]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/hwmon/drivetemp.c
Merge branch 'nvme-5.7' of git://git.infradead.org/nvme into block-5.7
[thirdparty/linux.git] / drivers / hwmon / drivetemp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Hwmon client for disk and solid state drives with temperature sensors
4 * Copyright (C) 2019 Zodiac Inflight Innovations
5 *
6 * With input from:
7 * Hwmon client for S.M.A.R.T. hard disk drives with temperature sensors.
8 * (C) 2018 Linus Walleij
9 *
10 * hwmon: Driver for SCSI/ATA temperature sensors
11 * by Constantin Baranov <const@mimas.ru>, submitted September 2009
12 *
13 * This drive supports reporting the temperatire of SATA drives. It can be
14 * easily extended to report the temperature of SCSI drives.
15 *
16 * The primary means to read drive temperatures and temperature limits
17 * for ATA drives is the SCT Command Transport feature set as specified in
18 * ATA8-ACS.
19 * It can be used to read the current drive temperature, temperature limits,
20 * and historic minimum and maximum temperatures. The SCT Command Transport
21 * feature set is documented in "AT Attachment 8 - ATA/ATAPI Command Set
22 * (ATA8-ACS)".
23 *
24 * If the SCT Command Transport feature set is not available, drive temperatures
25 * may be readable through SMART attributes. Since SMART attributes are not well
26 * defined, this method is only used as fallback mechanism.
27 *
28 * There are three SMART attributes which may report drive temperatures.
29 * Those are defined as follows (from
30 * http://www.cropel.com/library/smart-attribute-list.aspx).
31 *
32 * 190 Temperature Temperature, monitored by a sensor somewhere inside
33 * the drive. Raw value typicaly holds the actual
34 * temperature (hexadecimal) in its rightmost two digits.
35 *
36 * 194 Temperature Temperature, monitored by a sensor somewhere inside
37 * the drive. Raw value typicaly holds the actual
38 * temperature (hexadecimal) in its rightmost two digits.
39 *
40 * 231 Temperature Temperature, monitored by a sensor somewhere inside
41 * the drive. Raw value typicaly holds the actual
42 * temperature (hexadecimal) in its rightmost two digits.
43 *
44 * Wikipedia defines attributes a bit differently.
45 *
46 * 190 Temperature Value is equal to (100-temp. °C), allowing manufacturer
47 * Difference or to set a minimum threshold which corresponds to a
48 * Airflow maximum temperature. This also follows the convention of
49 * Temperature 100 being a best-case value and lower values being
50 * undesirable. However, some older drives may instead
51 * report raw Temperature (identical to 0xC2) or
52 * Temperature minus 50 here.
53 * 194 Temperature or Indicates the device temperature, if the appropriate
54 * Temperature sensor is fitted. Lowest byte of the raw value contains
55 * Celsius the exact temperature value (Celsius degrees).
56 * 231 Life Left Indicates the approximate SSD life left, in terms of
57 * (SSDs) or program/erase cycles or available reserved blocks.
58 * Temperature A normalized value of 100 represents a new drive, with
59 * a threshold value at 10 indicating a need for
60 * replacement. A value of 0 may mean that the drive is
61 * operating in read-only mode to allow data recovery.
62 * Previously (pre-2010) occasionally used for Drive
63 * Temperature (more typically reported at 0xC2).
64 *
65 * Common denominator is that the first raw byte reports the temperature
66 * in degrees C on almost all drives. Some drives may report a fractional
67 * temperature in the second raw byte.
68 *
69 * Known exceptions (from libatasmart):
70 * - SAMSUNG SV0412H and SAMSUNG SV1204H) report the temperature in 10th
71 * degrees C in the first two raw bytes.
72 * - A few Maxtor drives report an unknown or bad value in attribute 194.
73 * - Certain Apple SSD drives report an unknown value in attribute 190.
74 * Only certain firmware versions are affected.
75 *
76 * Those exceptions affect older ATA drives and are currently ignored.
77 * Also, the second raw byte (possibly reporting the fractional temperature)
78 * is currently ignored.
79 *
80 * Many drives also report temperature limits in additional SMART data raw
81 * bytes. The format of those is not well defined and varies widely.
82 * The driver does not currently attempt to report those limits.
