]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/infiniband/core/cache.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / drivers / infiniband / core / cache.c
1 /*
2 * Copyright (c) 2004 Topspin Communications. All rights reserved.
3 * Copyright (c) 2005 Intel Corporation. All rights reserved.
4 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
5 * Copyright (c) 2005 Voltaire, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/module.h>
37 #include <linux/errno.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/netdevice.h>
41 #include <net/addrconf.h>
42
43 #include <rdma/ib_cache.h>
44
45 #include "core_priv.h"
46
47 struct ib_pkey_cache {
48 int table_len;
49 u16 table[];
50 };
51
52 struct ib_update_work {
53 struct work_struct work;
54 struct ib_event event;
55 bool enforce_security;
56 };
57
58 union ib_gid zgid;
59 EXPORT_SYMBOL(zgid);
60
61 enum gid_attr_find_mask {
62 GID_ATTR_FIND_MASK_GID = 1UL << 0,
63 GID_ATTR_FIND_MASK_NETDEV = 1UL << 1,
64 GID_ATTR_FIND_MASK_DEFAULT = 1UL << 2,
65 GID_ATTR_FIND_MASK_GID_TYPE = 1UL << 3,
66 };
67
68 enum gid_table_entry_state {
69 GID_TABLE_ENTRY_INVALID = 1,
70 GID_TABLE_ENTRY_VALID = 2,
71 /*
72 * Indicates that entry is pending to be removed, there may
73 * be active users of this GID entry.
74 * When last user of the GID entry releases reference to it,
75 * GID entry is detached from the table.
76 */
77 GID_TABLE_ENTRY_PENDING_DEL = 3,
78 };
79
80 struct roce_gid_ndev_storage {
81 struct rcu_head rcu_head;
82 struct net_device *ndev;
83 };
84
85 struct ib_gid_table_entry {
86 struct kref kref;
87 struct work_struct del_work;
88 struct ib_gid_attr attr;
89 void *context;
90 /* Store the ndev pointer to release reference later on in
91 * call_rcu context because by that time gid_table_entry
92 * and attr might be already freed. So keep a copy of it.
93 * ndev_storage is freed by rcu callback.
94 */
95 struct roce_gid_ndev_storage *ndev_storage;
96 enum gid_table_entry_state state;
97 };
98
99 struct ib_gid_table {
100 int sz;
101 /* In RoCE, adding a GID to the table requires:
102 * (a) Find if this GID is already exists.
103 * (b) Find a free space.
104 * (c) Write the new GID
105 *
106 * Delete requires different set of operations:
107 * (a) Find the GID
108 * (b) Delete it.
109 *
110 **/
111 /* Any writer to data_vec must hold this lock and the write side of
112 * rwlock. Readers must hold only rwlock. All writers must be in a
113 * sleepable context.
114 */
115 struct mutex lock;
116 /* rwlock protects data_vec[ix]->state and entry pointer.
117 */
118 rwlock_t rwlock;
119 struct ib_gid_table_entry **data_vec;
120 /* bit field, each bit indicates the index of default GID */
121 u32 default_gid_indices;
122 };
123
124 static void dispatch_gid_change_event(struct ib_device *ib_dev, u8 port)
125 {
126 struct ib_event event;
127
128 event.device = ib_dev;
129 event.element.port_num = port;
130 event.event = IB_EVENT_GID_CHANGE;
131
132 ib_dispatch_event_clients(&event);
133 }
134
135 static const char * const gid_type_str[] = {
136 [IB_GID_TYPE_IB] = "IB/RoCE v1",
137 [IB_GID_TYPE_ROCE_UDP_ENCAP] = "RoCE v2",
138 };
139
140 const char *ib_cache_gid_type_str(enum ib_gid_type gid_type)
141 {
142 if (gid_type < ARRAY_SIZE(gid_type_str) && gid_type_str[gid_type])
143 return gid_type_str[gid_type];
144
145 return "Invalid GID type";
146 }
147 EXPORT_SYMBOL(ib_cache_gid_type_str);
148
149 /** rdma_is_zero_gid - Check if given GID is zero or not.
150 * @gid: GID to check
151 * Returns true if given GID is zero, returns false otherwise.
152 */
153 bool rdma_is_zero_gid(const union ib_gid *gid)
154 {
155 return !memcmp(gid, &zgid, sizeof(*gid));
156 }
157 EXPORT_SYMBOL(rdma_is_zero_gid);
158
159 /** is_gid_index_default - Check if a given index belongs to
160 * reserved default GIDs or not.
161 * @table: GID table pointer
162 * @index: Index to check in GID table
163 * Returns true if index is one of the reserved default GID index otherwise
164 * returns false.
165 */
166 static bool is_gid_index_default(const struct ib_gid_table *table,
167 unsigned int index)
168 {
169 return index < 32 && (BIT(index) & table->default_gid_indices);
170 }
171
172 int ib_cache_gid_parse_type_str(const char *buf)
173 {
174 unsigned int i;
175 size_t len;
176 int err = -EINVAL;
177
178 len = strlen(buf);
179 if (len == 0)
180 return -EINVAL;
181
182 if (buf[len - 1] == '\n')
183 len--;
184
185 for (i = 0; i < ARRAY_SIZE(gid_type_str); ++i)
186 if (gid_type_str[i] && !strncmp(buf, gid_type_str[i], len) &&
187 len == strlen(gid_type_str[i])) {
188 err = i;
189 break;
190 }
191
192 return err;
193 }
194 EXPORT_SYMBOL(ib_cache_gid_parse_type_str);
195
196 static struct ib_gid_table *rdma_gid_table(struct ib_device *device, u8 port)
197 {
198 return device->port_data[port].cache.gid;
199 }
200
201 static bool is_gid_entry_free(const struct ib_gid_table_entry *entry)
202 {
203 return !entry;
204 }
205
206 static bool is_gid_entry_valid(const struct ib_gid_table_entry *entry)
207 {
208 return entry && entry->state == GID_TABLE_ENTRY_VALID;
209 }
210
211 static void schedule_free_gid(struct kref *kref)
212 {
213 struct ib_gid_table_entry *entry =
214 container_of(kref, struct ib_gid_table_entry, kref);
215
216 queue_work(ib_wq, &entry->del_work);
217 }
218
219 static void put_gid_ndev(struct rcu_head *head)
220 {
221 struct roce_gid_ndev_storage *storage =
222 container_of(head, struct roce_gid_ndev_storage, rcu_head);
223
224 WARN_ON(!storage->ndev);
225 /* At this point its safe to release netdev reference,
226 * as all callers working on gid_attr->ndev are done
227 * using this netdev.
