]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/iommu/amd/iommu.c
Merge tag 'iommu-updates-v6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[thirdparty/linux.git] / drivers / iommu / amd / iommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
6 */
7
8 #define pr_fmt(fmt) "AMD-Vi: " fmt
9 #define dev_fmt(fmt) pr_fmt(fmt)
10
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/debugfs.h>
18 #include <linux/scatterlist.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/dma-direct.h>
21 #include <linux/iommu-helper.h>
22 #include <linux/delay.h>
23 #include <linux/amd-iommu.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <linux/irq.h>
27 #include <linux/msi.h>
28 #include <linux/irqdomain.h>
29 #include <linux/percpu.h>
30 #include <linux/io-pgtable.h>
31 #include <linux/cc_platform.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/io_apic.h>
34 #include <asm/apic.h>
35 #include <asm/hw_irq.h>
36 #include <asm/proto.h>
37 #include <asm/iommu.h>
38 #include <asm/gart.h>
39 #include <asm/dma.h>
40 #include <uapi/linux/iommufd.h>
41
42 #include "amd_iommu.h"
43 #include "../dma-iommu.h"
44 #include "../irq_remapping.h"
45
46 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
47
48 /* IO virtual address start page frame number */
49 #define IOVA_START_PFN (1)
50 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
51
52 /* Reserved IOVA ranges */
53 #define MSI_RANGE_START (0xfee00000)
54 #define MSI_RANGE_END (0xfeefffff)
55 #define HT_RANGE_START (0xfd00000000ULL)
56 #define HT_RANGE_END (0xffffffffffULL)
57
58 #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL
59
60 static DEFINE_SPINLOCK(pd_bitmap_lock);
61
62 LIST_HEAD(ioapic_map);
63 LIST_HEAD(hpet_map);
64 LIST_HEAD(acpihid_map);
65
66 const struct iommu_ops amd_iommu_ops;
67 const struct iommu_dirty_ops amd_dirty_ops;
68
69 int amd_iommu_max_glx_val = -1;
70
71 /*
72 * general struct to manage commands send to an IOMMU
73 */
74 struct iommu_cmd {
75 u32 data[4];
76 };
77
78 struct kmem_cache *amd_iommu_irq_cache;
79
80 static void detach_device(struct device *dev);
81
82 /****************************************************************************
83 *
84 * Helper functions
85 *
86 ****************************************************************************/
87
88 static inline int get_acpihid_device_id(struct device *dev,
89 struct acpihid_map_entry **entry)
90 {
91 struct acpi_device *adev = ACPI_COMPANION(dev);
92 struct acpihid_map_entry *p;
93
94 if (!adev)
95 return -ENODEV;
96
97 list_for_each_entry(p, &acpihid_map, list) {
98 if (acpi_dev_hid_uid_match(adev, p->hid,
99 p->uid[0] ? p->uid : NULL)) {
100 if (entry)
101 *entry = p;
102 return p->devid;
103 }
104 }
105 return -EINVAL;
106 }
107
108 static inline int get_device_sbdf_id(struct device *dev)
109 {
110 int sbdf;
111
112 if (dev_is_pci(dev))
113 sbdf = get_pci_sbdf_id(to_pci_dev(dev));
114 else
115 sbdf = get_acpihid_device_id(dev, NULL);
116
117 return sbdf;
118 }
119
120 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
121 {
122 struct dev_table_entry *dev_table;
123 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
124
125 BUG_ON(pci_seg == NULL);
126 dev_table = pci_seg->dev_table;
127 BUG_ON(dev_table == NULL);
128
129 return dev_table;
130 }
131
132 static inline u16 get_device_segment(struct device *dev)
133 {
134 u16 seg;
135
136 if (dev_is_pci(dev)) {
137 struct pci_dev *pdev = to_pci_dev(dev);
138
139 seg = pci_domain_nr(pdev->bus);
140 } else {
141 u32 devid = get_acpihid_device_id(dev, NULL);
142
143 seg = PCI_SBDF_TO_SEGID(devid);
144 }
145
146 return seg;
147 }
148
149 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
150 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
151 {
152 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
153
154 pci_seg->rlookup_table[devid] = iommu;
155 }
156
157 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
158 {
159 struct amd_iommu_pci_seg *pci_seg;
160
161 for_each_pci_segment(pci_seg) {
162 if (pci_seg->id == seg)
163 return pci_seg->rlookup_table[devid];
164 }
165 return NULL;
166 }
167
168 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
169 {
170 u16 seg = get_device_segment(dev);
171 int devid = get_device_sbdf_id(dev);
172
173 if (devid < 0)
174 return NULL;
175 return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
176 }
177
178 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
179 {
180 return container_of(dom, struct protection_domain, domain);
181 }
182
183 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
184 {
185 struct iommu_dev_data *dev_data;
186 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
187
188 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
189 if (!dev_data)
190 return NULL;
191
192 spin_lock_init(&dev_data->lock);
193 dev_data->devid = devid;
194 ratelimit_default_init(&dev_data->rs);
195
196 llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
197 return dev_data;
198 }
199
200 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
201 {
202 struct iommu_dev_data *dev_data;
203 struct llist_node *node;
204 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
205
206 if (llist_empty(&pci_seg->dev_data_list))
207 return NULL;
208
209 node = pci_seg->dev_data_list.first;
210 llist_for_each_entry(dev_data, node, dev_data_list) {
211 if (dev_data->devid == devid)
212 return dev_data;
213 }
214
215 return NULL;
216 }
217
218 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
219 {
220 struct amd_iommu *iommu;
221 struct dev_table_entry *dev_table;
222 u16 devid = pci_dev_id(pdev);
223
224 if (devid == alias)
225 return 0;
226
227 iommu = rlookup_amd_iommu(&pdev->dev);
228 if (!iommu)
229 return 0;
230
231 amd_iommu_set_rlookup_table(iommu, alias);
232 dev_table = get_dev_table(iommu);
233 memcpy(dev_table[alias].data,
234 dev_table[devid].data,
235 sizeof(dev_table[alias].data));
236
237 return 0;
238 }
239
240 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
241 {
242 struct pci_dev *pdev;
243
244 if (!dev_is_pci(dev))
245 return;
246 pdev = to_pci_dev(dev);
247
248 /*
249 * The IVRS alias stored in the alias table may not be
250 * part of the PCI DMA aliases if it's bus differs
251 * from the original device.
252 */
253 clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
254
255 pci_for_each_dma_alias(pdev, clone_alias, NULL);
256 }
257
258 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
259 {
260 struct pci_dev *pdev = to_pci_dev(dev);
261 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
262 u16 ivrs_alias;
263
264 /* For ACPI HID devices, there are no aliases */
265 if (!dev_is_pci(dev))
266 return;
267
268 /*
269 * Add the IVRS alias to the pci aliases if it is on the same
270 * bus. The IVRS table may know about a quirk that we don't.
271 */
272 ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
273 if (ivrs_alias != pci_dev_id(pdev) &&
274 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
275 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
276
277 clone_aliases(iommu, dev);
278 }
279
280 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
281 {
282 struct iommu_dev_data *dev_data;
283
284 dev_data = search_dev_data(iommu, devid);
285
286 if (dev_data == NULL) {
287 dev_data = alloc_dev_data(iommu, devid);
288 if (!dev_data)
289 return NULL;
290
291 if (translation_pre_enabled(iommu))
292 dev_data->defer_attach = true;
293 }
294
295 return dev_data;
296 }
297
298 /*
299 * Find or create an IOMMU group for a acpihid device.
300 */
301 static struct iommu_group *acpihid_device_group(struct device *dev)
302 {
303 struct acpihid_map_entry *p, *entry = NULL;
304 int devid;
305
306 devid = get_acpihid_device_id(dev, &entry);
307 if (devid < 0)
308 return ERR_PTR(devid);
309
310 list_for_each_entry(p, &acpihid_map, list) {
311 if ((devid == p->devid) && p->group)
312 entry->group = p->group;
313 }
314
315 if (!entry->group)
316 entry->group = generic_device_group(dev);
317 else
318 iommu_group_ref_get(entry->group);
319
320 return entry->group;
321 }
322
323 static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data)
324 {
325 return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP);
326 }
327
328 static u32 pdev_get_caps(struct pci_dev *pdev)
329 {
330 int features;
331 u32 flags = 0;
332
333 if (pci_ats_supported(pdev))
334 flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
335
336 if (pci_pri_supported(pdev))
337 flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
338
339 features = pci_pasid_features(pdev);
340 if (features >= 0) {
341 flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
342
343 if (features & PCI_PASID_CAP_EXEC)
344 flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
345
346 if (features & PCI_PASID_CAP_PRIV)
347 flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
348 }
349
350 return flags;
351 }
352
353 static inline int pdev_enable_cap_ats(struct pci_dev *pdev)
354 {
355 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
356 int ret = -EINVAL;
357
358 if (dev_data->ats_enabled)
359 return 0;
360
361 if (amd_iommu_iotlb_sup &&
362 (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) {
363 ret = pci_enable_ats(pdev, PAGE_SHIFT);
364 if (!ret) {
365 dev_data->ats_enabled = 1;
366 dev_data->ats_qdep = pci_ats_queue_depth(pdev);
367 }
368 }
369
370 return ret;
371 }
372
373 static inline void pdev_disable_cap_ats(struct pci_dev *pdev)
374 {
375 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
376
377 if (dev_data->ats_enabled) {
378 pci_disable_ats(pdev);
379 dev_data->ats_enabled = 0;
380 }
381 }
382
383 int amd_iommu_pdev_enable_cap_pri(struct pci_dev *pdev)
384 {
385 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
386 int ret = -EINVAL;
387
388 if (dev_data->pri_enabled)
389 return 0;
390
391 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) {
392 /*
393 * First reset the PRI state of the device.