83 *
84 * According to data in smartmontools, attribute 231 is rarely used to report
85 * drive temperatures. At the same time, several drives report SSD life left
86 * in attribute 231, but do not support temperature sensors. For this reason,
87 * attribute 231 is currently ignored.
88 *
89 * Following above definitions, temperatures are reported as follows.
90 * If SCT Command Transport is supported, it is used to read the
91 * temperature and, if available, temperature limits.
92 * - Otherwise, if SMART attribute 194 is supported, it is used to read
93 * the temperature.
94 * - Otherwise, if SMART attribute 190 is supported, it is used to read
95 * the temperature.
96 */
97
98 #include <linux/ata.h>
99 #include <linux/bits.h>
100 #include <linux/device.h>
101 #include <linux/hwmon.h>
102 #include <linux/kernel.h>
103 #include <linux/list.h>
104 #include <linux/module.h>
105 #include <linux/mutex.h>
106 #include <scsi/scsi_cmnd.h>
107 #include <scsi/scsi_device.h>
108 #include <scsi/scsi_driver.h>
109 #include <scsi/scsi_proto.h>
110
111 struct drivetemp_data {
112 struct list_head list; /* list of instantiated devices */
113 struct mutex lock; /* protect data buffer accesses */
114 struct scsi_device *sdev; /* SCSI device */
115 struct device *dev; /* instantiating device */
116 struct device *hwdev; /* hardware monitoring device */
117 u8 smartdata[ATA_SECT_SIZE]; /* local buffer */
118 int (*get_temp)(struct drivetemp_data *st, u32 attr, long *val);
119 bool have_temp_lowest; /* lowest temp in SCT status */
120 bool have_temp_highest; /* highest temp in SCT status */
121 bool have_temp_min; /* have min temp */
122 bool have_temp_max; /* have max temp */
123 bool have_temp_lcrit; /* have lower critical limit */
124 bool have_temp_crit; /* have critical limit */
125 int temp_min; /* min temp */
126 int temp_max; /* max temp */
127 int temp_lcrit; /* lower critical limit */
128 int temp_crit; /* critical limit */
129 };
130
131 static LIST_HEAD(drivetemp_devlist);
132
133 #define ATA_MAX_SMART_ATTRS 30
134 #define SMART_TEMP_PROP_190 190
135 #define SMART_TEMP_PROP_194 194
136
137 #define SCT_STATUS_REQ_ADDR 0xe0
138 #define SCT_STATUS_VERSION_LOW 0 /* log byte offsets */
139 #define SCT_STATUS_VERSION_HIGH 1
140 #define SCT_STATUS_TEMP 200
141 #define SCT_STATUS_TEMP_LOWEST 201
142 #define SCT_STATUS_TEMP_HIGHEST 202
143 #define SCT_READ_LOG_ADDR 0xe1
144 #define SMART_READ_LOG 0xd5
145 #define SMART_WRITE_LOG 0xd6
146
147 #define INVALID_TEMP 0x80
148
149 #define temp_is_valid(temp) ((temp) != INVALID_TEMP)
150 #define temp_from_sct(temp) (((s8)(temp)) * 1000)
151
152 static inline bool ata_id_smart_supported(u16 *id)
153 {
154 return id[ATA_ID_COMMAND_SET_1] & BIT(0);
155 }
156
157 static inline bool ata_id_smart_enabled(u16 *id)
158 {
159 return id[ATA_ID_CFS_ENABLE_1] & BIT(0);
160 }
161
162 static int drivetemp_scsi_command(struct drivetemp_data *st,
163 u8 ata_command, u8 feature,
164 u8 lba_low, u8 lba_mid, u8 lba_high)
165 {
166 u8 scsi_cmd[MAX_COMMAND_SIZE];
167 int data_dir;
168
169 memset(scsi_cmd, 0, sizeof(scsi_cmd));
170 scsi_cmd[0] = ATA_16;
171 if (ata_command == ATA_CMD_SMART && feature == SMART_WRITE_LOG) {
172 scsi_cmd[1] = (5 << 1); /* PIO Data-out */
173 /*
174 * No off.line or cc, write to dev, block count in sector count
175 * field.
176 */
177 scsi_cmd[2] = 0x06;
178 data_dir = DMA_TO_DEVICE;
179 } else {
180 scsi_cmd[1] = (4 << 1); /* PIO Data-in */
181 /*
182 * No off.line or cc, read from dev, block count in sector count
183 * field.