228 */
229 dev_put(storage->ndev);
230 kfree(storage);
231 }
232
233 static void free_gid_entry_locked(struct ib_gid_table_entry *entry)
234 {
235 struct ib_device *device = entry->attr.device;
236 u8 port_num = entry->attr.port_num;
237 struct ib_gid_table *table = rdma_gid_table(device, port_num);
238
239 dev_dbg(&device->dev, "%s port=%d index=%d gid %pI6\n", __func__,
240 port_num, entry->attr.index, entry->attr.gid.raw);
241
242 write_lock_irq(&table->rwlock);
243
244 /*
245 * The only way to avoid overwriting NULL in table is
246 * by comparing if it is same entry in table or not!
247 * If new entry in table is added by the time we free here,
248 * don't overwrite the table entry.
249 */
250 if (entry == table->data_vec[entry->attr.index])
251 table->data_vec[entry->attr.index] = NULL;
252 /* Now this index is ready to be allocated */
253 write_unlock_irq(&table->rwlock);
254
255 if (entry->ndev_storage)
256 call_rcu(&entry->ndev_storage->rcu_head, put_gid_ndev);
257 kfree(entry);
258 }
259
260 static void free_gid_entry(struct kref *kref)
261 {
262 struct ib_gid_table_entry *entry =
263 container_of(kref, struct ib_gid_table_entry, kref);
264
265 free_gid_entry_locked(entry);
266 }
267
268 /**
269 * free_gid_work - Release reference to the GID entry
270 * @work: Work structure to refer to GID entry which needs to be
271 * deleted.
272 *
273 * free_gid_work() frees the entry from the HCA's hardware table
274 * if provider supports it. It releases reference to netdevice.
275 */
276 static void free_gid_work(struct work_struct *work)
277 {
278 struct ib_gid_table_entry *entry =
279 container_of(work, struct ib_gid_table_entry, del_work);
280 struct ib_device *device = entry->attr.device;
281 u8 port_num = entry->attr.port_num;
282 struct ib_gid_table *table = rdma_gid_table(device, port_num);
283
284 mutex_lock(&table->lock);
285 free_gid_entry_locked(entry);
286 mutex_unlock(&table->lock);
287 }
288
289 static struct ib_gid_table_entry *
290 alloc_gid_entry(const struct ib_gid_attr *attr)
291 {
292 struct ib_gid_table_entry *entry;
293 struct net_device *ndev;
294
295 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
296 if (!entry)
297 return NULL;
298
299 ndev = rcu_dereference_protected(attr->ndev, 1);
300 if (ndev) {
301 entry->ndev_storage = kzalloc(sizeof(*entry->ndev_storage),
302 GFP_KERNEL);
303 if (!entry->ndev_storage) {
304 kfree(entry);
305 return NULL;
306 }
307 dev_hold(ndev);
308 entry->ndev_storage->ndev = ndev;
309 }
310 kref_init(&entry->kref);
311 memcpy(&entry->attr, attr, sizeof(*attr));
312 INIT_WORK(&entry->del_work, free_gid_work);
313 entry->state = GID_TABLE_ENTRY_INVALID;
314 return entry;
315 }
316
317 static void store_gid_entry(struct ib_gid_table *table,
318 struct ib_gid_table_entry *entry)
319 {
320 entry->state = GID_TABLE_ENTRY_VALID;
321
322 dev_dbg(&entry->attr.device->dev, "%s port=%d index=%d gid %pI6\n",
323 __func__, entry->attr.port_num, entry->attr.index,
324 entry->attr.gid.raw);
325
326 lockdep_assert_held(&table->lock);
327 write_lock_irq(&table->rwlock);
328 table->data_vec[entry->attr.index] = entry;
329 write_unlock_irq(&table->rwlock);
330 }
331
332 static void get_gid_entry(struct ib_gid_table_entry *entry)
333 {
334 kref_get(&entry->kref);
335 }
336
337 static void put_gid_entry(struct ib_gid_table_entry *entry)
338 {
339 kref_put(&entry->kref, schedule_free_gid);
340 }
341
342 static void put_gid_entry_locked(struct ib_gid_table_entry *entry)
343 {
344 kref_put(&entry->kref, free_gid_entry);
345 }
346
347 static int add_roce_gid(struct ib_gid_table_entry *entry)
348 {
349 const struct ib_gid_attr *attr = &entry->attr;
350 int ret;
351
352 if (!attr->ndev) {
353 dev_err(&attr->device->dev, "%s NULL netdev port=%d index=%d\n",
354 __func__, attr->port_num, attr->index);
355 return -EINVAL;
356 }
357 if (rdma_cap_roce_gid_table(attr->device, attr->port_num)) {
358 ret = attr->device->ops.add_gid(attr, &entry->context);
359 if (ret) {
360 dev_err(&attr->device->dev,
361 "%s GID add failed port=%d index=%d\n",
362 __func__, attr->port_num, attr->index);
363 return ret;
364 }
365 }
366 return 0;
367 }
368
369 /**
370 * del_gid - Delete GID table entry
371 *
372 * @ib_dev: IB device whose GID entry to be deleted
373 * @port: Port number of the IB device
374 * @table: GID table of the IB device for a port
375 * @ix: GID entry index to delete
376 *
377 */
378 static void del_gid(struct ib_device *ib_dev, u8 port,
379 struct ib_gid_table *table, int ix)
380 {
381 struct roce_gid_ndev_storage *ndev_storage;
382 struct ib_gid_table_entry *entry;
383
384 lockdep_assert_held(&table->lock);
385
386 dev_dbg(&ib_dev->dev, "%s port=%d index=%d gid %pI6\n", __func__, port,
387 ix, table->data_vec[ix]->attr.gid.raw);
388
389 write_lock_irq(&table->rwlock);
390 entry = table->data_vec[ix];
391 entry->state = GID_TABLE_ENTRY_PENDING_DEL;
392 /*
393 * For non RoCE protocol, GID entry slot is ready to use.
394 */
395 if (!rdma_protocol_roce(ib_dev, port))
396 table->data_vec[ix] = NULL;
397 write_unlock_irq(&table->rwlock);
398
399 ndev_storage = entry->ndev_storage;
400 if (ndev_storage) {
401 entry->ndev_storage = NULL;
402 rcu_assign_pointer(entry->attr.ndev, NULL);
403 call_rcu(&ndev_storage->rcu_head, put_gid_ndev);
404 }
405
406 if (rdma_cap_roce_gid_table(ib_dev, port))
407 ib_dev->ops.del_gid(&entry->attr, &entry->context);
408
409 put_gid_entry_locked(entry);
410 }
411
412 /**
413 * add_modify_gid - Add or modify GID table entry
414 *
415 * @table: GID table in which GID to be added or modified
416 * @attr: Attributes of the GID
417 *
418 * Returns 0 on success or appropriate error code. It accepts zero
419 * GID addition for non RoCE ports for HCA's who report them as valid
420 * GID. However such zero GIDs are not added to the cache.