394 * FIXME: Hardcode number of outstanding requests for now
395 */
396 if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) {
397 dev_data->pri_enabled = 1;
398 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
399
400 ret = 0;
401 }
402 }
403
404 return ret;
405 }
406
407 void amd_iommu_pdev_disable_cap_pri(struct pci_dev *pdev)
408 {
409 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
410
411 if (dev_data->pri_enabled) {
412 pci_disable_pri(pdev);
413 dev_data->pri_enabled = 0;
414 }
415 }
416
417 static inline int pdev_enable_cap_pasid(struct pci_dev *pdev)
418 {
419 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
420 int ret = -EINVAL;
421
422 if (dev_data->pasid_enabled)
423 return 0;
424
425 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) {
426 /* Only allow access to user-accessible pages */
427 ret = pci_enable_pasid(pdev, 0);
428 if (!ret)
429 dev_data->pasid_enabled = 1;
430 }
431
432 return ret;
433 }
434
435 static inline void pdev_disable_cap_pasid(struct pci_dev *pdev)
436 {
437 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
438
439 if (dev_data->pasid_enabled) {
440 pci_disable_pasid(pdev);
441 dev_data->pasid_enabled = 0;
442 }
443 }
444
445 static void pdev_enable_caps(struct pci_dev *pdev)
446 {
447 pdev_enable_cap_ats(pdev);
448 pdev_enable_cap_pasid(pdev);
449 amd_iommu_pdev_enable_cap_pri(pdev);
450
451 }
452
453 static void pdev_disable_caps(struct pci_dev *pdev)
454 {
455 pdev_disable_cap_ats(pdev);
456 pdev_disable_cap_pasid(pdev);
457 amd_iommu_pdev_disable_cap_pri(pdev);
458 }
459
460 /*
461 * This function checks if the driver got a valid device from the caller to
462 * avoid dereferencing invalid pointers.
463 */
464 static bool check_device(struct device *dev)
465 {
466 struct amd_iommu_pci_seg *pci_seg;
467 struct amd_iommu *iommu;
468 int devid, sbdf;
469
470 if (!dev)
471 return false;
472
473 sbdf = get_device_sbdf_id(dev);
474 if (sbdf < 0)
475 return false;
476 devid = PCI_SBDF_TO_DEVID(sbdf);
477
478 iommu = rlookup_amd_iommu(dev);
479 if (!iommu)
480 return false;
481
482 /* Out of our scope? */
483 pci_seg = iommu->pci_seg;
484 if (devid > pci_seg->last_bdf)
485 return false;
486
487 return true;
488 }
489
490 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
491 {
492 struct iommu_dev_data *dev_data;
493 int devid, sbdf;
494
495 if (dev_iommu_priv_get(dev))
496 return 0;
497
498 sbdf = get_device_sbdf_id(dev);
499 if (sbdf < 0)
500 return sbdf;
501
502 devid = PCI_SBDF_TO_DEVID(sbdf);
503 dev_data = find_dev_data(iommu, devid);
504 if (!dev_data)
505 return -ENOMEM;
506
507 dev_data->dev = dev;
508 setup_aliases(iommu, dev);
509
510 /*
511 * By default we use passthrough mode for IOMMUv2 capable device.
512 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
513 * invalid address), we ignore the capability for the device so
514 * it'll be forced to go into translation mode.
515 */
516 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
517 dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) {
518 dev_data->flags = pdev_get_caps(to_pci_dev(dev));
519 }
520
521 dev_iommu_priv_set(dev, dev_data);
522
523 return 0;
524 }
525
526 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
527 {
528 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
529 struct dev_table_entry *dev_table = get_dev_table(iommu);
530 int devid, sbdf;
531
532 sbdf = get_device_sbdf_id(dev);
533 if (sbdf < 0)
534 return;
535
536 devid = PCI_SBDF_TO_DEVID(sbdf);
537 pci_seg->rlookup_table[devid] = NULL;
538 memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
539
540 setup_aliases(iommu, dev);
541 }
542
543 static void amd_iommu_uninit_device(struct device *dev)
544 {
545 struct iommu_dev_data *dev_data;
546
547 dev_data = dev_iommu_priv_get(dev);
548 if (!dev_data)
549 return;
550
551 if (dev_data->domain)
552 detach_device(dev);
553
554 dev_iommu_priv_set(dev, NULL);
555
556 /*
557 * We keep dev_data around for unplugged devices and reuse it when the
558 * device is re-plugged - not doing so would introduce a ton of races.
559 */
560 }
561
562 /****************************************************************************
563 *
564 * Interrupt handling functions
565 *
566 ****************************************************************************/
567
568 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
569 {
570 int i;
571 struct dev_table_entry *dev_table = get_dev_table(iommu);
572
573 for (i = 0; i < 4; ++i)
574 pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]);
575 }
576
577 static void dump_command(unsigned long phys_addr)
578 {
579 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
580 int i;
581
582 for (i = 0; i < 4; ++i)
583 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
584 }
585
586 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
587 {
588 struct iommu_dev_data *dev_data = NULL;
589 int devid, vmg_tag, flags;
590 struct pci_dev *pdev;
591 u64 spa;
592
593 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
594 vmg_tag = (event[1]) & 0xFFFF;
595 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
596 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
597
598 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
599 devid & 0xff);
600 if (pdev)
601 dev_data = dev_iommu_priv_get(&pdev->dev);
602
603 if (dev_data) {
604 if (__ratelimit(&dev_data->rs)) {
605 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
606 vmg_tag, spa, flags);
607 }
608 } else {
609 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
610 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
611 vmg_tag, spa, flags);
612 }
613
614 if (pdev)
615 pci_dev_put(pdev);
616 }
617
618 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
619 {
620 struct iommu_dev_data *dev_data = NULL;
621 int devid, flags_rmp, vmg_tag, flags;
622 struct pci_dev *pdev;
623 u64 gpa;
624
625 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
626 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
627 vmg_tag = (event[1]) & 0xFFFF;
628 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
629 gpa = ((u64)event[3] << 32) | event[2];
630
631 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
632 devid & 0xff);
633 if (pdev)
634 dev_data = dev_iommu_priv_get(&pdev->dev);
635
636 if (dev_data) {
637 if (__ratelimit(&dev_data->rs)) {
638 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
639 vmg_tag, gpa, flags_rmp, flags);
640 }
641 } else {
642 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
643 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
644 vmg_tag, gpa, flags_rmp, flags);
645 }
646
647 if (pdev)
648 pci_dev_put(pdev);
649 }
650
651 #define IS_IOMMU_MEM_TRANSACTION(flags) \
652 (((flags) & EVENT_FLAG_I) == 0)
653
654 #define IS_WRITE_REQUEST(flags) \
655 ((flags) & EVENT_FLAG_RW)
656
657 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
658 u16 devid, u16 domain_id,
659 u64 address, int flags)
660 {
661 struct iommu_dev_data *dev_data = NULL;
662 struct pci_dev *pdev;
663
664 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
665 devid & 0xff);
666 if (pdev)
667 dev_data = dev_iommu_priv_get(&pdev->dev);
668
669 if (dev_data) {
670 /*
671 * If this is a DMA fault (for which the I(nterrupt)
672 * bit will be unset), allow report_iommu_fault() to
673 * prevent logging it.
674 */
675 if (IS_IOMMU_MEM_TRANSACTION(flags)) {
676 /* Device not attached to domain properly */
677 if (dev_data->domain == NULL) {
678 pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
679 pr_err_ratelimited(" device=%04x:%02x:%02x.%x domain=0x%04x\n",
680 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
681 PCI_FUNC(devid), domain_id);
682 goto out;
683 }
684
685 if (!report_iommu_fault(&dev_data->domain->domain,
686 &pdev->dev, address,
687 IS_WRITE_REQUEST(flags) ?
688 IOMMU_FAULT_WRITE :
689 IOMMU_FAULT_READ))
690 goto out;
691 }
692
693 if (__ratelimit(&dev_data->rs)) {
694 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
695 domain_id, address, flags);
696 }
697 } else {
698 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
699 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
700 domain_id, address, flags);
701 }
702
703 out:
704 if (pdev)
705 pci_dev_put(pdev);
706 }
707
708 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
709 {
710 struct device *dev = iommu->iommu.dev;
711 int type, devid, flags, tag;
712 volatile u32 *event = __evt;
713 int count = 0;
714 u64 address;
715 u32 pasid;
716
717 retry:
718 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
719 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
720 pasid = (event[0] & EVENT_DOMID_MASK_HI) |
721 (event[1] & EVENT_DOMID_MASK_LO);
722 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
723 address = (u64)(((u64)event[3]) << 32) | event[2];
724
725 if (type == 0) {
726 /* Did we hit the erratum? */
727 if (++count == LOOP_TIMEOUT) {
728 pr_err("No event written to event log\n");
729 return;
730 }
731 udelay(1);
732 goto retry;
733 }
734
735 if (type == EVENT_TYPE_IO_FAULT) {
736 amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
737 return;
738 }
739
740 switch (type) {
741 case EVENT_TYPE_ILL_DEV:
742 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
743 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
744 pasid, address, flags);
745 dump_dte_entry(iommu, devid);
746 break;
747 case EVENT_TYPE_DEV_TAB_ERR:
748 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
749 "address=0x%llx flags=0x%04x]\n",
750 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
751 address, flags);
752 break;
753 case EVENT_TYPE_PAGE_TAB_ERR:
754 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
755 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
756 pasid, address, flags);
757 break;
758 case EVENT_TYPE_ILL_CMD:
759 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
760 dump_command(address);
761 break;
762 case EVENT_TYPE_CMD_HARD_ERR:
763 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
764 address, flags);
765 break;
766 case EVENT_TYPE_IOTLB_INV_TO:
767 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
768 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
769 address);
770 break;
771 case EVENT_TYPE_INV_DEV_REQ:
772 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
773 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
774 pasid, address, flags);
775 break;
776 case EVENT_TYPE_RMP_FAULT:
777 amd_iommu_report_rmp_fault(iommu, event);
778 break;
779 case EVENT_TYPE_RMP_HW_ERR:
780 amd_iommu_report_rmp_hw_error(iommu, event);
781 break;
782 case EVENT_TYPE_INV_PPR_REQ:
783 pasid = PPR_PASID(*((u64 *)__evt));
784 tag = event[1] & 0x03FF;
785 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
786 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
787 pasid, address, flags, tag);
788 break;
789 default:
790 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
791 event[0], event[1], event[2], event[3]);
792 }
793
794 /*
795 * To detect the hardware errata 732 we need to clear the
796 * entry back to zero. This issue does not exist on SNP
797 * enabled system. Also this buffer is not writeable on
798 * SNP enabled system.
