]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/iio/imu/inv_mpu6050/inv_mpu_core.c
f9c0624505a2993e3a48d9a581faa8a26e9287de
[thirdparty/kernel/stable.git] / drivers / iio / imu / inv_mpu6050 / inv_mpu_core.c
1 /*
2 * Copyright (C) 2012 Invensense, Inc.
3 *
4 * This software is licensed under the terms of the GNU General Public
5 * License version 2, as published by the Free Software Foundation, and
6 * may be copied, distributed, and modified under those terms.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/err.h>
18 #include <linux/delay.h>
19 #include <linux/sysfs.h>
20 #include <linux/jiffies.h>
21 #include <linux/irq.h>
22 #include <linux/interrupt.h>
23 #include <linux/kfifo.h>
24 #include <linux/spinlock.h>
25 #include <linux/iio/iio.h>
26 #include <linux/acpi.h>
27 #include <linux/platform_device.h>
28 #include "inv_mpu_iio.h"
29
30 /*
31 * this is the gyro scale translated from dynamic range plus/minus
32 * {250, 500, 1000, 2000} to rad/s
33 */
34 static const int gyro_scale_6050[] = {133090, 266181, 532362, 1064724};
35
36 /*
37 * this is the accel scale translated from dynamic range plus/minus
38 * {2, 4, 8, 16} to m/s^2
39 */
40 static const int accel_scale[] = {598, 1196, 2392, 4785};
41
42 static const struct inv_mpu6050_reg_map reg_set_6500 = {
43 .sample_rate_div = INV_MPU6050_REG_SAMPLE_RATE_DIV,
44 .lpf = INV_MPU6050_REG_CONFIG,
45 .accel_lpf = INV_MPU6500_REG_ACCEL_CONFIG_2,
46 .user_ctrl = INV_MPU6050_REG_USER_CTRL,
47 .fifo_en = INV_MPU6050_REG_FIFO_EN,
48 .gyro_config = INV_MPU6050_REG_GYRO_CONFIG,
49 .accl_config = INV_MPU6050_REG_ACCEL_CONFIG,
50 .fifo_count_h = INV_MPU6050_REG_FIFO_COUNT_H,
51 .fifo_r_w = INV_MPU6050_REG_FIFO_R_W,
52 .raw_gyro = INV_MPU6050_REG_RAW_GYRO,
53 .raw_accl = INV_MPU6050_REG_RAW_ACCEL,
54 .temperature = INV_MPU6050_REG_TEMPERATURE,
55 .int_enable = INV_MPU6050_REG_INT_ENABLE,
56 .int_status = INV_MPU6050_REG_INT_STATUS,
57 .pwr_mgmt_1 = INV_MPU6050_REG_PWR_MGMT_1,
58 .pwr_mgmt_2 = INV_MPU6050_REG_PWR_MGMT_2,
59 .int_pin_cfg = INV_MPU6050_REG_INT_PIN_CFG,
60 .accl_offset = INV_MPU6500_REG_ACCEL_OFFSET,
61 .gyro_offset = INV_MPU6050_REG_GYRO_OFFSET,
62 };
63
64 static const struct inv_mpu6050_reg_map reg_set_6050 = {
65 .sample_rate_div = INV_MPU6050_REG_SAMPLE_RATE_DIV,
66 .lpf = INV_MPU6050_REG_CONFIG,
67 .user_ctrl = INV_MPU6050_REG_USER_CTRL,
68 .fifo_en = INV_MPU6050_REG_FIFO_EN,
69 .gyro_config = INV_MPU6050_REG_GYRO_CONFIG,
70 .accl_config = INV_MPU6050_REG_ACCEL_CONFIG,
71 .fifo_count_h = INV_MPU6050_REG_FIFO_COUNT_H,
72 .fifo_r_w = INV_MPU6050_REG_FIFO_R_W,
73 .raw_gyro = INV_MPU6050_REG_RAW_GYRO,
74 .raw_accl = INV_MPU6050_REG_RAW_ACCEL,
75 .temperature = INV_MPU6050_REG_TEMPERATURE,
76 .int_enable = INV_MPU6050_REG_INT_ENABLE,
77 .pwr_mgmt_1 = INV_MPU6050_REG_PWR_MGMT_1,
78 .pwr_mgmt_2 = INV_MPU6050_REG_PWR_MGMT_2,
79 .int_pin_cfg = INV_MPU6050_REG_INT_PIN_CFG,
80 .accl_offset = INV_MPU6050_REG_ACCEL_OFFSET,
81 .gyro_offset = INV_MPU6050_REG_GYRO_OFFSET,
82 };
83
84 static const struct inv_mpu6050_chip_config chip_config_6050 = {
85 .fsr = INV_MPU6050_FSR_2000DPS,
86 .lpf = INV_MPU6050_FILTER_20HZ,
87 .fifo_rate = INV_MPU6050_INIT_FIFO_RATE,
88 .gyro_fifo_enable = false,
89 .accl_fifo_enable = false,
90 .accl_fs = INV_MPU6050_FS_02G,
91 .user_ctrl = 0,
92 };
93
94 /* Indexed by enum inv_devices */
95 static const struct inv_mpu6050_hw hw_info[] = {
96 {
97 .whoami = INV_MPU6050_WHOAMI_VALUE,
98 .name = "MPU6050",
99 .reg = &reg_set_6050,
100 .config = &chip_config_6050,
101 },
102 {
103 .whoami = INV_MPU6500_WHOAMI_VALUE,
104 .name = "MPU6500",
105 .reg = &reg_set_6500,
106 .config = &chip_config_6050,
107 },
108 {
