]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/i2c/omap24xx_i2c.c
arm64: mvebu: Enable CONFIG_PHY_MARVELL in Armada7k/8k-DB defconfig
[people/ms/u-boot.git] / drivers / i2c / omap24xx_i2c.c
1 /*
2 * Basic I2C functions
3 *
4 * Copyright (c) 2004 Texas Instruments
5 *
6 * This package is free software; you can redistribute it and/or
7 * modify it under the terms of the license found in the file
8 * named COPYING that should have accompanied this file.
9 *
10 * THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
11 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
12 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
13 *
14 * Author: Jian Zhang jzhang@ti.com, Texas Instruments
15 *
16 * Copyright (c) 2003 Wolfgang Denk, wd@denx.de
17 * Rewritten to fit into the current U-Boot framework
18 *
19 * Adapted for OMAP2420 I2C, r-woodruff2@ti.com
20 *
21 * Copyright (c) 2013 Lubomir Popov <lpopov@mm-sol.com>, MM Solutions
22 * New i2c_read, i2c_write and i2c_probe functions, tested on OMAP4
23 * (4430/60/70), OMAP5 (5430) and AM335X (3359); should work on older
24 * OMAPs and derivatives as well. The only anticipated exception would
25 * be the OMAP2420, which shall require driver modification.
26 * - Rewritten i2c_read to operate correctly with all types of chips
27 * (old function could not read consistent data from some I2C slaves).
28 * - Optimized i2c_write.
29 * - New i2c_probe, performs write access vs read. The old probe could
30 * hang the system under certain conditions (e.g. unconfigured pads).
31 * - The read/write/probe functions try to identify unconfigured bus.
32 * - Status functions now read irqstatus_raw as per TRM guidelines
33 * (except for OMAP243X and OMAP34XX).
34 * - Driver now supports up to I2C5 (OMAP5).
35 *
36 * Copyright (c) 2014 Hannes Schmelzer <oe5hpm@oevsv.at>, B&R
37 * - Added support for set_speed
38 *
39 */
40
41 #include <common.h>
42 #include <dm.h>
43 #include <i2c.h>
44
45 #include <asm/arch/i2c.h>
46 #include <asm/io.h>
47
48 #include "omap24xx_i2c.h"
49
50 DECLARE_GLOBAL_DATA_PTR;
51
52 #define I2C_TIMEOUT 1000
53
54 /* Absolutely safe for status update at 100 kHz I2C: */
55 #define I2C_WAIT 200
56
57 struct omap_i2c {
58 struct udevice *clk;
59 struct i2c *regs;
60 unsigned int speed;
61 int waitdelay;
62 int clk_id;
63 };
64
65 static int omap24_i2c_findpsc(u32 *pscl, u32 *psch, uint speed)
66 {
67 unsigned int sampleclk, prescaler;
68 int fsscll, fssclh;
69
70 speed <<= 1;
71 prescaler = 0;
72 /*
73 * some divisors may cause a precission loss, but shouldn't
74 * be a big thing, because i2c_clk is then allready very slow.
75 */
76 while (prescaler <= 0xFF) {
77 sampleclk = I2C_IP_CLK / (prescaler+1);
78
79 fsscll = sampleclk / speed;
80 fssclh = fsscll;
81 fsscll -= I2C_FASTSPEED_SCLL_TRIM;
82 fssclh -= I2C_FASTSPEED_SCLH_TRIM;
83
84 if (((fsscll > 0) && (fssclh > 0)) &&
85 ((fsscll <= (255-I2C_FASTSPEED_SCLL_TRIM)) &&
86 (fssclh <= (255-I2C_FASTSPEED_SCLH_TRIM)))) {
87 if (pscl)
88 *pscl = fsscll;
89 if (psch)
90 *psch = fssclh;
91
92 return prescaler;
93 }
94 prescaler++;
95 }
96 return -1;
97 }
98
99 /*
100 * Wait for the bus to be free by checking the Bus Busy (BB)
101 * bit to become clear
102 */
103 static int wait_for_bb(struct i2c *i2c_base, int waitdelay)
104 {
105 int timeout = I2C_TIMEOUT;
106 u16 stat;
107