421 */
422 static int add_modify_gid(struct ib_gid_table *table,
423 const struct ib_gid_attr *attr)
424 {
425 struct ib_gid_table_entry *entry;
426 int ret = 0;
427
428 /*
429 * Invalidate any old entry in the table to make it safe to write to
430 * this index.
431 */
432 if (is_gid_entry_valid(table->data_vec[attr->index]))
433 del_gid(attr->device, attr->port_num, table, attr->index);
434
435 /*
436 * Some HCA's report multiple GID entries with only one valid GID, and
437 * leave other unused entries as the zero GID. Convert zero GIDs to
438 * empty table entries instead of storing them.
439 */
440 if (rdma_is_zero_gid(&attr->gid))
441 return 0;
442
443 entry = alloc_gid_entry(attr);
444 if (!entry)
445 return -ENOMEM;
446
447 if (rdma_protocol_roce(attr->device, attr->port_num)) {
448 ret = add_roce_gid(entry);
449 if (ret)
450 goto done;
451 }
452
453 store_gid_entry(table, entry);
454 return 0;
455
456 done:
457 put_gid_entry(entry);
458 return ret;
459 }
460
461 /* rwlock should be read locked, or lock should be held */
462 static int find_gid(struct ib_gid_table *table, const union ib_gid *gid,
463 const struct ib_gid_attr *val, bool default_gid,
464 unsigned long mask, int *pempty)
465 {
466 int i = 0;
467 int found = -1;
468 int empty = pempty ? -1 : 0;
469
470 while (i < table->sz && (found < 0 || empty < 0)) {
471 struct ib_gid_table_entry *data = table->data_vec[i];
472 struct ib_gid_attr *attr;
473 int curr_index = i;
474
475 i++;
476
477 /* find_gid() is used during GID addition where it is expected
478 * to return a free entry slot which is not duplicate.
479 * Free entry slot is requested and returned if pempty is set,
480 * so lookup free slot only if requested.
481 */
482 if (pempty && empty < 0) {
483 if (is_gid_entry_free(data) &&
484 default_gid ==
485 is_gid_index_default(table, curr_index)) {
486 /*
487 * Found an invalid (free) entry; allocate it.
488 * If default GID is requested, then our
489 * found slot must be one of the DEFAULT
490 * reserved slots or we fail.
491 * This ensures that only DEFAULT reserved
492 * slots are used for default property GIDs.
493 */
494 empty = curr_index;
495 }
496 }
497
498 /*
499 * Additionally find_gid() is used to find valid entry during
500 * lookup operation; so ignore the entries which are marked as
501 * pending for removal and the entries which are marked as
502 * invalid.
503 */
504 if (!is_gid_entry_valid(data))
505 continue;
506
507 if (found >= 0)
508 continue;
509
510 attr = &data->attr;
511 if (mask & GID_ATTR_FIND_MASK_GID_TYPE &&
512 attr->gid_type != val->gid_type)
513 continue;
514
515 if (mask & GID_ATTR_FIND_MASK_GID &&
516 memcmp(gid, &data->attr.gid, sizeof(*gid)))
517 continue;
518
519 if (mask & GID_ATTR_FIND_MASK_NETDEV &&
520 attr->ndev != val->ndev)
521 continue;
522
523 if (mask & GID_ATTR_FIND_MASK_DEFAULT &&
524 is_gid_index_default(table, curr_index) != default_gid)
525 continue;
526
527 found = curr_index;
528 }
529
530 if (pempty)
531 *pempty = empty;
532
533 return found;
534 }
535
536 static void make_default_gid(struct net_device *dev, union ib_gid *gid)
537 {
538 gid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL);
539 addrconf_ifid_eui48(&gid->raw[8], dev);
540 }
541
542 static int __ib_cache_gid_add(struct ib_device *ib_dev, u8 port,
543 union ib_gid *gid, struct ib_gid_attr *attr,
544 unsigned long mask, bool default_gid)
545 {
546 struct ib_gid_table *table;
547 int ret = 0;
548 int empty;
549 int ix;
550
551 /* Do not allow adding zero GID in support of
552 * IB spec version 1.3 section 4.1.1 point (6) and
553 * section 12.7.10 and section 12.7.20
554 */
555 if (rdma_is_zero_gid(gid))
556 return -EINVAL;
557
558 table = rdma_gid_table(ib_dev, port);
559
560 mutex_lock(&table->lock);
561
562 ix = find_gid(table, gid, attr, default_gid, mask, &empty);
563 if (ix >= 0)
564 goto out_unlock;
565
566 if (empty < 0) {
567 ret = -ENOSPC;
568 goto out_unlock;
569 }
570 attr->device = ib_dev;
571 attr->index = empty;
572 attr->port_num = port;
573 attr->gid = *gid;
574 ret = add_modify_gid(table, attr);
575 if (!ret)
576 dispatch_gid_change_event(ib_dev, port);
577
578 out_unlock:
579 mutex_unlock(&table->lock);
580 if (ret)
581 pr_warn("%s: unable to add gid %pI6 error=%d\n",
582 __func__, gid->raw, ret);
583 return ret;
584 }
585
586 int ib_cache_gid_add(struct ib_device *ib_dev, u8 port,
587 union ib_gid *gid, struct ib_gid_attr *attr)
588 {
589 unsigned long mask = GID_ATTR_FIND_MASK_GID |
590 GID_ATTR_FIND_MASK_GID_TYPE |
591 GID_ATTR_FIND_MASK_NETDEV;
592
593 return __ib_cache_gid_add(ib_dev, port, gid, attr, mask, false);
594 }
595
596 static int
597 _ib_cache_gid_del(struct ib_device *ib_dev, u8 port,
598 union ib_gid *gid, struct ib_gid_attr *attr,
599 unsigned long mask, bool default_gid)
600 {
601 struct ib_gid_table *table;
602 int ret = 0;
603 int ix;
604
605 table = rdma_gid_table(ib_dev, port);
606
607 mutex_lock(&table->lock);
608
609 ix = find_gid(table, gid, attr, default_gid, mask, NULL);
610 if (ix < 0) {
611 ret = -EINVAL;
612 goto out_unlock;
613 }
614
615 del_gid(ib_dev, port, table, ix);
616 dispatch_gid_change_event(ib_dev, port);
617
618 out_unlock:
619 mutex_unlock(&table->lock);
620 if (ret)
621 pr_debug("%s: can't delete gid %pI6 error=%d\n",
622 __func__, gid->raw, ret);
623 return ret;
624 }
625
626 int ib_cache_gid_del(struct ib_device *ib_dev, u8 port,
627 union ib_gid *gid, struct ib_gid_attr *attr)
628 {
629 unsigned long mask = GID_ATTR_FIND_MASK_GID |
630 GID_ATTR_FIND_MASK_GID_TYPE |
631 GID_ATTR_FIND_MASK_DEFAULT |
632 GID_ATTR_FIND_MASK_NETDEV;
633
634 return _ib_cache_gid_del(ib_dev, port, gid, attr, mask, false);
635 }
636
637 int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u8 port,
638 struct net_device *ndev)
639 {
640 struct ib_gid_table *table;
641 int ix;
642 bool deleted = false;
643
644 table = rdma_gid_table(ib_dev, port);
645
646 mutex_lock(&table->lock);
647
648 for (ix = 0; ix < table->sz; ix++) {
649 if (is_gid_entry_valid(table->data_vec[ix]) &&
650 table->data_vec[ix]->attr.ndev == ndev) {
651 del_gid(ib_dev, port, table, ix);
652 deleted = true;
653 }
654 }
655
656 mutex_unlock(&table->lock);
657
658 if (deleted)
659 dispatch_gid_change_event(ib_dev, port);
660
661 return 0;
662 }
663
664 /**
665 * rdma_find_gid_by_port - Returns the GID entry attributes when it finds
666 * a valid GID entry for given search parameters. It searches for the specified
667 * GID value in the local software cache.