799 */
800 if (!amd_iommu_snp_en)
801 memset(__evt, 0, 4 * sizeof(u32));
802 }
803
804 static void iommu_poll_events(struct amd_iommu *iommu)
805 {
806 u32 head, tail;
807
808 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
809 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
810
811 while (head != tail) {
812 iommu_print_event(iommu, iommu->evt_buf + head);
813 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
814 }
815
816 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
817 }
818
819 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
820 {
821 u32 head, tail;
822
823 if (iommu->ppr_log == NULL)
824 return;
825
826 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
827 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
828
829 while (head != tail) {
830 volatile u64 *raw;
831 u64 entry[2];
832 int i;
833
834 raw = (u64 *)(iommu->ppr_log + head);
835
836 /*
837 * Hardware bug: Interrupt may arrive before the entry is
838 * written to memory. If this happens we need to wait for the
839 * entry to arrive.
840 */
841 for (i = 0; i < LOOP_TIMEOUT; ++i) {
842 if (PPR_REQ_TYPE(raw[0]) != 0)
843 break;
844 udelay(1);
845 }
846
847 /* Avoid memcpy function-call overhead */
848 entry[0] = raw[0];
849 entry[1] = raw[1];
850
851 /*
852 * To detect the hardware errata 733 we need to clear the
853 * entry back to zero. This issue does not exist on SNP
854 * enabled system. Also this buffer is not writeable on
855 * SNP enabled system.
856 */
857 if (!amd_iommu_snp_en)
858 raw[0] = raw[1] = 0UL;
859
860 /* Update head pointer of hardware ring-buffer */
861 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
862 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
863
864 /* TODO: PPR Handler will be added when we add IOPF support */
865
866 /* Refresh ring-buffer information */
867 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
868 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
869 }
870 }
871
872 #ifdef CONFIG_IRQ_REMAP
873 static int (*iommu_ga_log_notifier)(u32);
874
875 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
876 {
877 iommu_ga_log_notifier = notifier;
878
879 return 0;
880 }
881 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
882
883 static void iommu_poll_ga_log(struct amd_iommu *iommu)
884 {
885 u32 head, tail;
886
887 if (iommu->ga_log == NULL)
888 return;
889
890 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
891 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
892
893 while (head != tail) {
894 volatile u64 *raw;
895 u64 log_entry;
896
897 raw = (u64 *)(iommu->ga_log + head);
898
899 /* Avoid memcpy function-call overhead */
900 log_entry = *raw;
901
902 /* Update head pointer of hardware ring-buffer */
903 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
904 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
905
906 /* Handle GA entry */
907 switch (GA_REQ_TYPE(log_entry)) {
908 case GA_GUEST_NR:
909 if (!iommu_ga_log_notifier)
910 break;
911
912 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
913 __func__, GA_DEVID(log_entry),
914 GA_TAG(log_entry));
915
916 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
917 pr_err("GA log notifier failed.\n");
918 break;
919 default:
920 break;
921 }
922 }
923 }
924
925 static void
926 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
927 {
928 if (!irq_remapping_enabled || !dev_is_pci(dev) ||
929 !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
930 return;
931
932 dev_set_msi_domain(dev, iommu->ir_domain);
933 }
934
935 #else /* CONFIG_IRQ_REMAP */
936 static inline void
937 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
938 #endif /* !CONFIG_IRQ_REMAP */
939
940 static void amd_iommu_handle_irq(void *data, const char *evt_type,
941 u32 int_mask, u32 overflow_mask,
942 void (*int_handler)(struct amd_iommu *),
943 void (*overflow_handler)(struct amd_iommu *))
944 {
945 struct amd_iommu *iommu = (struct amd_iommu *) data;
946 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
947 u32 mask = int_mask | overflow_mask;
948
949 while (status & mask) {
950 /* Enable interrupt sources again */
951 writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
952
953 if (int_handler) {
954 pr_devel("Processing IOMMU (ivhd%d) %s Log\n",
955 iommu->index, evt_type);
956 int_handler(iommu);
957 }
958
959 if ((status & overflow_mask) && overflow_handler)
960 overflow_handler(iommu);
961
962 /*
963 * Hardware bug: ERBT1312
964 * When re-enabling interrupt (by writing 1
965 * to clear the bit), the hardware might also try to set
966 * the interrupt bit in the event status register.
967 * In this scenario, the bit will be set, and disable
968 * subsequent interrupts.
969 *
970 * Workaround: The IOMMU driver should read back the
971 * status register and check if the interrupt bits are cleared.
972 * If not, driver will need to go through the interrupt handler
973 * again and re-clear the bits
974 */
975 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
976 }
977 }
978
979 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data)
980 {
981 amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK,
982 MMIO_STATUS_EVT_OVERFLOW_MASK,
983 iommu_poll_events, amd_iommu_restart_event_logging);
984
985 return IRQ_HANDLED;
986 }
987
988 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data)
989 {
990 amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK,
991 MMIO_STATUS_PPR_OVERFLOW_MASK,
992 iommu_poll_ppr_log, amd_iommu_restart_ppr_log);
993
994 return IRQ_HANDLED;
995 }
996
997 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data)
998 {
999 #ifdef CONFIG_IRQ_REMAP
1000 amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK,
1001 MMIO_STATUS_GALOG_OVERFLOW_MASK,
1002 iommu_poll_ga_log, amd_iommu_restart_ga_log);
1003 #endif
1004
1005 return IRQ_HANDLED;
1006 }
1007
1008 irqreturn_t amd_iommu_int_thread(int irq, void *data)
1009 {
1010 amd_iommu_int_thread_evtlog(irq, data);
1011 amd_iommu_int_thread_pprlog(irq, data);
1012 amd_iommu_int_thread_galog(irq, data);
1013
1014 return IRQ_HANDLED;
1015 }
1016
1017 irqreturn_t amd_iommu_int_handler(int irq, void *data)
1018 {
1019 return IRQ_WAKE_THREAD;
1020 }
1021
1022 /****************************************************************************
1023 *
1024 * IOMMU command queuing functions
1025 *
1026 ****************************************************************************/
1027
1028 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
1029 {
1030 int i = 0;
1031
1032 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
1033 udelay(1);
1034 i += 1;
1035 }
1036
1037 if (i == LOOP_TIMEOUT) {
1038 pr_alert("Completion-Wait loop timed out\n");
1039 return -EIO;
1040 }
1041
1042 return 0;
1043 }
1044
1045 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
1046 struct iommu_cmd *cmd)
1047 {
1048 u8 *target;
1049 u32 tail;
1050
1051 /* Copy command to buffer */
1052 tail = iommu->cmd_buf_tail;
1053 target = iommu->cmd_buf + tail;
1054 memcpy(target, cmd, sizeof(*cmd));
1055
1056 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1057 iommu->cmd_buf_tail = tail;
1058
1059 /* Tell the IOMMU about it */
1060 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1061 }
1062
1063 static void build_completion_wait(struct iommu_cmd *cmd,
1064 struct amd_iommu *iommu,
1065 u64 data)
1066 {
1067 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
1068
1069 memset(cmd, 0, sizeof(*cmd));
1070 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
1071 cmd->data[1] = upper_32_bits(paddr);
1072 cmd->data[2] = lower_32_bits(data);
1073 cmd->data[3] = upper_32_bits(data);
1074 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
1075 }
1076
1077 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
1078 {
1079 memset(cmd, 0, sizeof(*cmd));
1080 cmd->data[0] = devid;
1081 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
1082 }
1083
1084 /*
1085 * Builds an invalidation address which is suitable for one page or multiple
1086 * pages. Sets the size bit (S) as needed is more than one page is flushed.
1087 */
1088 static inline u64 build_inv_address(u64 address, size_t size)
1089 {
1090 u64 pages, end, msb_diff;
1091
1092 pages = iommu_num_pages(address, size, PAGE_SIZE);
1093
1094 if (pages == 1)
1095 return address & PAGE_MASK;
1096
1097 end = address + size - 1;
1098
1099 /*
1100 * msb_diff would hold the index of the most significant bit that
1101 * flipped between the start and end.
1102 */
1103 msb_diff = fls64(end ^ address) - 1;
1104
1105 /*
1106 * Bits 63:52 are sign extended. If for some reason bit 51 is different
1107 * between the start and the end, invalidate everything.
1108 */
1109 if (unlikely(msb_diff > 51)) {
1110 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
1111 } else {
1112 /*
1113 * The msb-bit must be clear on the address. Just set all the
1114 * lower bits.
