burst: horizontal input burst size in case of horizontal flip
456 * @out_burst: horizontal output burst size or rotator block size
457 * @downsize_coeff: downsizing section coefficient
458 * @resize_coeff: main processing section resizing coefficient
459 * @_in_seam: aligned input seam position return value
460 * @_out_seam: aligned output seam position return value
461 */
462 static void find_best_seam(struct ipu_image_convert_ctx *ctx,
463 unsigned int out_start,
464 unsigned int out_end,
465 unsigned int in_edge,
466 unsigned int out_edge,
467 unsigned int in_align,
468 unsigned int out_align,
469 unsigned int in_burst,
470 unsigned int out_burst,
471 unsigned int downsize_coeff,
472 unsigned int resize_coeff,
473 u32 *_in_seam,
474 u32 *_out_seam)
475 {
476 struct device *dev = ctx->chan->priv->ipu->dev;
477 unsigned int out_pos;
478 /* Input / output seam position candidates */
479 unsigned int out_seam = 0;
480 unsigned int in_seam = 0;
481 unsigned int min_diff = UINT_MAX;
482
483 /*
484 * Output tiles must start at a multiple of 8 bytes horizontally and
485 * possibly at an even line horizontally depending on the pixel format.
486 * Only consider output aligned positions for the seam.
487 */
488 out_start = round_up(out_start, out_align);
489 for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
490 unsigned int in_pos;
491 unsigned int in_pos_aligned;
492 unsigned int abs_diff;
493
494 /*
495 * Tiles in the right row / bottom column may not be allowed to
496 * overshoot horizontally / vertically. out_burst may be the
497 * actual DMA burst size, or the rotator block size.
498 */
499 if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
500 continue;
501
502 /*
503 * Input sample position, corresponding to out_pos, 19.13 fixed
504 * point.
505 */
506 in_pos = (out_pos * resize_coeff) << downsize_coeff;
507 /*
508 * The closest input sample position that we could actually
509 * start the input tile at, 19.13 fixed point.
510 */
511 in_pos_aligned = round_closest(in_pos, 8192U * in_align);
512
513 if ((in_burst > 1) &&
514 (in_edge - in_pos_aligned / 8192U) % in_burst)
515 continue;
516
517 if (in_pos < in_pos_aligned)
518 abs_diff = in_pos_aligned - in_pos;
519 else
520 abs_diff = in_pos - in_pos_aligned;
521
522 if (abs_diff < min_diff) {
523 in_seam = in_pos_aligned;
524 out_seam = out_pos;
525 min_diff = abs_diff;
526 }
527 }
528
529 *_out_seam = out_seam;
530 /* Convert 19.13 fixed point to integer seam position */
531 *_in_seam = DIV_ROUND_CLOSEST(in_seam, 8192U);
532
533 dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) diff %u.%03u\n",
534 __func__, out_seam, out_align, out_start, out_end,
535 *_in_seam, in_align, min_diff / 8192,
536 DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
537 }
538
539 /*
540 * Tile left edges are required to be aligned to multiples of 8 bytes
541 * by the IDMAC.
542 */
543 static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
544 {
545 if (fmt->planar)
546 return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
547 else
548 return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
549 }
550
551 /*
552 * Tile top edge alignment is only limited by chroma subsampling.
553 */
554 static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
555 {
556 return fmt->uv_height_dec > 1 ? 2 : 1;
557 }
558
559 static inline u32 tile_width_align(enum ipu_image_convert_type type,
560 const struct ipu_image_pixfmt *fmt,
561 enum ipu_rotate_mode rot_mode)
562 {
563 if (type == IMAGE_CONVERT_IN) {
564 /*
565 * The IC burst reads 8 pixels at a time. Reading beyond the
566 * end of the line is usually acceptable. Those pixels are
567 * ignored, unless the IC has to write the scaled line in
568 * reverse.
569 */
570 return (!ipu_rot_mode_is_irt(rot_mode) &&
571 (rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
572 }
573
574 /*
575 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
576 * formats to guarantee 8-byte aligned line start addresses in the
577 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
578 * for all other formats.
579 */
580 return (ipu_rot_mode_is_irt(rot_mode) &&
581 fmt->planar && !fmt->uv_packed) ?
582 8 * fmt->uv_width_dec : 8;
583 }
584
585 static inline u32 tile_height_align(enum ipu_image_convert_type type,
586 const struct ipu_image_pixfmt *fmt,
587 enum ipu_rotate_mode rot_mode)
588 {
589 if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
590 return 2;
591
592 /*
593 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
594 * formats to guarantee 8-byte aligned line start addresses in the
595 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
596 * for all other formats.
597 */
598 return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
599 }
600
601 /*
602 * Fill in left position and width and for all tiles in an input column, and
603 * for all corresponding output tiles. If the 90° rotator is used, the output
604 * tiles are in a row, and output tile top position and height are set.
605 */
606 static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
607 unsigned int col,
608 struct ipu_image_convert_image *in,
609 unsigned int in_left, unsigned int in_width,
610 struct ipu_image_convert_image *out,
611 unsigned int out_left, unsigned int out_width)
612 {
613 unsigned int row, tile_idx;
614 struct ipu_image_tile *in_tile, *out_tile;
615
616 for (row = 0; row < in->num_rows; row++) {
617 tile_idx = in->num_cols * row + col;
618 in_tile = &in->tile[tile_idx];
619 out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
620
621 in_tile->left = in_left;
622 in_tile->width = in_width;
623
624 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
625 out_tile->top = out_left;
626 out_tile->height = out_width;
627 } else {
628 out_tile->left = out_left;
629 out_tile->width = out_width;
630 }
631 }
632 }
633
634 /*
635 * Fill in top position and height and for all tiles in an input row, and
636 * for all corresponding output tiles. If the 90° rotator is used, the output
637 * tiles are in a column, and output tile left position and width are set.
638 */
639 static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
640 struct ipu_image_convert_image *in,
641 unsigned int in_top, unsigned int in_height,
642 struct ipu_image_convert_image *out,
643 unsigned int out_top, unsigned int out_height)
644 {
645 unsigned int col, tile_idx;
646 struct ipu_image_tile *in_tile, *out_tile;
647
648 for (col = 0; col < in->num_cols; col++) {
649 tile_idx = in->num_cols * row + col;
650 in_tile = &in->tile[tile_idx];
651 out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
652
653 in_tile->top = in_top;
654 in_tile->height = in_height;
655
656 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
657 out_tile->left = out_top;
658 out_tile->width = out_height;
659 } else {
660 out_tile->top = out_top;
661 out_tile->height = out_height;
662 }
663 }
664 }
665
666 /*
667 * Find the best horizontal and vertical seam positions to split into tiles.
668 * Minimize the fractional part of the input sampling position for the
669 * top / left pixels of each tile.
670 */
671 static void find_seams(struct ipu_image_convert_ctx *ctx,
672 struct ipu_image_convert_image *in,
673 struct ipu_image_convert_image *out)
674 {
675 struct device *dev = ctx->chan->priv->ipu->dev;
676 unsigned int resized_width = out->base.rect.width;
677 unsigned int resized_height = out->base.rect.height;
678 unsigned int col;
679 unsigned int row;
680 unsigned int in_left_align = tile_left_align(in->fmt);
681 unsigned int in_top_align = tile_top_align(in->fmt);
682 unsigned int out_left_align = tile_left_align(out->fmt);
683 unsigned int out_top_align = tile_top_align(out->fmt);
684 unsigned int out_width_align = tile_width_align(out->type, out->fmt,
685 ctx->rot_mode);
686 unsigned int out_height_align = tile_height_align(out->type, out->fmt,
687 ctx->rot_mode);
688 unsigned int in_right = in->base.rect.width;
689 unsigned int in_bottom = in->base.rect.height;
690 unsigned int out_right = out->base.rect.width;
691 unsigned int out_bottom = out->base.rect.height;
692 unsigned int flipped_out_left;
693 unsigned int flipped_out_top;
694
695 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
696 /* Switch width/height and align top left to IRT block size */
697 resized_width = out->base.rect.height;
698 resized_height = out->base.rect.width;
699 out_left_align = out_height_align;
700 out_top_align = out_width_align;
701 out_width_align = out_left_align;
702 out_height_align = out_top_align;
703 out_right = out->base.rect.height;
704 out_bottom = out->base.rect.width;
705 }
706
707 for (col = in->num_cols - 1; col > 0; col--) {
708 bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
709 !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
710 bool allow_out_overshoot = (col < in->num_cols - 1) &&
711 !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
712 unsigned int out_start;
713 unsigned int out_end;
714 unsigned int in_left;
715 unsigned int out_left;
716
717 /*
718 * Align input width to burst length if the scaling step flips
719 * horizontally.