668 * @device: The device to query.
669 * @gid: The GID value to search for.
670 * @gid_type: The GID type to search for.
671 * @port_num: The port number of the device where the GID value should be
672 * searched.
673 * @ndev: In RoCE, the net device of the device. NULL means ignore.
674 *
675 * Returns sgid attributes if the GID is found with valid reference or
676 * returns ERR_PTR for the error.
677 * The caller must invoke rdma_put_gid_attr() to release the reference.
678 */
679 const struct ib_gid_attr *
680 rdma_find_gid_by_port(struct ib_device *ib_dev,
681 const union ib_gid *gid,
682 enum ib_gid_type gid_type,
683 u8 port, struct net_device *ndev)
684 {
685 int local_index;
686 struct ib_gid_table *table;
687 unsigned long mask = GID_ATTR_FIND_MASK_GID |
688 GID_ATTR_FIND_MASK_GID_TYPE;
689 struct ib_gid_attr val = {.ndev = ndev, .gid_type = gid_type};
690 const struct ib_gid_attr *attr;
691 unsigned long flags;
692
693 if (!rdma_is_port_valid(ib_dev, port))
694 return ERR_PTR(-ENOENT);
695
696 table = rdma_gid_table(ib_dev, port);
697
698 if (ndev)
699 mask |= GID_ATTR_FIND_MASK_NETDEV;
700
701 read_lock_irqsave(&table->rwlock, flags);
702 local_index = find_gid(table, gid, &val, false, mask, NULL);
703 if (local_index >= 0) {
704 get_gid_entry(table->data_vec[local_index]);
705 attr = &table->data_vec[local_index]->attr;
706 read_unlock_irqrestore(&table->rwlock, flags);
707 return attr;
708 }
709
710 read_unlock_irqrestore(&table->rwlock, flags);
711 return ERR_PTR(-ENOENT);
712 }
713 EXPORT_SYMBOL(rdma_find_gid_by_port);
714
715 /**
716 * rdma_find_gid_by_filter - Returns the GID table attribute where a
717 * specified GID value occurs
718 * @device: The device to query.
719 * @gid: The GID value to search for.
720 * @port: The port number of the device where the GID value could be
721 * searched.
722 * @filter: The filter function is executed on any matching GID in the table.
723 * If the filter function returns true, the corresponding index is returned,
724 * otherwise, we continue searching the GID table. It's guaranteed that
725 * while filter is executed, ndev field is valid and the structure won't
726 * change. filter is executed in an atomic context. filter must not be NULL.
727 *
728 * rdma_find_gid_by_filter() searches for the specified GID value
729 * of which the filter function returns true in the port's GID table.
730 *
731 */
732 const struct ib_gid_attr *rdma_find_gid_by_filter(
733 struct ib_device *ib_dev, const union ib_gid *gid, u8 port,
734 bool (*filter)(const union ib_gid *gid, const struct ib_gid_attr *,
735 void *),
736 void *context)
737 {
738 const struct ib_gid_attr *res = ERR_PTR(-ENOENT);
739 struct ib_gid_table *table;
740 unsigned long flags;
741 unsigned int i;
742
743 if (!rdma_is_port_valid(ib_dev, port))
744 return ERR_PTR(-EINVAL);
745
746 table = rdma_gid_table(ib_dev, port);
747
748 read_lock_irqsave(&table->rwlock, flags);
749 for (i = 0; i < table->sz; i++) {
750 struct ib_gid_table_entry *entry = table->data_vec[i];
751
752 if (!is_gid_entry_valid(entry))
753 continue;
754
755 if (memcmp(gid, &entry->attr.gid, sizeof(*gid)))
756 continue;
757
758 if (filter(gid, &entry->attr, context)) {
759 get_gid_entry(entry);
760 res = &entry->attr;
761 break;
762 }
763 }
764 read_unlock_irqrestore(&table->rwlock, flags);
765 return res;
766 }
767
768 static struct ib_gid_table *alloc_gid_table(int sz)
769 {
770 struct ib_gid_table *table = kzalloc(sizeof(*table), GFP_KERNEL);
771
772 if (!table)
773 return NULL;
774
775 table->data_vec = kcalloc(sz, sizeof(*table->data_vec), GFP_KERNEL);
776 if (!table->data_vec)
777 goto err_free_table;
778
779 mutex_init(&table->lock);
780
781 table->sz = sz;
782 rwlock_init(&table->rwlock);
783 return table;
784
785 err_free_table:
786 kfree(table);
787 return NULL;
788 }
789
790 static void release_gid_table(struct ib_device *device,
791 struct ib_gid_table *table)
792 {
793 bool leak = false;
794 int i;
795
796 if (!table)
797 return;
798
799 for (i = 0; i < table->sz; i++) {
800 if (is_gid_entry_free(table->data_vec[i]))
801 continue;
802 if (kref_read(&table->data_vec[i]->kref) > 1) {
803 dev_err(&device->dev,
804 "GID entry ref leak for index %d ref=%d\n", i,
805 kref_read(&table->data_vec[i]->kref));
806 leak = true;
807 }
808 }
809 if (leak)
810 return;
811
812 mutex_destroy(&table->lock);
813 kfree(table->data_vec);
814 kfree(table);
815 }
816
817 static void cleanup_gid_table_port(struct ib_device *ib_dev, u8 port,
818 struct ib_gid_table *table)
819 {
820 int i;
821
822 if (!table)
823 return;
824
825 mutex_lock(&table->lock);
826 for (i = 0; i < table->sz; ++i) {
827 if (is_gid_entry_valid(table->data_vec[i]))
828 del_gid(ib_dev, port, table, i);
829 }
830 mutex_unlock(&table->lock);
831 }
832
833 void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u8 port,
834 struct net_device *ndev,
835 unsigned long gid_type_mask,
