]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/infiniband/hw/hfi1/verbs.c
Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[thirdparty/linux.git] / drivers / infiniband / hw / hfi1 / verbs.c
1 /*
2 * Copyright(c) 2015 - 2018 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <rdma/opa_addr.h>
57
58 #include "hfi.h"
59 #include "common.h"
60 #include "device.h"
61 #include "trace.h"
62 #include "qp.h"
63 #include "verbs_txreq.h"
64 #include "debugfs.h"
65 #include "vnic.h"
66 #include "fault.h"
67 #include "affinity.h"
68
69 static unsigned int hfi1_lkey_table_size = 16;
70 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
71 S_IRUGO);
72 MODULE_PARM_DESC(lkey_table_size,
73 "LKEY table size in bits (2^n, 1 <= n <= 23)");
74
75 static unsigned int hfi1_max_pds = 0xFFFF;
76 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
77 MODULE_PARM_DESC(max_pds,
78 "Maximum number of protection domains to support");
79
80 static unsigned int hfi1_max_ahs = 0xFFFF;
81 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
82 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
83
84 unsigned int hfi1_max_cqes = 0x2FFFFF;
85 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
86 MODULE_PARM_DESC(max_cqes,
87 "Maximum number of completion queue entries to support");
88
89 unsigned int hfi1_max_cqs = 0x1FFFF;
90 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
91 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
92
93 unsigned int hfi1_max_qp_wrs = 0x3FFF;
94 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
95 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
96
97 unsigned int hfi1_max_qps = 32768;
98 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
99 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
100
101 unsigned int hfi1_max_sges = 0x60;
102 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
103 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
104
105 unsigned int hfi1_max_mcast_grps = 16384;
106 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
107 MODULE_PARM_DESC(max_mcast_grps,
108 "Maximum number of multicast groups to support");
109
110 unsigned int hfi1_max_mcast_qp_attached = 16;
111 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
112 uint, S_IRUGO);
113 MODULE_PARM_DESC(max_mcast_qp_attached,
114 "Maximum number of attached QPs to support");
115
116 unsigned int hfi1_max_srqs = 1024;
117 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
118 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
119
120 unsigned int hfi1_max_srq_sges = 128;
121 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
122 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
123
124 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
125 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
126 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
127
128 unsigned short piothreshold = 256;
129 module_param(piothreshold, ushort, S_IRUGO);
130 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
131
132 static unsigned int sge_copy_mode;
133 module_param(sge_copy_mode, uint, S_IRUGO);
134 MODULE_PARM_DESC(sge_copy_mode,
135 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
136
137 static void verbs_sdma_complete(
138 struct sdma_txreq *cookie,
139 int status);
140
141 static int pio_wait(struct rvt_qp *qp,
142 struct send_context *sc,
143 struct hfi1_pkt_state *ps,
144 u32 flag);
145
146 /* Length of buffer to create verbs txreq cache name */
147 #define TXREQ_NAME_LEN 24
148
149 /* 16B trailing buffer */
150 static const u8 trail_buf[MAX_16B_PADDING];
151
152 static uint wss_threshold = 80;
153 module_param(wss_threshold, uint, S_IRUGO);
154 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
155 static uint wss_clean_period = 256;
156 module_param(wss_clean_period, uint, S_IRUGO);
157 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
158
159 /*
160 * Translate ib_wr_opcode into ib_wc_opcode.
161 */
162 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
163 [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
164 [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
165 [IB_WR_SEND] = IB_WC_SEND,
166 [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
167 [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
168 [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
169 [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
170 [IB_WR_SEND_WITH_INV] = IB_WC_SEND,
171 [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
172 [IB_WR_REG_MR] = IB_WC_REG_MR
173 };
174
175 /*
176 * Length of header by opcode, 0 --> not supported
177 */
178 const u8 hdr_len_by_opcode[256] = {
179 /* RC */
180 [IB_OPCODE_RC_SEND_FIRST] = 12 + 8,
181 [IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8,
182 [IB_OPCODE_RC_SEND_LAST] = 12 + 8,
183 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
184 [IB_OPCODE_RC_SEND_ONLY] = 12 + 8,
185 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
186 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
187 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8,
188 [IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8,
189 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
190 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
191 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
192 [IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16,
193 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4,
194 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8,
195 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4,
196 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4,
197 [IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4,
198 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4 + 8,
199 [IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28,
200 [IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28,
201 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = 12 + 8 + 4,
202 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = 12 + 8 + 4,
203 /* UC */
204 [IB_OPCODE_UC_SEND_FIRST] = 12 + 8,
205 [IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8,
206 [IB_OPCODE_UC_SEND_LAST] = 12 + 8,
207 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
208 [IB_OPCODE_UC_SEND_ONLY] = 12 + 8,
209 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
210 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
211 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8,
212 [IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8,
213 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
214 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
215 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
216 /* UD */
217 [IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8,
218 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12
219 };
220
221 static const opcode_handler opcode_handler_tbl[256] = {
222 /* RC */
223 [IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv,
224 [IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv,
225 [IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv,
226 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
227 [IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv,
228 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
229 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv,
230 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv,
231 [IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv,
232 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
233 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv,
234 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
235 [IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv,
236 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv,
237 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv,
238 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv,
239 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv,
240 [IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv,
241 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv,
242 [IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv,
243 [IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv,
244 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = &hfi1_rc_rcv,
245 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = &hfi1_rc_rcv,
246 /* UC */
247 [IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv,
248 [IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv,
249 [IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv,
250 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
251 [IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv,
252 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
253 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv,
254 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv,
255 [IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv,
256 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
257 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv,
258 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
259 /* UD */
260 [IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv,
261 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv,
262 /* CNP */
263 [IB_OPCODE_CNP] = &hfi1_cnp_rcv
264 };
265
266 #define OPMASK 0x1f
267
268 static const u32 pio_opmask[BIT(3)] = {
269 /* RC */
270 [IB_OPCODE_RC >> 5] =
271 BIT(RC_OP(SEND_ONLY) & OPMASK) |
272 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
273 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
274 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
275 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
276 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
277 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
278 BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
279 BIT(RC_OP(FETCH_ADD) & OPMASK),
280 /* UC */
281 [IB_OPCODE_UC >> 5] =
282 BIT(UC_OP(SEND_ONLY) & OPMASK) |
283 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
284 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
285 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
286 };
287
288 /*
289 * System image GUID.
290 */
291 __be64 ib_hfi1_sys_image_guid;
292
293 /*
294 * Make sure the QP is ready and able to accept the given opcode.
295 */
296 static inline opcode_handler qp_ok(struct hfi1_packet *packet)
297 {
298 if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
299 return NULL;
300 if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
301 packet->qp->allowed_ops) ||
302 (packet->opcode == IB_OPCODE_CNP))
303 return opcode_handler_tbl[packet->opcode];
304
305 return NULL;
306 }
307
308 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
309 {
310 #ifdef CONFIG_FAULT_INJECTION
311 if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP)
312 /*
313 * In order to drop non-IB traffic we
314 * set PbcInsertHrc to NONE (0x2).