720 */
721
722 /* Start within 1024 pixels of the right edge */
723 out_start = max_t(int, 0, out_right - 1024);
724 /* End before having to add more columns to the left */
725 out_end = min_t(unsigned int, out_right, col * 1024);
726
727 find_best_seam(ctx, out_start, out_end,
728 in_right, out_right,
729 in_left_align, out_left_align,
730 allow_in_overshoot ? 1 : 8 /* burst length */,
731 allow_out_overshoot ? 1 : out_width_align,
732 ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
733 &in_left, &out_left);
734
735 if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
736 flipped_out_left = resized_width - out_right;
737 else
738 flipped_out_left = out_left;
739
740 fill_tile_column(ctx, col, in, in_left, in_right - in_left,
741 out, flipped_out_left, out_right - out_left);
742
743 dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
744 in_left, in_right - in_left,
745 flipped_out_left, out_right - out_left);
746
747 in_right = in_left;
748 out_right = out_left;
749 }
750
751 flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
752 resized_width - out_right : 0;
753
754 fill_tile_column(ctx, 0, in, 0, in_right,
755 out, flipped_out_left, out_right);
756
757 dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
758 in_right, flipped_out_left, out_right);
759
760 for (row = in->num_rows - 1; row > 0; row--) {
761 bool allow_overshoot = row < in->num_rows - 1;
762 unsigned int out_start;
763 unsigned int out_end;
764 unsigned int in_top;
765 unsigned int out_top;
766
767 /* Start within 1024 lines of the bottom edge */
768 out_start = max_t(int, 0, out_bottom - 1024);
769 /* End before having to add more rows above */
770 out_end = min_t(unsigned int, out_bottom, row * 1024);
771
772 find_best_seam(ctx, out_start, out_end,
773 in_bottom, out_bottom,
774 in_top_align, out_top_align,
775 1, allow_overshoot ? 1 : out_height_align,
776 ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
777 &in_top, &out_top);
778
779 if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
780 ipu_rot_mode_is_irt(ctx->rot_mode))
781 flipped_out_top = resized_height - out_bottom;
782 else
783 flipped_out_top = out_top;
784
785 fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
786 out, flipped_out_top, out_bottom - out_top);
787
788 dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
789 in_top, in_bottom - in_top,
790 flipped_out_top, out_bottom - out_top);
791
792 in_bottom = in_top;
793 out_bottom = out_top;
794 }
795
796 if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
797 ipu_rot_mode_is_irt(ctx->rot_mode))
798 flipped_out_top = resized_height - out_bottom;
799 else
800 flipped_out_top = 0;
801
802 fill_tile_row(ctx, 0, in, 0, in_bottom,
803 out, flipped_out_top, out_bottom);
804
805 dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
806 in_bottom, flipped_out_top, out_bottom);
807 }
808
809 static void calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
810 struct ipu_image_convert_image *image)
811 {
812 struct ipu_image_convert_chan *chan = ctx->chan;
813 struct ipu_image_convert_priv *priv = chan->priv;
814 unsigned int i;
815
816 for (i = 0; i < ctx->num_tiles; i++) {
817 struct ipu_image_tile *tile;
818 const unsigned int row = i / image->num_cols;
819 const unsigned int col = i % image->num_cols;
820
821 if (image->type == IMAGE_CONVERT_OUT)
822 tile = &image->tile[ctx->out_tile_map[i]];
823 else
824 tile = &image->tile[i];
825
826 tile->size = ((tile->height * image->fmt->bpp) >> 3) *
827 tile->width;
828
829 if (image->fmt->planar) {
830 tile->stride = tile->width;
831 tile->rot_stride = tile->height;
832 } else {
833 tile->stride =
834 (image->fmt->bpp * tile->width) >> 3;
835 tile->rot_stride =
836 (image->fmt->bpp * tile->height) >> 3;
837 }
838
839 dev_dbg(priv->ipu->dev,
840 "task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
841 chan->ic_task, ctx,
842 image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
843 row, col,
844 tile->width, tile->height, tile->left, tile->top);
845 }
846 }
847
848 /*
849 * Use the rotation transformation to find the tile coordinates
850 * (row, col) of a tile in the destination frame that corresponds
851 * to the given tile coordinates of a source frame. The destination
852 * coordinate is then converted to a tile index.
853 */
854 static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
855 int src_row, int src_col)
856 {
857 struct ipu_image_convert_chan *chan = ctx->chan;
858 struct ipu_image_convert_priv *priv = chan->priv;
859 struct ipu_image_convert_image *s_image = &ctx->in;
860 struct ipu_image_convert_image *d_image = &ctx->out;
861 int dst_row, dst_col;
862
863 /* with no rotation it's a 1:1 mapping */
864 if (ctx->rot_mode == IPU_ROTATE_NONE)
865 return src_row * s_image->num_cols + src_col;
866
867 /*
868 * before doing the transform, first we have to translate
869 * source row,col for an origin in the center of s_image
870 */
871 src_row = src_row * 2 - (s_image->num_rows - 1);
872 src_col = src_col * 2 - (s_image->num_cols - 1);
873
874 /* do the rotation transform */
875 if (ctx->rot_mode & IPU_ROT_BIT_90) {
876 dst_col = -src_row;
877 dst_row = src_col;
878 } else {
879 dst_col = src_col;
880 dst_row = src_row;
881 }
882
883 /* apply flip */
884 if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
885 dst_col = -dst_col;
886 if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
887 dst_row = -dst_row;
888
889 dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
890 chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
891
892 /*
893 * finally translate dest row,col using an origin in upper
894 * left of d_image
895 */
896 dst_row += d_image->num_rows - 1;
897 dst_col += d_image->num_cols - 1;
898 dst_row /= 2;
899 dst_col /= 2;
900
901 return dst_row * d_image->num_cols + dst_col;
902 }
903
904 /*
905 * Fill the out_tile_map[] with transformed destination tile indeces.
906 */
907 static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
908 {
909 struct ipu_image_convert_image *s_image = &ctx->in;
910 unsigned int row, col, tile = 0;
911
912 for (row = 0; row < s_image->num_rows; row++) {
913 for (col = 0; col < s_image->num_cols; col++) {
914 ctx->out_tile_map[tile] =
915 transform_tile_index(ctx, row, col);
916 tile++;
917 }
918 }
919 }
920
921 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
922 struct ipu_image_convert_image *image)
923 {
924 struct ipu_image_convert_chan *chan = ctx->chan;
925 struct ipu_image_convert_priv *priv = chan->priv;
926 const struct ipu_image_pixfmt *fmt = image->fmt;
927 unsigned int row, col, tile = 0;
928 u32 H, top, y_stride, uv_stride;
929 u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp;
930 u32 y_row_off, y_col_off, y_off;
931 u32 y_size, uv_size;
932
933 /* setup some convenience vars */
934 H = image->base.pix.height;
935
936 y_stride = image->stride;
937 uv_stride = y_stride / fmt->uv_width_dec;
938 if (fmt->uv_packed)
939 uv_stride *= 2;
940
941 y_size = H * y_stride;
942 uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
943
944 for (row = 0; row < image->num_rows; row++) {
945 top = image->tile[tile].top;
946 y_row_off = top * y_stride;
947 uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
948
949 for (col = 0; col < image->num_cols; col++) {
950 y_col_off = image->tile[tile].left;
951 uv_col_off = y_col_off / fmt->uv_width_dec;
952 if (fmt->uv_packed)
953 uv_col_off *= 2;
954
955 y_off = y_row_off + y_col_off;
956 uv_off = uv_row_off + uv_col_off;
957
958 u_off = y_size - y_off + uv_off;
959 v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
960 if (fmt->uv_swapped) {
961 tmp = u_off;
962 u_off = v_off;
963 v_off = tmp;
964 }
965
966 image->tile[tile].offset = y_off;
967 image->tile[tile].u_off = u_off;
968 image->tile[tile++].v_off = v_off;
969
970 if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
971 dev_err(priv->ipu->dev,
972 "task %u: ctx %p: %s@[%d,%d]: "
973 "y_off %08x, u_off %08x, v_off %08x\n",
974 chan->ic_task, ctx,
975 image->type == IMAGE_CONVERT_IN ?