836 enum ib_cache_gid_default_mode mode)
837 {
838 union ib_gid gid = { };
839 struct ib_gid_attr gid_attr;
840 unsigned int gid_type;
841 unsigned long mask;
842
843 mask = GID_ATTR_FIND_MASK_GID_TYPE |
844 GID_ATTR_FIND_MASK_DEFAULT |
845 GID_ATTR_FIND_MASK_NETDEV;
846 memset(&gid_attr, 0, sizeof(gid_attr));
847 gid_attr.ndev = ndev;
848
849 for (gid_type = 0; gid_type < IB_GID_TYPE_SIZE; ++gid_type) {
850 if (1UL << gid_type & ~gid_type_mask)
851 continue;
852
853 gid_attr.gid_type = gid_type;
854
855 if (mode == IB_CACHE_GID_DEFAULT_MODE_SET) {
856 make_default_gid(ndev, &gid);
857 __ib_cache_gid_add(ib_dev, port, &gid,
858 &gid_attr, mask, true);
859 } else if (mode == IB_CACHE_GID_DEFAULT_MODE_DELETE) {
860 _ib_cache_gid_del(ib_dev, port, &gid,
861 &gid_attr, mask, true);
862 }
863 }
864 }
865
866 static void gid_table_reserve_default(struct ib_device *ib_dev, u8 port,
867 struct ib_gid_table *table)
868 {
869 unsigned int i;
870 unsigned long roce_gid_type_mask;
871 unsigned int num_default_gids;
872
873 roce_gid_type_mask = roce_gid_type_mask_support(ib_dev, port);
874 num_default_gids = hweight_long(roce_gid_type_mask);
875 /* Reserve starting indices for default GIDs */
876 for (i = 0; i < num_default_gids && i < table->sz; i++)
877 table->default_gid_indices |= BIT(i);
878 }
879
880
881 static void gid_table_release_one(struct ib_device *ib_dev)
882 {
883 unsigned int p;
884
885 rdma_for_each_port (ib_dev, p) {
886 release_gid_table(ib_dev, ib_dev->port_data[p].cache.gid);
887 ib_dev->port_data[p].cache.gid = NULL;
888 }
889 }
890
891 static int _gid_table_setup_one(struct ib_device *ib_dev)
892 {
893 struct ib_gid_table *table;
894 unsigned int rdma_port;
895
896 rdma_for_each_port (ib_dev, rdma_port) {
897 table = alloc_gid_table(
898 ib_dev->port_data[rdma_port].immutable.gid_tbl_len);
899 if (!table)
900 goto rollback_table_setup;
901
902 gid_table_reserve_default(ib_dev, rdma_port, table);
903 ib_dev->port_data[rdma_port].cache.gid = table;
904 }
905 return 0;
906
907 rollback_table_setup:
908 gid_table_release_one(ib_dev);
909 return -ENOMEM;
910 }
911
912 static void gid_table_cleanup_one(struct ib_device *ib_dev)
913 {
914 unsigned int p;
915
916 rdma_for_each_port (ib_dev, p)
917 cleanup_gid_table_port(ib_dev, p,
918 ib_dev->port_data[p].cache.gid);
919 }
920
921 static int gid_table_setup_one(struct ib_device *ib_dev)
922 {
923 int err;
924
925 err = _gid_table_setup_one(ib_dev);
926
927 if (err)
928 return err;
929
930 rdma_roce_rescan_device(ib_dev);
931
932 return err;
933 }
934
935 /**
936 * rdma_query_gid - Read the GID content from the GID software cache
937 * @device: Device to query the GID
938 * @port_num: Port number of the device
939 * @index: Index of the GID table entry to read
940 * @gid: Pointer to GID where to store the entry's GID
941 *
942 * rdma_query_gid() only reads the GID entry content for requested device,
943 * port and index. It reads for IB, RoCE and iWarp link layers. It doesn't
944 * hold any reference to the GID table entry in the HCA or software cache.
945 *
946 * Returns 0 on success or appropriate error code.
947 *
948 */
949 int rdma_query_gid(struct ib_device *device, u8 port_num,
950 int index, union ib_gid *gid)
951 {
952 struct ib_gid_table *table;
953 unsigned long flags;
954 int res = -EINVAL;
955
956 if (!rdma_is_port_valid(device, port_num))
957 return -EINVAL;
958
959 table = rdma_gid_table(device, port_num);
960 read_lock_irqsave(&table->rwlock, flags);
961
962 if (index < 0 || index >= table->sz ||
963 !is_gid_entry_valid(table->data_vec[index]))
964 goto done;
965
966 memcpy(gid, &table->data_vec[index]->attr.gid, sizeof(*gid));
967 res = 0;
968
969 done:
970 read_unlock_irqrestore(&table->rwlock, flags);
971 return res;
972 }
973 EXPORT_SYMBOL(rdma_query_gid);
974
975 /**
976 * rdma_read_gid_hw_context - Read the HW GID context from GID attribute
977 * @attr: Potinter to the GID attribute
978 *
979 * rdma_read_gid_hw_context() reads the drivers GID HW context corresponding
980 * to the SGID attr. Callers are required to already be holding the reference
981 * to an existing GID entry.
982 *
983 * Returns the HW GID context
984 *
985 */
986 void *rdma_read_gid_hw_context(const struct ib_gid_attr *attr)
987 {
988 return container_of(attr, struct ib_gid_table_entry, attr)->context;
989 }
990 EXPORT_SYMBOL(rdma_read_gid_hw_context);
991
992 /**
993 * rdma_find_gid - Returns SGID attributes if the matching GID is found.
994 * @device: The device to query.
995 * @gid: The GID value to search for.
996 * @gid_type: The GID type to search for.
997 * @ndev: In RoCE, the net device of the device. NULL means ignore.
998 *
999 * rdma_find_gid() searches for the specified GID value in the software cache.
1000 *
1001 * Returns GID attributes if a valid GID is found or returns ERR_PTR for the
1002 * error. The caller must invoke rdma_put_gid_attr() to release the reference.