109 .whoami = INV_MPU6000_WHOAMI_VALUE,
110 .name = "MPU6000",
111 .reg = &reg_set_6050,
112 .config = &chip_config_6050,
113 },
114 {
115 .whoami = INV_MPU9150_WHOAMI_VALUE,
116 .name = "MPU9150",
117 .reg = &reg_set_6050,
118 .config = &chip_config_6050,
119 },
120 {
121 .whoami = INV_MPU9250_WHOAMI_VALUE,
122 .name = "MPU9250",
123 .reg = &reg_set_6500,
124 .config = &chip_config_6050,
125 },
126 {
127 .whoami = INV_MPU9255_WHOAMI_VALUE,
128 .name = "MPU9255",
129 .reg = &reg_set_6500,
130 .config = &chip_config_6050,
131 },
132 {
133 .whoami = INV_ICM20608_WHOAMI_VALUE,
134 .name = "ICM20608",
135 .reg = &reg_set_6500,
136 .config = &chip_config_6050,
137 },
138 };
139
140 int inv_mpu6050_switch_engine(struct inv_mpu6050_state *st, bool en, u32 mask)
141 {
142 unsigned int d, mgmt_1;
143 int result;
144 /*
145 * switch clock needs to be careful. Only when gyro is on, can
146 * clock source be switched to gyro. Otherwise, it must be set to
147 * internal clock
148 */
149 if (mask == INV_MPU6050_BIT_PWR_GYRO_STBY) {
150 result = regmap_read(st->map, st->reg->pwr_mgmt_1, &mgmt_1);
151 if (result)
152 return result;
153
154 mgmt_1 &= ~INV_MPU6050_BIT_CLK_MASK;
155 }
156
157 if ((mask == INV_MPU6050_BIT_PWR_GYRO_STBY) && (!en)) {
158 /*
159 * turning off gyro requires switch to internal clock first.
160 * Then turn off gyro engine
161 */
162 mgmt_1 |= INV_CLK_INTERNAL;
163 result = regmap_write(st->map, st->reg->pwr_mgmt_1, mgmt_1);
164 if (result)
165 return result;
166 }
167
168 result = regmap_read(st->map, st->reg->pwr_mgmt_2, &d);
169 if (result)
170 return result;
171 if (en)
172 d &= ~mask;
173 else
174 d |= mask;
175 result = regmap_write(st->map, st->reg->pwr_mgmt_2, d);
176 if (result)
177 return result;
178
179 if (en) {
180 /* Wait for output to stabilize */
181 msleep(INV_MPU6050_TEMP_UP_TIME);
182 if (mask == INV_MPU6050_BIT_PWR_GYRO_STBY) {
183 /* switch internal clock to PLL */
184 mgmt_1 |= INV_CLK_PLL;
185 result = regmap_write(st->map,
186 st->reg->pwr_mgmt_1, mgmt_1);
187 if (result)
188 return result;
189 }
190 }
191
192 return 0;
193 }
194
195 int inv_mpu6050_set_power_itg(struct inv_mpu6050_state *st, bool power_on)
196 {
197 int result;
198
199 if (power_on) {
200 if (!st->powerup_count) {
201 result = regmap_write(st->map, st->reg->pwr_mgmt_1, 0);
202 if (result)
203 return result;
204 usleep_range(INV_MPU6050_REG_UP_TIME_MIN,
205 INV_MPU6050_REG_UP_TIME_MAX);
206 }
207 st->powerup_count++;
208 } else {
209 if (st->powerup_count == 1) {
210 result = regmap_write(st->map, st->reg->pwr_mgmt_1,
211 INV_MPU6050_BIT_SLEEP);
212 if (result)
213 return result;
214 }
215 st->powerup_count--;
216 }
217
218 dev_dbg(regmap_get_device(st->map), "set power %d, count=%u\n",
219 power_on, st->powerup_count);
220
221 return 0;
222 }
223 EXPORT_SYMBOL_GPL(inv_mpu6050_set_power_itg);
224
225 /**
226 * inv_mpu6050_set_lpf_regs() - set low pass filter registers, chip dependent
227 *
228 * MPU60xx/MPU9150 use only 1 register for accelerometer + gyroscope
229 * MPU6500 and above have a dedicated register for accelerometer
230 */
231 static int inv_mpu6050_set_lpf_regs(struct inv_mpu6050_state *st,
232 enum inv_mpu6050_filter_e val)
233 {
234 int result;
235
236 result = regmap_write(st->map, st->reg->lpf, val);
237 if (result)
238 return result;
239
240 switch (st->chip_type) {
241 case INV_MPU6050:
242 case INV_MPU6000:
243 case INV_MPU9150:
244 /* old chips, nothing to do */
245 result = 0;
246 break;
247 default:
248 /* set accel lpf */
249 result = regmap_write(st->map, st->reg->accel_lpf, val);
250 break;
251 }
252
253 return result;
254 }
255
256 /**
257 * inv_mpu6050_init_config() - Initialize hardware, disable FIFO.