976 "Input" : "Output", row, col,
977 y_off, u_off, v_off);
978 return -EINVAL;
979 }
980 }
981 }
982
983 return 0;
984 }
985
986 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
987 struct ipu_image_convert_image *image)
988 {
989 struct ipu_image_convert_chan *chan = ctx->chan;
990 struct ipu_image_convert_priv *priv = chan->priv;
991 const struct ipu_image_pixfmt *fmt = image->fmt;
992 unsigned int row, col, tile = 0;
993 u32 bpp, stride, offset;
994 u32 row_off, col_off;
995
996 /* setup some convenience vars */
997 stride = image->stride;
998 bpp = fmt->bpp;
999
1000 for (row = 0; row < image->num_rows; row++) {
1001 row_off = image->tile[tile].top * stride;
1002
1003 for (col = 0; col < image->num_cols; col++) {
1004 col_off = (image->tile[tile].left * bpp) >> 3;
1005
1006 offset = row_off + col_off;
1007
1008 image->tile[tile].offset = offset;
1009 image->tile[tile].u_off = 0;
1010 image->tile[tile++].v_off = 0;
1011
1012 if (offset & 0x7) {
1013 dev_err(priv->ipu->dev,
1014 "task %u: ctx %p: %s@[%d,%d]: "
1015 "phys %08x\n",
1016 chan->ic_task, ctx,
1017 image->type == IMAGE_CONVERT_IN ?
1018 "Input" : "Output", row, col,
1019 row_off + col_off);
1020 return -EINVAL;
1021 }
1022 }
1023 }
1024
1025 return 0;
1026 }
1027
1028 static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1029 struct ipu_image_convert_image *image)
1030 {
1031 if (image->fmt->planar)
1032 return calc_tile_offsets_planar(ctx, image);
1033
1034 return calc_tile_offsets_packed(ctx, image);
1035 }
1036
1037 /*
1038 * Calculate the resizing ratio for the IC main processing section given input
1039 * size, fixed downsizing coefficient, and output size.
1040 * Either round to closest for the next tile's first pixel to minimize seams
1041 * and distortion (for all but right column / bottom row), or round down to
1042 * avoid sampling beyond the edges of the input image for this tile's last
1043 * pixel.
1044 * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1045 */
1046 static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1047 u32 output_size, bool allow_overshoot)
1048 {
1049 u32 downsized = input_size >> downsize_coeff;
1050
1051 if (allow_overshoot)
1052 return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1053 else
1054 return 8192 * (downsized - 1) / (output_size - 1);
1055 }
1056
1057 /*
1058 * Slightly modify resize coefficients per tile to hide the bilinear
1059 * interpolator reset at tile borders, shifting the right / bottom edge
1060 * by up to a half input pixel. This removes noticeable seams between
1061 * tiles at higher upscaling factors.
1062 */
1063 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1064 {
1065 struct ipu_image_convert_chan *chan = ctx->chan;
1066 struct ipu_image_convert_priv *priv = chan->priv;
1067 struct ipu_image_tile *in_tile, *out_tile;
1068 unsigned int col, row, tile_idx;
1069 unsigned int last_output;
1070
1071 for (col = 0; col < ctx->in.num_cols; col++) {
1072 bool closest = (col < ctx->in.num_cols - 1) &&
1073 !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1074 u32 resized_width;
1075 u32 resize_coeff_h;
1076
1077 tile_idx = col;
1078 in_tile = &ctx->in.tile[tile_idx];
1079 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1080
1081 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1082 resized_width = out_tile->height;
1083 else
1084 resized_width = out_tile->width;
1085
1086 resize_coeff_h = calc_resize_coeff(in_tile->width,
1087 ctx->downsize_coeff_h,
1088 resized_width, closest);
1089
1090 dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1091 __func__, col, resize_coeff_h);
1092
1093
1094 for (row = 0; row < ctx->in.num_rows; row++) {
1095 tile_idx = row * ctx->in.num_cols + col;
1096 in_tile = &ctx->in.tile[tile_idx];
1097 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1098
1099 /*
1100 * With the horizontal scaling factor known, round up
1101 * resized width (output width or height) to burst size.
1102 */
1103 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1104 out_tile->height = round_up(resized_width, 8);
1105 else
1106 out_tile->width = round_up(resized_width, 8);
1107
1108 /*
1109 * Calculate input width from the last accessed input
1110 * pixel given resized width and scaling coefficients.
1111 * Round up to burst size.
1112 */
1113 last_output = round_up(resized_width, 8) - 1;
1114 if (closest)
1115 last_output++;
1116 in_tile->width = round_up(
1117 (DIV_ROUND_UP(last_output * resize_coeff_h,
1118 8192) + 1)
1119 << ctx->downsize_coeff_h, 8);
1120 }
1121
1122 ctx->resize_coeffs_h[col] = resize_coeff_h;
1123 }
1124
1125 for (row = 0; row < ctx->in.num_rows; row++) {
1126 bool closest = (row < ctx->in.num_rows - 1) &&
1127 !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1128 u32 resized_height;
1129 u32 resize_coeff_v;
1130
1131 tile_idx = row * ctx->in.num_cols;
1132 in_tile = &ctx->in.tile[tile_idx];
1133 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1134
1135 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1136 resized_height = out_tile->width;
1137 else
1138 resized_height = out_tile->height;
1139
1140 resize_coeff_v = calc_resize_coeff(in_tile->height,
1141 ctx->downsize_coeff_v,
1142 resized_height, closest);
1143
1144 dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1145 __func__, row, resize_coeff_v);
1146
1147 for (col = 0; col < ctx->in.num_cols; col++) {
1148 tile_idx = row * ctx->in.num_cols + col;
1149 in_tile = &ctx->in.tile[tile_idx];
1150 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1151
1152 /*
1153 * With the vertical scaling factor known, round up
1154 * resized height (output width or height) to IDMAC
1155 * limitations.
1156 */
1157 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1158 out_tile->width = round_up(resized_height, 2);
1159 else
1160 out_tile->height = round_up(resized_height, 2);
1161
1162 /*
1163 * Calculate input width from the last accessed input
1164 * pixel given resized height and scaling coefficients.
1165 * Align to IDMAC restrictions.
1166 */
1167 last_output = round_up(resized_height, 2) - 1;
1168 if (closest)
1169 last_output++;
1170 in_tile->height = round_up(
1171 (DIV_ROUND_UP(last_output * resize_coeff_v,
1172 8192) + 1)
1173 << ctx->downsize_coeff_v, 2);
1174 }
1175
1176 ctx->resize_coeffs_v[row] = resize_coeff_v;
1177 }
1178 }
1179
1180 /*
1181 * return the number of runs in given queue (pending_q or done_q)
1182 * for this context. hold irqlock when calling.