1003 *
1004 */
1005 const struct ib_gid_attr *rdma_find_gid(struct ib_device *device,
1006 const union ib_gid *gid,
1007 enum ib_gid_type gid_type,
1008 struct net_device *ndev)
1009 {
1010 unsigned long mask = GID_ATTR_FIND_MASK_GID |
1011 GID_ATTR_FIND_MASK_GID_TYPE;
1012 struct ib_gid_attr gid_attr_val = {.ndev = ndev, .gid_type = gid_type};
1013 unsigned int p;
1014
1015 if (ndev)
1016 mask |= GID_ATTR_FIND_MASK_NETDEV;
1017
1018 rdma_for_each_port(device, p) {
1019 struct ib_gid_table *table;
1020 unsigned long flags;
1021 int index;
1022
1023 table = device->port_data[p].cache.gid;
1024 read_lock_irqsave(&table->rwlock, flags);
1025 index = find_gid(table, gid, &gid_attr_val, false, mask, NULL);
1026 if (index >= 0) {
1027 const struct ib_gid_attr *attr;
1028
1029 get_gid_entry(table->data_vec[index]);
1030 attr = &table->data_vec[index]->attr;
1031 read_unlock_irqrestore(&table->rwlock, flags);
1032 return attr;
1033 }
1034 read_unlock_irqrestore(&table->rwlock, flags);
1035 }
1036
1037 return ERR_PTR(-ENOENT);
1038 }
1039 EXPORT_SYMBOL(rdma_find_gid);
1040
1041 int ib_get_cached_pkey(struct ib_device *device,
1042 u8 port_num,
1043 int index,
1044 u16 *pkey)
1045 {
1046 struct ib_pkey_cache *cache;
1047 unsigned long flags;
1048 int ret = 0;
1049
1050 if (!rdma_is_port_valid(device, port_num))
1051 return -EINVAL;
1052
1053 read_lock_irqsave(&device->cache_lock, flags);
1054
1055 cache = device->port_data[port_num].cache.pkey;
1056
1057 if (index < 0 || index >= cache->table_len)
1058 ret = -EINVAL;
1059 else
1060 *pkey = cache->table[index];
1061
1062 read_unlock_irqrestore(&device->cache_lock, flags);
1063
1064 return ret;
1065 }
1066 EXPORT_SYMBOL(ib_get_cached_pkey);
1067
1068 int ib_get_cached_subnet_prefix(struct ib_device *device,
1069 u8 port_num,
1070 u64 *sn_pfx)
1071 {
1072 unsigned long flags;
1073
1074 if (!rdma_is_port_valid(device, port_num))
1075 return -EINVAL;
1076
1077 read_lock_irqsave(&device->cache_lock, flags);
1078 *sn_pfx = device->port_data[port_num].cache.subnet_prefix;
1079 read_unlock_irqrestore(&device->cache_lock, flags);
1080
1081 return 0;
1082 }
1083 EXPORT_SYMBOL(ib_get_cached_subnet_prefix);
1084
1085 int ib_find_cached_pkey(struct ib_device *device,
1086 u8 port_num,
1087 u16 pkey,
1088 u16 *index)
1089 {
1090 struct ib_pkey_cache *cache;
1091 unsigned long flags;
1092 int i;
1093 int ret = -ENOENT;
1094 int partial_ix = -1;
1095
1096 if (!rdma_is_port_valid(device, port_num))
1097 return -EINVAL;
1098
1099 read_lock_irqsave(&device->cache_lock, flags);
1100
1101 cache = device->port_data[port_num].cache.pkey;
1102
1103 *index = -1;
1104
1105 for (i = 0; i < cache->table_len; ++i)
1106 if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) {
1107 if (cache->table[i] & 0x8000) {
1108 *index = i;
1109 ret = 0;
1110 break;
1111 } else
1112 partial_ix = i;
1113 }
1114
1115 if (ret && partial_ix >= 0) {
1116 *index = partial_ix;
1117 ret = 0;
1118 }
1119
1120 read_unlock_irqrestore(&device->cache_lock, flags);
1121
1122 return ret;
1123 }
1124 EXPORT_SYMBOL(ib_find_cached_pkey);
1125
1126 int ib_find_exact_cached_pkey(struct ib_device *device,
1127 u8 port_num,
1128 u16 pkey,
1129 u16 *index)
1130 {
1131 struct ib_pkey_cache *cache;
1132 unsigned long flags;
1133 int i;
1134 int ret = -ENOENT;
1135
1136 if (!rdma_is_port_valid(device, port_num))
1137 return -EINVAL;
1138
1139 read_lock_irqsave(&device->cache_lock, flags);
1140
1141 cache = device->port_data[port_num].cache.pkey;
1142
1143 *index = -1;
1144
1145 for (i = 0; i < cache->table_len; ++i)
1146 if (cache->table[i] == pkey) {
1147 *index = i;
1148 ret = 0;
1149 break;
1150 }
1151
1152 read_unlock_irqrestore(&device->cache_lock, flags);
1153
1154 return ret;
1155 }
1156 EXPORT_SYMBOL(ib_find_exact_cached_pkey);
1157
1158 int ib_get_cached_lmc(struct ib_device *device,
1159 u8 port_num,
1160 u8 *lmc)
1161 {
1162 unsigned long flags;
1163 int ret = 0;
1164
1165 if (!rdma_is_port_valid(device, port_num))
1166 return -EINVAL;
1167
1168 read_lock_irqsave(&device->cache_lock, flags);
1169 *lmc = device->port_data[port_num].cache.lmc;
1170 read_unlock_irqrestore(&device->cache_lock, flags);
1171
1172 return ret;
1173 }
1174 EXPORT_SYMBOL(ib_get_cached_lmc);
1175
1176 int ib_get_cached_port_state(struct ib_device *device,
1177 u8 port_num,
1178 enum ib_port_state *port_state)
1179 {
1180 unsigned long flags;
1181 int ret = 0;
1182
1183 if (!rdma_is_port_valid(device, port_num))
1184 return -EINVAL;
1185
1186 read_lock_irqsave(&device->cache_lock, flags);
1187 *port_state = device->port_data[port_num].cache.port_state;
1188 read_unlock_irqrestore(&device->cache_lock, flags);
1189
1190 return ret;
1191 }
1192 EXPORT_SYMBOL(ib_get_cached_port_state);
1193
1194 /**
1195 * rdma_get_gid_attr - Returns GID attributes for a port of a device
1196 * at a requested gid_index, if a valid GID entry exists.
1197 * @device: The device to query.
1198 * @port_num: The port number on the device where the GID value
1199 * is to be queried.
1200 * @index: Index of the GID table entry whose attributes are to
1201 * be queried.
1202 *
1203 * rdma_get_gid_attr() acquires reference count of gid attributes from the
1204 * cached GID table. Caller must invoke rdma_put_gid_attr() to release
1205 * reference to gid attribute regardless of link layer.
1206 *
1207 * Returns pointer to valid gid attribute or ERR_PTR for the appropriate error
1208 * code.