258 *
259 * Initial configuration:
260 * FSR: ± 2000DPS
261 * DLPF: 20Hz
262 * FIFO rate: 50Hz
263 * Clock source: Gyro PLL
264 */
265 static int inv_mpu6050_init_config(struct iio_dev *indio_dev)
266 {
267 int result;
268 u8 d;
269 struct inv_mpu6050_state *st = iio_priv(indio_dev);
270
271 result = inv_mpu6050_set_power_itg(st, true);
272 if (result)
273 return result;
274 d = (INV_MPU6050_FSR_2000DPS << INV_MPU6050_GYRO_CONFIG_FSR_SHIFT);
275 result = regmap_write(st->map, st->reg->gyro_config, d);
276 if (result)
277 goto error_power_off;
278
279 result = inv_mpu6050_set_lpf_regs(st, INV_MPU6050_FILTER_20HZ);
280 if (result)
281 goto error_power_off;
282
283 d = INV_MPU6050_ONE_K_HZ / INV_MPU6050_INIT_FIFO_RATE - 1;
284 result = regmap_write(st->map, st->reg->sample_rate_div, d);
285 if (result)
286 goto error_power_off;
287
288 d = (INV_MPU6050_FS_02G << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT);
289 result = regmap_write(st->map, st->reg->accl_config, d);
290 if (result)
291 goto error_power_off;
292
293 result = regmap_write(st->map, st->reg->int_pin_cfg, st->irq_mask);
294 if (result)
295 return result;
296
297 memcpy(&st->chip_config, hw_info[st->chip_type].config,
298 sizeof(struct inv_mpu6050_chip_config));
299
300 return inv_mpu6050_set_power_itg(st, false);
301
302 error_power_off:
303 inv_mpu6050_set_power_itg(st, false);
304 return result;
305 }
306
307 static int inv_mpu6050_sensor_set(struct inv_mpu6050_state *st, int reg,
308 int axis, int val)
309 {
310 int ind, result;
311 __be16 d = cpu_to_be16(val);
312
313 ind = (axis - IIO_MOD_X) * 2;
314 result = regmap_bulk_write(st->map, reg + ind, (u8 *)&d, 2);
315 if (result)
316 return -EINVAL;
317
318 return 0;
319 }
320
321 static int inv_mpu6050_sensor_show(struct inv_mpu6050_state *st, int reg,
322 int axis, int *val)
323 {
324 int ind, result;
325 __be16 d;
326
327 ind = (axis - IIO_MOD_X) * 2;
328 result = regmap_bulk_read(st->map, reg + ind, (u8 *)&d, 2);
329 if (result)
330 return -EINVAL;
331 *val = (short)be16_to_cpup(&d);
332
333 return IIO_VAL_INT;
334 }
335
336 static int inv_mpu6050_read_channel_data(struct iio_dev *indio_dev,
337 struct iio_chan_spec const *chan,
338 int *val)
339 {
340 struct inv_mpu6050_state *st = iio_priv(indio_dev);
341 int result;
342 int ret;
343
344 result = inv_mpu6050_set_power_itg(st, true);
345 if (result)
346 return result;
347
348 switch (chan->type) {
349 case IIO_ANGL_VEL:
350 result = inv_mpu6050_switch_engine(st, true,
351 INV_MPU6050_BIT_PWR_GYRO_STBY);
352 if (result)
353 goto error_power_off;
354 ret = inv_mpu6050_sensor_show(st, st->reg->raw_gyro,
355 chan->channel2, val);
356 result = inv_mpu6050_switch_engine(st, false,
357 INV_MPU6050_BIT_PWR_GYRO_STBY);
358 if (result)
359 goto error_power_off;
360 break;
361 case IIO_ACCEL:
362 result = inv_mpu6050_switch_engine(st, true,
363 INV_MPU6050_BIT_PWR_ACCL_STBY);
364 if (result)
365 goto error_power_off;
366 ret = inv_mpu6050_sensor_show(st, st->reg->raw_accl,
367 chan->channel2, val);
368 result = inv_mpu6050_switch_engine(st, false,
369 INV_MPU6050_BIT_PWR_ACCL_STBY);
370 if (result)
371 goto error_power_off;
372 break;
373 case IIO_TEMP:
374 /* wait for stablization */
375 msleep(INV_MPU6050_SENSOR_UP_TIME);
376 ret = inv_mpu6050_sensor_show(st, st->reg->temperature,
377 IIO_MOD_X, val);
378 break;
379 default:
380 ret = -EINVAL;
381 break;
382 }
383
384 result = inv_mpu6050_set_power_itg(st, false);
385 if (result)
386 goto error_power_off;
387
388 return ret;