1183 */
1184 static int get_run_count(struct ipu_image_convert_ctx *ctx,
1185 struct list_head *q)
1186 {
1187 struct ipu_image_convert_run *run;
1188 int count = 0;
1189
1190 lockdep_assert_held(&ctx->chan->irqlock);
1191
1192 list_for_each_entry(run, q, list) {
1193 if (run->ctx == ctx)
1194 count++;
1195 }
1196
1197 return count;
1198 }
1199
1200 static void convert_stop(struct ipu_image_convert_run *run)
1201 {
1202 struct ipu_image_convert_ctx *ctx = run->ctx;
1203 struct ipu_image_convert_chan *chan = ctx->chan;
1204 struct ipu_image_convert_priv *priv = chan->priv;
1205
1206 dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1207 __func__, chan->ic_task, ctx, run);
1208
1209 /* disable IC tasks and the channels */
1210 ipu_ic_task_disable(chan->ic);
1211 ipu_idmac_disable_channel(chan->in_chan);
1212 ipu_idmac_disable_channel(chan->out_chan);
1213
1214 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1215 ipu_idmac_disable_channel(chan->rotation_in_chan);
1216 ipu_idmac_disable_channel(chan->rotation_out_chan);
1217 ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1218 }
1219
1220 ipu_ic_disable(chan->ic);
1221 }
1222
1223 static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1224 struct ipuv3_channel *channel,
1225 struct ipu_image_convert_image *image,
1226 enum ipu_rotate_mode rot_mode,
1227 bool rot_swap_width_height,
1228 unsigned int tile)
1229 {
1230 struct ipu_image_convert_chan *chan = ctx->chan;
1231 unsigned int burst_size;
1232 u32 width, height, stride;
1233 dma_addr_t addr0, addr1 = 0;
1234 struct ipu_image tile_image;
1235 unsigned int tile_idx[2];
1236
1237 if (image->type == IMAGE_CONVERT_OUT) {
1238 tile_idx[0] = ctx->out_tile_map[tile];
1239 tile_idx[1] = ctx->out_tile_map[1];
1240 } else {
1241 tile_idx[0] = tile;
1242 tile_idx[1] = 1;
1243 }
1244
1245 if (rot_swap_width_height) {
1246 width = image->tile[tile_idx[0]].height;
1247 height = image->tile[tile_idx[0]].width;
1248 stride = image->tile[tile_idx[0]].rot_stride;
1249 addr0 = ctx->rot_intermediate[0].phys;
1250 if (ctx->double_buffering)
1251 addr1 = ctx->rot_intermediate[1].phys;
1252 } else {
1253 width = image->tile[tile_idx[0]].width;
1254 height = image->tile[tile_idx[0]].height;
1255 stride = image->stride;
1256 addr0 = image->base.phys0 +
1257 image->tile[tile_idx[0]].offset;
1258 if (ctx->double_buffering)
1259 addr1 = image->base.phys0 +
1260 image->tile[tile_idx[1]].offset;
1261 }
1262
1263 ipu_cpmem_zero(channel);
1264
1265 memset(&tile_image, 0, sizeof(tile_image));
1266 tile_image.pix.width = tile_image.rect.width = width;
1267 tile_image.pix.height = tile_image.rect.height = height;
1268 tile_image.pix.bytesperline = stride;
1269 tile_image.pix.pixelformat = image->fmt->fourcc;
1270 tile_image.phys0 = addr0;
1271 tile_image.phys1 = addr1;
1272 if (image->fmt->planar && !rot_swap_width_height) {
1273 tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1274 tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1275 }
1276
1277 ipu_cpmem_set_image(channel, &tile_image);
1278
1279 if (rot_mode)
1280 ipu_cpmem_set_rotation(channel, rot_mode);
1281
1282 if (channel == chan->rotation_in_chan ||
1283 channel == chan->rotation_out_chan) {
1284 burst_size = 8;
1285 ipu_cpmem_set_block_mode(channel);
1286 } else
1287 burst_size = (width % 16) ? 8 : 16;
1288
1289 ipu_cpmem_set_burstsize(channel, burst_size);
1290
1291 ipu_ic_task_idma_init(chan->ic, channel, width, height,
1292 burst_size, rot_mode);
1293
1294 /*
1295 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1296 * only do this when there is no PRG present.
1297 */
1298 if (!channel->ipu->prg_priv)
1299 ipu_cpmem_set_axi_id(channel, 1);
1300
1301 ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1302 }
1303
1304 static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1305 {
1306 struct ipu_image_convert_ctx *ctx = run->ctx;
1307 struct ipu_image_convert_chan *chan = ctx->chan;
1308 struct ipu_image_convert_priv *priv = chan->priv;
1309 struct ipu_image_convert_image *s_image = &ctx->in;
1310 struct ipu_image_convert_image *d_image = &ctx->out;
1311 enum ipu_color_space src_cs, dest_cs;
1312 unsigned int dst_tile = ctx->out_tile_map[tile];
1313 unsigned int dest_width, dest_height;
1314 unsigned int col, row;
1315 u32 rsc;
1316 int ret;
1317
1318 dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1319 __func__, chan->ic_task, ctx, run, tile, dst_tile);
1320
1321 src_cs = ipu_pixelformat_to_colorspace(s_image->fmt->fourcc);
1322 dest_cs = ipu_pixelformat_to_colorspace(d_image->fmt->fourcc);
1323
1324 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1325 /* swap width/height for resizer */
1326 dest_width = d_image->tile[dst_tile].height;
1327 dest_height = d_image->tile[dst_tile].width;
1328 } else {
1329 dest_width = d_image->tile[dst_tile].width;
1330 dest_height = d_image->tile[dst_tile].height;
1331 }
1332
1333 row = tile / s_image->num_cols;
1334 col = tile % s_image->num_cols;
1335
1336 rsc = (ctx->downsize_coeff_v << 30) |
1337 (ctx->resize_coeffs_v[row] << 16) |
1338 (ctx->downsize_coeff_h << 14) |
1339 (ctx->resize_coeffs_h[col]);
1340
1341 dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1342 __func__, s_image->tile[tile].width,
1343 s_image->tile[tile].height, dest_width, dest_height, rsc);
1344
1345 /* setup the IC resizer and CSC */
1346 ret = ipu_ic_task_init_rsc(chan->ic,
1347 s_image->tile[tile].width,
1348 s_image->tile[tile].height,
1349 dest_width,
1350 dest_height,
1351 src_cs, dest_cs,
1352 rsc);
1353 if (ret) {
1354 dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1355 return ret;
1356 }
1357
1358 /* init the source MEM-->IC PP IDMAC channel */
1359 init_idmac_channel(ctx, chan->in_chan, s_image,
1360 IPU_ROTATE_NONE, false, tile);
1361
1362 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1363 /* init the IC PP-->MEM IDMAC channel */
1364 init_idmac_channel(ctx, chan->out_chan, d_image,
1365 IPU_ROTATE_NONE, true, tile);
1366
1367 /* init the MEM-->IC PP ROT IDMAC channel */
1368 init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1369 ctx->rot_mode, true, tile);
1370
1371 /* init the destination IC PP ROT-->MEM IDMAC channel */
1372 init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1373 IPU_ROTATE_NONE, false, tile);
1374
1375 /* now link IC PP-->MEM to MEM-->IC PP ROT */
1376 ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1377 } else {
1378 /* init the destination IC PP-->MEM IDMAC channel */
1379 init_idmac_channel(ctx, chan->out_chan, d_image,
1380 ctx->rot_mode, false, tile);
1381 }
1382
1383 /* enable the IC */
1384 ipu_ic_enable(chan->ic);
1385
1386 /* set buffers ready */
1387 ipu_idmac_select_buffer(chan->in_chan, 0);
1388 ipu_idmac_select_buffer(chan->out_chan, 0);
1389 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1390 ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1391 if (ctx->double_buffering) {
1392 ipu_idmac_select_buffer(chan->in_chan, 1);
1393 ipu_idmac_select_buffer(chan->out_chan, 1);
1394 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1395 ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1396 }
1397
1398 /* enable the channels! */
1399 ipu_idmac_enable_channel(chan->in_chan);
1400 ipu_idmac_enable_channel(chan->out_chan);
1401 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1402 ipu_idmac_enable_channel(chan->rotation_in_chan);
1403 ipu_idmac_enable_channel(chan->rotation_out_chan);
1404 }
1405
1406 ipu_ic_task_enable(chan->ic);
1407
1408 ipu_cpmem_dump(chan->in_chan);
1409 ipu_cpmem_dump(chan->out_chan);
1410 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1411 ipu_cpmem_dump(chan->rotation_in_chan);
1412 ipu_cpmem_dump(chan->rotation_out_chan);
1413 }
1414
1415 ipu_dump(priv->ipu);
1416
1417 return 0;
1418 }
1419
1420 /* hold irqlock when calling */
1421 static int do_run(struct ipu_image_convert_run *run)
1422 {
1423 struct ipu_image_convert_ctx *ctx = run->ctx;
1424 struct ipu_image_convert_chan *chan = ctx->chan;
1425
1426 lockdep_assert_held(&chan->irqlock);
1427
1428 ctx->in.base.phys0 = run->in_phys;
1429 ctx->out.base.phys0 = run->out_phys;
1430
1431 ctx->cur_buf_num = 0;
1432 ctx->next_tile = 1;
1433
1434 /* remove run from pending_q and set as current */
1435 list_del(&run->list);
1436 chan->current_run = run;
1437
1438 return convert_start(run, 0);
1439 }
1440
1441 /* hold irqlock when calling */
1442 static void run_next(struct ipu_image_convert_chan *chan)
1443 {
1444 struct ipu_image_convert_priv *priv = chan->priv;
1445 struct ipu_image_convert_run *run, *tmp;
1446 int ret;
1447
1448 lockdep_assert_held(&chan->irqlock);
1449
1450 list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1451 /* skip contexts that are aborting */
1452 if (run->ctx->aborting) {
1453 dev_dbg(priv->ipu->dev,
1454 "%s: task %u: skipping aborting ctx %p run %p\n",
1455 __func__, chan->ic_task, run->ctx, run);
1456 continue;
1457 }
1458
1459 ret = do_run(run);
1460 if (!ret)
1461 break;
1462
1463 /*
1464 * something went wrong with start, add the run
1465 * to done q and continue to the next run in the
1466 * pending q.