108 writew(0xFFFF, &i2c_base->stat); /* clear current interrupts...*/
109 #if defined(CONFIG_OMAP243X) || defined(CONFIG_OMAP34XX)
110 while ((stat = readw(&i2c_base->stat) & I2C_STAT_BB) && timeout--) {
111 #else
112 /* Read RAW status */
113 while ((stat = readw(&i2c_base->irqstatus_raw) &
114 I2C_STAT_BB) && timeout--) {
115 #endif
116 writew(stat, &i2c_base->stat);
117 udelay(waitdelay);
118 }
119
120 if (timeout <= 0) {
121 printf("Timed out in wait_for_bb: status=%04x\n",
122 stat);
123 return 1;
124 }
125 writew(0xFFFF, &i2c_base->stat); /* clear delayed stuff*/
126 return 0;
127 }
128
129 /*
130 * Wait for the I2C controller to complete current action
131 * and update status
132 */
133 static u16 wait_for_event(struct i2c *i2c_base, int waitdelay)
134 {
135 u16 status;
136 int timeout = I2C_TIMEOUT;
137
138 do {
139 udelay(waitdelay);
140 #if defined(CONFIG_OMAP243X) || defined(CONFIG_OMAP34XX)
141 status = readw(&i2c_base->stat);
142 #else
143 /* Read RAW status */
144 status = readw(&i2c_base->irqstatus_raw);
145 #endif
146 } while (!(status &
147 (I2C_STAT_ROVR | I2C_STAT_XUDF | I2C_STAT_XRDY |
148 I2C_STAT_RRDY | I2C_STAT_ARDY | I2C_STAT_NACK |
149 I2C_STAT_AL)) && timeout--);
150
151 if (timeout <= 0) {
152 printf("Timed out in wait_for_event: status=%04x\n",
153 status);
154 /*
155 * If status is still 0 here, probably the bus pads have
156 * not been configured for I2C, and/or pull-ups are missing.
157 */
158 printf("Check if pads/pull-ups of bus are properly configured\n");
159 writew(0xFFFF, &i2c_base->stat);
160 status = 0;
161 }
162
163 return status;
164 }
165
166 static void flush_fifo(struct i2c *i2c_base)
167 {
168 u16 stat;
169
170 /*
171 * note: if you try and read data when its not there or ready
172 * you get a bus error
173 */
174 while (1) {
175 stat = readw(&i2c_base->stat);
176 if (stat == I2C_STAT_RRDY) {
177 readb(&i2c_base->data);
178 writew(I2C_STAT_RRDY, &i2c_base->stat);
179 udelay(1000);
180 } else
181 break;
182 }
183 }
184
185 static int __omap24_i2c_setspeed(struct i2c *i2c_base, uint speed,
186 int *waitdelay)
187 {
188 int psc, fsscll = 0, fssclh = 0;
189 int hsscll = 0, hssclh = 0;
190 u32 scll = 0, sclh = 0;
191
192 if (speed >= OMAP_I2C_HIGH_SPEED) {
193 /* High speed */
194 psc = I2C_IP_CLK / I2C_INTERNAL_SAMPLING_CLK;
195 psc -= 1;
196 if (psc < I2C_PSC_MIN) {
197 printf("Error : I2C unsupported prescaler %d\n", psc);
198 return -1;
199 }
200
201 /* For first phase of HS mode */
202 fsscll = I2C_INTERNAL_SAMPLING_CLK / (2 * speed);
203
204 fssclh = fsscll;
205
206 fsscll -= I2C_HIGHSPEED_PHASE_ONE_SCLL_TRIM;
207 fssclh -= I2C_HIGHSPEED_PHASE_ONE_SCLH_TRIM;
208 if (((fsscll < 0) || (fssclh < 0)) ||
209 ((fsscll > 255) || (fssclh > 255))) {
210 puts("Error : I2C initializing first phase clock\n");
211 return -1;
212 }
213
214 /* For second phase of HS mode */
215 hsscll = hssclh = I2C_INTERNAL_SAMPLING_CLK / (2 * speed);
216
217 hsscll -= I2C_HIGHSPEED_PHASE_TWO_SCLL_TRIM;
218 hssclh -= I2C_HIGHSPEED_PHASE_TWO_SCLH_TRIM;
219 if (((fsscll < 0) || (fssclh < 0)) ||
220 ((fsscll > 255) || (fssclh > 255))) {
221 puts("Error : I2C initializing second phase clock\n");
222 return -1;
223 }
224
225 scll = (unsigned int)hsscll << 8 | (unsigned int)fsscll;
226 sclh = (unsigned int)hssclh << 8 | (unsigned int)fssclh;
227
228 } else {
229 /* Standard and fast speed */