389
390 error_power_off:
391 inv_mpu6050_set_power_itg(st, false);
392 return result;
393 }
394
395 static int
396 inv_mpu6050_read_raw(struct iio_dev *indio_dev,
397 struct iio_chan_spec const *chan,
398 int *val, int *val2, long mask)
399 {
400 struct inv_mpu6050_state *st = iio_priv(indio_dev);
401 int ret = 0;
402
403 switch (mask) {
404 case IIO_CHAN_INFO_RAW:
405 ret = iio_device_claim_direct_mode(indio_dev);
406 if (ret)
407 return ret;
408 mutex_lock(&st->lock);
409 ret = inv_mpu6050_read_channel_data(indio_dev, chan, val);
410 mutex_unlock(&st->lock);
411 iio_device_release_direct_mode(indio_dev);
412 return ret;
413 case IIO_CHAN_INFO_SCALE:
414 switch (chan->type) {
415 case IIO_ANGL_VEL:
416 mutex_lock(&st->lock);
417 *val = 0;
418 *val2 = gyro_scale_6050[st->chip_config.fsr];
419 mutex_unlock(&st->lock);
420
421 return IIO_VAL_INT_PLUS_NANO;
422 case IIO_ACCEL:
423 mutex_lock(&st->lock);
424 *val = 0;
425 *val2 = accel_scale[st->chip_config.accl_fs];
426 mutex_unlock(&st->lock);
427
428 return IIO_VAL_INT_PLUS_MICRO;
429 case IIO_TEMP:
430 *val = 0;
431 *val2 = INV_MPU6050_TEMP_SCALE;
432
433 return IIO_VAL_INT_PLUS_MICRO;
434 default:
435 return -EINVAL;
436 }
437 case IIO_CHAN_INFO_OFFSET:
438 switch (chan->type) {
439 case IIO_TEMP:
440 *val = INV_MPU6050_TEMP_OFFSET;
441
442 return IIO_VAL_INT;
443 default:
444 return -EINVAL;
445 }
446 case IIO_CHAN_INFO_CALIBBIAS:
447 switch (chan->type) {
448 case IIO_ANGL_VEL:
449 mutex_lock(&st->lock);
450 ret = inv_mpu6050_sensor_show(st, st->reg->gyro_offset,
451 chan->channel2, val);
452 mutex_unlock(&st->lock);
453 return IIO_VAL_INT;
454 case IIO_ACCEL:
455 mutex_lock(&st->lock);
456 ret = inv_mpu6050_sensor_show(st, st->reg->accl_offset,
457 chan->channel2, val);
458 mutex_unlock(&st->lock);
459 return IIO_VAL_INT;
460
461 default:
462 return -EINVAL;
463 }
464 default:
465 return -EINVAL;
466 }
467 }
468
469 static int inv_mpu6050_write_gyro_scale(struct inv_mpu6050_state *st, int val)
470 {
471 int result, i;
472 u8 d;
473
474 for (i = 0; i < ARRAY_SIZE(gyro_scale_6050); ++i) {
475 if (gyro_scale_6050[i] == val) {
476 d = (i << INV_MPU6050_GYRO_CONFIG_FSR_SHIFT);
477 result = regmap_write(st->map, st->reg->gyro_config, d);
478 if (result)
479 return result;
480
481 st->chip_config.fsr = i;
482 return 0;
483 }
484 }
485
486 return -EINVAL;
487 }
488
489 static int inv_write_raw_get_fmt(struct iio_dev *indio_dev,
490 struct iio_chan_spec const *chan, long mask)
491 {
492 switch (mask) {
493 case IIO_CHAN_INFO_SCALE:
494 switch (chan->type) {
495 case IIO_ANGL_VEL:
496 return IIO_VAL_INT_PLUS_NANO;
497 default:
498 return IIO_VAL_INT_PLUS_MICRO;
499 }
500 default:
501 return IIO_VAL_INT_PLUS_MICRO;
502 }
503
504 return -EINVAL;
505 }
506
507 static int inv_mpu6050_write_accel_scale(struct inv_mpu6050_state *st, int val)
508 {
509 int result, i;
510 u8 d;
511
512 for (i = 0; i < ARRAY_SIZE(accel_scale); ++i) {
513 if (accel_scale[i] == val) {
514 d = (i << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT);
515 result = regmap_write(st->map, st->reg->accl_config, d);
516 if (result)
517 return result;
518
519 st->chip_config.accl_fs = i;
520 return 0;
521 }
522 }
523
524 return -EINVAL;
525 }
526
527 static int inv_mpu6050_write_raw(struct iio_dev *indio_dev,
528 struct iio_chan_spec const *chan,
529 int val, int val2, long mask)
530 {
531 struct inv_mpu6050_state *st = iio_priv(indio_dev);
532 int result;
533
534 /*
535 * we should only update scale when the chip is disabled, i.e.