315 * The packet will still be delivered
316 * to the receiving node but a
317 * KHdrHCRCErr (KDETH packet with a bad
318 * HCRC) will be triggered and the
319 * packet will not be delivered to the
320 * correct context.
321 */
322 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
323 else
324 /*
325 * In order to drop regular verbs
326 * traffic we set the PbcTestEbp
327 * flag. The packet will still be
328 * delivered to the receiving node but
329 * a 'late ebp error' will be
330 * triggered and will be dropped.
331 */
332 pbc |= PBC_TEST_EBP;
333 #endif
334 return pbc;
335 }
336
337 static int hfi1_do_pkey_check(struct hfi1_packet *packet)
338 {
339 struct hfi1_ctxtdata *rcd = packet->rcd;
340 struct hfi1_pportdata *ppd = rcd->ppd;
341 struct hfi1_16b_header *hdr = packet->hdr;
342 u16 pkey;
343
344 /* Pkey check needed only for bypass packets */
345 if (packet->etype != RHF_RCV_TYPE_BYPASS)
346 return 0;
347
348 /* Perform pkey check */
349 pkey = hfi1_16B_get_pkey(hdr);
350 return ingress_pkey_check(ppd, pkey, packet->sc,
351 packet->qp->s_pkey_index,
352 packet->slid, true);
353 }
354
355 static inline void hfi1_handle_packet(struct hfi1_packet *packet,
356 bool is_mcast)
357 {
358 u32 qp_num;
359 struct hfi1_ctxtdata *rcd = packet->rcd;
360 struct hfi1_pportdata *ppd = rcd->ppd;
361 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
362 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
363 opcode_handler packet_handler;
364 unsigned long flags;
365
366 inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
367
368 if (unlikely(is_mcast)) {
369 struct rvt_mcast *mcast;
370 struct rvt_mcast_qp *p;
371
372 if (!packet->grh)
373 goto drop;
374 mcast = rvt_mcast_find(&ibp->rvp,
375 &packet->grh->dgid,
376 opa_get_lid(packet->dlid, 9B));
377 if (!mcast)
378 goto drop;
379 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
380 packet->qp = p->qp;
381 if (hfi1_do_pkey_check(packet))
382 goto drop;
383 spin_lock_irqsave(&packet->qp->r_lock, flags);
384 packet_handler = qp_ok(packet);
385 if (likely(packet_handler))
386 packet_handler(packet);
387 else
388 ibp->rvp.n_pkt_drops++;
389 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
390 }
391 /*
392 * Notify rvt_multicast_detach() if it is waiting for us
393 * to finish.
394 */
395 if (atomic_dec_return(&mcast->refcount) <= 1)
396 wake_up(&mcast->wait);
397 } else {
398 /* Get the destination QP number. */
399 if (packet->etype == RHF_RCV_TYPE_BYPASS &&
400 hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM)
401 qp_num = hfi1_16B_get_dest_qpn(packet->mgmt);
402 else
403 qp_num = ib_bth_get_qpn(packet->ohdr);
404
405 rcu_read_lock();
406 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
407 if (!packet->qp)
408 goto unlock_drop;
409
410 if (hfi1_do_pkey_check(packet))
411 goto unlock_drop;
412
413 spin_lock_irqsave(&packet->qp->r_lock, flags);
414 packet_handler = qp_ok(packet);
415 if (likely(packet_handler))
416 packet_handler(packet);
417 else
418 ibp->rvp.n_pkt_drops++;
419 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
420 rcu_read_unlock();
421 }
422 return;
423 unlock_drop:
424 rcu_read_unlock();
425 drop:
426 ibp->rvp.n_pkt_drops++;
427 }
428
429 /**
430 * hfi1_ib_rcv - process an incoming packet
431 * @packet: data packet information
432 *
433 * This is called to process an incoming packet at interrupt level.
434 */
435 void hfi1_ib_rcv(struct hfi1_packet *packet)
436 {
437 struct hfi1_ctxtdata *rcd = packet->rcd;
438
439 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
440 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
441 }
442
443 void hfi1_16B_rcv(struct hfi1_packet *packet)
444 {
445 struct hfi1_ctxtdata *rcd = packet->rcd;
446
447 trace_input_ibhdr(rcd->dd, packet, false);
448 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
449 }
450
451 /*
452 * This is called from a timer to check for QPs
453 * which need kernel memory in order to send a packet.
454 */
455 static void mem_timer(struct timer_list *t)
456 {
457 struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer);
458 struct list_head *list = &dev->memwait;
459 struct rvt_qp *qp = NULL;
460 struct iowait *wait;
461 unsigned long flags;
462 struct hfi1_qp_priv *priv;
463
464 write_seqlock_irqsave(&dev->iowait_lock, flags);
465 if (!list_empty(list)) {
466 wait = list_first_entry(list, struct iowait, list);
467 qp = iowait_to_qp(wait);
468 priv = qp->priv;
469 list_del_init(&priv->s_iowait.list);
470 priv->s_iowait.lock = NULL;
471 /* refcount held until actual wake up */
472 if (!list_empty(list))
473 mod_timer(&dev->mem_timer, jiffies + 1);
474 }
475 write_sequnlock_irqrestore(&dev->iowait_lock, flags);
476
477 if (qp)
478 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
479 }
480
481 /*
482 * This is called with progress side lock held.
483 */
484 /* New API */
485 static void verbs_sdma_complete(
486 struct sdma_txreq *cookie,
487 int status)
488 {
489 struct verbs_txreq *tx =
490 container_of(cookie, struct verbs_txreq, txreq);
491 struct rvt_qp *qp = tx->qp;
492
493 spin_lock(&qp->s_lock);
494 if (tx->wqe) {
495 rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
496 } else if (qp->ibqp.qp_type == IB_QPT_RC) {
497 struct hfi1_opa_header *hdr;
498
499 hdr = &tx->phdr.hdr;
500 hfi1_rc_send_complete(qp, hdr);
501 }
502 spin_unlock(&qp->s_lock);
503
504 hfi1_put_txreq(tx);
505 }
506
507 static int wait_kmem(struct hfi1_ibdev *dev,
508 struct rvt_qp *qp,
509 struct hfi1_pkt_state *ps)
510 {
511 struct hfi1_qp_priv *priv = qp->priv;
512 unsigned long flags;
513 int ret = 0;
514
515 spin_lock_irqsave(&qp->s_lock, flags);
516 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
517 write_seqlock(&dev->iowait_lock);
518 list_add_tail(&ps->s_txreq->txreq.list,
519 &ps->wait->tx_head);
520 if (list_empty(&priv->s_iowait.list)) {
521 if (list_empty(&dev->memwait))
522 mod_timer(&dev->mem_timer, jiffies + 1);
523 qp->s_flags |= RVT_S_WAIT_KMEM;
524 list_add_tail(&priv->s_iowait.list, &dev->memwait);
525 priv->s_iowait.lock = &dev->iowait_lock;
526 trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
527 rvt_get_qp(qp);
528 }
529 write_sequnlock(&dev->iowait_lock);
530 hfi1_qp_unbusy(qp, ps->wait);
531 ret = -EBUSY;
532 }
533 spin_unlock_irqrestore(&qp->s_lock, flags);
534
535 return ret;
536 }
537
538 /*
539 * This routine calls txadds for each sg entry.