230 psc = omap24_i2c_findpsc(&scll, &sclh, speed);
231 if (0 > psc) {
232 puts("Error : I2C initializing clock\n");
233 return -1;
234 }
235 }
236
237 *waitdelay = (10000000 / speed) * 2; /* wait for 20 clkperiods */
238 writew(0, &i2c_base->con);
239 writew(psc, &i2c_base->psc);
240 writew(scll, &i2c_base->scll);
241 writew(sclh, &i2c_base->sclh);
242 writew(I2C_CON_EN, &i2c_base->con);
243 writew(0xFFFF, &i2c_base->stat); /* clear all pending status */
244
245 return 0;
246 }
247
248 static void omap24_i2c_deblock(struct i2c *i2c_base)
249 {
250 int i;
251 u16 systest;
252 u16 orgsystest;
253
254 /* set test mode ST_EN = 1 */
255 orgsystest = readw(&i2c_base->systest);
256 systest = orgsystest;
257 /* enable testmode */
258 systest |= I2C_SYSTEST_ST_EN;
259 writew(systest, &i2c_base->systest);
260 systest &= ~I2C_SYSTEST_TMODE_MASK;
261 systest |= 3 << I2C_SYSTEST_TMODE_SHIFT;
262 writew(systest, &i2c_base->systest);
263
264 /* set SCL, SDA = 1 */
265 systest |= I2C_SYSTEST_SCL_O | I2C_SYSTEST_SDA_O;
266 writew(systest, &i2c_base->systest);
267 udelay(10);
268
269 /* toggle scl 9 clocks */
270 for (i = 0; i < 9; i++) {
271 /* SCL = 0 */
272 systest &= ~I2C_SYSTEST_SCL_O;
273 writew(systest, &i2c_base->systest);
274 udelay(10);
275 /* SCL = 1 */
276 systest |= I2C_SYSTEST_SCL_O;
277 writew(systest, &i2c_base->systest);
278 udelay(10);
279 }
280
281 /* send stop */
282 systest &= ~I2C_SYSTEST_SDA_O;
283 writew(systest, &i2c_base->systest);
284 udelay(10);
285 systest |= I2C_SYSTEST_SCL_O | I2C_SYSTEST_SDA_O;
286 writew(systest, &i2c_base->systest);
287 udelay(10);
288
289 /* restore original mode */
290 writew(orgsystest, &i2c_base->systest);
291 }
292
293 static void __omap24_i2c_init(struct i2c *i2c_base, int speed, int slaveadd,
294 int *waitdelay)
295 {
296 int timeout = I2C_TIMEOUT;
297 int deblock = 1;
298
299 retry:
300 if (readw(&i2c_base->con) & I2C_CON_EN) {
301 writew(0, &i2c_base->con);
302 udelay(50000);
303 }
304
305 writew(0x2, &i2c_base->sysc); /* for ES2 after soft reset */
306 udelay(1000);
307
308 writew(I2C_CON_EN, &i2c_base->con);
309 while (!(readw(&i2c_base->syss) & I2C_SYSS_RDONE) && timeout--) {
310 if (timeout <= 0) {
311 puts("ERROR: Timeout in soft-reset\n");
312 return;
313 }
314 udelay(1000);
315 }
316
317 if (0 != __omap24_i2c_setspeed(i2c_base, speed, waitdelay)) {
318 printf("ERROR: failed to setup I2C bus-speed!\n");
319 return;
320 }
321
322 /* own address */
323 writew(slaveadd, &i2c_base->oa);
324
325 #if defined(CONFIG_OMAP243X) || defined(CONFIG_OMAP34XX)
326 /*
327 * Have to enable interrupts for OMAP2/3, these IPs don't have
328 * an 'irqstatus_raw' register and we shall have to poll 'stat'
329 */
330 writew(I2C_IE_XRDY_IE | I2C_IE_RRDY_IE | I2C_IE_ARDY_IE |
331 I2C_IE_NACK_IE | I2C_IE_AL_IE, &i2c_base->ie);
332 #endif
333 udelay(1000);
334 flush_fifo(i2c_base);
335 writew(0xFFFF, &i2c_base->stat);
336
337 /* Handle possible failed I2C state */
338 if (wait_for_bb(i2c_base, *waitdelay))
339 if (deblock == 1) {
340 omap24_i2c_deblock(i2c_base);
341 deblock = 0;
342 goto retry;
343 }
344 }
345
346 /*
347 * i2c_probe: Use write access. Allows to identify addresses that are
348 * write-only (like the config register of dual-port EEPROMs)
349 */
350 static int __omap24_i2c_probe(struct i2c *i2c_base, int waitdelay, uchar chip)
351 {