1467 */
1468 run->status = ret;
1469 list_add_tail(&run->list, &chan->done_q);
1470 chan->current_run = NULL;
1471 }
1472 }
1473
1474 static void empty_done_q(struct ipu_image_convert_chan *chan)
1475 {
1476 struct ipu_image_convert_priv *priv = chan->priv;
1477 struct ipu_image_convert_run *run;
1478 unsigned long flags;
1479
1480 spin_lock_irqsave(&chan->irqlock, flags);
1481
1482 while (!list_empty(&chan->done_q)) {
1483 run = list_entry(chan->done_q.next,
1484 struct ipu_image_convert_run,
1485 list);
1486
1487 list_del(&run->list);
1488
1489 dev_dbg(priv->ipu->dev,
1490 "%s: task %u: completing ctx %p run %p with %d\n",
1491 __func__, chan->ic_task, run->ctx, run, run->status);
1492
1493 /* call the completion callback and free the run */
1494 spin_unlock_irqrestore(&chan->irqlock, flags);
1495 run->ctx->complete(run, run->ctx->complete_context);
1496 spin_lock_irqsave(&chan->irqlock, flags);
1497 }
1498
1499 spin_unlock_irqrestore(&chan->irqlock, flags);
1500 }
1501
1502 /*
1503 * the bottom half thread clears out the done_q, calling the
1504 * completion handler for each.
1505 */
1506 static irqreturn_t do_bh(int irq, void *dev_id)
1507 {
1508 struct ipu_image_convert_chan *chan = dev_id;
1509 struct ipu_image_convert_priv *priv = chan->priv;
1510 struct ipu_image_convert_ctx *ctx;
1511 unsigned long flags;
1512
1513 dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1514 chan->ic_task);
1515
1516 empty_done_q(chan);
1517
1518 spin_lock_irqsave(&chan->irqlock, flags);
1519
1520 /*
1521 * the done_q is cleared out, signal any contexts
1522 * that are aborting that abort can complete.
1523 */
1524 list_for_each_entry(ctx, &chan->ctx_list, list) {
1525 if (ctx->aborting) {
1526 dev_dbg(priv->ipu->dev,
1527 "%s: task %u: signaling abort for ctx %p\n",
1528 __func__, chan->ic_task, ctx);
1529 complete_all(&ctx->aborted);
1530 }
1531 }
1532
1533 spin_unlock_irqrestore(&chan->irqlock, flags);
1534
1535 dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1536 chan->ic_task);
1537
1538 return IRQ_HANDLED;
1539 }
1540
1541 static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1542 {
1543 unsigned int cur_tile = ctx->next_tile - 1;
1544 unsigned int next_tile = ctx->next_tile;
1545
1546 if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1547 ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1548 ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1549 ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1550 ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1551 ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1552 ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1553 ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1554 return true;
1555
1556 return false;
1557 }
1558
1559 /* hold irqlock when calling */
1560 static irqreturn_t do_irq(struct ipu_image_convert_run *run)
1561 {
1562 struct ipu_image_convert_ctx *ctx = run->ctx;
1563 struct ipu_image_convert_chan *chan = ctx->chan;
1564 struct ipu_image_tile *src_tile, *dst_tile;
1565 struct ipu_image_convert_image *s_image = &ctx->in;
1566 struct ipu_image_convert_image *d_image = &ctx->out;
1567 struct ipuv3_channel *outch;
1568 unsigned int dst_idx;
1569
1570 lockdep_assert_held(&chan->irqlock);
1571
1572 outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1573 chan->rotation_out_chan : chan->out_chan;
1574
1575 /*
1576 * It is difficult to stop the channel DMA before the channels
1577 * enter the paused state. Without double-buffering the channels
1578 * are always in a paused state when the EOF irq occurs, so it
1579 * is safe to stop the channels now. For double-buffering we
1580 * just ignore the abort until the operation completes, when it
1581 * is safe to shut down.
1582 */
1583 if (ctx->aborting && !ctx->double_buffering) {
1584 convert_stop(run);
1585 run->status = -EIO;
1586 goto done;
1587 }
1588
1589 if (ctx->next_tile == ctx->num_tiles) {
1590 /*
1591 * the conversion is complete
1592 */
1593 convert_stop(run);
1594 run->status = 0;
1595 goto done;
1596 }
1597
1598 /*
1599 * not done, place the next tile buffers.