1115 */
1116 address |= (1ull << msb_diff) - 1;
1117 }
1118
1119 /* Clear bits 11:0 */
1120 address &= PAGE_MASK;
1121
1122 /* Set the size bit - we flush more than one 4kb page */
1123 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
1124 }
1125
1126 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
1127 size_t size, u16 domid, int pde)
1128 {
1129 u64 inv_address = build_inv_address(address, size);
1130
1131 memset(cmd, 0, sizeof(*cmd));
1132 cmd->data[1] |= domid;
1133 cmd->data[2] = lower_32_bits(inv_address);
1134 cmd->data[3] = upper_32_bits(inv_address);
1135 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1136 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
1137 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1138 }
1139
1140 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1141 u64 address, size_t size)
1142 {
1143 u64 inv_address = build_inv_address(address, size);
1144
1145 memset(cmd, 0, sizeof(*cmd));
1146 cmd->data[0] = devid;
1147 cmd->data[0] |= (qdep & 0xff) << 24;
1148 cmd->data[1] = devid;
1149 cmd->data[2] = lower_32_bits(inv_address);
1150 cmd->data[3] = upper_32_bits(inv_address);
1151 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1152 }
1153
1154 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid,
1155 u64 address, bool size)
1156 {
1157 memset(cmd, 0, sizeof(*cmd));
1158
1159 address &= ~(0xfffULL);
1160
1161 cmd->data[0] = pasid;
1162 cmd->data[1] = domid;
1163 cmd->data[2] = lower_32_bits(address);
1164 cmd->data[3] = upper_32_bits(address);
1165 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1166 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1167 if (size)
1168 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1169 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1170 }
1171
1172 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1173 int qdep, u64 address, bool size)
1174 {
1175 memset(cmd, 0, sizeof(*cmd));
1176
1177 address &= ~(0xfffULL);
1178
1179 cmd->data[0] = devid;
1180 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1181 cmd->data[0] |= (qdep & 0xff) << 24;
1182 cmd->data[1] = devid;
1183 cmd->data[1] |= (pasid & 0xff) << 16;
1184 cmd->data[2] = lower_32_bits(address);
1185 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1186 cmd->data[3] = upper_32_bits(address);
1187 if (size)
1188 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1189 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1190 }
1191
1192 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1193 int status, int tag, u8 gn)
1194 {
1195 memset(cmd, 0, sizeof(*cmd));
1196
1197 cmd->data[0] = devid;
1198 if (gn) {
1199 cmd->data[1] = pasid;
1200 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1201 }
1202 cmd->data[3] = tag & 0x1ff;
1203 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1204
1205 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1206 }
1207
1208 static void build_inv_all(struct iommu_cmd *cmd)
1209 {
1210 memset(cmd, 0, sizeof(*cmd));
1211 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1212 }
1213
1214 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1215 {
1216 memset(cmd, 0, sizeof(*cmd));
1217 cmd->data[0] = devid;
1218 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1219 }
1220
1221 /*
1222 * Writes the command to the IOMMUs command buffer and informs the
1223 * hardware about the new command.
1224 */
1225 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1226 struct iommu_cmd *cmd,
1227 bool sync)
1228 {
1229 unsigned int count = 0;
1230 u32 left, next_tail;
1231
1232 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1233 again:
1234 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1235
1236 if (left <= 0x20) {
1237 /* Skip udelay() the first time around */
1238 if (count++) {
1239 if (count == LOOP_TIMEOUT) {
1240 pr_err("Command buffer timeout\n");
1241 return -EIO;
1242 }
1243
1244 udelay(1);
1245 }
1246
1247 /* Update head and recheck remaining space */
1248 iommu->cmd_buf_head = readl(iommu->mmio_base +
1249 MMIO_CMD_HEAD_OFFSET);
1250
1251 goto again;
1252 }
1253
1254 copy_cmd_to_buffer(iommu, cmd);
1255
1256 /* Do we need to make sure all commands are processed? */
1257 iommu->need_sync = sync;
1258
1259 return 0;
1260 }
1261
1262 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1263 struct iommu_cmd *cmd,
1264 bool sync)
1265 {
1266 unsigned long flags;
1267 int ret;
1268
1269 raw_spin_lock_irqsave(&iommu->lock, flags);
1270 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1271 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1272
1273 return ret;
1274 }
1275
1276 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1277 {
1278 return iommu_queue_command_sync(iommu, cmd, true);
1279 }
1280
1281 /*
1282 * This function queues a completion wait command into the command
1283 * buffer of an IOMMU
1284 */
1285 static int iommu_completion_wait(struct amd_iommu *iommu)
1286 {
1287 struct iommu_cmd cmd;
1288 unsigned long flags;
1289 int ret;
1290 u64 data;
1291
1292 if (!iommu->need_sync)
1293 return 0;
1294
1295 data = atomic64_add_return(1, &iommu->cmd_sem_val);
1296 build_completion_wait(&cmd, iommu, data);
1297
1298 raw_spin_lock_irqsave(&iommu->lock, flags);
1299
1300 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1301 if (ret)
1302 goto out_unlock;
1303
1304 ret = wait_on_sem(iommu, data);
1305
1306 out_unlock:
1307 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1308
1309 return ret;
1310 }
1311
1312 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1313 {
1314 struct iommu_cmd cmd;
1315
1316 build_inv_dte(&cmd, devid);
1317
1318 return iommu_queue_command(iommu, &cmd);
1319 }
1320
1321 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1322 {
1323 u32 devid;
1324 u16 last_bdf = iommu->pci_seg->last_bdf;
1325
1326 for (devid = 0; devid <= last_bdf; ++devid)
1327 iommu_flush_dte(iommu, devid);
1328
1329 iommu_completion_wait(iommu);
1330 }
1331
1332 /*
1333 * This function uses heavy locking and may disable irqs for some time. But
1334 * this is no issue because it is only called during resume.
1335 */
1336 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1337 {
1338 u32 dom_id;
1339 u16 last_bdf = iommu->pci_seg->last_bdf;
1340
1341 for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1342 struct iommu_cmd cmd;
1343 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1344 dom_id, 1);
1345 iommu_queue_command(iommu, &cmd);
1346 }
1347
1348 iommu_completion_wait(iommu);
1349 }
1350
1351 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1352 {
1353 struct iommu_cmd cmd;
1354
1355 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1356 dom_id, 1);
1357 iommu_queue_command(iommu, &cmd);
1358
1359 iommu_completion_wait(iommu);
1360 }
1361
1362 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1363 {
1364 struct iommu_cmd cmd;
1365
1366 build_inv_all(&cmd);
1367
1368 iommu_queue_command(iommu, &cmd);
1369 iommu_completion_wait(iommu);
1370 }
1371
1372 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1373 {
1374 struct iommu_cmd cmd;
1375
1376 build_inv_irt(&cmd, devid);
1377
1378 iommu_queue_command(iommu, &cmd);
1379 }
1380
1381 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1382 {
1383 u32 devid;
1384 u16 last_bdf = iommu->pci_seg->last_bdf;
1385
1386 if (iommu->irtcachedis_enabled)
1387 return;
1388
1389 for (devid = 0; devid <= last_bdf; devid++)
1390 iommu_flush_irt(iommu, devid);
1391
1392 iommu_completion_wait(iommu);
1393 }
1394
1395 void iommu_flush_all_caches(struct amd_iommu *iommu)
1396 {
1397 if (check_feature(FEATURE_IA)) {
1398 amd_iommu_flush_all(iommu);
1399 } else {
1400 amd_iommu_flush_dte_all(iommu);
1401 amd_iommu_flush_irt_all(iommu);
1402 amd_iommu_flush_tlb_all(iommu);
1403 }
1404 }
1405
1406 /*
1407 * Command send function for flushing on-device TLB
1408 */
1409 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1410 u64 address, size_t size)
1411 {
1412 struct amd_iommu *iommu;
1413 struct iommu_cmd cmd;
1414 int qdep;
1415
1416 qdep = dev_data->ats_qdep;
1417 iommu = rlookup_amd_iommu(dev_data->dev);
1418 if (!iommu)
1419 return -EINVAL;
1420
1421 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1422
1423 return iommu_queue_command(iommu, &cmd);
1424 }
1425
1426 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1427 {
1428 struct amd_iommu *iommu = data;
1429
1430 return iommu_flush_dte(iommu, alias);
1431 }
1432
1433 /*
1434 * Command send function for invalidating a device table entry
1435 */
1436 static int device_flush_dte(struct iommu_dev_data *dev_data)
1437 {
1438 struct amd_iommu *iommu;
1439 struct pci_dev *pdev = NULL;
1440 struct amd_iommu_pci_seg *pci_seg;
1441 u16 alias;
1442 int ret;
1443
1444 iommu = rlookup_amd_iommu(dev_data->dev);
1445 if (!iommu)
1446 return -EINVAL;
1447
1448 if (dev_is_pci(dev_data->dev))
1449 pdev = to_pci_dev(dev_data->dev);
1450
1451 if (pdev)
1452 ret = pci_for_each_dma_alias(pdev,
1453 device_flush_dte_alias, iommu);
1454 else
1455 ret = iommu_flush_dte(iommu, dev_data->devid);
1456 if (ret)
1457 return ret;
1458
1459 pci_seg = iommu->pci_seg;
1460 alias = pci_seg->alias_table[dev_data->devid];
1461 if (alias != dev_data->devid) {
1462 ret = iommu_flush_dte(iommu, alias);
1463 if (ret)
1464 return ret;
1465 }
1466
1467 if (dev_data->ats_enabled)
1468 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1469
1470 return ret;
1471 }
1472
1473 /*
1474 * TLB invalidation function which is called from the mapping functions.
1475 * It invalidates a single PTE if the range to flush is within a single
1476 * page. Otherwise it flushes the whole TLB of the IOMMU.
1477 */
1478 static void __domain_flush_pages(struct protection_domain *domain,
1479 u64 address, size_t size, int pde)
1480 {
1481 struct iommu_dev_data *dev_data;
1482 struct iommu_cmd cmd;
1483 int ret = 0, i;
1484
1485 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1486
1487 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1488 if (!domain->dev_iommu[i])
1489 continue;
1490
1491 /*
1492 * Devices of this domain are behind this IOMMU
1493 * We need a TLB flush
1494 */
1495 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1496 }
1497
1498 list_for_each_entry(dev_data, &domain->dev_list, list) {
1499
1500 if (!dev_data->ats_enabled)
1501 continue;
1502
1503 ret |= device_flush_iotlb(dev_data, address, size);
1504 }
1505
1506 WARN_ON(ret);
1507 }
1508
1509 static void domain_flush_pages(struct protection_domain *domain,
1510 u64 address, size_t size, int pde)
1511 {
1512 if (likely(!amd_iommu_np_cache)) {
1513 __domain_flush_pages(domain, address, size, pde);
1514 return;
1515 }
1516
1517 /*
1518 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1519 * In such setups it is best to avoid flushes of ranges which are not
1520 * naturally aligned, since it would lead to flushes of unmodified
1521 * PTEs. Such flushes would require the hypervisor to do more work than
1522 * necessary. Therefore, perform repeated flushes of aligned ranges
1523 * until you cover the range. Each iteration flushes the smaller
1524 * between the natural alignment of the address that we flush and the
1525 * greatest naturally aligned region that fits in the range.