352 u16 status;
353 int res = 1; /* default = fail */
354
355 if (chip == readw(&i2c_base->oa))
356 return res;
357
358 /* Wait until bus is free */
359 if (wait_for_bb(i2c_base, waitdelay))
360 return res;
361
362 /* No data transfer, slave addr only */
363 writew(chip, &i2c_base->sa);
364 /* Stop bit needed here */
365 writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_STT | I2C_CON_TRX |
366 I2C_CON_STP, &i2c_base->con);
367
368 status = wait_for_event(i2c_base, waitdelay);
369
370 if ((status & ~I2C_STAT_XRDY) == 0 || (status & I2C_STAT_AL)) {
371 /*
372 * With current high-level command implementation, notifying
373 * the user shall flood the console with 127 messages. If
374 * silent exit is desired upon unconfigured bus, remove the
375 * following 'if' section:
376 */
377 if (status == I2C_STAT_XRDY)
378 printf("i2c_probe: pads on bus probably not configured (status=0x%x)\n",
379 status);
380
381 goto pr_exit;
382 }
383
384 /* Check for ACK (!NAK) */
385 if (!(status & I2C_STAT_NACK)) {
386 res = 0; /* Device found */
387 udelay(waitdelay);/* Required by AM335X in SPL */
388 /* Abort transfer (force idle state) */
389 writew(I2C_CON_MST | I2C_CON_TRX, &i2c_base->con); /* Reset */
390 udelay(1000);
391 writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_TRX |
392 I2C_CON_STP, &i2c_base->con); /* STP */
393 }
394 pr_exit:
395 flush_fifo(i2c_base);
396 writew(0xFFFF, &i2c_base->stat);
397 return res;
398 }
399
400 /*
401 * i2c_read: Function now uses a single I2C read transaction with bulk transfer
402 * of the requested number of bytes (note that the 'i2c md' command
403 * limits this to 16 bytes anyway). If CONFIG_I2C_REPEATED_START is
404 * defined in the board config header, this transaction shall be with
405 * Repeated Start (Sr) between the address and data phases; otherwise
406 * Stop-Start (P-S) shall be used (some I2C chips do require a P-S).
407 * The address (reg offset) may be 0, 1 or 2 bytes long.
408 * Function now reads correctly from chips that return more than one
409 * byte of data per addressed register (like TI temperature sensors),
410 * or that do not need a register address at all (such as some clock
411 * distributors).
412 */
413 static int __omap24_i2c_read(struct i2c *i2c_base, int waitdelay, uchar chip,
414 uint addr, int alen, uchar *buffer, int len)
415 {
416 int i2c_error = 0;
417 u16 status;
418
419 if (alen < 0) {
420 puts("I2C read: addr len < 0\n");
421 return 1;
422 }
423 if (len < 0) {
424 puts("I2C read: data len < 0\n");
425 return 1;
426 }
427 if (buffer == NULL) {
428 puts("I2C read: NULL pointer passed\n");
429 return 1;
430 }
431
432 if (alen > 2) {
433 printf("I2C read: addr len %d not supported\n", alen);
434 return 1;
435 }
436
437 if (addr + len > (1 << 16)) {
438 puts("I2C read: address out of range\n");
439 return 1;
440 }
441
442 #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
443 /*
444 * EEPROM chips that implement "address overflow" are ones
445 * like Catalyst 24WC04/08/16 which has 9/10/11 bits of
446 * address and the extra bits end up in the "chip address"
447 * bit slots. This makes a 24WC08 (1Kbyte) chip look like
448 * four 256 byte chips.
449 *
450 * Note that we consider the length of the address field to
451 * still be one byte because the extra address bits are
452 * hidden in the chip address.
