]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/i2c/mxs_i2c.c
Merge branch 'master' of git://www.denx.de/git/u-boot-cfi-flash
[people/ms/u-boot.git] / drivers / i2c / mxs_i2c.c
1 /*
2 * Freescale i.MX28 I2C Driver
3 *
4 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
5 * on behalf of DENX Software Engineering GmbH
6 *
7 * Partly based on Linux kernel i2c-mxs.c driver:
8 * Copyright (C) 2011 Wolfram Sang, Pengutronix e.K.
9 *
10 * Which was based on a (non-working) driver which was:
11 * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
12 *
13 * SPDX-License-Identifier: GPL-2.0+
14 */
15
16 #include <common.h>
17 #include <malloc.h>
18 #include <i2c.h>
19 #include <asm/errno.h>
20 #include <asm/io.h>
21 #include <asm/arch/clock.h>
22 #include <asm/arch/imx-regs.h>
23 #include <asm/arch/sys_proto.h>
24
25 #define MXS_I2C_MAX_TIMEOUT 1000000
26
27 static void mxs_i2c_reset(void)
28 {
29 struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
30 int ret;
31 int speed = i2c_get_bus_speed();
32
33 ret = mxs_reset_block(&i2c_regs->hw_i2c_ctrl0_reg);
34 if (ret) {
35 debug("MXS I2C: Block reset timeout\n");
36 return;
37 }
38
39 writel(I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | I2C_CTRL1_NO_SLAVE_ACK_IRQ |
40 I2C_CTRL1_EARLY_TERM_IRQ | I2C_CTRL1_MASTER_LOSS_IRQ |
41 I2C_CTRL1_SLAVE_STOP_IRQ | I2C_CTRL1_SLAVE_IRQ,
42 &i2c_regs->hw_i2c_ctrl1_clr);
43
44 writel(I2C_QUEUECTRL_PIO_QUEUE_MODE, &i2c_regs->hw_i2c_queuectrl_set);
45
46 i2c_set_bus_speed(speed);
47 }
48
49 static void mxs_i2c_setup_read(uint8_t chip, int len)
50 {
51 struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
52
53 writel(I2C_QUEUECMD_RETAIN_CLOCK | I2C_QUEUECMD_PRE_SEND_START |
54 I2C_QUEUECMD_MASTER_MODE | I2C_QUEUECMD_DIRECTION |
55 (1 << I2C_QUEUECMD_XFER_COUNT_OFFSET),
56 &i2c_regs->hw_i2c_queuecmd);
57
58 writel((chip << 1) | 1, &i2c_regs->hw_i2c_data);
59
60 writel(I2C_QUEUECMD_SEND_NAK_ON_LAST | I2C_QUEUECMD_MASTER_MODE |
61 (len << I2C_QUEUECMD_XFER_COUNT_OFFSET) |
62 I2C_QUEUECMD_POST_SEND_STOP, &i2c_regs->hw_i2c_queuecmd);
63
64 writel(I2C_QUEUECTRL_QUEUE_RUN, &i2c_regs->hw_i2c_queuectrl_set);
65 }
66
67 static void mxs_i2c_write(uchar chip, uint addr, int alen,
68 uchar *buf, int blen, int stop)
69 {
70 struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
71 uint32_t data;
72 int i, remain, off;
73
74 if ((alen > 4) || (alen == 0)) {
75 debug("MXS I2C: Invalid address length\n");
76 return;
77 }
78
79 if (stop)
80 stop = I2C_QUEUECMD_POST_SEND_STOP;
81
82 writel(I2C_QUEUECMD_PRE_SEND_START |
83 I2C_QUEUECMD_MASTER_MODE | I2C_QUEUECMD_DIRECTION |
84 ((blen + alen + 1) << I2C_QUEUECMD_XFER_COUNT_OFFSET) | stop,
85 &i2c_regs->hw_i2c_queuecmd);
86
87 data = (chip << 1) << 24;
88
89 for (i = 0; i < alen; i++) {
90 data >>= 8;
91 data |= ((char *)&addr)[alen - i - 1] << 24;
92 if ((i & 3) == 2)
93 writel(data, &i2c_regs->hw_i2c_data);
94 }
95
96 off = i;
97 for (; i < off + blen; i++) {
98 data >>= 8;
99 data |= buf[i - off] << 24;
100 if ((i & 3) == 2)
101 writel(data, &i2c_regs->hw_i2c_data);
102 }
103
104 remain = 24 - ((i & 3) * 8);
105 if (remain)
106 writel(data >> remain, &i2c_regs->hw_i2c_data);
107
108 writel(I2C_QUEUECTRL_QUEUE_RUN, &i2c_regs->hw_i2c_queuectrl_set);
109 }
110
111 static int mxs_i2c_wait_for_ack(void)
112 {
113 struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
114 uint32_t tmp;
115 int timeout = MXS_I2C_MAX_TIMEOUT;
116
117 for (;;) {
118 tmp = readl(&i2c_regs->hw_i2c_ctrl1);
119 if (tmp & I2C_CTRL1_NO_SLAVE_ACK_IRQ) {
120 debug("MXS I2C: No slave ACK\n");
121 goto err;
122 }
123
124 if (tmp & (
125 I2C_CTRL1_EARLY_TERM_IRQ | I2C_CTRL1_MASTER_LOSS_IRQ |