1526 */
1527 while (size != 0) {
1528 int addr_alignment = __ffs(address);
1529 int size_alignment = __fls(size);
1530 int min_alignment;
1531 size_t flush_size;
1532
1533 /*
1534 * size is always non-zero, but address might be zero, causing
1535 * addr_alignment to be negative. As the casting of the
1536 * argument in __ffs(address) to long might trim the high bits
1537 * of the address on x86-32, cast to long when doing the check.
1538 */
1539 if (likely((unsigned long)address != 0))
1540 min_alignment = min(addr_alignment, size_alignment);
1541 else
1542 min_alignment = size_alignment;
1543
1544 flush_size = 1ul << min_alignment;
1545
1546 __domain_flush_pages(domain, address, flush_size, pde);
1547 address += flush_size;
1548 size -= flush_size;
1549 }
1550 }
1551
1552 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1553 void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain)
1554 {
1555 domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1556 }
1557
1558 void amd_iommu_domain_flush_complete(struct protection_domain *domain)
1559 {
1560 int i;
1561
1562 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1563 if (domain && !domain->dev_iommu[i])
1564 continue;
1565
1566 /*
1567 * Devices of this domain are behind this IOMMU
1568 * We need to wait for completion of all commands.
1569 */
1570 iommu_completion_wait(amd_iommus[i]);
1571 }
1572 }
1573
1574 /* Flush the not present cache if it exists */
1575 static void domain_flush_np_cache(struct protection_domain *domain,
1576 dma_addr_t iova, size_t size)
1577 {
1578 if (unlikely(amd_iommu_np_cache)) {
1579 unsigned long flags;
1580
1581 spin_lock_irqsave(&domain->lock, flags);
1582 domain_flush_pages(domain, iova, size, 1);
1583 amd_iommu_domain_flush_complete(domain);
1584 spin_unlock_irqrestore(&domain->lock, flags);
1585 }
1586 }
1587
1588
1589 /*
1590 * This function flushes the DTEs for all devices in domain
1591 */
1592 static void domain_flush_devices(struct protection_domain *domain)
1593 {
1594 struct iommu_dev_data *dev_data;
1595
1596 list_for_each_entry(dev_data, &domain->dev_list, list)
1597 device_flush_dte(dev_data);
1598 }
1599
1600 /****************************************************************************
1601 *
1602 * The next functions belong to the domain allocation. A domain is
1603 * allocated for every IOMMU as the default domain. If device isolation
1604 * is enabled, every device get its own domain. The most important thing
1605 * about domains is the page table mapping the DMA address space they
1606 * contain.
1607 *
1608 ****************************************************************************/
1609
1610 static u16 domain_id_alloc(void)
1611 {
1612 int id;
1613
1614 spin_lock(&pd_bitmap_lock);
1615 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1616 BUG_ON(id == 0);
1617 if (id > 0 && id < MAX_DOMAIN_ID)
1618 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1619 else
1620 id = 0;
1621 spin_unlock(&pd_bitmap_lock);
1622
1623 return id;
1624 }
1625
1626 static void domain_id_free(int id)
1627 {
1628 spin_lock(&pd_bitmap_lock);
1629 if (id > 0 && id < MAX_DOMAIN_ID)
1630 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1631 spin_unlock(&pd_bitmap_lock);
1632 }
1633
1634 static void free_gcr3_tbl_level1(u64 *tbl)
1635 {
1636 u64 *ptr;
1637 int i;
1638
1639 for (i = 0; i < 512; ++i) {
1640 if (!(tbl[i] & GCR3_VALID))
1641 continue;
1642
1643 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1644
1645 free_page((unsigned long)ptr);
1646 }
1647 }
1648
1649 static void free_gcr3_tbl_level2(u64 *tbl)
1650 {
1651 u64 *ptr;
1652 int i;
1653
1654 for (i = 0; i < 512; ++i) {
1655 if (!(tbl[i] & GCR3_VALID))
1656 continue;
1657
1658 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1659
1660 free_gcr3_tbl_level1(ptr);
1661 }
1662 }
1663
1664 static void free_gcr3_table(struct protection_domain *domain)
1665 {
1666 if (domain->glx == 2)
1667 free_gcr3_tbl_level2(domain->gcr3_tbl);
1668 else if (domain->glx == 1)
1669 free_gcr3_tbl_level1(domain->gcr3_tbl);
1670 else
1671 BUG_ON(domain->glx != 0);
1672
1673 free_page((unsigned long)domain->gcr3_tbl);
1674 }
1675
1676 /*
1677 * Number of GCR3 table levels required. Level must be 4-Kbyte
1678 * page and can contain up to 512 entries.
1679 */
1680 static int get_gcr3_levels(int pasids)
1681 {
1682 int levels;
1683
1684 if (pasids == -1)
1685 return amd_iommu_max_glx_val;
1686
1687 levels = get_count_order(pasids);
1688
1689 return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels;
1690 }
1691
1692 /* Note: This function expects iommu_domain->lock to be held prior calling the function. */
1693 static int setup_gcr3_table(struct protection_domain *domain, int pasids)
1694 {
1695 int levels = get_gcr3_levels(pasids);
1696
1697 if (levels > amd_iommu_max_glx_val)
1698 return -EINVAL;
1699
1700 domain->gcr3_tbl = alloc_pgtable_page(domain->nid, GFP_ATOMIC);
1701 if (domain->gcr3_tbl == NULL)
1702 return -ENOMEM;
1703
1704 domain->glx = levels;
1705 domain->flags |= PD_IOMMUV2_MASK;
1706
1707 amd_iommu_domain_update(domain);
1708
1709 return 0;
1710 }
1711
1712 static void set_dte_entry(struct amd_iommu *iommu, u16 devid,
1713 struct protection_domain *domain, bool ats, bool ppr)
1714 {
1715 u64 pte_root = 0;
1716 u64 flags = 0;
1717 u32 old_domid;
1718 struct dev_table_entry *dev_table = get_dev_table(iommu);
1719
1720 if (domain->iop.mode != PAGE_MODE_NONE)
1721 pte_root = iommu_virt_to_phys(domain->iop.root);
1722
1723 pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1724 << DEV_ENTRY_MODE_SHIFT;
1725
1726 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V;
1727
1728 /*
1729 * When SNP is enabled, Only set TV bit when IOMMU
1730 * page translation is in use.
1731 */
1732 if (!amd_iommu_snp_en || (domain->id != 0))
1733 pte_root |= DTE_FLAG_TV;
1734
1735 flags = dev_table[devid].data[1];
1736
1737 if (ats)
1738 flags |= DTE_FLAG_IOTLB;
1739
1740 if (ppr)
1741 pte_root |= 1ULL << DEV_ENTRY_PPR;
1742
1743 if (domain->dirty_tracking)
1744 pte_root |= DTE_FLAG_HAD;
1745
1746 if (domain->flags & PD_IOMMUV2_MASK) {
1747 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1748 u64 glx = domain->glx;
1749 u64 tmp;
1750
1751 pte_root |= DTE_FLAG_GV;
1752 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1753
1754 /* First mask out possible old values for GCR3 table */
1755 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1756 flags &= ~tmp;
1757
1758 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1759 flags &= ~tmp;
1760
1761 /* Encode GCR3 table into DTE */
1762 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1763 pte_root |= tmp;
1764
1765 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1766 flags |= tmp;
1767
1768 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1769 flags |= tmp;
1770
1771 if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) {
1772 dev_table[devid].data[2] |=
1773 ((u64)GUEST_PGTABLE_5_LEVEL << DTE_GPT_LEVEL_SHIFT);
1774 }
1775
1776 if (domain->flags & PD_GIOV_MASK)
1777 pte_root |= DTE_FLAG_GIOV;
1778 }
1779
1780 flags &= ~DEV_DOMID_MASK;
1781 flags |= domain->id;
1782
1783 old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK;
1784 dev_table[devid].data[1] = flags;
1785 dev_table[devid].data[0] = pte_root;
1786
1787 /*
1788 * A kdump kernel might be replacing a domain ID that was copied from
1789 * the previous kernel--if so, it needs to flush the translation cache
1790 * entries for the old domain ID that is being overwritten
1791 */
1792 if (old_domid) {
1793 amd_iommu_flush_tlb_domid(iommu, old_domid);
1794 }
1795 }
1796
1797 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid)
1798 {
1799 struct dev_table_entry *dev_table = get_dev_table(iommu);
1800
1801 /* remove entry from the device table seen by the hardware */
1802 dev_table[devid].data[0] = DTE_FLAG_V;
1803
1804 if (!amd_iommu_snp_en)
1805 dev_table[devid].data[0] |= DTE_FLAG_TV;
1806
1807 dev_table[devid].data[1] &= DTE_FLAG_MASK;
1808
1809 amd_iommu_apply_erratum_63(iommu, devid);
1810 }
1811
1812 static void do_attach(struct iommu_dev_data *dev_data,
1813 struct protection_domain *domain)
1814 {
1815 struct amd_iommu *iommu;
1816 bool ats;
1817
1818 iommu = rlookup_amd_iommu(dev_data->dev);
1819 if (!iommu)
1820 return;
1821 ats = dev_data->ats_enabled;
1822
1823 /* Update data structures */
1824 dev_data->domain = domain;
1825 list_add(&dev_data->list, &domain->dev_list);
1826
1827 /* Update NUMA Node ID */
1828 if (domain->nid == NUMA_NO_NODE)
1829 domain->nid = dev_to_node(dev_data->dev);
1830
1831 /* Do reference counting */
1832 domain->dev_iommu[iommu->index] += 1;
1833 domain->dev_cnt += 1;
1834
1835 /* Update device table */
1836 set_dte_entry(iommu, dev_data->devid, domain,
1837 ats, dev_data->ppr);
1838 clone_aliases(iommu, dev_data->dev);
1839
1840 device_flush_dte(dev_data);
1841 }
1842
1843 static void do_detach(struct iommu_dev_data *dev_data)
1844 {
1845 struct protection_domain *domain = dev_data->domain;
1846 struct amd_iommu *iommu;
1847
1848 iommu = rlookup_amd_iommu(dev_data->dev);
1849 if (!iommu)
1850 return;
1851
1852 /* Update data structures */
1853 dev_data->domain = NULL;
1854 list_del(&dev_data->list);
1855 clear_dte_entry(iommu, dev_data->devid);
1856 clone_aliases(iommu, dev_data->dev);
1857
1858 /* Flush the DTE entry */
1859 device_flush_dte(dev_data);
1860
1861 /* Flush IOTLB */
1862 amd_iommu_domain_flush_tlb_pde(domain);
1863
1864 /* Wait for the flushes to finish */
1865 amd_iommu_domain_flush_complete(domain);
1866
1867 /* decrease reference counters - needs to happen after the flushes */
1868 domain->dev_iommu[iommu->index] -= 1;
1869 domain->dev_cnt -= 1;
1870 }
1871
1872 /*
1873 * If a device is not yet associated with a domain, this function makes the
1874 * device visible in the domain
1875 */
1876 static int attach_device(struct device *dev,
1877 struct protection_domain *domain)
1878 {
1879 struct iommu_dev_data *dev_data;
1880 unsigned long flags;
1881 int ret = 0;
1882
1883 spin_lock_irqsave(&domain->lock, flags);
1884
1885 dev_data = dev_iommu_priv_get(dev);
1886
1887 spin_lock(&dev_data->lock);
1888
1889 if (dev_data->domain != NULL) {
1890 ret = -EBUSY;
1891 goto out;
1892 }
1893
1894 if (dev_is_pci(dev))
1895 pdev_enable_caps(to_pci_dev(dev));
1896
1897 do_attach(dev_data, domain);
1898
1899 /*
1900 * We might boot into a crash-kernel here. The crashed kernel
1901 * left the caches in the IOMMU dirty. So we have to flush
1902 * here to evict all dirty stuff.