540 *
541 * Add failures will revert the sge cursor
542 */
543 static noinline int build_verbs_ulp_payload(
544 struct sdma_engine *sde,
545 u32 length,
546 struct verbs_txreq *tx)
547 {
548 struct rvt_sge_state *ss = tx->ss;
549 struct rvt_sge *sg_list = ss->sg_list;
550 struct rvt_sge sge = ss->sge;
551 u8 num_sge = ss->num_sge;
552 u32 len;
553 int ret = 0;
554
555 while (length) {
556 len = ss->sge.length;
557 if (len > length)
558 len = length;
559 if (len > ss->sge.sge_length)
560 len = ss->sge.sge_length;
561 WARN_ON_ONCE(len == 0);
562 ret = sdma_txadd_kvaddr(
563 sde->dd,
564 &tx->txreq,
565 ss->sge.vaddr,
566 len);
567 if (ret)
568 goto bail_txadd;
569 rvt_update_sge(ss, len, false);
570 length -= len;
571 }
572 return ret;
573 bail_txadd:
574 /* unwind cursor */
575 ss->sge = sge;
576 ss->num_sge = num_sge;
577 ss->sg_list = sg_list;
578 return ret;
579 }
580
581 /**
582 * update_tx_opstats - record stats by opcode
583 * @qp; the qp
584 * @ps: transmit packet state
585 * @plen: the plen in dwords
586 *
587 * This is a routine to record the tx opstats after a
588 * packet has been presented to the egress mechanism.
589 */
590 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
591 u32 plen)
592 {
593 #ifdef CONFIG_DEBUG_FS
594 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
595 struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats);
596
597 inc_opstats(plen * 4, &s->stats[ps->opcode]);
598 put_cpu_ptr(s);
599 #endif
600 }
601
602 /*
603 * Build the number of DMA descriptors needed to send length bytes of data.
604 *
605 * NOTE: DMA mapping is held in the tx until completed in the ring or
606 * the tx desc is freed without having been submitted to the ring
607 *
608 * This routine ensures all the helper routine calls succeed.
609 */
610 /* New API */
611 static int build_verbs_tx_desc(
612 struct sdma_engine *sde,
613 u32 length,
614 struct verbs_txreq *tx,
615 struct hfi1_ahg_info *ahg_info,
616 u64 pbc)
617 {
618 int ret = 0;
619 struct hfi1_sdma_header *phdr = &tx->phdr;
620 u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2;
621 u8 extra_bytes = 0;
622
623 if (tx->phdr.hdr.hdr_type) {
624 /*
625 * hdrbytes accounts for PBC. Need to subtract 8 bytes
626 * before calculating padding.
627 */
628 extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
629 (SIZE_OF_CRC << 2) + SIZE_OF_LT;
630 }
631 if (!ahg_info->ahgcount) {
632 ret = sdma_txinit_ahg(
633 &tx->txreq,
634 ahg_info->tx_flags,
635 hdrbytes + length +
636 extra_bytes,
637 ahg_info->ahgidx,
638 0,
639 NULL,
640 0,
641 verbs_sdma_complete);
642 if (ret)
643 goto bail_txadd;
644 phdr->pbc = cpu_to_le64(pbc);
645 ret = sdma_txadd_kvaddr(
646 sde->dd,
647 &tx->txreq,
648 phdr,
649 hdrbytes);
650 if (ret)
651 goto bail_txadd;
652 } else {
653 ret = sdma_txinit_ahg(
654 &tx->txreq,
655 ahg_info->tx_flags,
656 length,
657 ahg_info->ahgidx,
658 ahg_info->ahgcount,
659 ahg_info->ahgdesc,
660 hdrbytes,
661 verbs_sdma_complete);
662 if (ret)
663 goto bail_txadd;
664 }
665 /* add the ulp payload - if any. tx->ss can be NULL for acks */
666 if (tx->ss) {
667 ret = build_verbs_ulp_payload(sde, length, tx);
668 if (ret)
669 goto bail_txadd;
670 }
671
672 /* add icrc, lt byte, and padding to flit */
673 if (extra_bytes)
674 ret = sdma_txadd_kvaddr(sde->dd, &tx->txreq,
675 (void *)trail_buf, extra_bytes);
676
677 bail_txadd:
678 return ret;
679 }
680
681 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
682 u64 pbc)
683 {
684 struct hfi1_qp_priv *priv = qp->priv;
685 struct hfi1_ahg_info *ahg_info = priv->s_ahg;
686 u32 hdrwords = ps->s_txreq->hdr_dwords;
687 u32 len = ps->s_txreq->s_cur_size;
688 u32 plen;
689 struct hfi1_ibdev *dev = ps->dev;
690 struct hfi1_pportdata *ppd = ps->ppd;
691 struct verbs_txreq *tx;
692 u8 sc5 = priv->s_sc;
693 int ret;
694 u32 dwords;
695
696 if (ps->s_txreq->phdr.hdr.hdr_type) {
697 u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
698
699 dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
700 SIZE_OF_LT) >> 2;
701 } else {
702 dwords = (len + 3) >> 2;
703 }
704 plen = hdrwords + dwords + sizeof(pbc) / 4;
705
706 tx = ps->s_txreq;
707 if (!sdma_txreq_built(&tx->txreq)) {
708 if (likely(pbc == 0)) {
709 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
710
711 /* No vl15 here */
712 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
713 if (ps->s_txreq->phdr.hdr.hdr_type)
714 pbc |= PBC_PACKET_BYPASS |
715 PBC_INSERT_BYPASS_ICRC;
716 else
717 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
718
719 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
720 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
721 pbc = create_pbc(ppd,
722 pbc,
723 qp->srate_mbps,
724 vl,
725 plen);
726 }
727 tx->wqe = qp->s_wqe;
728 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
729 if (unlikely(ret))
730 goto bail_build;
731 }
732 ret = sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent);
733 if (unlikely(ret < 0)) {
734 if (ret == -ECOMM)
735 goto bail_ecomm;
736 return ret;
737 }
738
739 update_tx_opstats(qp, ps, plen);
740 trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
741 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
742 return ret;
743
744 bail_ecomm:
745 /* The current one got "sent" */
746 return 0;
747 bail_build:
748 ret = wait_kmem(dev, qp, ps);
749 if (!ret) {
750 /* free txreq - bad state */
751 hfi1_put_txreq(ps->s_txreq);
752 ps->s_txreq = NULL;
753 }
754 return ret;
755 }
756
757 /*
758 * If we are now in the error state, return zero to flush the
759 * send work request.