126 I2C_CTRL1_SLAVE_STOP_IRQ | I2C_CTRL1_SLAVE_IRQ)) {
127 debug("MXS I2C: Error (CTRL1 = %08x)\n", tmp);
128 goto err;
129 }
130
131 if (tmp & I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ)
132 break;
133
134 if (!timeout--) {
135 debug("MXS I2C: Operation timed out\n");
136 goto err;
137 }
138
139 udelay(1);
140 }
141
142 return 0;
143
144 err:
145 mxs_i2c_reset();
146 return 1;
147 }
148
149 int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
150 {
151 struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
152 uint32_t tmp = 0;
153 int ret;
154 int i;
155
156 mxs_i2c_write(chip, addr, alen, NULL, 0, 0);
157 ret = mxs_i2c_wait_for_ack();
158 if (ret) {
159 debug("MXS I2C: Failed writing address\n");
160 return ret;
161 }
162
163 mxs_i2c_setup_read(chip, len);
164 ret = mxs_i2c_wait_for_ack();
165 if (ret) {
166 debug("MXS I2C: Failed reading address\n");
167 return ret;
168 }
169
170 for (i = 0; i < len; i++) {
171 if (!(i & 3)) {
172 while (readl(&i2c_regs->hw_i2c_queuestat) &
173 I2C_QUEUESTAT_RD_QUEUE_EMPTY)
174 ;
175 tmp = readl(&i2c_regs->hw_i2c_queuedata);
176 }
177 buffer[i] = tmp & 0xff;
178 tmp >>= 8;
179 }
180
181 return 0;
182 }
183
184 int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
185 {
186 int ret;
187 mxs_i2c_write(chip, addr, alen, buffer, len, 1);
188 ret = mxs_i2c_wait_for_ack();
189 if (ret)
190 debug("MXS I2C: Failed writing address\n");
191
192 return ret;
193 }
194
195 int i2c_probe(uchar chip)
196 {
197 int ret;
198 mxs_i2c_write(chip, 0, 1, NULL, 0, 1);
199 ret = mxs_i2c_wait_for_ack();
200 mxs_i2c_reset();
201 return ret;
202 }
203
204 int i2c_set_bus_speed(unsigned int speed)
205 {
206 struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
207 /*
208 * The timing derivation algorithm. There is no documentation for this
209 * algorithm available, it was derived by using the scope and fiddling
210 * with constants until the result observed on the scope was good enough
211 * for 20kHz, 50kHz, 100kHz, 200kHz, 300kHz and 400kHz. It should be
212 * possible to assume the algorithm works for other frequencies as well.
213 *
214 * Note it was necessary to cap the frequency on both ends as it's not
215 * possible to configure completely arbitrary frequency for the I2C bus
216 * clock.
217 */
218 uint32_t clk = mxc_get_clock(MXC_XTAL_CLK);
219 uint32_t base = ((clk / speed) - 38) / 2;
220 uint16_t high_count = base + 3;
221 uint16_t low_count = base - 3;
222 uint16_t rcv_count = (high_count * 3) / 4;
223 uint16_t xmit_count = low_count / 4;
224
225 if (speed > 540000) {
226 printf("MXS I2C: Speed too high (%d Hz)\n", speed);
227 return -EINVAL;
228 }
229
230 if (speed < 12000) {
231 printf("MXS I2C: Speed too low (%d Hz)\n", speed);
232 return -EINVAL;
233 }
234
235 writel((high_count << 16) | rcv_count, &i2c_regs->hw_i2c_timing0);
236 writel((low_count << 16) | xmit_count, &i2c_regs->hw_i2c_timing1);
237
238 writel((0x0030 << I2C_TIMING2_BUS_FREE_OFFSET) |
239 (0x0030 << I2C_TIMING2_LEADIN_COUNT_OFFSET),
240 &i2c_regs->hw_i2c_timing2);
241
242 return 0;
243 }
244
245 unsigned int i2c_get_bus_speed(void)
246 {
247 struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
248 uint32_t clk = mxc_get_clock(MXC_XTAL_CLK);
249 uint32_t timing0;
250
251 timing0 = readl(&i2c_regs->hw_i2c_timing0);
252 /*
253 * This is a reverse version of the algorithm presented in
254 * i2c_set_bus_speed(). Please refer there for details.
255 */
256 return clk / ((((timing0 >> 16) - 3) * 2) + 38);
257 }
258
259 void i2c_init(int speed, int slaveadd)
260 {
261 mxs_i2c_reset();
262 i2c_set_bus_speed(speed);
263
264 return;
265 }