536 * not running
537 */
538 result = iio_device_claim_direct_mode(indio_dev);
539 if (result)
540 return result;
541
542 mutex_lock(&st->lock);
543 result = inv_mpu6050_set_power_itg(st, true);
544 if (result)
545 goto error_write_raw_unlock;
546
547 switch (mask) {
548 case IIO_CHAN_INFO_SCALE:
549 switch (chan->type) {
550 case IIO_ANGL_VEL:
551 result = inv_mpu6050_write_gyro_scale(st, val2);
552 break;
553 case IIO_ACCEL:
554 result = inv_mpu6050_write_accel_scale(st, val2);
555 break;
556 default:
557 result = -EINVAL;
558 break;
559 }
560 break;
561 case IIO_CHAN_INFO_CALIBBIAS:
562 switch (chan->type) {
563 case IIO_ANGL_VEL:
564 result = inv_mpu6050_sensor_set(st,
565 st->reg->gyro_offset,
566 chan->channel2, val);
567 break;
568 case IIO_ACCEL:
569 result = inv_mpu6050_sensor_set(st,
570 st->reg->accl_offset,
571 chan->channel2, val);
572 break;
573 default:
574 result = -EINVAL;
575 break;
576 }
577 break;
578 default:
579 result = -EINVAL;
580 break;
581 }
582
583 result |= inv_mpu6050_set_power_itg(st, false);
584 error_write_raw_unlock:
585 mutex_unlock(&st->lock);
586 iio_device_release_direct_mode(indio_dev);
587
588 return result;
589 }
590
591 /**
592 * inv_mpu6050_set_lpf() - set low pass filer based on fifo rate.
593 *
594 * Based on the Nyquist principle, the sampling rate must
595 * exceed twice of the bandwidth of the signal, or there
596 * would be alising. This function basically search for the
597 * correct low pass parameters based on the fifo rate, e.g,
598 * sampling frequency.
599 *
600 * lpf is set automatically when setting sampling rate to avoid any aliases.
601 */
602 static int inv_mpu6050_set_lpf(struct inv_mpu6050_state *st, int rate)
603 {
604 static const int hz[] = {188, 98, 42, 20, 10, 5};
605 static const int d[] = {
606 INV_MPU6050_FILTER_188HZ, INV_MPU6050_FILTER_98HZ,
607 INV_MPU6050_FILTER_42HZ, INV_MPU6050_FILTER_20HZ,
608 INV_MPU6050_FILTER_10HZ, INV_MPU6050_FILTER_5HZ
609 };
610 int i, h, result;
611 u8 data;
612
613 h = (rate >> 1);
614 i = 0;
615 while ((h < hz[i]) && (i < ARRAY_SIZE(d) - 1))
616 i++;
617 data = d[i];
618 result = inv_mpu6050_set_lpf_regs(st, data);
619 if (result)
620 return result;
621 st->chip_config.lpf = data;
622
623 return 0;
624 }
625
626 /**
627 * inv_mpu6050_fifo_rate_store() - Set fifo rate.
628 */
629 static ssize_t
630 inv_mpu6050_fifo_rate_store(struct device *dev, struct device_attribute *attr,
631 const char *buf, size_t count)
632 {
633 s32 fifo_rate;
634 u8 d;
635 int result;
636 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
637 struct inv_mpu6050_state *st = iio_priv(indio_dev);
638
639 if (kstrtoint(buf, 10, &fifo_rate))
640 return -EINVAL;
641 if (fifo_rate < INV_MPU6050_MIN_FIFO_RATE ||
642 fifo_rate > INV_MPU6050_MAX_FIFO_RATE)
643 return -EINVAL;
644
645 result = iio_device_claim_direct_mode(indio_dev);
646 if (result)
647 return result;
648
649 mutex_lock(&st->lock);
650 if (fifo_rate == st->chip_config.fifo_rate) {
651 result = 0;
652 goto fifo_rate_fail_unlock;
653 }
654 result = inv_mpu6050_set_power_itg(st, true);
655 if (result)
656 goto fifo_rate_fail_unlock;
657
658 d = INV_MPU6050_ONE_K_HZ / fifo_rate - 1;
659 result = regmap_write(st->map, st->reg->sample_rate_div, d);
660 if (result)
661 goto fifo_rate_fail_power_off;
662 st->chip_config.fifo_rate = fifo_rate;
663
664 result = inv_mpu6050_set_lpf(st, fifo_rate);
665 if (result)
666 goto fifo_rate_fail_power_off;
667
668 fifo_rate_fail_power_off:
669 result |= inv_mpu6050_set_power_itg(st, false);
670 fifo_rate_fail_unlock:
671 mutex_unlock(&st->lock);
672 iio_device_release_direct_mode(indio_dev);
673 if (result)
674 return result;
675
676 return count;
677 }
678
679 /**
680 * inv_fifo_rate_show() - Get the current sampling rate.