1903 */
1904 amd_iommu_domain_flush_tlb_pde(domain);
1905
1906 amd_iommu_domain_flush_complete(domain);
1907
1908 out:
1909 spin_unlock(&dev_data->lock);
1910
1911 spin_unlock_irqrestore(&domain->lock, flags);
1912
1913 return ret;
1914 }
1915
1916 /*
1917 * Removes a device from a protection domain (with devtable_lock held)
1918 */
1919 static void detach_device(struct device *dev)
1920 {
1921 struct protection_domain *domain;
1922 struct iommu_dev_data *dev_data;
1923 unsigned long flags;
1924
1925 dev_data = dev_iommu_priv_get(dev);
1926 domain = dev_data->domain;
1927
1928 spin_lock_irqsave(&domain->lock, flags);
1929
1930 spin_lock(&dev_data->lock);
1931
1932 /*
1933 * First check if the device is still attached. It might already
1934 * be detached from its domain because the generic
1935 * iommu_detach_group code detached it and we try again here in
1936 * our alias handling.
1937 */
1938 if (WARN_ON(!dev_data->domain))
1939 goto out;
1940
1941 do_detach(dev_data);
1942
1943 if (dev_is_pci(dev))
1944 pdev_disable_caps(to_pci_dev(dev));
1945
1946 out:
1947 spin_unlock(&dev_data->lock);
1948
1949 spin_unlock_irqrestore(&domain->lock, flags);
1950 }
1951
1952 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
1953 {
1954 struct iommu_device *iommu_dev;
1955 struct amd_iommu *iommu;
1956 int ret;
1957
1958 if (!check_device(dev))
1959 return ERR_PTR(-ENODEV);
1960
1961 iommu = rlookup_amd_iommu(dev);
1962 if (!iommu)
1963 return ERR_PTR(-ENODEV);
1964
1965 /* Not registered yet? */
1966 if (!iommu->iommu.ops)
1967 return ERR_PTR(-ENODEV);
1968
1969 if (dev_iommu_priv_get(dev))
1970 return &iommu->iommu;
1971
1972 ret = iommu_init_device(iommu, dev);
1973 if (ret) {
1974 if (ret != -ENOTSUPP)
1975 dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
1976 iommu_dev = ERR_PTR(ret);
1977 iommu_ignore_device(iommu, dev);
1978 } else {
1979 amd_iommu_set_pci_msi_domain(dev, iommu);
1980 iommu_dev = &iommu->iommu;
1981 }
1982
1983 iommu_completion_wait(iommu);
1984
1985 return iommu_dev;
1986 }
1987
1988 static void amd_iommu_probe_finalize(struct device *dev)
1989 {
1990 /* Domains are initialized for this device - have a look what we ended up with */
1991 set_dma_ops(dev, NULL);
1992 iommu_setup_dma_ops(dev, 0, U64_MAX);
1993 }
1994
1995 static void amd_iommu_release_device(struct device *dev)
1996 {
1997 struct amd_iommu *iommu;
1998
1999 if (!check_device(dev))
2000 return;
2001
2002 iommu = rlookup_amd_iommu(dev);
2003 if (!iommu)
2004 return;
2005
2006 amd_iommu_uninit_device(dev);
2007 iommu_completion_wait(iommu);
2008 }
2009
2010 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2011 {
2012 if (dev_is_pci(dev))
2013 return pci_device_group(dev);
2014
2015 return acpihid_device_group(dev);
2016 }
2017
2018 /*****************************************************************************
2019 *
2020 * The next functions belong to the dma_ops mapping/unmapping code.
2021 *
2022 *****************************************************************************/
2023
2024 static void update_device_table(struct protection_domain *domain)
2025 {
2026 struct iommu_dev_data *dev_data;
2027
2028 list_for_each_entry(dev_data, &domain->dev_list, list) {
2029 struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
2030
2031 if (!iommu)
2032 continue;
2033 set_dte_entry(iommu, dev_data->devid, domain,
2034 dev_data->ats_enabled, dev_data->ppr);
2035 clone_aliases(iommu, dev_data->dev);
2036 }
2037 }
2038
2039 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
2040 {
2041 update_device_table(domain);
2042 domain_flush_devices(domain);
2043 }
2044
2045 void amd_iommu_domain_update(struct protection_domain *domain)
2046 {
2047 /* Update device table */
2048 amd_iommu_update_and_flush_device_table(domain);
2049
2050 /* Flush domain TLB(s) and wait for completion */
2051 amd_iommu_domain_flush_tlb_pde(domain);
2052 amd_iommu_domain_flush_complete(domain);
2053 }
2054
2055 /*****************************************************************************
2056 *
2057 * The following functions belong to the exported interface of AMD IOMMU
2058 *
2059 * This interface allows access to lower level functions of the IOMMU
2060 * like protection domain handling and assignement of devices to domains
2061 * which is not possible with the dma_ops interface.
2062 *
2063 *****************************************************************************/
2064
2065 static void cleanup_domain(struct protection_domain *domain)
2066 {
2067 struct iommu_dev_data *entry;
2068
2069 lockdep_assert_held(&domain->lock);
2070
2071 if (!domain->dev_cnt)
2072 return;
2073
2074 while (!list_empty(&domain->dev_list)) {
2075 entry = list_first_entry(&domain->dev_list,
2076 struct iommu_dev_data, list);
2077 BUG_ON(!entry->domain);
2078 do_detach(entry);
2079 }
2080 WARN_ON(domain->dev_cnt != 0);
2081 }
2082
2083 static void protection_domain_free(struct protection_domain *domain)
2084 {
2085 if (!domain)
2086 return;
2087
2088 if (domain->iop.pgtbl_cfg.tlb)
2089 free_io_pgtable_ops(&domain->iop.iop.ops);
2090
2091 if (domain->flags & PD_IOMMUV2_MASK)
2092 free_gcr3_table(domain);
2093
2094 if (domain->iop.root)
2095 free_page((unsigned long)domain->iop.root);
2096
2097 if (domain->id)
2098 domain_id_free(domain->id);
2099
2100 kfree(domain);
2101 }
2102
2103 static int protection_domain_init_v1(struct protection_domain *domain, int mode)
2104 {
2105 u64 *pt_root = NULL;
2106
2107 BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2108
2109 if (mode != PAGE_MODE_NONE) {
2110 pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2111 if (!pt_root)
2112 return -ENOMEM;
2113 }
2114
2115 amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2116
2117 return 0;
2118 }
2119
2120 static int protection_domain_init_v2(struct protection_domain *domain)
2121 {
2122 domain->flags |= PD_GIOV_MASK;
2123
2124 domain->domain.pgsize_bitmap = AMD_IOMMU_PGSIZES_V2;
2125
2126 if (setup_gcr3_table(domain, 1))
2127 return -ENOMEM;
2128
2129 return 0;
2130 }
2131
2132 static struct protection_domain *protection_domain_alloc(unsigned int type)
2133 {
2134 struct io_pgtable_ops *pgtbl_ops;
2135 struct protection_domain *domain;
2136 int pgtable;
2137 int ret;
2138
2139 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2140 if (!domain)
2141 return NULL;
2142
2143 domain->id = domain_id_alloc();
2144 if (!domain->id)
2145 goto out_err;
2146
2147 spin_lock_init(&domain->lock);
2148 INIT_LIST_HEAD(&domain->dev_list);
2149 domain->nid = NUMA_NO_NODE;
2150
2151 switch (type) {
2152 /* No need to allocate io pgtable ops in passthrough mode */
2153 case IOMMU_DOMAIN_IDENTITY:
2154 return domain;
2155 case IOMMU_DOMAIN_DMA:
2156 pgtable = amd_iommu_pgtable;
2157 break;
2158 /*
2159 * Force IOMMU v1 page table when allocating
2160 * domain for pass-through devices.