453 */
454 if (alen > 0)
455 chip |= ((addr >> (alen * 8)) &
456 CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
457 #endif
458
459 /* Wait until bus not busy */
460 if (wait_for_bb(i2c_base, waitdelay))
461 return 1;
462
463 /* Zero, one or two bytes reg address (offset) */
464 writew(alen, &i2c_base->cnt);
465 /* Set slave address */
466 writew(chip, &i2c_base->sa);
467
468 if (alen) {
469 /* Must write reg offset first */
470 #ifdef CONFIG_I2C_REPEATED_START
471 /* No stop bit, use Repeated Start (Sr) */
472 writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_STT |
473 I2C_CON_TRX, &i2c_base->con);
474 #else
475 /* Stop - Start (P-S) */
476 writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_STT | I2C_CON_STP |
477 I2C_CON_TRX, &i2c_base->con);
478 #endif
479 /* Send register offset */
480 while (1) {
481 status = wait_for_event(i2c_base, waitdelay);
482 /* Try to identify bus that is not padconf'd for I2C */
483 if (status == I2C_STAT_XRDY) {
484 i2c_error = 2;
485 printf("i2c_read (addr phase): pads on bus probably not configured (status=0x%x)\n",
486 status);
487 goto rd_exit;
488 }
489 if (status == 0 || (status & I2C_STAT_NACK)) {
490 i2c_error = 1;
491 printf("i2c_read: error waiting for addr ACK (status=0x%x)\n",
492 status);
493 goto rd_exit;
494 }
495 if (alen) {
496 if (status & I2C_STAT_XRDY) {
497 alen--;
498 /* Do we have to use byte access? */
499 writeb((addr >> (8 * alen)) & 0xff,
500 &i2c_base->data);
501 writew(I2C_STAT_XRDY, &i2c_base->stat);
502 }
503 }
504 if (status & I2C_STAT_ARDY) {
505 writew(I2C_STAT_ARDY, &i2c_base->stat);
506 break;
507 }
508 }
509 }
510 /* Set slave address */
511 writew(chip, &i2c_base->sa);
512 /* Read len bytes from slave */
513 writew(len, &i2c_base->cnt);
514 /* Need stop bit here */
515 writew(I2C_CON_EN | I2C_CON_MST |
516 I2C_CON_STT | I2C_CON_STP,
517 &i2c_base->con);
518
519 /* Receive data */
520 while (1) {
521 status = wait_for_event(i2c_base, waitdelay);
522 /*
523 * Try to identify bus that is not padconf'd for I2C. This
524 * state could be left over from previous transactions if
525 * the address phase is skipped due to alen=0.
526 */
527 if (status == I2C_STAT_XRDY) {
528 i2c_error = 2;
529 printf("i2c_read (data phase): pads on bus probably not configured (status=0x%x)\n",
530 status);
531 goto rd_exit;
532 }
533 if (status == 0 || (status & I2C_STAT_NACK)) {
534 i2c_error = 1;
535 goto rd_exit;
536 }
537 if (status & I2C_STAT_RRDY) {
538 *buffer++ = readb(&i2c_base->data);
539 writew(I2C_STAT_RRDY, &i2c_base->stat);
540 }
541 if (status & I2C_STAT_ARDY) {
542 writew(I2C_STAT_ARDY, &i2c_base->stat);
543 break;
544 }
545 }
546
547 rd_exit:
548 flush_fifo(i2c_base);
549 writew(0xFFFF, &i2c_base->stat);
550 return i2c_error;
551 }
552
553 /* i2c_write: Address (reg offset) may be 0, 1 or 2 bytes long. */
554 static int __omap24_i2c_write(struct i2c *i2c_base, int waitdelay, uchar chip,
555 uint addr, int alen, uchar *buffer, int len)
556 {
557 int i;
558 u16 status;
559 int i2c_error = 0;
560 int timeout = I2C_TIMEOUT;
561
562 if (alen < 0) {
563 puts("I2C write: addr len < 0\n");
564 return 1;
565 }
566
567 if (len < 0) {
568 puts("I2C write: data len < 0\n");
569 return 1;
570 }
571
572 if (buffer == NULL) {
573 puts("I2C write: NULL pointer passed\n");
574 return 1;
575 }
576
577 if (alen > 2) {
578 printf("I2C write: addr len %d not supported\n", alen);
579 return 1;
580 }
581
582 if (addr + len > (1 << 16)) {
583 printf("I2C write: address 0x%x + 0x%x out of range\n",
584 addr, len);
585 return 1;
586 }
587
588 #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
589 /*
590 * EEPROM chips that implement "address overflow" are ones
591 * like Catalyst 24WC04/08/16 which has 9/10/11 bits of
592 * address and the extra bits end up in the "chip address"
593 * bit slots. This makes a 24WC08 (1Kbyte) chip look like
594 * four 256 byte chips.