681 */
682 static ssize_t
683 inv_fifo_rate_show(struct device *dev, struct device_attribute *attr,
684 char *buf)
685 {
686 struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev));
687 unsigned fifo_rate;
688
689 mutex_lock(&st->lock);
690 fifo_rate = st->chip_config.fifo_rate;
691 mutex_unlock(&st->lock);
692
693 return scnprintf(buf, PAGE_SIZE, "%u\n", fifo_rate);
694 }
695
696 /**
697 * inv_attr_show() - calling this function will show current
698 * parameters.
699 *
700 * Deprecated in favor of IIO mounting matrix API.
701 *
702 * See inv_get_mount_matrix()
703 */
704 static ssize_t inv_attr_show(struct device *dev, struct device_attribute *attr,
705 char *buf)
706 {
707 struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev));
708 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
709 s8 *m;
710
711 switch (this_attr->address) {
712 /*
713 * In MPU6050, the two matrix are the same because gyro and accel
714 * are integrated in one chip
715 */
716 case ATTR_GYRO_MATRIX:
717 case ATTR_ACCL_MATRIX:
718 m = st->plat_data.orientation;
719
720 return scnprintf(buf, PAGE_SIZE,
721 "%d, %d, %d; %d, %d, %d; %d, %d, %d\n",
722 m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8]);
723 default:
724 return -EINVAL;
725 }
726 }
727
728 /**
729 * inv_mpu6050_validate_trigger() - validate_trigger callback for invensense
730 * MPU6050 device.
731 * @indio_dev: The IIO device
732 * @trig: The new trigger
733 *
734 * Returns: 0 if the 'trig' matches the trigger registered by the MPU6050
735 * device, -EINVAL otherwise.
736 */
737 static int inv_mpu6050_validate_trigger(struct iio_dev *indio_dev,
738 struct iio_trigger *trig)
739 {
740 struct inv_mpu6050_state *st = iio_priv(indio_dev);
741
742 if (st->trig != trig)
743 return -EINVAL;
744
745 return 0;
746 }
747
748 static const struct iio_mount_matrix *
749 inv_get_mount_matrix(const struct iio_dev *indio_dev,
750 const struct iio_chan_spec *chan)
751 {
752 return &((struct inv_mpu6050_state *)iio_priv(indio_dev))->orientation;
753 }
754
755 static const struct iio_chan_spec_ext_info inv_ext_info[] = {
756 IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, inv_get_mount_matrix),
757 { },
758 };
759
760 #define INV_MPU6050_CHAN(_type, _channel2, _index) \
761 { \
762 .type = _type, \
763 .modified = 1, \
764 .channel2 = _channel2, \
765 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
766 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
767 BIT(IIO_CHAN_INFO_CALIBBIAS), \
768 .scan_index = _index, \
769 .scan_type = { \
770 .sign = 's', \
771 .realbits = 16, \
772 .storagebits = 16, \
773 .shift = 0, \
774 .endianness = IIO_BE, \
775 }, \
776 .ext_info = inv_ext_info, \
777 }
778
779 static const struct iio_chan_spec inv_mpu_channels[] = {
780 IIO_CHAN_SOFT_TIMESTAMP(INV_MPU6050_SCAN_TIMESTAMP),
781 /*
782 * Note that temperature should only be via polled reading only,
783 * not the final scan elements output.
784 */
785 {
786 .type = IIO_TEMP,
787 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW)
788 | BIT(IIO_CHAN_INFO_OFFSET)
789 | BIT(IIO_CHAN_INFO_SCALE),
790 .scan_index = -1,
791 },
792 INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X),
793 INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y),
794 INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z),
795
796 INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X),
797 INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y),
798 INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z),
799 };
800
801 /*
802 * The user can choose any frequency between INV_MPU6050_MIN_FIFO_RATE and
803 * INV_MPU6050_MAX_FIFO_RATE, but only these frequencies are matched by the
804 * low-pass filter. Specifically, each of these sampling rates are about twice
805 * the bandwidth of a corresponding low-pass filter, which should eliminate
806 * aliasing following the Nyquist principle. By picking a frequency different
807 * from these, the user risks aliasing effects.