184 */
185 scsi_cmd[2] = 0x0e;
186 data_dir = DMA_FROM_DEVICE;
187 }
188 scsi_cmd[4] = feature;
189 scsi_cmd[6] = 1; /* 1 sector */
190 scsi_cmd[8] = lba_low;
191 scsi_cmd[10] = lba_mid;
192 scsi_cmd[12] = lba_high;
193 scsi_cmd[14] = ata_command;
194
195 return scsi_execute_req(st->sdev, scsi_cmd, data_dir,
196 st->smartdata, ATA_SECT_SIZE, NULL, HZ, 5,
197 NULL);
198 }
199
200 static int drivetemp_ata_command(struct drivetemp_data *st, u8 feature,
201 u8 select)
202 {
203 return drivetemp_scsi_command(st, ATA_CMD_SMART, feature, select,
204 ATA_SMART_LBAM_PASS, ATA_SMART_LBAH_PASS);
205 }
206
207 static int drivetemp_get_smarttemp(struct drivetemp_data *st, u32 attr,
208 long *temp)
209 {
210 u8 *buf = st->smartdata;
211 bool have_temp = false;
212 u8 temp_raw;
213 u8 csum;
214 int err;
215 int i;
216
217 err = drivetemp_ata_command(st, ATA_SMART_READ_VALUES, 0);
218 if (err)
219 return err;
220
221 /* Checksum the read value table */
222 csum = 0;
223 for (i = 0; i < ATA_SECT_SIZE; i++)
224 csum += buf[i];
225 if (csum) {
226 dev_dbg(&st->sdev->sdev_gendev,
227 "checksum error reading SMART values\n");
228 return -EIO;
229 }
230
231 for (i = 0; i < ATA_MAX_SMART_ATTRS; i++) {
232 u8 *attr = buf + i * 12;
233 int id = attr[2];
234
235 if (!id)
236 continue;
237
238 if (id == SMART_TEMP_PROP_190) {
239 temp_raw = attr[7];
240 have_temp = true;
241 }
242 if (id == SMART_TEMP_PROP_194) {
243 temp_raw = attr[7];
244 have_temp = true;
245 break;
246 }
247 }
248
249 if (have_temp) {
250 *temp = temp_raw * 1000;
251 return 0;
252 }
253
254 return -ENXIO;
255 }
256
257 static int drivetemp_get_scttemp(struct drivetemp_data *st, u32 attr, long *val)
258 {
259 u8 *buf = st->smartdata;
260 int err;
261
262 err = drivetemp_ata_command(st, SMART_READ_LOG, SCT_STATUS_REQ_ADDR);
263 if (err)
264 return err;
265 switch (attr) {
266 case hwmon_temp_input:
267 *val = temp_from_sct(buf[SCT_STATUS_TEMP]);
268 break;
269 case hwmon_temp_lowest:
270 *val = temp_from_sct(buf[SCT_STATUS_TEMP_LOWEST]);
271 break;
272 case hwmon_temp_highest:
273 *val = temp_from_sct(buf[SCT_STATUS_TEMP_HIGHEST]);
274 break;
275 default:
276 err = -EINVAL;
277 break;
278 }
279 return err;
280 }
281
282 static int drivetemp_identify_sata(struct drivetemp_data *st)
283 {
284 struct scsi_device *sdev = st->sdev;
285 u8 *buf = st->smartdata;
286 struct scsi_vpd *vpd;
287 bool is_ata, is_sata;
288 bool have_sct_data_table;
289 bool have_sct_temp;
290 bool have_smart;
291 bool have_sct;
292 u16 *ata_id;
293 u16 version;
294 long temp;
295 int err;
296
297 /* SCSI-ATA Translation present? */
298 rcu_read_lock();
299 vpd = rcu_dereference(sdev->vpd_pg89);
300
301 /*
302 * Verify that ATA IDENTIFY DEVICE data is included in ATA Information
303 * VPD and that the drive implements the SATA protocol.