595 *
596 * Note that we consider the length of the address field to
597 * still be one byte because the extra address bits are
598 * hidden in the chip address.
599 */
600 if (alen > 0)
601 chip |= ((addr >> (alen * 8)) &
602 CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
603 #endif
604
605 /* Wait until bus not busy */
606 if (wait_for_bb(i2c_base, waitdelay))
607 return 1;
608
609 /* Start address phase - will write regoffset + len bytes data */
610 writew(alen + len, &i2c_base->cnt);
611 /* Set slave address */
612 writew(chip, &i2c_base->sa);
613 /* Stop bit needed here */
614 writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_STT | I2C_CON_TRX |
615 I2C_CON_STP, &i2c_base->con);
616
617 while (alen) {
618 /* Must write reg offset (one or two bytes) */
619 status = wait_for_event(i2c_base, waitdelay);
620 /* Try to identify bus that is not padconf'd for I2C */
621 if (status == I2C_STAT_XRDY) {
622 i2c_error = 2;
623 printf("i2c_write: pads on bus probably not configured (status=0x%x)\n",
624 status);
625 goto wr_exit;
626 }
627 if (status == 0 || (status & I2C_STAT_NACK)) {
628 i2c_error = 1;
629 printf("i2c_write: error waiting for addr ACK (status=0x%x)\n",
630 status);
631 goto wr_exit;
632 }
633 if (status & I2C_STAT_XRDY) {
634 alen--;
635 writeb((addr >> (8 * alen)) & 0xff, &i2c_base->data);
636 writew(I2C_STAT_XRDY, &i2c_base->stat);
637 } else {
638 i2c_error = 1;
639 printf("i2c_write: bus not ready for addr Tx (status=0x%x)\n",
640 status);
641 goto wr_exit;
642 }
643 }
644 /* Address phase is over, now write data */
645 for (i = 0; i < len; i++) {
646 status = wait_for_event(i2c_base, waitdelay);
647 if (status == 0 || (status & I2C_STAT_NACK)) {
648 i2c_error = 1;
649 printf("i2c_write: error waiting for data ACK (status=0x%x)\n",
650 status);
651 goto wr_exit;
652 }
653 if (status & I2C_STAT_XRDY) {
654 writeb(buffer[i], &i2c_base->data);
655 writew(I2C_STAT_XRDY, &i2c_base->stat);
656 } else {
657 i2c_error = 1;
658 printf("i2c_write: bus not ready for data Tx (i=%d)\n",
659 i);
660 goto wr_exit;
661 }
662 }
663 /*
664 * poll ARDY bit for making sure that last byte really has been
665 * transferred on the bus.
666 */
667 do {
668 status = wait_for_event(i2c_base, waitdelay);
669 } while (!(status & I2C_STAT_ARDY) && timeout--);
670 if (timeout <= 0)
671 printf("i2c_write: timed out writig last byte!\n");
672
673 wr_exit:
674 flush_fifo(i2c_base);
675 writew(0xFFFF, &i2c_base->stat);
676 return i2c_error;
677 }
678
679 #ifndef CONFIG_DM_I2C
680 /*
681 * The legacy I2C functions. These need to get removed once
682 * all users of this driver are converted to DM.