760 */
761 static int pio_wait(struct rvt_qp *qp,
762 struct send_context *sc,
763 struct hfi1_pkt_state *ps,
764 u32 flag)
765 {
766 struct hfi1_qp_priv *priv = qp->priv;
767 struct hfi1_devdata *dd = sc->dd;
768 struct hfi1_ibdev *dev = &dd->verbs_dev;
769 unsigned long flags;
770 int ret = 0;
771
772 /*
773 * Note that as soon as want_buffer() is called and
774 * possibly before it returns, sc_piobufavail()
775 * could be called. Therefore, put QP on the I/O wait list before
776 * enabling the PIO avail interrupt.
777 */
778 spin_lock_irqsave(&qp->s_lock, flags);
779 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
780 write_seqlock(&dev->iowait_lock);
781 list_add_tail(&ps->s_txreq->txreq.list,
782 &ps->wait->tx_head);
783 if (list_empty(&priv->s_iowait.list)) {
784 struct hfi1_ibdev *dev = &dd->verbs_dev;
785 int was_empty;
786
787 dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
788 dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN);
789 qp->s_flags |= flag;
790 was_empty = list_empty(&sc->piowait);
791 iowait_queue(ps->pkts_sent, &priv->s_iowait,
792 &sc->piowait);
793 priv->s_iowait.lock = &dev->iowait_lock;
794 trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
795 rvt_get_qp(qp);
796 /* counting: only call wantpiobuf_intr if first user */
797 if (was_empty)
798 hfi1_sc_wantpiobuf_intr(sc, 1);
799 }
800 write_sequnlock(&dev->iowait_lock);
801 hfi1_qp_unbusy(qp, ps->wait);
802 ret = -EBUSY;
803 }
804 spin_unlock_irqrestore(&qp->s_lock, flags);
805 return ret;
806 }
807
808 static void verbs_pio_complete(void *arg, int code)
809 {
810 struct rvt_qp *qp = (struct rvt_qp *)arg;
811 struct hfi1_qp_priv *priv = qp->priv;
812
813 if (iowait_pio_dec(&priv->s_iowait))
814 iowait_drain_wakeup(&priv->s_iowait);
815 }
816
817 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
818 u64 pbc)
819 {
820 struct hfi1_qp_priv *priv = qp->priv;
821 u32 hdrwords = ps->s_txreq->hdr_dwords;
822 struct rvt_sge_state *ss = ps->s_txreq->ss;
823 u32 len = ps->s_txreq->s_cur_size;
824 u32 dwords;
825 u32 plen;
826 struct hfi1_pportdata *ppd = ps->ppd;
827 u32 *hdr;
828 u8 sc5;
829 unsigned long flags = 0;
830 struct send_context *sc;
831 struct pio_buf *pbuf;
832 int wc_status = IB_WC_SUCCESS;
833 int ret = 0;
834 pio_release_cb cb = NULL;
835 u8 extra_bytes = 0;
836
837 if (ps->s_txreq->phdr.hdr.hdr_type) {
838 u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
839
840 extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
841 dwords = (len + extra_bytes) >> 2;
842 hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
843 } else {
844 dwords = (len + 3) >> 2;
845 hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
846 }
847 plen = hdrwords + dwords + sizeof(pbc) / 4;
848
849 /* only RC/UC use complete */
850 switch (qp->ibqp.qp_type) {
851 case IB_QPT_RC:
852 case IB_QPT_UC:
853 cb = verbs_pio_complete;
854 break;
855 default:
856 break;
857 }
858
859 /* vl15 special case taken care of in ud.c */
860 sc5 = priv->s_sc;
861 sc = ps->s_txreq->psc;
862
863 if (likely(pbc == 0)) {
864 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
865
866 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
867 if (ps->s_txreq->phdr.hdr.hdr_type)
868 pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
869 else
870 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
871
872 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
873 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
874 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
875 }
876 if (cb)
877 iowait_pio_inc(&priv->s_iowait);
878 pbuf = sc_buffer_alloc(sc, plen, cb, qp);
879 if (unlikely(!pbuf)) {
880 if (cb)
881 verbs_pio_complete(qp, 0);
882 if (ppd->host_link_state != HLS_UP_ACTIVE) {
883 /*
884 * If we have filled the PIO buffers to capacity and are
885 * not in an active state this request is not going to
886 * go out to so just complete it with an error or else a
887 * ULP or the core may be stuck waiting.
888 */
889 hfi1_cdbg(
890 PIO,
891 "alloc failed. state not active, completing");
892 wc_status = IB_WC_GENERAL_ERR;
893 goto pio_bail;
894 } else {
895 /*
896 * This is a normal occurrence. The PIO buffs are full
897 * up but we are still happily sending, well we could be
898 * so lets continue to queue the request.
899 */
900 hfi1_cdbg(PIO, "alloc failed. state active, queuing");
901 ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
902 if (!ret)
903 /* txreq not queued - free */
904 goto bail;
905 /* tx consumed in wait */
906 return ret;
907 }
908 }
909
910 if (dwords == 0) {
911 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
912 } else {
913 seg_pio_copy_start(pbuf, pbc,
914 hdr, hdrwords * 4);
915 if (ss) {
916 while (len) {
917 void *addr = ss->sge.vaddr;
918 u32 slen = ss->sge.length;
919
920 if (slen > len)
921 slen = len;
922 rvt_update_sge(ss, slen, false);
923 seg_pio_copy_mid(pbuf, addr, slen);
924 len -= slen;
925 }
926 }
927 /* add icrc, lt byte, and padding to flit */
928 if (extra_bytes)
929 seg_pio_copy_mid(pbuf, trail_buf, extra_bytes);
930
931 seg_pio_copy_end(pbuf);
932 }
933
934 update_tx_opstats(qp, ps, plen);
935 trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
936 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
937
938 pio_bail:
939 if (qp->s_wqe) {
940 spin_lock_irqsave(&qp->s_lock, flags);
941 rvt_send_complete(qp, qp->s_wqe, wc_status);
942 spin_unlock_irqrestore(&qp->s_lock, flags);
943 } else if (qp->ibqp.qp_type == IB_QPT_RC) {
944 spin_lock_irqsave(&qp->s_lock, flags);
945 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
946 spin_unlock_irqrestore(&qp->s_lock, flags);
947 }
948
949 ret = 0;
950
951 bail:
952 hfi1_put_txreq(ps->s_txreq);
953 return ret;
954 }
955
956 /*
957 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
958 * being an entry from the partition key table), return 0
959 * otherwise. Use the matching criteria for egress partition keys
960 * specified in the OPAv1 spec., section 9.1l.7.