304 */
305 if (!vpd || vpd->len < 572 || vpd->data[56] != ATA_CMD_ID_ATA ||
306 vpd->data[36] != 0x34) {
307 rcu_read_unlock();
308 return -ENODEV;
309 }
310 ata_id = (u16 *)&vpd->data[60];
311 is_ata = ata_id_is_ata(ata_id);
312 is_sata = ata_id_is_sata(ata_id);
313 have_sct = ata_id_sct_supported(ata_id);
314 have_sct_data_table = ata_id_sct_data_tables(ata_id);
315 have_smart = ata_id_smart_supported(ata_id) &&
316 ata_id_smart_enabled(ata_id);
317
318 rcu_read_unlock();
319
320 /* bail out if this is not a SATA device */
321 if (!is_ata || !is_sata)
322 return -ENODEV;
323 if (!have_sct)
324 goto skip_sct;
325
326 err = drivetemp_ata_command(st, SMART_READ_LOG, SCT_STATUS_REQ_ADDR);
327 if (err)
328 goto skip_sct;
329
330 version = (buf[SCT_STATUS_VERSION_HIGH] << 8) |
331 buf[SCT_STATUS_VERSION_LOW];
332 if (version != 2 && version != 3)
333 goto skip_sct;
334
335 have_sct_temp = temp_is_valid(buf[SCT_STATUS_TEMP]);
336 if (!have_sct_temp)
337 goto skip_sct;
338
339 st->have_temp_lowest = temp_is_valid(buf[SCT_STATUS_TEMP_LOWEST]);
340 st->have_temp_highest = temp_is_valid(buf[SCT_STATUS_TEMP_HIGHEST]);
341
342 if (!have_sct_data_table)
343 goto skip_sct;
344
345 /* Request and read temperature history table */
346 memset(buf, '\0', sizeof(st->smartdata));
347 buf[0] = 5; /* data table command */
348 buf[2] = 1; /* read table */
349 buf[4] = 2; /* temperature history table */
350
351 err = drivetemp_ata_command(st, SMART_WRITE_LOG, SCT_STATUS_REQ_ADDR);
352 if (err)
353 goto skip_sct_data;
354
355 err = drivetemp_ata_command(st, SMART_READ_LOG, SCT_READ_LOG_ADDR);
356 if (err)
357 goto skip_sct_data;
358
359 /*
360 * Temperature limits per AT Attachment 8 -
361 * ATA/ATAPI Command Set (ATA8-ACS)
362 */
363 st->have_temp_max = temp_is_valid(buf[6]);
364 st->have_temp_crit = temp_is_valid(buf[7]);
365 st->have_temp_min = temp_is_valid(buf[8]);
366 st->have_temp_lcrit = temp_is_valid(buf[9]);
367
368 st->temp_max = temp_from_sct(buf[6]);
369 st->temp_crit = temp_from_sct(buf[7]);
370 st->temp_min = temp_from_sct(buf[8]);
371 st->temp_lcrit = temp_from_sct(buf[9]);
372
373 skip_sct_data:
374 if (have_sct_temp) {
375 st->get_temp = drivetemp_get_scttemp;
376 return 0;
377 }
378 skip_sct:
379 if (!have_smart)
380 return -ENODEV;
381 st->get_temp = drivetemp_get_smarttemp;
382 return drivetemp_get_smarttemp(st, hwmon_temp_input, &temp);
383 }
384
385 static int drivetemp_identify(struct drivetemp_data *st)
386 {
387 struct scsi_device *sdev = st->sdev;
388
389 /* Bail out immediately if there is no inquiry data */
390 if (!sdev->inquiry || sdev->inquiry_len < 16)
391 return -ENODEV;
392
393 /* Disk device? */
394 if (sdev->type != TYPE_DISK && sdev->type != TYPE_ZBC)
395 return -ENODEV;
396
397 return drivetemp_identify_sata(st);
398 }
399
400 static int drivetemp_read(struct device *dev, enum hwmon_sensor_types type,
401 u32 attr, int channel, long *val)
402 {
403 struct drivetemp_data *st = dev_get_drvdata(dev);
404 int err = 0;
405
406 if (type != hwmon_temp)
407 return -EINVAL;
408
409 switch (attr) {
410 case hwmon_temp_input:
411 case hwmon_temp_lowest:
412 case hwmon_temp_highest:
413 mutex_lock(&st->lock);
414 err = st->get_temp(st, attr, val);
415 mutex_unlock(&st->lock);
416 break;
417 case hwmon_temp_lcrit:
418 *val = st->temp_lcrit;
419 break;
420 case hwmon_temp_min:
421 *val = st->temp_min;
422 break;
423 case hwmon_temp_max:
424 *val = st->temp_max;
425 break;
426 case hwmon_temp_crit:
427 *val = st->temp_crit;
428 break;
429 default:
430 err = -EINVAL;
431 break;
432 }
433 return err;
434 }
435
436 static umode_t drivetemp_is_visible(const void *data,
437 enum hwmon_sensor_types type,
438 u32 attr, int channel)
439 {
440 const struct drivetemp_data *st = data;
441
442 switch (type) {
443 case hwmon_temp:
444 switch (attr) {
445 case hwmon_temp_input:
446 return 0444;
447 case hwmon_temp_lowest:
448 if (st->have_temp_lowest)
449 return 0444;
450 break;
451 case hwmon_temp_highest:
452 if (st->have_temp_highest)
453 return 0444;
454 break;
455 case hwmon_temp_min:
456 if (st->have_temp_min)
457 return 0444;
458 break;
459 case hwmon_temp_max:
460 if (st->have_temp_max)
461 return 0444;
462 break;
463 case hwmon_temp_lcrit:
464 if (st->have_temp_lcrit)
465 return 0444;
466 break;
467 case hwmon_temp_crit:
468 if (st->have_temp_crit)
469 return 0444;
470 break;
471 default:
472 break;
473 }
474 break;
475 default:
476 break;
477 }
478 return 0;
479 }
480
481 static const struct hwmon_channel_info *drivetemp_info[] = {
482 HWMON_CHANNEL_INFO(chip,
483 HWMON_C_REGISTER_TZ),
484 HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT |
485 HWMON_T_LOWEST | HWMON_T_HIGHEST |
486 HWMON_T_MIN | HWMON_T_MAX |
487 HWMON_T_LCRIT | HWMON_T_CRIT),
488 NULL
489 };
490
491 static const struct hwmon_ops drivetemp_ops = {
492 .is_visible = drivetemp_is_visible,
493 .read = drivetemp_read,
494 };
495
496 static const struct hwmon_chip_info drivetemp_chip_info = {
497 .ops = &drivetemp_ops,
498 .info = drivetemp_info,
499 };
500
501 /*
502 * The device argument points to sdev->sdev_dev. Its parent is
503 * sdev->sdev_gendev, which we can use to get the scsi_device pointer.
504 */
505 static int drivetemp_add(struct device *dev, struct class_interface *intf)
506 {
507 struct scsi_device *sdev = to_scsi_device(dev->parent);
508 struct drivetemp_data *st;
509 int err;
510
511 st = kzalloc(sizeof(*st), GFP_KERNEL);
512 if (!st)
513 return -ENOMEM;
514
515 st->sdev = sdev;
516 st->dev = dev;
517 mutex_init(&st->lock);
518
519 if (drivetemp_identify(st)) {
520 err = -ENODEV;
521 goto abort;
522 }
523
524 st->hwdev = hwmon_device_register_with_info(dev->parent, "drivetemp",
525 st, &drivetemp_chip_info,
526 NULL);
527 if (IS_ERR(st->hwdev)) {
528 err = PTR_ERR(st->hwdev);
529 goto abort;
530 }
531
532 list_add(&st->list, &drivetemp_devlist);
533 return 0;
534
535 abort:
536 kfree(st);
537 return err;
538 }
539
540 static void drivetemp_remove(struct device *dev, struct class_interface *intf)
541 {
542 struct drivetemp_data *st, *tmp;
543
544 list_for_each_entry_safe(st, tmp, &drivetemp_devlist, list) {
545 if (st->dev == dev) {
546 list_del(&st->list);
547 hwmon_device_unregister(st->hwdev);
548 kfree(st);
549 break;
550 }
551 }
552 }
553
554 static struct class_interface drivetemp_interface = {
555 .add_dev = drivetemp_add,
556 .remove_dev = drivetemp_remove,
557 };
558
559 static int __init drivetemp_init(void)
560 {
561 return scsi_register_interface(&drivetemp_interface);
562 }
563
564 static void __exit drivetemp_exit(void)
565 {
566 scsi_unregister_interface(&drivetemp_interface);
567 }
568
569 module_init(drivetemp_init);
570 module_exit(drivetemp_exit);
571
572 MODULE_AUTHOR("Guenter Roeck <linus@roeck-us.net>");
573 MODULE_DESCRIPTION("Hard drive temperature monitor");
574 MODULE_LICENSE("GPL");