808 */
809 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 20 50 100 200 500");
810 static IIO_CONST_ATTR(in_anglvel_scale_available,
811 "0.000133090 0.000266181 0.000532362 0.001064724");
812 static IIO_CONST_ATTR(in_accel_scale_available,
813 "0.000598 0.001196 0.002392 0.004785");
814 static IIO_DEV_ATTR_SAMP_FREQ(S_IRUGO | S_IWUSR, inv_fifo_rate_show,
815 inv_mpu6050_fifo_rate_store);
816
817 /* Deprecated: kept for userspace backward compatibility. */
818 static IIO_DEVICE_ATTR(in_gyro_matrix, S_IRUGO, inv_attr_show, NULL,
819 ATTR_GYRO_MATRIX);
820 static IIO_DEVICE_ATTR(in_accel_matrix, S_IRUGO, inv_attr_show, NULL,
821 ATTR_ACCL_MATRIX);
822
823 static struct attribute *inv_attributes[] = {
824 &iio_dev_attr_in_gyro_matrix.dev_attr.attr, /* deprecated */
825 &iio_dev_attr_in_accel_matrix.dev_attr.attr, /* deprecated */
826 &iio_dev_attr_sampling_frequency.dev_attr.attr,
827 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
828 &iio_const_attr_in_accel_scale_available.dev_attr.attr,
829 &iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
830 NULL,
831 };
832
833 static const struct attribute_group inv_attribute_group = {
834 .attrs = inv_attributes
835 };
836
837 static const struct iio_info mpu_info = {
838 .read_raw = &inv_mpu6050_read_raw,
839 .write_raw = &inv_mpu6050_write_raw,
840 .write_raw_get_fmt = &inv_write_raw_get_fmt,
841 .attrs = &inv_attribute_group,
842 .validate_trigger = inv_mpu6050_validate_trigger,
843 };
844
845 /**
846 * inv_check_and_setup_chip() - check and setup chip.
847 */
848 static int inv_check_and_setup_chip(struct inv_mpu6050_state *st)
849 {
850 int result;
851 unsigned int regval;
852 int i;
853
854 st->hw = &hw_info[st->chip_type];
855 st->reg = hw_info[st->chip_type].reg;
856
857 /* check chip self-identification */
858 result = regmap_read(st->map, INV_MPU6050_REG_WHOAMI, &regval);
859 if (result)
860 return result;
861 if (regval != st->hw->whoami) {
862 /* check whoami against all possible values */
863 for (i = 0; i < INV_NUM_PARTS; ++i) {
864 if (regval == hw_info[i].whoami) {
865 dev_warn(regmap_get_device(st->map),
866 "whoami mismatch got %#02x (%s)"
867 "expected %#02hhx (%s)\n",
868 regval, hw_info[i].name,
869 st->hw->whoami, st->hw->name);
870 break;
871 }
872 }
873 if (i >= INV_NUM_PARTS) {
874 dev_err(regmap_get_device(st->map),
875 "invalid whoami %#02x expected %#02hhx (%s)\n",
876 regval, st->hw->whoami, st->hw->name);
877 return -ENODEV;
878 }
879 }
880
881 /* reset to make sure previous state are not there */
882 result = regmap_write(st->map, st->reg->pwr_mgmt_1,
883 INV_MPU6050_BIT_H_RESET);
884 if (result)
885 return result;
886 msleep(INV_MPU6050_POWER_UP_TIME);
887
888 /*
889 * Turn power on. After reset, the sleep bit could be on
890 * or off depending on the OTP settings. Turning power on
891 * make it in a definite state as well as making the hardware
892 * state align with the software state
893 */
894 result = inv_mpu6050_set_power_itg(st, true);
895 if (result)
896 return result;
897
898 result = inv_mpu6050_switch_engine(st, false,
899 INV_MPU6050_BIT_PWR_ACCL_STBY);
900 if (result)
901 goto error_power_off;
902 result = inv_mpu6050_switch_engine(st, false,
903 INV_MPU6050_BIT_PWR_GYRO_STBY);
904 if (result)
905 goto error_power_off;
906
907 return inv_mpu6050_set_power_itg(st, false);
908
909 error_power_off:
910 inv_mpu6050_set_power_itg(st, false);
911 return result;
912 }
913
914 int inv_mpu_core_probe(struct regmap *regmap, int irq, const char *name,
915 int (*inv_mpu_bus_setup)(struct iio_dev *), int chip_type)
916 {
917 struct inv_mpu6050_state *st;
918 struct iio_dev *indio_dev;
919 struct inv_mpu6050_platform_data *pdata;
920 struct device *dev = regmap_get_device(regmap);
921 int result;
922 struct irq_data *desc;
923 int irq_type;
924