683 */
684 static struct i2c *omap24_get_base(struct i2c_adapter *adap)
685 {
686 switch (adap->hwadapnr) {
687 case 0:
688 return (struct i2c *)I2C_BASE1;
689 break;
690 case 1:
691 return (struct i2c *)I2C_BASE2;
692 break;
693 #if (I2C_BUS_MAX > 2)
694 case 2:
695 return (struct i2c *)I2C_BASE3;
696 break;
697 #if (I2C_BUS_MAX > 3)
698 case 3:
699 return (struct i2c *)I2C_BASE4;
700 break;
701 #if (I2C_BUS_MAX > 4)
702 case 4:
703 return (struct i2c *)I2C_BASE5;
704 break;
705 #endif
706 #endif
707 #endif
708 default:
709 printf("wrong hwadapnr: %d\n", adap->hwadapnr);
710 break;
711 }
712 return NULL;
713 }
714
715
716 static int omap24_i2c_read(struct i2c_adapter *adap, uchar chip, uint addr,
717 int alen, uchar *buffer, int len)
718 {
719 struct i2c *i2c_base = omap24_get_base(adap);
720
721 return __omap24_i2c_read(i2c_base, adap->waitdelay, chip, addr,
722 alen, buffer, len);
723 }
724
725
726 static int omap24_i2c_write(struct i2c_adapter *adap, uchar chip, uint addr,
727 int alen, uchar *buffer, int len)
728 {
729 struct i2c *i2c_base = omap24_get_base(adap);
730
731 return __omap24_i2c_write(i2c_base, adap->waitdelay, chip, addr,
732 alen, buffer, len);
733 }
734
735 static uint omap24_i2c_setspeed(struct i2c_adapter *adap, uint speed)
736 {
737 struct i2c *i2c_base = omap24_get_base(adap);
738 int ret;
739
740 ret = __omap24_i2c_setspeed(i2c_base, speed, &adap->waitdelay);
741 if (ret) {
742 error("%s: set i2c speed failed\n", __func__);
743 return ret;
744 }
745
746 adap->speed = speed;
747
748 return 0;
749 }
750
751 static void omap24_i2c_init(struct i2c_adapter *adap, int speed, int slaveadd)
752 {
753 struct i2c *i2c_base = omap24_get_base(adap);
754
755 return __omap24_i2c_init(i2c_base, speed, slaveadd, &adap->waitdelay);
756 }
757
758 static int omap24_i2c_probe(struct i2c_adapter *adap, uchar chip)
759 {
760 struct i2c *i2c_base = omap24_get_base(adap);
761
762 return __omap24_i2c_probe(i2c_base, adap->waitdelay, chip);
763 }
764
765 #if !defined(CONFIG_SYS_OMAP24_I2C_SPEED1)
766 #define CONFIG_SYS_OMAP24_I2C_SPEED1 CONFIG_SYS_OMAP24_I2C_SPEED
767 #endif
768 #if !defined(CONFIG_SYS_OMAP24_I2C_SLAVE1)
769 #define CONFIG_SYS_OMAP24_I2C_SLAVE1 CONFIG_SYS_OMAP24_I2C_SLAVE
770 #endif
771
772 U_BOOT_I2C_ADAP_COMPLETE(omap24_0, omap24_i2c_init, omap24_i2c_probe,
773 omap24_i2c_read, omap24_i2c_write, omap24_i2c_setspeed,
774 CONFIG_SYS_OMAP24_I2C_SPEED,
775 CONFIG_SYS_OMAP24_I2C_SLAVE,
776 0)
777 U_BOOT_I2C_ADAP_COMPLETE(omap24_1, omap24_i2c_init, omap24_i2c_probe,
778 omap24_i2c_read, omap24_i2c_write, omap24_i2c_setspeed,
779 CONFIG_SYS_OMAP24_I2C_SPEED1,
780 CONFIG_SYS_OMAP24_I2C_SLAVE1,
781 1)
782 #if (I2C_BUS_MAX > 2)
783 #if !defined(CONFIG_SYS_OMAP24_I2C_SPEED2)
784 #define CONFIG_SYS_OMAP24_I2C_SPEED2 CONFIG_SYS_OMAP24_I2C_SPEED
785 #endif
786 #if !defined(CONFIG_SYS_OMAP24_I2C_SLAVE2)
787 #define CONFIG_SYS_OMAP24_I2C_SLAVE2 CONFIG_SYS_OMAP24_I2C_SLAVE
788 #endif
789
790 U_BOOT_I2C_ADAP_COMPLETE(omap24_2, omap24_i2c_init, omap24_i2c_probe,
791 omap24_i2c_read, omap24_i2c_write, NULL,
792 CONFIG_SYS_OMAP24_I2C_SPEED2,
793 CONFIG_SYS_OMAP24_I2C_SLAVE2,
794 2)
795 #if (I2C_BUS_MAX > 3)
796 #if !defined(CONFIG_SYS_OMAP24_I2C_SPEED3)