1209 */
1210 const struct ib_gid_attr *
1211 rdma_get_gid_attr(struct ib_device *device, u8 port_num, int index)
1212 {
1213 const struct ib_gid_attr *attr = ERR_PTR(-EINVAL);
1214 struct ib_gid_table *table;
1215 unsigned long flags;
1216
1217 if (!rdma_is_port_valid(device, port_num))
1218 return ERR_PTR(-EINVAL);
1219
1220 table = rdma_gid_table(device, port_num);
1221 if (index < 0 || index >= table->sz)
1222 return ERR_PTR(-EINVAL);
1223
1224 read_lock_irqsave(&table->rwlock, flags);
1225 if (!is_gid_entry_valid(table->data_vec[index]))
1226 goto done;
1227
1228 get_gid_entry(table->data_vec[index]);
1229 attr = &table->data_vec[index]->attr;
1230 done:
1231 read_unlock_irqrestore(&table->rwlock, flags);
1232 return attr;
1233 }
1234 EXPORT_SYMBOL(rdma_get_gid_attr);
1235
1236 /**
1237 * rdma_put_gid_attr - Release reference to the GID attribute
1238 * @attr: Pointer to the GID attribute whose reference
1239 * needs to be released.
1240 *
1241 * rdma_put_gid_attr() must be used to release reference whose
1242 * reference is acquired using rdma_get_gid_attr() or any APIs
1243 * which returns a pointer to the ib_gid_attr regardless of link layer
1244 * of IB or RoCE.
1245 *
1246 */
1247 void rdma_put_gid_attr(const struct ib_gid_attr *attr)
1248 {
1249 struct ib_gid_table_entry *entry =
1250 container_of(attr, struct ib_gid_table_entry, attr);
1251
1252 put_gid_entry(entry);
1253 }
1254 EXPORT_SYMBOL(rdma_put_gid_attr);
1255
1256 /**
1257 * rdma_hold_gid_attr - Get reference to existing GID attribute
1258 *
1259 * @attr: Pointer to the GID attribute whose reference
1260 * needs to be taken.
1261 *
1262 * Increase the reference count to a GID attribute to keep it from being
1263 * freed. Callers are required to already be holding a reference to attribute.
1264 *
1265 */
1266 void rdma_hold_gid_attr(const struct ib_gid_attr *attr)
1267 {
1268 struct ib_gid_table_entry *entry =
1269 container_of(attr, struct ib_gid_table_entry, attr);
1270
1271 get_gid_entry(entry);
1272 }
1273 EXPORT_SYMBOL(rdma_hold_gid_attr);
1274
1275 /**
1276 * rdma_read_gid_attr_ndev_rcu - Read GID attribute netdevice
1277 * which must be in UP state.
1278 *
1279 * @attr:Pointer to the GID attribute
1280 *
1281 * Returns pointer to netdevice if the netdevice was attached to GID and
1282 * netdevice is in UP state. Caller must hold RCU lock as this API
1283 * reads the netdev flags which can change while netdevice migrates to
1284 * different net namespace. Returns ERR_PTR with error code otherwise.
1285 *
1286 */
1287 struct net_device *rdma_read_gid_attr_ndev_rcu(const struct ib_gid_attr *attr)
1288 {
1289 struct ib_gid_table_entry *entry =
1290 container_of(attr, struct ib_gid_table_entry, attr);
1291 struct ib_device *device = entry->attr.device;
1292 struct net_device *ndev = ERR_PTR(-ENODEV);
1293 u8 port_num = entry->attr.port_num;
1294 struct ib_gid_table *table;
1295 unsigned long flags;
1296 bool valid;
1297
1298 table = rdma_gid_table(device, port_num);
1299
1300 read_lock_irqsave(&table->rwlock, flags);
1301 valid = is_gid_entry_valid(table->data_vec[attr->index]);
1302 if (valid) {
1303 ndev = rcu_dereference(attr->ndev);
1304 if (!ndev ||
1305 (ndev && ((READ_ONCE(ndev->flags) & IFF_UP) == 0)))
1306 ndev = ERR_PTR(-ENODEV);
1307 }
1308 read_unlock_irqrestore(&table->rwlock, flags);
1309 return ndev;
1310 }
1311 EXPORT_SYMBOL(rdma_read_gid_attr_ndev_rcu);
1312
1313 static int get_lower_dev_vlan(struct net_device *lower_dev, void *data)
1314 {
1315 u16 *vlan_id = data;
1316
1317 if (is_vlan_dev(lower_dev))
1318 *vlan_id = vlan_dev_vlan_id(lower_dev);
1319
1320 /* We are interested only in first level vlan device, so
1321 * always return 1 to stop iterating over next level devices.
1322 */
1323 return 1;
1324 }
1325
1326 /**
1327 * rdma_read_gid_l2_fields - Read the vlan ID and source MAC address
1328 * of a GID entry.
1329 *
1330 * @attr: GID attribute pointer whose L2 fields to be read
1331 * @vlan_id: Pointer to vlan id to fill up if the GID entry has
1332 * vlan id. It is optional.
1333 * @smac: Pointer to smac to fill up for a GID entry. It is optional.
1334 *
1335 * rdma_read_gid_l2_fields() returns 0 on success and returns vlan id
1336 * (if gid entry has vlan) and source MAC, or returns error.
1337 */
1338 int rdma_read_gid_l2_fields(const struct ib_gid_attr *attr,
1339 u16 *vlan_id, u8 *smac)
1340 {
1341 struct net_device *ndev;
1342
1343 rcu_read_lock();
1344 ndev = rcu_dereference(attr->ndev);
1345 if (!ndev) {
1346 rcu_read_unlock();
1347 return -ENODEV;
1348 }
1349 if (smac)
1350 ether_addr_copy(smac, ndev->dev_addr);
1351 if (vlan_id) {
1352 *vlan_id = 0xffff;
1353 if (is_vlan_dev(ndev)) {
1354 *vlan_id = vlan_dev_vlan_id(ndev);
1355 } else {
1356 /* If the netdev is upper device and if it's lower
1357 * device is vlan device, consider vlan id of the
1358 * the lower vlan device for this gid entry.