1600 */
1601 if (!ctx->double_buffering) {
1602 if (ic_settings_changed(ctx)) {
1603 convert_stop(run);
1604 convert_start(run, ctx->next_tile);
1605 } else {
1606 src_tile = &s_image->tile[ctx->next_tile];
1607 dst_idx = ctx->out_tile_map[ctx->next_tile];
1608 dst_tile = &d_image->tile[dst_idx];
1609
1610 ipu_cpmem_set_buffer(chan->in_chan, 0,
1611 s_image->base.phys0 +
1612 src_tile->offset);
1613 ipu_cpmem_set_buffer(outch, 0,
1614 d_image->base.phys0 +
1615 dst_tile->offset);
1616 if (s_image->fmt->planar)
1617 ipu_cpmem_set_uv_offset(chan->in_chan,
1618 src_tile->u_off,
1619 src_tile->v_off);
1620 if (d_image->fmt->planar)
1621 ipu_cpmem_set_uv_offset(outch,
1622 dst_tile->u_off,
1623 dst_tile->v_off);
1624
1625 ipu_idmac_select_buffer(chan->in_chan, 0);
1626 ipu_idmac_select_buffer(outch, 0);
1627 }
1628 } else if (ctx->next_tile < ctx->num_tiles - 1) {
1629
1630 src_tile = &s_image->tile[ctx->next_tile + 1];
1631 dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1632 dst_tile = &d_image->tile[dst_idx];
1633
1634 ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1635 s_image->base.phys0 + src_tile->offset);
1636 ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1637 d_image->base.phys0 + dst_tile->offset);
1638
1639 ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1640 ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1641
1642 ctx->cur_buf_num ^= 1;
1643 }
1644
1645 ctx->next_tile++;
1646 return IRQ_HANDLED;
1647 done:
1648 list_add_tail(&run->list, &chan->done_q);
1649 chan->current_run = NULL;
1650 run_next(chan);
1651 return IRQ_WAKE_THREAD;
1652 }
1653
1654 static irqreturn_t norotate_irq(int irq, void *data)
1655 {
1656 struct ipu_image_convert_chan *chan = data;
1657 struct ipu_image_convert_ctx *ctx;
1658 struct ipu_image_convert_run *run;
1659 unsigned long flags;
1660 irqreturn_t ret;
1661
1662 spin_lock_irqsave(&chan->irqlock, flags);
1663
1664 /* get current run and its context */
1665 run = chan->current_run;
1666 if (!run) {
1667 ret = IRQ_NONE;
1668 goto out;
1669 }
1670
1671 ctx = run->ctx;
1672
1673 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1674 /* this is a rotation operation, just ignore */
1675 spin_unlock_irqrestore(&chan->irqlock, flags);
1676 return IRQ_HANDLED;
1677 }
1678
1679 ret = do_irq(run);
1680 out:
1681 spin_unlock_irqrestore(&chan->irqlock, flags);
1682 return ret;
1683 }
1684
1685 static irqreturn_t rotate_irq(int irq, void *data)
1686 {
1687 struct ipu_image_convert_chan *chan = data;
1688 struct ipu_image_convert_priv *priv = chan->priv;
1689 struct ipu_image_convert_ctx *ctx;
1690 struct ipu_image_convert_run *run;
1691 unsigned long flags;
1692 irqreturn_t ret;
1693
1694 spin_lock_irqsave(&chan->irqlock, flags);
1695
1696 /* get current run and its context */
1697 run = chan->current_run;
1698 if (!run) {
1699 ret = IRQ_NONE;
1700 goto out;
1701 }
1702
1703 ctx = run->ctx;
1704
1705 if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1706 /* this was NOT a rotation operation, shouldn't happen */
1707 dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n");
1708 spin_unlock_irqrestore(&chan->irqlock, flags);
1709 return IRQ_HANDLED;
1710 }
1711
1712 ret = do_irq(run);
1713 out:
1714 spin_unlock_irqrestore(&chan->irqlock, flags);
1715 return ret;
1716 }
1717
1718 /*
1719 * try to force the completion of runs for this ctx. Called when
1720 * abort wait times out in ipu_image_convert_abort().
1721 */
1722 static void force_abort(struct ipu_image_convert_ctx *ctx)
1723 {
1724 struct ipu_image_convert_chan *chan = ctx->chan;
1725 struct ipu_image_convert_run *run;
1726 unsigned long flags;
1727
1728 spin_lock_irqsave(&chan->irqlock, flags);
1729
1730 run = chan->current_run;
1731 if (run && run->ctx == ctx) {
1732 convert_stop(run);
1733 run->status = -EIO;
1734 list_add_tail(&run->list, &chan->done_q);
1735 chan->current_run = NULL;
1736 run_next(chan);
1737 }
1738
1739 spin_unlock_irqrestore(&chan->irqlock, flags);
1740
1741 empty_done_q(chan);
1742 }
1743
1744 static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1745 {
1746 if (chan->out_eof_irq >= 0)
1747 free_irq(chan->out_eof_irq, chan);
1748 if (chan->rot_out_eof_irq >= 0)
1749 free_irq(chan->rot_out_eof_irq, chan);
1750
1751 if (!IS_ERR_OR_NULL(chan->in_chan))
1752 ipu_idmac_put(chan->in_chan);
1753 if (!IS_ERR_OR_NULL(chan->out_chan))
1754 ipu_idmac_put(chan->out_chan);
1755 if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1756 ipu_idmac_put(chan->rotation_in_chan);
1757 if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1758 ipu_idmac_put(chan->rotation_out_chan);
1759 if (!IS_ERR_OR_NULL(chan->ic))
1760 ipu_ic_put(chan->ic);
1761
1762 chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1763 chan->rotation_out_chan = NULL;
1764 chan->out_eof_irq = chan->rot_out_eof_irq = -1;
1765 }
1766
1767 static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1768 {
1769 const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1770 struct ipu_image_convert_priv *priv = chan->priv;
1771 int ret;
1772
1773 /* get IC */
1774 chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1775 if (IS_ERR(chan->ic)) {
1776 dev_err(priv->ipu->dev, "could not acquire IC\n");
1777 ret = PTR_ERR(chan->ic);
1778 goto err;
1779 }
1780
1781 /* get IDMAC channels */
1782 chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1783 chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1784 if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1785 dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1786 ret = -EBUSY;
1787 goto err;
1788 }
1789
1790 chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1791 chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1792 if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1793 dev_err(priv->ipu->dev,
1794 "could not acquire idmac rotation channels\n");
1795 ret = -EBUSY;
1796 goto err;
1797 }
1798
1799 /* acquire the EOF interrupts */
1800 chan->out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1801 chan->out_chan,
1802 IPU_IRQ_EOF);
1803
1804 ret = request_threaded_irq(chan->out_eof_irq, norotate_irq, do_bh,
1805 0, "ipu-ic", chan);
1806 if (ret < 0) {
1807 dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1808 chan->out_eof_irq);
1809 chan->out_eof_irq = -1;
1810 goto err;
1811 }
1812
1813 chan->rot_out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1814 chan->rotation_out_chan,
1815 IPU_IRQ_EOF);
1816
1817 ret = request_threaded_irq(chan->rot_out_eof_irq, rotate_irq, do_bh,
1818 0, "ipu-ic", chan);
1819 if (ret < 0) {
1820 dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1821 chan->rot_out_eof_irq);
1822 chan->rot_out_eof_irq = -1;
1823 goto err;
1824 }
1825
1826 return 0;
1827 err:
1828 release_ipu_resources(chan);
1829 return ret;
1830 }
1831
1832 static int fill_image(struct ipu_image_convert_ctx *ctx,
1833 struct ipu_image_convert_image *ic_image,
1834 struct ipu_image *image,
1835 enum ipu_image_convert_type type)
1836 {
1837 struct ipu_image_convert_priv *priv = ctx->chan->priv;
1838
1839 ic_image->base = *image;
1840 ic_image->type = type;
1841
1842 ic_image->fmt = get_format(image->pix.pixelformat);
1843 if (!ic_image->fmt) {
1844 dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1845 type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1846 return -EINVAL;
1847 }
1848
1849 if (ic_image->fmt->planar)
1850 ic_image->stride = ic_image->base.pix.width;
1851 else
1852 ic_image->stride = ic_image->base.pix.bytesperline;
1853
1854 return 0;
1855 }
1856
1857 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1858 static unsigned int clamp_align(unsigned int x, unsigned int min,
1859 unsigned int max, unsigned int align)
1860 {
1861 /* Bits that must be zero to be aligned */
1862 unsigned int mask = ~((1 << align) - 1);
1863
1864 /* Clamp to aligned min and max */
1865 x = clamp(x, (min + ~mask) & mask, max & mask);
1866
1867 /* Round to nearest aligned value */
1868 if (align)
1869 x = (x + (1 << (align - 1))) & mask;
1870
1871 return x;
1872 }
1873
1874 /* Adjusts input/output images to IPU restrictions */
1875 void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1876 enum ipu_rotate_mode rot_mode)
1877 {
1878 const struct ipu_image_pixfmt *infmt, *outfmt;
1879 u32 w_align, h_align;
1880
1881 infmt = get_format(in->pix.pixelformat);
1882 outfmt = get_format(out->pix.pixelformat);
1883
1884 /* set some default pixel formats if needed */
1885 if (!infmt) {
1886 in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1887 infmt = get_format(V4L2_PIX_FMT_RGB24);
1888 }
1889 if (!outfmt) {
1890 out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1891 outfmt = get_format(V4L2_PIX_FMT_RGB24);
1892 }
1893
1894 /* image converter does not handle fields */
1895 in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1896
1897 /* resizer cannot downsize more than 4:1 */
1898 if (ipu_rot_mode_is_irt(rot_mode)) {
1899 out->pix.height = max_t(__u32, out->pix.height,
1900 in->pix.width / 4);
1901 out->pix.width = max_t(__u32, out->pix.width,
1902 in->pix.height / 4);
1903 } else {
1904 out->pix.width = max_t(__u32, out->pix.width,
1905 in->pix.width / 4);
1906 out->pix.height = max_t(__u32, out->pix.height,
1907 in->pix.height / 4);
1908 }
1909
1910 /* align input width/height */
1911 w_align = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt, rot_mode));
1912 h_align = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt, rot_mode));
1913 in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W, w_align);
1914 in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H, h_align);
1915
1916 /* align output width/height */
1917 w_align = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt, rot_mode));
1918 h_align = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt, rot_mode));
1919 out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W, w_align);
1920 out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H, h_align);
1921
1922 /* set input/output strides and image sizes */
1923 in->pix.bytesperline = infmt->planar ?