961 */
962 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
963 {
964 u16 mkey = pkey & PKEY_LOW_15_MASK;
965 u16 mentry = ent & PKEY_LOW_15_MASK;
966
967 if (mkey == mentry) {
968 /*
969 * If pkey[15] is set (full partition member),
970 * is bit 15 in the corresponding table element
971 * clear (limited member)?
972 */
973 if (pkey & PKEY_MEMBER_MASK)
974 return !!(ent & PKEY_MEMBER_MASK);
975 return 1;
976 }
977 return 0;
978 }
979
980 /**
981 * egress_pkey_check - check P_KEY of a packet
982 * @ppd: Physical IB port data
983 * @slid: SLID for packet
984 * @bkey: PKEY for header
985 * @sc5: SC for packet
986 * @s_pkey_index: It will be used for look up optimization for kernel contexts
987 * only. If it is negative value, then it means user contexts is calling this
988 * function.
989 *
990 * It checks if hdr's pkey is valid.
991 *
992 * Return: 0 on success, otherwise, 1
993 */
994 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
995 u8 sc5, int8_t s_pkey_index)
996 {
997 struct hfi1_devdata *dd;
998 int i;
999 int is_user_ctxt_mechanism = (s_pkey_index < 0);
1000
1001 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1002 return 0;
1003
1004 /* If SC15, pkey[0:14] must be 0x7fff */
1005 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1006 goto bad;
1007
1008 /* Is the pkey = 0x0, or 0x8000? */
1009 if ((pkey & PKEY_LOW_15_MASK) == 0)
1010 goto bad;
1011
1012 /*
1013 * For the kernel contexts only, if a qp is passed into the function,
1014 * the most likely matching pkey has index qp->s_pkey_index
1015 */
1016 if (!is_user_ctxt_mechanism &&
1017 egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1018 return 0;
1019 }
1020
1021 for (i = 0; i < MAX_PKEY_VALUES; i++) {
1022 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1023 return 0;
1024 }
1025 bad:
1026 /*
1027 * For the user-context mechanism, the P_KEY check would only happen
1028 * once per SDMA request, not once per packet. Therefore, there's no
1029 * need to increment the counter for the user-context mechanism.
1030 */
1031 if (!is_user_ctxt_mechanism) {
1032 incr_cntr64(&ppd->port_xmit_constraint_errors);
1033 dd = ppd->dd;
1034 if (!(dd->err_info_xmit_constraint.status &
1035 OPA_EI_STATUS_SMASK)) {
1036 dd->err_info_xmit_constraint.status |=
1037 OPA_EI_STATUS_SMASK;
1038 dd->err_info_xmit_constraint.slid = slid;
1039 dd->err_info_xmit_constraint.pkey = pkey;
1040 }
1041 }
1042 return 1;
1043 }
1044
1045 /**
1046 * get_send_routine - choose an egress routine
1047 *
1048 * Choose an egress routine based on QP type
1049 * and size
1050 */
1051 static inline send_routine get_send_routine(struct rvt_qp *qp,
1052 struct hfi1_pkt_state *ps)
1053 {
1054 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1055 struct hfi1_qp_priv *priv = qp->priv;
1056 struct verbs_txreq *tx = ps->s_txreq;
1057
1058 if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1059 return dd->process_pio_send;
1060 switch (qp->ibqp.qp_type) {
1061 case IB_QPT_SMI:
1062 return dd->process_pio_send;
1063 case IB_QPT_GSI:
1064 case IB_QPT_UD:
1065 break;
1066 case IB_QPT_UC:
1067 case IB_QPT_RC: {
1068 if (piothreshold &&
1069 tx->s_cur_size <= min(piothreshold, qp->pmtu) &&
1070 (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
1071 iowait_sdma_pending(&priv->s_iowait) == 0 &&
1072 !sdma_txreq_built(&tx->txreq))
1073 return dd->process_pio_send;
1074 break;
1075 }
1076 default:
1077 break;
1078 }
1079 return dd->process_dma_send;
1080 }
1081
1082 /**
1083 * hfi1_verbs_send - send a packet
1084 * @qp: the QP to send on
1085 * @ps: the state of the packet to send
1086 *
1087 * Return zero if packet is sent or queued OK.
1088 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1089 */
1090 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1091 {
1092 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1093 struct hfi1_qp_priv *priv = qp->priv;
1094 struct ib_other_headers *ohdr = NULL;
1095 send_routine sr;
1096 int ret;
1097 u16 pkey;
1098 u32 slid;
1099 u8 l4 = 0;
1100
1101 /* locate the pkey within the headers */
1102 if (ps->s_txreq->phdr.hdr.hdr_type) {
1103 struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
1104
1105 l4 = hfi1_16B_get_l4(hdr);
1106 if (l4 == OPA_16B_L4_IB_LOCAL)
1107 ohdr = &hdr->u.oth;
1108 else if (l4 == OPA_16B_L4_IB_GLOBAL)
1109 ohdr = &hdr->u.l.oth;
1110
1111 slid = hfi1_16B_get_slid(hdr);
1112 pkey = hfi1_16B_get_pkey(hdr);
1113 } else {
1114 struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
1115 u8 lnh = ib_get_lnh(hdr);
1116
1117 if (lnh == HFI1_LRH_GRH)
1118 ohdr = &hdr->u.l.oth;
1119 else
1120 ohdr = &hdr->u.oth;
1121 slid = ib_get_slid(hdr);
1122 pkey = ib_bth_get_pkey(ohdr);
1123 }
1124
1125 if (likely(l4 != OPA_16B_L4_FM))
1126 ps->opcode = ib_bth_get_opcode(ohdr);
1127 else
1128 ps->opcode = IB_OPCODE_UD_SEND_ONLY;
1129
1130 sr = get_send_routine(qp, ps);
1131 ret = egress_pkey_check(dd->pport, slid, pkey,
1132 priv->s_sc, qp->s_pkey_index);
1133 if (unlikely(ret)) {
1134 /*
1135 * The value we are returning here does not get propagated to
1136 * the verbs caller. Thus we need to complete the request with
1137 * error otherwise the caller could be sitting waiting on the
1138 * completion event. Only do this for PIO. SDMA has its own
1139 * mechanism for handling the errors. So for SDMA we can just
1140 * return.