2161 */
2162 case IOMMU_DOMAIN_UNMANAGED:
2163 pgtable = AMD_IOMMU_V1;
2164 break;
2165 default:
2166 goto out_err;
2167 }
2168
2169 switch (pgtable) {
2170 case AMD_IOMMU_V1:
2171 ret = protection_domain_init_v1(domain, DEFAULT_PGTABLE_LEVEL);
2172 break;
2173 case AMD_IOMMU_V2:
2174 ret = protection_domain_init_v2(domain);
2175 break;
2176 default:
2177 ret = -EINVAL;
2178 break;
2179 }
2180
2181 if (ret)
2182 goto out_err;
2183
2184 pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain);
2185 if (!pgtbl_ops)
2186 goto out_err;
2187
2188 return domain;
2189 out_err:
2190 protection_domain_free(domain);
2191 return NULL;
2192 }
2193
2194 static inline u64 dma_max_address(void)
2195 {
2196 if (amd_iommu_pgtable == AMD_IOMMU_V1)
2197 return ~0ULL;
2198
2199 /* V2 with 4/5 level page table */
2200 return ((1ULL << PM_LEVEL_SHIFT(amd_iommu_gpt_level)) - 1);
2201 }
2202
2203 static bool amd_iommu_hd_support(struct amd_iommu *iommu)
2204 {
2205 return iommu && (iommu->features & FEATURE_HDSUP);
2206 }
2207
2208 static struct iommu_domain *do_iommu_domain_alloc(unsigned int type,
2209 struct device *dev, u32 flags)
2210 {
2211 bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
2212 struct protection_domain *domain;
2213 struct amd_iommu *iommu = NULL;
2214
2215 if (dev) {
2216 iommu = rlookup_amd_iommu(dev);
2217 if (!iommu)
2218 return ERR_PTR(-ENODEV);
2219 }
2220
2221 /*
2222 * Since DTE[Mode]=0 is prohibited on SNP-enabled system,
2223 * default to use IOMMU_DOMAIN_DMA[_FQ].
2224 */
2225 if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY))
2226 return ERR_PTR(-EINVAL);
2227
2228 if (dirty_tracking && !amd_iommu_hd_support(iommu))
2229 return ERR_PTR(-EOPNOTSUPP);
2230
2231 domain = protection_domain_alloc(type);
2232 if (!domain)
2233 return ERR_PTR(-ENOMEM);
2234
2235 domain->domain.geometry.aperture_start = 0;
2236 domain->domain.geometry.aperture_end = dma_max_address();
2237 domain->domain.geometry.force_aperture = true;
2238
2239 if (iommu) {
2240 domain->domain.type = type;
2241 domain->domain.pgsize_bitmap = iommu->iommu.ops->pgsize_bitmap;
2242 domain->domain.ops = iommu->iommu.ops->default_domain_ops;
2243
2244 if (dirty_tracking)
2245 domain->domain.dirty_ops = &amd_dirty_ops;
2246 }
2247
2248 return &domain->domain;
2249 }
2250
2251 static struct iommu_domain *amd_iommu_domain_alloc(unsigned int type)
2252 {
2253 struct iommu_domain *domain;
2254
2255 domain = do_iommu_domain_alloc(type, NULL, 0);
2256 if (IS_ERR(domain))
2257 return NULL;
2258
2259 return domain;
2260 }
2261
2262 static struct iommu_domain *
2263 amd_iommu_domain_alloc_user(struct device *dev, u32 flags,
2264 struct iommu_domain *parent,
2265 const struct iommu_user_data *user_data)
2266
2267 {
2268 unsigned int type = IOMMU_DOMAIN_UNMANAGED;
2269
2270 if ((flags & ~IOMMU_HWPT_ALLOC_DIRTY_TRACKING) || parent || user_data)
2271 return ERR_PTR(-EOPNOTSUPP);
2272
2273 return do_iommu_domain_alloc(type, dev, flags);
2274 }
2275
2276 static void amd_iommu_domain_free(struct iommu_domain *dom)
2277 {
2278 struct protection_domain *domain;
2279 unsigned long flags;
2280
2281 if (!dom)
2282 return;
2283
2284 domain = to_pdomain(dom);
2285
2286 spin_lock_irqsave(&domain->lock, flags);
2287
2288 cleanup_domain(domain);
2289
2290 spin_unlock_irqrestore(&domain->lock, flags);
2291
2292 protection_domain_free(domain);
2293 }
2294
2295 static int amd_iommu_attach_device(struct iommu_domain *dom,
2296 struct device *dev)
2297 {
2298 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2299 struct protection_domain *domain = to_pdomain(dom);
2300 struct amd_iommu *iommu = rlookup_amd_iommu(dev);
2301 int ret;
2302
2303 /*
2304 * Skip attach device to domain if new domain is same as
2305 * devices current domain
2306 */
2307 if (dev_data->domain == domain)
2308 return 0;
2309
2310 dev_data->defer_attach = false;
2311
2312 /*
2313 * Restrict to devices with compatible IOMMU hardware support
2314 * when enforcement of dirty tracking is enabled.
2315 */
2316 if (dom->dirty_ops && !amd_iommu_hd_support(iommu))
2317 return -EINVAL;
2318
2319 if (dev_data->domain)
2320 detach_device(dev);
2321
2322 ret = attach_device(dev, domain);
2323
2324 #ifdef CONFIG_IRQ_REMAP
2325 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2326 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2327 dev_data->use_vapic = 1;
2328 else
2329 dev_data->use_vapic = 0;
2330 }
2331 #endif
2332
2333 iommu_completion_wait(iommu);
2334
2335 return ret;
2336 }
2337
2338 static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2339 unsigned long iova, size_t size)
2340 {
2341 struct protection_domain *domain = to_pdomain(dom);
2342 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2343
2344 if (ops->map_pages)
2345 domain_flush_np_cache(domain, iova, size);
2346 return 0;
2347 }
2348
2349 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
2350 phys_addr_t paddr, size_t pgsize, size_t pgcount,
2351 int iommu_prot, gfp_t gfp, size_t *mapped)
2352 {
2353 struct protection_domain *domain = to_pdomain(dom);
2354 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2355 int prot = 0;
2356 int ret = -EINVAL;
2357
2358 if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2359 (domain->iop.mode == PAGE_MODE_NONE))
2360 return -EINVAL;
2361
2362 if (iommu_prot & IOMMU_READ)
2363 prot |= IOMMU_PROT_IR;
2364 if (iommu_prot & IOMMU_WRITE)
2365 prot |= IOMMU_PROT_IW;
2366
2367 if (ops->map_pages) {
2368 ret = ops->map_pages(ops, iova, paddr, pgsize,
2369 pgcount, prot, gfp, mapped);
2370 }
2371
2372 return ret;
2373 }
2374
2375 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2376 struct iommu_iotlb_gather *gather,
2377 unsigned long iova, size_t size)
2378 {
2379 /*
2380 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2381 * Unless we run in a virtual machine, which can be inferred according
2382 * to whether "non-present cache" is on, it is probably best to prefer
2383 * (potentially) too extensive TLB flushing (i.e., more misses) over
2384 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2385 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2386 * the guest, and the trade-off is different: unnecessary TLB flushes
2387 * should be avoided.
2388 */
2389 if (amd_iommu_np_cache &&
2390 iommu_iotlb_gather_is_disjoint(gather, iova, size))
2391 iommu_iotlb_sync(domain, gather);
2392
2393 iommu_iotlb_gather_add_range(gather, iova, size);
2394 }
2395
2396 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
2397 size_t pgsize, size_t pgcount,
2398 struct iommu_iotlb_gather *gather)
2399 {
2400 struct protection_domain *domain = to_pdomain(dom);
2401 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2402 size_t r;
2403
2404 if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2405 (domain->iop.mode == PAGE_MODE_NONE))
2406 return 0;
2407
2408 r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
2409
2410 if (r)
2411 amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
2412
2413 return r;
2414 }
2415
2416 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2417 dma_addr_t iova)
2418 {
2419 struct protection_domain *domain = to_pdomain(dom);
2420 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2421
2422 return ops->iova_to_phys(ops, iova);
2423 }
2424
2425 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2426 {
2427 switch (cap) {
2428 case IOMMU_CAP_CACHE_COHERENCY:
2429 return true;
2430 case IOMMU_CAP_NOEXEC:
2431 return false;
2432 case IOMMU_CAP_PRE_BOOT_PROTECTION:
2433 return amdr_ivrs_remap_support;
2434 case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
2435 return true;
2436 case IOMMU_CAP_DEFERRED_FLUSH:
2437 return true;
2438 case IOMMU_CAP_DIRTY_TRACKING: {
2439 struct amd_iommu *iommu = rlookup_amd_iommu(dev);
2440
2441 return amd_iommu_hd_support(iommu);
2442 }
2443 default:
2444 break;
2445 }
2446
2447 return false;
2448 }
2449
2450 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
2451 bool enable)
2452 {
2453 struct protection_domain *pdomain = to_pdomain(domain);
2454 struct dev_table_entry *dev_table;
2455 struct iommu_dev_data *dev_data;
2456 bool domain_flush = false;
2457 struct amd_iommu *iommu;
2458 unsigned long flags;
2459 u64 pte_root;
2460
2461 spin_lock_irqsave(&pdomain->lock, flags);
2462 if (!(pdomain->dirty_tracking ^ enable)) {
2463 spin_unlock_irqrestore(&pdomain->lock, flags);
2464 return 0;
2465 }
2466
2467 list_for_each_entry(dev_data, &pdomain->dev_list, list) {
2468 iommu = rlookup_amd_iommu(dev_data->dev);
2469 if (!iommu)
2470 continue;
2471
2472 dev_table = get_dev_table(iommu);
2473 pte_root = dev_table[dev_data->devid].data[0];
2474
2475 pte_root = (enable ? pte_root | DTE_FLAG_HAD :
2476 pte_root & ~DTE_FLAG_HAD);
2477
2478 /* Flush device DTE */