797 #define CONFIG_SYS_OMAP24_I2C_SPEED3 CONFIG_SYS_OMAP24_I2C_SPEED
798 #endif
799 #if !defined(CONFIG_SYS_OMAP24_I2C_SLAVE3)
800 #define CONFIG_SYS_OMAP24_I2C_SLAVE3 CONFIG_SYS_OMAP24_I2C_SLAVE
801 #endif
802
803 U_BOOT_I2C_ADAP_COMPLETE(omap24_3, omap24_i2c_init, omap24_i2c_probe,
804 omap24_i2c_read, omap24_i2c_write, NULL,
805 CONFIG_SYS_OMAP24_I2C_SPEED3,
806 CONFIG_SYS_OMAP24_I2C_SLAVE3,
807 3)
808 #if (I2C_BUS_MAX > 4)
809 #if !defined(CONFIG_SYS_OMAP24_I2C_SPEED4)
810 #define CONFIG_SYS_OMAP24_I2C_SPEED4 CONFIG_SYS_OMAP24_I2C_SPEED
811 #endif
812 #if !defined(CONFIG_SYS_OMAP24_I2C_SLAVE4)
813 #define CONFIG_SYS_OMAP24_I2C_SLAVE4 CONFIG_SYS_OMAP24_I2C_SLAVE
814 #endif
815
816 U_BOOT_I2C_ADAP_COMPLETE(omap24_4, omap24_i2c_init, omap24_i2c_probe,
817 omap24_i2c_read, omap24_i2c_write, NULL,
818 CONFIG_SYS_OMAP24_I2C_SPEED4,
819 CONFIG_SYS_OMAP24_I2C_SLAVE4,
820 4)
821 #endif
822 #endif
823 #endif
824
825 #else /* CONFIG_DM_I2C */
826
827 static int omap_i2c_xfer(struct udevice *bus, struct i2c_msg *msg, int nmsgs)
828 {
829 struct omap_i2c *priv = dev_get_priv(bus);
830 int ret;
831
832 debug("i2c_xfer: %d messages\n", nmsgs);
833 for (; nmsgs > 0; nmsgs--, msg++) {
834 debug("i2c_xfer: chip=0x%x, len=0x%x\n", msg->addr, msg->len);
835 if (msg->flags & I2C_M_RD) {
836 ret = __omap24_i2c_read(priv->regs, priv->waitdelay,
837 msg->addr, 0, 0, msg->buf,
838 msg->len);
839 } else {
840 ret = __omap24_i2c_write(priv->regs, priv->waitdelay,
841 msg->addr, 0, 0, msg->buf,
842 msg->len);
843 }
844 if (ret) {
845 debug("i2c_write: error sending\n");
846 return -EREMOTEIO;
847 }
848 }
849
850 return 0;
851 }
852
853 static int omap_i2c_set_bus_speed(struct udevice *bus, unsigned int speed)
854 {
855 struct omap_i2c *priv = dev_get_priv(bus);
856
857 priv->speed = speed;
858
859 return __omap24_i2c_setspeed(priv->regs, speed, &priv->waitdelay);
860 }
861
862 static int omap_i2c_probe_chip(struct udevice *bus, uint chip_addr,
863 uint chip_flags)
864 {
865 struct omap_i2c *priv = dev_get_priv(bus);
866
867 return __omap24_i2c_probe(priv->regs, priv->waitdelay, chip_addr);
868 }
869
870 static int omap_i2c_probe(struct udevice *bus)
871 {
872 struct omap_i2c *priv = dev_get_priv(bus);
873
874 __omap24_i2c_init(priv->regs, priv->speed, 0, &priv->waitdelay);
875
876 return 0;
877 }
878
879 static int omap_i2c_ofdata_to_platdata(struct udevice *bus)
880 {
881 struct omap_i2c *priv = dev_get_priv(bus);
882
883 priv->regs = map_physmem(dev_get_addr(bus), sizeof(void *),
884 MAP_NOCACHE);
885 priv->speed = CONFIG_SYS_OMAP24_I2C_SPEED;
886
887 return 0;
888 }
889
890 static const struct dm_i2c_ops omap_i2c_ops = {
891 .xfer = omap_i2c_xfer,
892 .probe_chip = omap_i2c_probe_chip,
893 .set_bus_speed = omap_i2c_set_bus_speed,
894 };
895
896 static const struct udevice_id omap_i2c_ids[] = {
897 { .compatible = "ti,omap4-i2c" },
898 { }
899 };
900
901 U_BOOT_DRIVER(i2c_omap) = {
902 .name = "i2c_omap",
903 .id = UCLASS_I2C,
904 .of_match = omap_i2c_ids,
905 .ofdata_to_platdata = omap_i2c_ofdata_to_platdata,
906 .probe = omap_i2c_probe,
907 .priv_auto_alloc_size = sizeof(struct omap_i2c),
908 .ops = &omap_i2c_ops,
909 .flags = DM_FLAG_PRE_RELOC,
910 };
911
912 #endif /* CONFIG_DM_I2C */