1141 */
1142 if (sr == dd->process_pio_send) {
1143 unsigned long flags;
1144
1145 hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1146 __func__);
1147 spin_lock_irqsave(&qp->s_lock, flags);
1148 rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1149 spin_unlock_irqrestore(&qp->s_lock, flags);
1150 }
1151 return -EINVAL;
1152 }
1153 if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1154 return pio_wait(qp,
1155 ps->s_txreq->psc,
1156 ps,
1157 HFI1_S_WAIT_PIO_DRAIN);
1158 return sr(qp, ps, 0);
1159 }
1160
1161 /**
1162 * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1163 * @dd: the device data structure
1164 */
1165 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1166 {
1167 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1168 u32 ver = dd->dc8051_ver;
1169
1170 memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1171
1172 rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1173 ((u64)(dc8051_ver_min(ver)) << 16) |
1174 (u64)dc8051_ver_patch(ver);
1175
1176 rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1177 IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1178 IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1179 IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1180 IB_DEVICE_MEM_MGT_EXTENSIONS |
1181 IB_DEVICE_RDMA_NETDEV_OPA_VNIC;
1182 rdi->dparms.props.page_size_cap = PAGE_SIZE;
1183 rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1184 rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1185 rdi->dparms.props.hw_ver = dd->minrev;
1186 rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1187 rdi->dparms.props.max_mr_size = U64_MAX;
1188 rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1189 rdi->dparms.props.max_qp = hfi1_max_qps;
1190 rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1191 rdi->dparms.props.max_send_sge = hfi1_max_sges;
1192 rdi->dparms.props.max_recv_sge = hfi1_max_sges;
1193 rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1194 rdi->dparms.props.max_cq = hfi1_max_cqs;
1195 rdi->dparms.props.max_ah = hfi1_max_ahs;
1196 rdi->dparms.props.max_cqe = hfi1_max_cqes;
1197 rdi->dparms.props.max_mr = rdi->lkey_table.max;
1198 rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1199 rdi->dparms.props.max_map_per_fmr = 32767;
1200 rdi->dparms.props.max_pd = hfi1_max_pds;
1201 rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1202 rdi->dparms.props.max_qp_init_rd_atom = 255;
1203 rdi->dparms.props.max_srq = hfi1_max_srqs;
1204 rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1205 rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1206 rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1207 rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1208 rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1209 rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1210 rdi->dparms.props.max_total_mcast_qp_attach =
1211 rdi->dparms.props.max_mcast_qp_attach *
1212 rdi->dparms.props.max_mcast_grp;
1213 }
1214
1215 static inline u16 opa_speed_to_ib(u16 in)
1216 {
1217 u16 out = 0;
1218
1219 if (in & OPA_LINK_SPEED_25G)
1220 out |= IB_SPEED_EDR;
1221 if (in & OPA_LINK_SPEED_12_5G)
1222 out |= IB_SPEED_FDR;
1223
1224 return out;
1225 }
1226
1227 /*
1228 * Convert a single OPA link width (no multiple flags) to an IB value.
1229 * A zero OPA link width means link down, which means the IB width value
1230 * is a don't care.
1231 */
1232 static inline u16 opa_width_to_ib(u16 in)
1233 {
1234 switch (in) {
1235 case OPA_LINK_WIDTH_1X:
1236 /* map 2x and 3x to 1x as they don't exist in IB */
1237 case OPA_LINK_WIDTH_2X:
1238 case OPA_LINK_WIDTH_3X:
1239 return IB_WIDTH_1X;
1240 default: /* link down or unknown, return our largest width */
1241 case OPA_LINK_WIDTH_4X:
1242 return IB_WIDTH_4X;
1243 }
1244 }
1245
1246 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1247 struct ib_port_attr *props)
1248 {
1249 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1250 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1251 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1252 u32 lid = ppd->lid;
1253
1254 /* props being zeroed by the caller, avoid zeroing it here */
1255 props->lid = lid ? lid : 0;
1256 props->lmc = ppd->lmc;
1257 /* OPA logical states match IB logical states */
1258 props->state = driver_lstate(ppd);
1259 props->phys_state = driver_pstate(ppd);
1260 props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1261 props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1262 /* see rate_show() in ib core/sysfs.c */
1263 props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1264 props->max_vl_num = ppd->vls_supported;
1265
1266 /* Once we are a "first class" citizen and have added the OPA MTUs to
1267 * the core we can advertise the larger MTU enum to the ULPs, for now
1268 * advertise only 4K.
1269 *
1270 * Those applications which are either OPA aware or pass the MTU enum
1271 * from the Path Records to us will get the new 8k MTU. Those that
1272 * attempt to process the MTU enum may fail in various ways.
1273 */
1274 props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1275 4096 : hfi1_max_mtu), IB_MTU_4096);
1276 props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1277 mtu_to_enum(ppd->ibmtu, IB_MTU_4096);
1278
1279 return 0;
1280 }
1281
1282 static int modify_device(struct ib_device *device,
1283 int device_modify_mask,
1284 struct ib_device_modify *device_modify)
1285 {
1286 struct hfi1_devdata *dd = dd_from_ibdev(device);
1287 unsigned i;
1288 int ret;
1289
1290 if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1291 IB_DEVICE_MODIFY_NODE_DESC)) {
1292 ret = -EOPNOTSUPP;
1293 goto bail;
1294 }
1295
1296 if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1297 memcpy(device->node_desc, device_modify->node_desc,
1298 IB_DEVICE_NODE_DESC_MAX);
1299 for (i = 0; i < dd->num_pports; i++) {
1300 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1301
1302 hfi1_node_desc_chg(ibp);
1303 }
1304 }
1305
1306 if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1307 ib_hfi1_sys_image_guid =
1308 cpu_to_be64(device_modify->sys_image_guid);
1309 for (i = 0; i < dd->num_pports; i++) {
1310 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1311
1312 hfi1_sys_guid_chg(ibp);
1313 }
1314 }
1315
1316 ret = 0;
1317
1318 bail:
1319 return ret;
1320 }
1321
1322 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1323 {
1324 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1325 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1326 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1327 int ret;
1328
1329 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1330 OPA_LINKDOWN_REASON_UNKNOWN);
1331 ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1332 return ret;
1333 }
1334
1335 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1336 int guid_index, __be64 *guid)
1337 {
1338 struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1339
1340 if (guid_index >= HFI1_GUIDS_PER_PORT)
1341 return -EINVAL;
1342
1343 *guid = get_sguid(ibp, guid_index);
1344 return 0;
1345 }
1346
1347 /*
1348 * convert ah port,sl to sc
1349 */
1350 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1351 {
1352 struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1353
1354 return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1355 }
1356
1357 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1358 {
1359 struct hfi1_ibport *ibp;
1360 struct hfi1_pportdata *ppd;
1361 struct hfi1_devdata *dd;
1362 u8 sc5;
1363 u8 sl;
1364
1365 if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
1366 !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
1367 return -EINVAL;
1368
1369 /* test the mapping for validity */
1370 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1371 ppd = ppd_from_ibp(ibp);
1372 dd = dd_from_ppd(ppd);
1373
1374 sl = rdma_ah_get_sl(ah_attr);
1375 if (sl >= ARRAY_SIZE(ibp->sl_to_sc))
1376 return -EINVAL;
1377
1378 sc5 = ibp->sl_to_sc[sl];
1379 if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1380 return -EINVAL;
1381 return 0;
1382 }
1383
1384 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1385 struct rdma_ah_attr *ah_attr,
1386 struct rvt_ah *ah)
1387 {
1388 struct hfi1_ibport *ibp;
1389 struct hfi1_pportdata *ppd;
1390 struct hfi1_devdata *dd;
1391 u8 sc5;
1392 struct rdma_ah_attr *attr = &ah->attr;
1393
1394 /*
1395 * Do not trust reading anything from rvt_ah at this point as it is not
1396 * done being setup. We can however modify things which we need to set.