925 indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
926 if (!indio_dev)
927 return -ENOMEM;
928
929 BUILD_BUG_ON(ARRAY_SIZE(hw_info) != INV_NUM_PARTS);
930 if (chip_type < 0 || chip_type >= INV_NUM_PARTS) {
931 dev_err(dev, "Bad invensense chip_type=%d name=%s\n",
932 chip_type, name);
933 return -ENODEV;
934 }
935 st = iio_priv(indio_dev);
936 mutex_init(&st->lock);
937 st->chip_type = chip_type;
938 st->powerup_count = 0;
939 st->irq = irq;
940 st->map = regmap;
941
942 pdata = dev_get_platdata(dev);
943 if (!pdata) {
944 result = of_iio_read_mount_matrix(dev, "mount-matrix",
945 &st->orientation);
946 if (result) {
947 dev_err(dev, "Failed to retrieve mounting matrix %d\n",
948 result);
949 return result;
950 }
951 } else {
952 st->plat_data = *pdata;
953 }
954
955 desc = irq_get_irq_data(irq);
956 if (!desc) {
957 dev_err(dev, "Could not find IRQ %d\n", irq);
958 return -EINVAL;
959 }
960
961 irq_type = irqd_get_trigger_type(desc);
962 if (irq_type == IRQF_TRIGGER_RISING)
963 st->irq_mask = INV_MPU6050_ACTIVE_HIGH;
964 else if (irq_type == IRQF_TRIGGER_FALLING)
965 st->irq_mask = INV_MPU6050_ACTIVE_LOW;
966 else if (irq_type == IRQF_TRIGGER_HIGH)
967 st->irq_mask = INV_MPU6050_ACTIVE_HIGH |
968 INV_MPU6050_LATCH_INT_EN;
969 else if (irq_type == IRQF_TRIGGER_LOW)
970 st->irq_mask = INV_MPU6050_ACTIVE_LOW |
971 INV_MPU6050_LATCH_INT_EN;
972 else {
973 dev_err(dev, "Invalid interrupt type 0x%x specified\n",
974 irq_type);
975 return -EINVAL;
976 }
977
978 /* power is turned on inside check chip type*/
979 result = inv_check_and_setup_chip(st);
980 if (result)
981 return result;
982
983 result = inv_mpu6050_init_config(indio_dev);
984 if (result) {
985 dev_err(dev, "Could not initialize device.\n");
986 return result;
987 }
988
989 if (inv_mpu_bus_setup)
990 inv_mpu_bus_setup(indio_dev);
991
992 dev_set_drvdata(dev, indio_dev);
993 indio_dev->dev.parent = dev;
994 /* name will be NULL when enumerated via ACPI */
995 if (name)
996 indio_dev->name = name;
997 else
998 indio_dev->name = dev_name(dev);
999 indio_dev->channels = inv_mpu_channels;
1000 indio_dev->num_channels = ARRAY_SIZE(inv_mpu_channels);
1001
1002 indio_dev->info = &mpu_info;
1003 indio_dev->modes = INDIO_BUFFER_TRIGGERED;
1004
1005 result = devm_iio_triggered_buffer_setup(dev, indio_dev,
1006 inv_mpu6050_irq_handler,
1007 inv_mpu6050_read_fifo,
1008 NULL);
1009 if (result) {
1010 dev_err(dev, "configure buffer fail %d\n", result);
1011 return result;
1012 }
1013 result = inv_mpu6050_probe_trigger(indio_dev, irq_type);
1014 if (result) {
1015 dev_err(dev, "trigger probe fail %d\n", result);
1016 return result;
1017 }
1018
1019 INIT_KFIFO(st->timestamps);
1020 spin_lock_init(&st->time_stamp_lock);
1021 result = devm_iio_device_register(dev, indio_dev);
1022 if (result) {
1023 dev_err(dev, "IIO register fail %d\n", result);
1024 return result;
1025 }
1026
1027 return 0;
1028 }
1029 EXPORT_SYMBOL_GPL(inv_mpu_core_probe);
1030
1031 #ifdef CONFIG_PM_SLEEP
1032
1033 static int inv_mpu_resume(struct device *dev)
1034 {
1035 struct inv_mpu6050_state *st = iio_priv(dev_get_drvdata(dev));
1036 int result;
1037
1038 mutex_lock(&st->lock);
1039 result = inv_mpu6050_set_power_itg(st, true);
1040 mutex_unlock(&st->lock);
1041
1042 return result;
1043 }
1044
1045 static int inv_mpu_suspend(struct device *dev)
1046 {
1047 struct inv_mpu6050_state *st = iio_priv(dev_get_drvdata(dev));
1048 int result;
1049
1050 mutex_lock(&st->lock);
1051 result = inv_mpu6050_set_power_itg(st, false);
1052 mutex_unlock(&st->lock);
1053
1054 return result;
1055 }
1056 #endif /* CONFIG_PM_SLEEP */
1057
1058 SIMPLE_DEV_PM_OPS(inv_mpu_pmops, inv_mpu_suspend, inv_mpu_resume);
1059 EXPORT_SYMBOL_GPL(inv_mpu_pmops);
1060
1061 MODULE_AUTHOR("Invensense Corporation");
1062 MODULE_DESCRIPTION("Invensense device MPU6050 driver");
1063 MODULE_LICENSE("GPL");