1924 clamp_align(in->pix.width, 2 << w_align, MAX_W, w_align) :
1925 clamp_align((in->pix.width * infmt->bpp) >> 3,
1926 2 << w_align, MAX_W, w_align);
1927 in->pix.sizeimage = infmt->planar ?
1928 (in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
1929 in->pix.height * in->pix.bytesperline;
1930 out->pix.bytesperline = outfmt->planar ? out->pix.width :
1931 (out->pix.width * outfmt->bpp) >> 3;
1932 out->pix.sizeimage = outfmt->planar ?
1933 (out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
1934 out->pix.height * out->pix.bytesperline;
1935 }
1936 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
1937
1938 /*
1939 * this is used by ipu_image_convert_prepare() to verify set input and
1940 * output images are valid before starting the conversion. Clients can
1941 * also call it before calling ipu_image_convert_prepare().
1942 */
1943 int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
1944 enum ipu_rotate_mode rot_mode)
1945 {
1946 struct ipu_image testin, testout;
1947
1948 testin = *in;
1949 testout = *out;
1950
1951 ipu_image_convert_adjust(&testin, &testout, rot_mode);
1952
1953 if (testin.pix.width != in->pix.width ||
1954 testin.pix.height != in->pix.height ||
1955 testout.pix.width != out->pix.width ||
1956 testout.pix.height != out->pix.height)
1957 return -EINVAL;
1958
1959 return 0;
1960 }
1961 EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
1962
1963 /*
1964 * Call ipu_image_convert_prepare() to prepare for the conversion of
1965 * given images and rotation mode. Returns a new conversion context.
1966 */
1967 struct ipu_image_convert_ctx *
1968 ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
1969 struct ipu_image *in, struct ipu_image *out,
1970 enum ipu_rotate_mode rot_mode,
1971 ipu_image_convert_cb_t complete,
1972 void *complete_context)
1973 {
1974 struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
1975 struct ipu_image_convert_image *s_image, *d_image;
1976 struct ipu_image_convert_chan *chan;
1977 struct ipu_image_convert_ctx *ctx;
1978 unsigned long flags;
1979 unsigned int i;
1980 bool get_res;
1981 int ret;
1982
1983 if (!in || !out || !complete ||
1984 (ic_task != IC_TASK_VIEWFINDER &&
1985 ic_task != IC_TASK_POST_PROCESSOR))
1986 return ERR_PTR(-EINVAL);
1987
1988 /* verify the in/out images before continuing */
1989 ret = ipu_image_convert_verify(in, out, rot_mode);
1990 if (ret) {
1991 dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
1992 __func__);
1993 return ERR_PTR(ret);
1994 }
1995
1996 chan = &priv->chan[ic_task];
1997
1998 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1999 if (!ctx)
2000 return ERR_PTR(-ENOMEM);
2001
2002 dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2003 chan->ic_task, ctx);
2004
2005 ctx->chan = chan;
2006 init_completion(&ctx->aborted);
2007
2008 s_image = &ctx->in;
2009 d_image = &ctx->out;
2010
2011 /* set tiling and rotation */
2012 d_image->num_rows = num_stripes(out->pix.height);
2013 d_image->num_cols = num_stripes(out->pix.width);
2014 if (ipu_rot_mode_is_irt(rot_mode)) {
2015 s_image->num_rows = d_image->num_cols;
2016 s_image->num_cols = d_image->num_rows;
2017 } else {
2018 s_image->num_rows = d_image->num_rows;
2019 s_image->num_cols = d_image->num_cols;
2020 }
2021
2022 ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2023 ctx->rot_mode = rot_mode;
2024
2025 ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2026 if (ret)
2027 goto out_free;
2028 ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2029 if (ret)
2030 goto out_free;
2031
2032 ret = calc_image_resize_coefficients(ctx, in, out);
2033 if (ret)
2034 goto out_free;
2035
2036 calc_out_tile_map(ctx);
2037
2038 find_seams(ctx, s_image, d_image);
2039
2040 calc_tile_dimensions(ctx, s_image);
2041 ret = calc_tile_offsets(ctx, s_image);
2042 if (ret)
2043 goto out_free;
2044
2045 calc_tile_dimensions(ctx, d_image);
2046 ret = calc_tile_offsets(ctx, d_image);
2047 if (ret)
2048 goto out_free;
2049
2050 calc_tile_resize_coefficients(ctx);
2051
2052 dump_format(ctx, s_image);
2053 dump_format(ctx, d_image);
2054
2055 ctx->complete = complete;
2056 ctx->complete_context = complete_context;
2057
2058 /*
2059 * Can we use double-buffering for this operation? If there is
2060 * only one tile (the whole image can be converted in a single
2061 * operation) there's no point in using double-buffering. Also,
2062 * the IPU's IDMAC channels allow only a single U and V plane
2063 * offset shared between both buffers, but these offsets change
2064 * for every tile, and therefore would have to be updated for
2065 * each buffer which is not possible. So double-buffering is
2066 * impossible when either the source or destination images are
2067 * a planar format (YUV420, YUV422P, etc.). Further, differently
2068 * sized tiles or different resizing coefficients per tile
2069 * prevent double-buffering as well.
2070 */
2071 ctx->double_buffering = (ctx->num_tiles > 1 &&
2072 !s_image->fmt->planar &&
2073 !d_image->fmt->planar);
2074 for (i = 1; i < ctx->num_tiles; i++) {
2075 if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2076 ctx->in.tile[i].height != ctx->in.tile[0].height ||
2077 ctx->out.tile[i].width != ctx->out.tile[0].width ||
2078 ctx->out.tile[i].height != ctx->out.tile[0].height) {
2079 ctx->double_buffering = false;
2080 break;
2081 }
2082 }
2083 for (i = 1; i < ctx->in.num_cols; i++) {
2084 if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2085 ctx->double_buffering = false;
2086 break;
2087 }
2088 }
2089 for (i = 1; i < ctx->in.num_rows; i++) {
2090 if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2091 ctx->double_buffering = false;
2092 break;
2093 }
2094 }
2095
2096 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2097 unsigned long intermediate_size = d_image->tile[0].size;
2098
2099 for (i = 1; i < ctx->num_tiles; i++) {
2100 if (d_image->tile[i].size > intermediate_size)
2101 intermediate_size = d_image->tile[i].size;
2102 }
2103
2104 ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2105 intermediate_size);
2106 if (ret)
2107 goto out_free;
2108 if (ctx->double_buffering) {
2109 ret = alloc_dma_buf(priv,
2110 &ctx->rot_intermediate[1],
2111 intermediate_size);
2112 if (ret)
2113 goto out_free_dmabuf0;
2114 }
2115 }
2116
2117 spin_lock_irqsave(&chan->irqlock, flags);
2118
2119 get_res = list_empty(&chan->ctx_list);
2120
2121 list_add_tail(&ctx->list, &chan->ctx_list);
2122
2123 spin_unlock_irqrestore(&chan->irqlock, flags);
2124
2125 if (get_res) {
2126 ret = get_ipu_resources(chan);
2127 if (ret)
2128 goto out_free_dmabuf1;
2129 }
2130
2131 return ctx;
2132
2133 out_free_dmabuf1:
2134 free_dma_buf(priv, &ctx->rot_intermediate[1]);
2135 spin_lock_irqsave(&chan->irqlock, flags);
2136 list_del(&ctx->list);
2137 spin_unlock_irqrestore(&chan->irqlock, flags);
2138 out_free_dmabuf0:
2139 free_dma_buf(priv, &ctx->rot_intermediate[0]);
2140 out_free:
2141 kfree(ctx);
2142 return ERR_PTR(ret);
2143 }
2144 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2145
2146 /*
2147 * Carry out a single image conversion run. Only the physaddr's of the input
2148 * and output image buffers are needed. The conversion context must have
2149 * been created previously with ipu_image_convert_prepare().