1397 */
1398
1399 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1400 ppd = ppd_from_ibp(ibp);
1401 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1402 hfi1_update_ah_attr(ibdev, attr);
1403 hfi1_make_opa_lid(attr);
1404 dd = dd_from_ppd(ppd);
1405 ah->vl = sc_to_vlt(dd, sc5);
1406 if (ah->vl < num_vls || ah->vl == 15)
1407 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1408 }
1409
1410 /**
1411 * hfi1_get_npkeys - return the size of the PKEY table for context 0
1412 * @dd: the hfi1_ib device
1413 */
1414 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1415 {
1416 return ARRAY_SIZE(dd->pport[0].pkeys);
1417 }
1418
1419 static void init_ibport(struct hfi1_pportdata *ppd)
1420 {
1421 struct hfi1_ibport *ibp = &ppd->ibport_data;
1422 size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1423 int i;
1424
1425 for (i = 0; i < sz; i++) {
1426 ibp->sl_to_sc[i] = i;
1427 ibp->sc_to_sl[i] = i;
1428 }
1429
1430 for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
1431 INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
1432 timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0);
1433
1434 spin_lock_init(&ibp->rvp.lock);
1435 /* Set the prefix to the default value (see ch. 4.1.1) */
1436 ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1437 ibp->rvp.sm_lid = 0;
1438 /*
1439 * Below should only set bits defined in OPA PortInfo.CapabilityMask
1440 * and PortInfo.CapabilityMask3
1441 */
1442 ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1443 IB_PORT_CAP_MASK_NOTICE_SUP;
1444 ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
1445 ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1446 ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1447 ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1448 ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1449 ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1450
1451 RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1452 RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1453 }
1454
1455 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
1456 {
1457 struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1458 struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1459 u32 ver = dd_from_dev(dev)->dc8051_ver;
1460
1461 snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
1462 dc8051_ver_min(ver), dc8051_ver_patch(ver));
1463 }
1464
1465 static const char * const driver_cntr_names[] = {
1466 /* must be element 0*/
1467 "DRIVER_KernIntr",
1468 "DRIVER_ErrorIntr",
1469 "DRIVER_Tx_Errs",
1470 "DRIVER_Rcv_Errs",
1471 "DRIVER_HW_Errs",
1472 "DRIVER_NoPIOBufs",
1473 "DRIVER_CtxtsOpen",
1474 "DRIVER_RcvLen_Errs",
1475 "DRIVER_EgrBufFull",
1476 "DRIVER_EgrHdrFull"
1477 };
1478
1479 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1480 static const char **dev_cntr_names;
1481 static const char **port_cntr_names;
1482 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1483 static int num_dev_cntrs;
1484 static int num_port_cntrs;
1485 static int cntr_names_initialized;
1486
1487 /*
1488 * Convert a list of names separated by '\n' into an array of NULL terminated
1489 * strings. Optionally some entries can be reserved in the array to hold extra
1490 * external strings.
1491 */
1492 static int init_cntr_names(const char *names_in,
1493 const size_t names_len,
1494 int num_extra_names,
1495 int *num_cntrs,
1496 const char ***cntr_names)
1497 {
1498 char *names_out, *p, **q;
1499 int i, n;
1500
1501 n = 0;
1502 for (i = 0; i < names_len; i++)
1503 if (names_in[i] == '\n')
1504 n++;
1505
1506 names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1507 GFP_KERNEL);
1508 if (!names_out) {
1509 *num_cntrs = 0;
1510 *cntr_names = NULL;
1511 return -ENOMEM;
1512 }
1513
1514 p = names_out + (n + num_extra_names) * sizeof(char *);
1515 memcpy(p, names_in, names_len);
1516
1517 q = (char **)names_out;
1518 for (i = 0; i < n; i++) {
1519 q[i] = p;
1520 p = strchr(p, '\n');
1521 *p++ = '\0';
1522 }
1523
1524 *num_cntrs = n;
1525 *cntr_names = (const char **)names_out;
1526 return 0;
1527 }
1528
1529 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1530 u8 port_num)
1531 {
1532 int i, err;
1533
1534 mutex_lock(&cntr_names_lock);
1535 if (!cntr_names_initialized) {
1536 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1537
1538 err = init_cntr_names(dd->cntrnames,
1539 dd->cntrnameslen,
1540 num_driver_cntrs,
1541 &num_dev_cntrs,
1542 &dev_cntr_names);
1543 if (err) {
1544 mutex_unlock(&cntr_names_lock);
1545 return NULL;
1546 }
1547
1548 for (i = 0; i < num_driver_cntrs; i++)
1549 dev_cntr_names[num_dev_cntrs + i] =
1550 driver_cntr_names[i];
1551
1552 err = init_cntr_names(dd->portcntrnames,
1553 dd->portcntrnameslen,
1554 0,
1555 &num_port_cntrs,
1556 &port_cntr_names);
1557 if (err) {
1558 kfree(dev_cntr_names);
1559 dev_cntr_names = NULL;
1560 mutex_unlock(&cntr_names_lock);
1561 return NULL;
1562 }
1563 cntr_names_initialized = 1;
1564 }
1565 mutex_unlock(&cntr_names_lock);
1566
1567 if (!port_num)
1568 return rdma_alloc_hw_stats_struct(
1569 dev_cntr_names,
1570 num_dev_cntrs + num_driver_cntrs,
1571 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1572 else
1573 return rdma_alloc_hw_stats_struct(
1574 port_cntr_names,
1575 num_port_cntrs,
1576 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1577 }
1578
1579 static u64 hfi1_sps_ints(void)
1580 {
1581 unsigned long flags;
1582 struct hfi1_devdata *dd;
1583 u64 sps_ints = 0;
1584
1585 spin_lock_irqsave(&hfi1_devs_lock, flags);
1586 list_for_each_entry(dd, &hfi1_dev_list, list) {
1587 sps_ints += get_all_cpu_total(dd->int_counter);
1588 }
1589 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1590 return sps_ints;
1591 }
1592
1593 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1594 u8 port, int index)
1595 {
1596 u64 *values;
1597 int count;
1598
1599 if (!port) {
1600 u64 *stats = (u64 *)&hfi1_stats;
1601 int i;
1602
1603 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1604 values[num_dev_cntrs] = hfi1_sps_ints();
1605 for (i = 1; i < num_driver_cntrs; i++)
1606 values[num_dev_cntrs + i] = stats[i];
1607 count = num_dev_cntrs + num_driver_cntrs;
1608 } else {
1609 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1610
1611 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1612 count = num_port_cntrs;
1613 }
1614
1615 memcpy(stats->value, values, count * sizeof(u64));
1616 return count;
1617 }
1618
1619 /**
1620 * hfi1_register_ib_device - register our device with the infiniband core
1621 * @dd: the device data structure
1622 * Return 0 if successful, errno if unsuccessful.