1359 */
1360 netdev_walk_all_lower_dev_rcu(attr->ndev,
1361 get_lower_dev_vlan, vlan_id);
1362 }
1363 }
1364 rcu_read_unlock();
1365 return 0;
1366 }
1367 EXPORT_SYMBOL(rdma_read_gid_l2_fields);
1368
1369 static int config_non_roce_gid_cache(struct ib_device *device,
1370 u8 port, int gid_tbl_len)
1371 {
1372 struct ib_gid_attr gid_attr = {};
1373 struct ib_gid_table *table;
1374 int ret = 0;
1375 int i;
1376
1377 gid_attr.device = device;
1378 gid_attr.port_num = port;
1379 table = rdma_gid_table(device, port);
1380
1381 mutex_lock(&table->lock);
1382 for (i = 0; i < gid_tbl_len; ++i) {
1383 if (!device->ops.query_gid)
1384 continue;
1385 ret = device->ops.query_gid(device, port, i, &gid_attr.gid);
1386 if (ret) {
1387 dev_warn(&device->dev,
1388 "query_gid failed (%d) for index %d\n", ret,
1389 i);
1390 goto err;
1391 }
1392 gid_attr.index = i;
1393 add_modify_gid(table, &gid_attr);
1394 }
1395 err:
1396 mutex_unlock(&table->lock);
1397 return ret;
1398 }
1399
1400 static int
1401 ib_cache_update(struct ib_device *device, u8 port, bool enforce_security)
1402 {
1403 struct ib_port_attr *tprops = NULL;
1404 struct ib_pkey_cache *pkey_cache = NULL, *old_pkey_cache;
1405 int i;
1406 int ret;
1407
1408 if (!rdma_is_port_valid(device, port))
1409 return -EINVAL;
1410
1411 tprops = kmalloc(sizeof *tprops, GFP_KERNEL);
1412 if (!tprops)
1413 return -ENOMEM;
1414
1415 ret = ib_query_port(device, port, tprops);
1416 if (ret) {
1417 dev_warn(&device->dev, "ib_query_port failed (%d)\n", ret);
1418 goto err;
1419 }
1420
1421 if (!rdma_protocol_roce(device, port)) {
1422 ret = config_non_roce_gid_cache(device, port,
1423 tprops->gid_tbl_len);
1424 if (ret)
1425 goto err;
1426 }
1427
1428 pkey_cache = kmalloc(struct_size(pkey_cache, table,
1429 tprops->pkey_tbl_len),
1430 GFP_KERNEL);
1431 if (!pkey_cache) {
1432 ret = -ENOMEM;
1433 goto err;
1434 }
1435
1436 pkey_cache->table_len = tprops->pkey_tbl_len;
1437
1438 for (i = 0; i < pkey_cache->table_len; ++i) {
1439 ret = ib_query_pkey(device, port, i, pkey_cache->table + i);
1440 if (ret) {
1441 dev_warn(&device->dev,
1442 "ib_query_pkey failed (%d) for index %d\n",
1443 ret, i);
1444 goto err;
1445 }
1446 }
1447
1448 write_lock_irq(&device->cache_lock);
1449
1450 old_pkey_cache = device->port_data[port].cache.pkey;
1451
1452 device->port_data[port].cache.pkey = pkey_cache;
1453 device->port_data[port].cache.lmc = tprops->lmc;
1454 device->port_data[port].cache.port_state = tprops->state;
1455
1456 device->port_data[port].cache.subnet_prefix = tprops->subnet_prefix;
1457 write_unlock_irq(&device->cache_lock);
1458
1459 if (enforce_security)
1460 ib_security_cache_change(device,
1461 port,
1462 tprops->subnet_prefix);
1463
1464 kfree(old_pkey_cache);
1465 kfree(tprops);
1466 return 0;
1467
1468 err:
1469 kfree(pkey_cache);
1470 kfree(tprops);
1471 return ret;
1472 }
1473
1474 static void ib_cache_event_task(struct work_struct *_work)
1475 {
1476 struct ib_update_work *work =
1477 container_of(_work, struct ib_update_work, work);
1478 int ret;
1479
1480 /* Before distributing the cache update event, first sync
1481 * the cache.
1482 */
1483 ret = ib_cache_update(work->event.device, work->event.element.port_num,
1484 work->enforce_security);
1485
1486 /* GID event is notified already for individual GID entries by
1487 * dispatch_gid_change_event(). Hence, notifiy for rest of the
1488 * events.
1489 */
1490 if (!ret && work->event.event != IB_EVENT_GID_CHANGE)
1491 ib_dispatch_event_clients(&work->event);
1492
1493 kfree(work);
1494 }
1495
1496 static void ib_generic_event_task(struct work_struct *_work)
1497 {
1498 struct ib_update_work *work =
1499 container_of(_work, struct ib_update_work, work);
1500
1501 ib_dispatch_event_clients(&work->event);
1502 kfree(work);
1503 }
1504
1505 static bool is_cache_update_event(const struct ib_event *event)
1506 {
1507 return (event->event == IB_EVENT_PORT_ERR ||
1508 event->event == IB_EVENT_PORT_ACTIVE ||
1509 event->event == IB_EVENT_LID_CHANGE ||
1510 event->event == IB_EVENT_PKEY_CHANGE ||
1511 event->event == IB_EVENT_CLIENT_REREGISTER ||
1512 event->event == IB_EVENT_GID_CHANGE);
1513 }
1514
1515 /**
1516 * ib_dispatch_event - Dispatch an asynchronous event
1517 * @event:Event to dispatch
1518 *
1519 * Low-level drivers must call ib_dispatch_event() to dispatch the
1520 * event to all registered event handlers when an asynchronous event
1521 * occurs.
1522 */
1523 void ib_dispatch_event(const struct ib_event *event)
1524 {
1525 struct ib_update_work *work;
1526
1527 work = kzalloc(sizeof(*work), GFP_ATOMIC);
1528 if (!work)
1529 return;
1530
1531 if (is_cache_update_event(event))
1532 INIT_WORK(&work->work, ib_cache_event_task);
1533 else
1534 INIT_WORK(&work->work, ib_generic_event_task);
1535
1536 work->event = *event;
1537 if (event->event == IB_EVENT_PKEY_CHANGE ||
1538 event->event == IB_EVENT_GID_CHANGE)
1539 work->enforce_security = true;
1540
1541 queue_work(ib_wq, &work->work);
1542 }
1543 EXPORT_SYMBOL(ib_dispatch_event);
1544
1545 int ib_cache_setup_one(struct ib_device *device)
1546 {
1547 unsigned int p;
1548 int err;
1549
1550 rwlock_init(&device->cache_lock);
1551
1552 err = gid_table_setup_one(device);
1553 if (err)
1554 return err;
1555
1556 rdma_for_each_port (device, p) {
1557 err = ib_cache_update(device, p, true);
1558 if (err)
1559 return err;
1560 }
1561
1562 return 0;
1563 }
1564
1565 void ib_cache_release_one(struct ib_device *device)
1566 {
1567 unsigned int p;
1568
1569 /*
1570 * The release function frees all the cache elements.
1571 * This function should be called as part of freeing
1572 * all the device's resources when the cache could no
1573 * longer be accessed.
1574 */
1575 rdma_for_each_port (device, p)
1576 kfree(device->port_data[p].cache.pkey);
1577
1578 gid_table_release_one(device);
1579 }
1580
1581 void ib_cache_cleanup_one(struct ib_device *device)
1582 {
1583 /* The cleanup function waits for all in-progress workqueue
1584 * elements and cleans up the GID cache. This function should be
1585 * called after the device was removed from the devices list and
1586 * all clients were removed, so the cache exists but is
1587 * non-functional and shouldn't be updated anymore.
1588 */
1589 flush_workqueue(ib_wq);
1590 gid_table_cleanup_one(device);
1591
1592 /*
1593 * Flush the wq second time for any pending GID delete work.
1594 */
1595 flush_workqueue(ib_wq);
1596 }