2150 */
2151 int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2152 {
2153 struct ipu_image_convert_chan *chan;
2154 struct ipu_image_convert_priv *priv;
2155 struct ipu_image_convert_ctx *ctx;
2156 unsigned long flags;
2157 int ret = 0;
2158
2159 if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2160 return -EINVAL;
2161
2162 ctx = run->ctx;
2163 chan = ctx->chan;
2164 priv = chan->priv;
2165
2166 dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2167 chan->ic_task, ctx, run);
2168
2169 INIT_LIST_HEAD(&run->list);
2170
2171 spin_lock_irqsave(&chan->irqlock, flags);
2172
2173 if (ctx->aborting) {
2174 ret = -EIO;
2175 goto unlock;
2176 }
2177
2178 list_add_tail(&run->list, &chan->pending_q);
2179
2180 if (!chan->current_run) {
2181 ret = do_run(run);
2182 if (ret)
2183 chan->current_run = NULL;
2184 }
2185 unlock:
2186 spin_unlock_irqrestore(&chan->irqlock, flags);
2187 return ret;
2188 }
2189 EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2190
2191 /* Abort any active or pending conversions for this context */
2192 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2193 {
2194 struct ipu_image_convert_chan *chan = ctx->chan;
2195 struct ipu_image_convert_priv *priv = chan->priv;
2196 struct ipu_image_convert_run *run, *active_run, *tmp;
2197 unsigned long flags;
2198 int run_count, ret;
2199
2200 spin_lock_irqsave(&chan->irqlock, flags);
2201
2202 /* move all remaining pending runs in this context to done_q */
2203 list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2204 if (run->ctx != ctx)
2205 continue;
2206 run->status = -EIO;
2207 list_move_tail(&run->list, &chan->done_q);
2208 }
2209
2210 run_count = get_run_count(ctx, &chan->done_q);
2211 active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2212 chan->current_run : NULL;
2213
2214 if (active_run)
2215 reinit_completion(&ctx->aborted);
2216
2217 ctx->aborting = true;
2218
2219 spin_unlock_irqrestore(&chan->irqlock, flags);
2220
2221 if (!run_count && !active_run) {
2222 dev_dbg(priv->ipu->dev,
2223 "%s: task %u: no abort needed for ctx %p\n",
2224 __func__, chan->ic_task, ctx);
2225 return;
2226 }
2227
2228 if (!active_run) {
2229 empty_done_q(chan);
2230 return;
2231 }
2232
2233 dev_dbg(priv->ipu->dev,
2234 "%s: task %u: wait for completion: %d runs\n",
2235 __func__, chan->ic_task, run_count);
2236
2237 ret = wait_for_completion_timeout(&ctx->aborted,
2238 msecs_to_jiffies(10000));
2239 if (ret == 0) {
2240 dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2241 force_abort(ctx);
2242 }
2243 }
2244
2245 void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2246 {
2247 __ipu_image_convert_abort(ctx);
2248 ctx->aborting = false;
2249 }
2250 EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2251
2252 /* Unprepare image conversion context */
2253 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2254 {
2255 struct ipu_image_convert_chan *chan = ctx->chan;
2256 struct ipu_image_convert_priv *priv = chan->priv;
2257 unsigned long flags;
2258 bool put_res;
2259
2260 /* make sure no runs are hanging around */
2261 __ipu_image_convert_abort(ctx);
2262
2263 dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2264 chan->ic_task, ctx);
2265
2266 spin_lock_irqsave(&chan->irqlock, flags);
2267
2268 list_del(&ctx->list);
2269
2270 put_res = list_empty(&chan->ctx_list);
2271
2272 spin_unlock_irqrestore(&chan->irqlock, flags);
2273
2274 if (put_res)
2275 release_ipu_resources(chan);
2276
2277 free_dma_buf(priv, &ctx->rot_intermediate[1]);
2278 free_dma_buf(priv, &ctx->rot_intermediate[0]);
2279
2280 kfree(ctx);
2281 }
2282 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2283
2284 /*
2285 * "Canned" asynchronous single image conversion. Allocates and returns
2286 * a new conversion run. On successful return the caller must free the
2287 * run and call ipu_image_convert_unprepare() after conversion completes.
2288 */
2289 struct ipu_image_convert_run *
2290 ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2291 struct ipu_image *in, struct ipu_image *out,
2292 enum ipu_rotate_mode rot_mode,
2293 ipu_image_convert_cb_t complete,
2294 void *complete_context)
2295 {
2296 struct ipu_image_convert_ctx *ctx;
2297 struct ipu_image_convert_run *run;
2298 int ret;
2299
2300 ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2301 complete, complete_context);
2302 if (IS_ERR(ctx))
2303 return ERR_CAST(ctx);
2304
2305 run = kzalloc(sizeof(*run), GFP_KERNEL);
2306 if (!run) {
2307 ipu_image_convert_unprepare(ctx);
2308 return ERR_PTR(-ENOMEM);
2309 }
2310
2311 run->ctx = ctx;
2312 run->in_phys = in->phys0;
2313 run->out_phys = out->phys0;
2314
2315 ret = ipu_image_convert_queue(run);
2316 if (ret) {
2317 ipu_image_convert_unprepare(ctx);
2318 kfree(run);
2319 return ERR_PTR(ret);
2320 }
2321
2322 return run;
2323 }
2324 EXPORT_SYMBOL_GPL(ipu_image_convert);
2325
2326 /* "Canned" synchronous single image conversion */
2327 static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2328 void *data)
2329 {
2330 struct completion *comp = data;
2331
2332 complete(comp);
2333 }
2334
2335 int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2336 struct ipu_image *in, struct ipu_image *out,
2337 enum ipu_rotate_mode rot_mode)
2338 {
2339 struct ipu_image_convert_run *run;
2340 struct completion comp;
2341 int ret;
2342
2343 init_completion(&comp);
2344
2345 run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2346 image_convert_sync_complete, &comp);
2347 if (IS_ERR(run))
2348 return PTR_ERR(run);
2349
2350 ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2351 ret = (ret == 0) ? -ETIMEDOUT : 0;
2352
2353 ipu_image_convert_unprepare(run->ctx);
2354 kfree(run);
2355
2356 return ret;
2357 }
2358 EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2359
2360 int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2361 {
2362 struct ipu_image_convert_priv *priv;
2363 int i;
2364
2365 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2366 if (!priv)
2367 return -ENOMEM;
2368
2369 ipu->image_convert_priv = priv;
2370 priv->ipu = ipu;
2371
2372 for (i = 0; i < IC_NUM_TASKS; i++) {
2373 struct ipu_image_convert_chan *chan = &priv->chan[i];
2374
2375 chan->ic_task = i;
2376 chan->priv = priv;
2377 chan->dma_ch = &image_convert_dma_chan[i];
2378 chan->out_eof_irq = -1;
2379 chan->rot_out_eof_irq = -1;
2380
2381 spin_lock_init(&chan->irqlock);
2382 INIT_LIST_HEAD(&chan->ctx_list);
2383 INIT_LIST_HEAD(&chan->pending_q);
2384 INIT_LIST_HEAD(&chan->done_q);
2385 }
2386
2387 return 0;
2388 }
2389
2390 void ipu_image_convert_exit(struct ipu_soc *ipu)
2391 {
2392 }