1623 */
1624 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1625 {
1626 struct hfi1_ibdev *dev = &dd->verbs_dev;
1627 struct ib_device *ibdev = &dev->rdi.ibdev;
1628 struct hfi1_pportdata *ppd = dd->pport;
1629 struct hfi1_ibport *ibp = &ppd->ibport_data;
1630 unsigned i;
1631 int ret;
1632
1633 for (i = 0; i < dd->num_pports; i++)
1634 init_ibport(ppd + i);
1635
1636 /* Only need to initialize non-zero fields. */
1637
1638 timer_setup(&dev->mem_timer, mem_timer, 0);
1639
1640 seqlock_init(&dev->iowait_lock);
1641 seqlock_init(&dev->txwait_lock);
1642 INIT_LIST_HEAD(&dev->txwait);
1643 INIT_LIST_HEAD(&dev->memwait);
1644
1645 ret = verbs_txreq_init(dev);
1646 if (ret)
1647 goto err_verbs_txreq;
1648
1649 /* Use first-port GUID as node guid */
1650 ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1651
1652 /*
1653 * The system image GUID is supposed to be the same for all
1654 * HFIs in a single system but since there can be other
1655 * device types in the system, we can't be sure this is unique.
1656 */
1657 if (!ib_hfi1_sys_image_guid)
1658 ib_hfi1_sys_image_guid = ibdev->node_guid;
1659 ibdev->owner = THIS_MODULE;
1660 ibdev->phys_port_cnt = dd->num_pports;
1661 ibdev->dev.parent = &dd->pcidev->dev;
1662 ibdev->modify_device = modify_device;
1663 ibdev->alloc_hw_stats = alloc_hw_stats;
1664 ibdev->get_hw_stats = get_hw_stats;
1665 ibdev->alloc_rdma_netdev = hfi1_vnic_alloc_rn;
1666
1667 /* keep process mad in the driver */
1668 ibdev->process_mad = hfi1_process_mad;
1669 ibdev->get_dev_fw_str = hfi1_get_dev_fw_str;
1670
1671 strlcpy(ibdev->node_desc, init_utsname()->nodename,
1672 sizeof(ibdev->node_desc));
1673
1674 /*
1675 * Fill in rvt info object.
1676 */
1677 dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1678 dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1679 dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1680 dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1681 dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1682 dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1683 dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1684 dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1685 /*
1686 * Fill in rvt info device attributes.
1687 */
1688 hfi1_fill_device_attr(dd);
1689
1690 /* queue pair */
1691 dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1692 dd->verbs_dev.rdi.dparms.qpn_start = 0;
1693 dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1694 dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1695 dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1696 dd->verbs_dev.rdi.dparms.qpn_res_end =
1697 dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1698 dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1699 dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1700 dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1701 dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1702 dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
1703 RDMA_CORE_CAP_OPA_AH;
1704 dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1705
1706 dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1707 dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1708 dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1709 dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1710 dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1711 dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1712 dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1713 dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1714 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1715 dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1716 dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1717 dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1718 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1719 dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1720 dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1721 dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1722 dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1723 dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1724 dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe;
1725 dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup =
1726 hfi1_comp_vect_mappings_lookup;
1727
1728 /* completeion queue */
1729 dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus;
1730 dd->verbs_dev.rdi.dparms.node = dd->node;
1731
1732 /* misc settings */
1733 dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1734 dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1735 dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1736 dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1737 dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode;
1738 dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold;
1739 dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period;
1740
1741 /* post send table */
1742 dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1743
1744 /* opcode translation table */
1745 dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode;
1746
1747 ppd = dd->pport;
1748 for (i = 0; i < dd->num_pports; i++, ppd++)
1749 rvt_init_port(&dd->verbs_dev.rdi,
1750 &ppd->ibport_data.rvp,
1751 i,
1752 ppd->pkeys);
1753
1754 rdma_set_device_sysfs_group(&dd->verbs_dev.rdi.ibdev,
1755 &ib_hfi1_attr_group);
1756
1757 ret = rvt_register_device(&dd->verbs_dev.rdi, RDMA_DRIVER_HFI1);
1758 if (ret)
1759 goto err_verbs_txreq;
1760
1761 ret = hfi1_verbs_register_sysfs(dd);
1762 if (ret)
1763 goto err_class;
1764
1765 return ret;
1766
1767 err_class:
1768 rvt_unregister_device(&dd->verbs_dev.rdi);
1769 err_verbs_txreq:
1770 verbs_txreq_exit(dev);
1771 dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1772 return ret;
1773 }
1774
1775 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1776 {
1777 struct hfi1_ibdev *dev = &dd->verbs_dev;
1778
1779 hfi1_verbs_unregister_sysfs(dd);
1780
1781 rvt_unregister_device(&dd->verbs_dev.rdi);
1782
1783 if (!list_empty(&dev->txwait))
1784 dd_dev_err(dd, "txwait list not empty!\n");
1785 if (!list_empty(&dev->memwait))
1786 dd_dev_err(dd, "memwait list not empty!\n");
1787
1788 del_timer_sync(&dev->mem_timer);
1789 verbs_txreq_exit(dev);
1790
1791 mutex_lock(&cntr_names_lock);
1792 kfree(dev_cntr_names);
1793 kfree(port_cntr_names);
1794 dev_cntr_names = NULL;
1795 port_cntr_names = NULL;
1796 cntr_names_initialized = 0;
1797 mutex_unlock(&cntr_names_lock);
1798 }
1799
1800 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1801 {
1802 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1803 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1804 struct ib_header *hdr = packet->hdr;
1805 struct rvt_qp *qp = packet->qp;
1806 u32 lqpn, rqpn = 0;
1807 u16 rlid = 0;
1808 u8 sl, sc5, svc_type;
1809
1810 switch (packet->qp->ibqp.qp_type) {
1811 case IB_QPT_UC:
1812 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1813 rqpn = qp->remote_qpn;
1814 svc_type = IB_CC_SVCTYPE_UC;
1815 break;
1816 case IB_QPT_RC:
1817 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1818 rqpn = qp->remote_qpn;
1819 svc_type = IB_CC_SVCTYPE_RC;
1820 break;
1821 case IB_QPT_SMI:
1822 case IB_QPT_GSI:
1823 case IB_QPT_UD:
1824 svc_type = IB_CC_SVCTYPE_UD;
1825 break;
1826 default:
1827 ibp->rvp.n_pkt_drops++;
1828 return;
1829 }
1830
1831 sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
1832 sl = ibp->sc_to_sl[sc5];
1833 lqpn = qp->ibqp.qp_num;
1834
1835 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1836 }