2479 dev_table[dev_data->devid].data[0] = pte_root;
2480 device_flush_dte(dev_data);
2481 domain_flush = true;
2482 }
2483
2484 /* Flush IOTLB to mark IOPTE dirty on the next translation(s) */
2485 if (domain_flush) {
2486 amd_iommu_domain_flush_tlb_pde(pdomain);
2487 amd_iommu_domain_flush_complete(pdomain);
2488 }
2489 pdomain->dirty_tracking = enable;
2490 spin_unlock_irqrestore(&pdomain->lock, flags);
2491
2492 return 0;
2493 }
2494
2495 static int amd_iommu_read_and_clear_dirty(struct iommu_domain *domain,
2496 unsigned long iova, size_t size,
2497 unsigned long flags,
2498 struct iommu_dirty_bitmap *dirty)
2499 {
2500 struct protection_domain *pdomain = to_pdomain(domain);
2501 struct io_pgtable_ops *ops = &pdomain->iop.iop.ops;
2502 unsigned long lflags;
2503
2504 if (!ops || !ops->read_and_clear_dirty)
2505 return -EOPNOTSUPP;
2506
2507 spin_lock_irqsave(&pdomain->lock, lflags);
2508 if (!pdomain->dirty_tracking && dirty->bitmap) {
2509 spin_unlock_irqrestore(&pdomain->lock, lflags);
2510 return -EINVAL;
2511 }
2512 spin_unlock_irqrestore(&pdomain->lock, lflags);
2513
2514 return ops->read_and_clear_dirty(ops, iova, size, flags, dirty);
2515 }
2516
2517 static void amd_iommu_get_resv_regions(struct device *dev,
2518 struct list_head *head)
2519 {
2520 struct iommu_resv_region *region;
2521 struct unity_map_entry *entry;
2522 struct amd_iommu *iommu;
2523 struct amd_iommu_pci_seg *pci_seg;
2524 int devid, sbdf;
2525
2526 sbdf = get_device_sbdf_id(dev);
2527 if (sbdf < 0)
2528 return;
2529
2530 devid = PCI_SBDF_TO_DEVID(sbdf);
2531 iommu = rlookup_amd_iommu(dev);
2532 if (!iommu)
2533 return;
2534 pci_seg = iommu->pci_seg;
2535
2536 list_for_each_entry(entry, &pci_seg->unity_map, list) {
2537 int type, prot = 0;
2538 size_t length;
2539
2540 if (devid < entry->devid_start || devid > entry->devid_end)
2541 continue;
2542
2543 type = IOMMU_RESV_DIRECT;
2544 length = entry->address_end - entry->address_start;
2545 if (entry->prot & IOMMU_PROT_IR)
2546 prot |= IOMMU_READ;
2547 if (entry->prot & IOMMU_PROT_IW)
2548 prot |= IOMMU_WRITE;
2549 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2550 /* Exclusion range */
2551 type = IOMMU_RESV_RESERVED;
2552
2553 region = iommu_alloc_resv_region(entry->address_start,
2554 length, prot, type,
2555 GFP_KERNEL);
2556 if (!region) {
2557 dev_err(dev, "Out of memory allocating dm-regions\n");
2558 return;
2559 }
2560 list_add_tail(&region->list, head);
2561 }
2562
2563 region = iommu_alloc_resv_region(MSI_RANGE_START,
2564 MSI_RANGE_END - MSI_RANGE_START + 1,
2565 0, IOMMU_RESV_MSI, GFP_KERNEL);
2566 if (!region)
2567 return;
2568 list_add_tail(&region->list, head);
2569
2570 region = iommu_alloc_resv_region(HT_RANGE_START,
2571 HT_RANGE_END - HT_RANGE_START + 1,
2572 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
2573 if (!region)
2574 return;
2575 list_add_tail(&region->list, head);
2576 }
2577
2578 bool amd_iommu_is_attach_deferred(struct device *dev)
2579 {
2580 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2581
2582 return dev_data->defer_attach;
2583 }
2584
2585 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2586 {
2587 struct protection_domain *dom = to_pdomain(domain);
2588 unsigned long flags;
2589
2590 spin_lock_irqsave(&dom->lock, flags);
2591 amd_iommu_domain_flush_tlb_pde(dom);
2592 amd_iommu_domain_flush_complete(dom);
2593 spin_unlock_irqrestore(&dom->lock, flags);
2594 }
2595
2596 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2597 struct iommu_iotlb_gather *gather)
2598 {
2599 struct protection_domain *dom = to_pdomain(domain);
2600 unsigned long flags;
2601
2602 spin_lock_irqsave(&dom->lock, flags);
2603 domain_flush_pages(dom, gather->start, gather->end - gather->start + 1, 1);
2604 amd_iommu_domain_flush_complete(dom);
2605 spin_unlock_irqrestore(&dom->lock, flags);
2606 }
2607
2608 static int amd_iommu_def_domain_type(struct device *dev)
2609 {
2610 struct iommu_dev_data *dev_data;
2611
2612 dev_data = dev_iommu_priv_get(dev);
2613 if (!dev_data)
2614 return 0;
2615
2616 /*
2617 * Do not identity map IOMMUv2 capable devices when:
2618 * - memory encryption is active, because some of those devices
2619 * (AMD GPUs) don't have the encryption bit in their DMA-mask
2620 * and require remapping.
2621 * - SNP is enabled, because it prohibits DTE[Mode]=0.
2622 */
2623 if (pdev_pasid_supported(dev_data) &&
2624 !cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
2625 !amd_iommu_snp_en) {
2626 return IOMMU_DOMAIN_IDENTITY;
2627 }
2628
2629 return 0;
2630 }
2631
2632 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2633 {
2634 /* IOMMU_PTE_FC is always set */
2635 return true;
2636 }
2637
2638 const struct iommu_dirty_ops amd_dirty_ops = {
2639 .set_dirty_tracking = amd_iommu_set_dirty_tracking,
2640 .read_and_clear_dirty = amd_iommu_read_and_clear_dirty,
2641 };
2642
2643 const struct iommu_ops amd_iommu_ops = {
2644 .capable = amd_iommu_capable,
2645 .domain_alloc = amd_iommu_domain_alloc,
2646 .domain_alloc_user = amd_iommu_domain_alloc_user,
2647 .probe_device = amd_iommu_probe_device,
2648 .release_device = amd_iommu_release_device,
2649 .probe_finalize = amd_iommu_probe_finalize,
2650 .device_group = amd_iommu_device_group,
2651 .get_resv_regions = amd_iommu_get_resv_regions,
2652 .is_attach_deferred = amd_iommu_is_attach_deferred,
2653 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
2654 .def_domain_type = amd_iommu_def_domain_type,
2655 .default_domain_ops = &(const struct iommu_domain_ops) {
2656 .attach_dev = amd_iommu_attach_device,
2657 .map_pages = amd_iommu_map_pages,
2658 .unmap_pages = amd_iommu_unmap_pages,
2659 .iotlb_sync_map = amd_iommu_iotlb_sync_map,
2660 .iova_to_phys = amd_iommu_iova_to_phys,
2661 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
2662 .iotlb_sync = amd_iommu_iotlb_sync,
2663 .free = amd_iommu_domain_free,
2664 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2665 }
2666 };
2667
2668 static int __flush_pasid(struct protection_domain *domain, u32 pasid,
2669 u64 address, bool size)
2670 {
2671 struct iommu_dev_data *dev_data;
2672 struct iommu_cmd cmd;
2673 int i, ret;
2674
2675 if (!(domain->flags & PD_IOMMUV2_MASK))
2676 return -EINVAL;
2677
2678 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
2679
2680 /*
2681 * IOMMU TLB needs to be flushed before Device TLB to
2682 * prevent device TLB refill from IOMMU TLB
2683 */
2684 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2685 if (domain->dev_iommu[i] == 0)
2686 continue;
2687
2688 ret = iommu_queue_command(amd_iommus[i], &cmd);
2689 if (ret != 0)
2690 goto out;
2691 }
2692
2693 /* Wait until IOMMU TLB flushes are complete */
2694 amd_iommu_domain_flush_complete(domain);
2695
2696 /* Now flush device TLBs */
2697 list_for_each_entry(dev_data, &domain->dev_list, list) {
2698 struct amd_iommu *iommu;
2699 int qdep;
2700
2701 /*
2702 There might be non-IOMMUv2 capable devices in an IOMMUv2
2703 * domain.
2704 */
2705 if (!dev_data->ats_enabled)
2706 continue;
2707
2708 qdep = dev_data->ats_qdep;
2709 iommu = rlookup_amd_iommu(dev_data->dev);
2710 if (!iommu)
2711 continue;
2712 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
2713 qdep, address, size);
2714
2715 ret = iommu_queue_command(iommu, &cmd);
2716 if (ret != 0)
2717 goto out;
2718 }
2719
2720 /* Wait until all device TLBs are flushed */
2721 amd_iommu_domain_flush_complete(domain);
2722
2723 ret = 0;
2724
2725 out:
2726
2727 return ret;
2728 }
2729
2730 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
2731 u64 address)
2732 {
2733 return __flush_pasid(domain, pasid, address, false);
2734 }
2735
2736 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
2737 u64 address)
2738 {
2739 struct protection_domain *domain = to_pdomain(dom);
2740 unsigned long flags;
2741 int ret;
2742
2743 spin_lock_irqsave(&domain->lock, flags);
2744 ret = __amd_iommu_flush_page(domain, pasid, address);
2745 spin_unlock_irqrestore(&domain->lock, flags);
2746
2747 return ret;
2748 }
2749
2750 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
2751 {
2752 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
2753 true);
2754 }
2755
2756 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
2757 {
2758 struct protection_domain *domain = to_pdomain(dom);
2759 unsigned long flags;
2760 int ret;
2761
2762 spin_lock_irqsave(&domain->lock, flags);
2763 ret = __amd_iommu_flush_tlb(domain, pasid);
2764 spin_unlock_irqrestore(&domain->lock, flags);
2765
2766 return ret;
2767 }
2768
2769 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
2770 {
2771 int index;
2772 u64 *pte;
2773
2774 while (true) {
2775
2776 index = (pasid >> (9 * level)) & 0x1ff;
2777 pte = &root[index];
2778
2779 if (level == 0)
2780 break;
2781
2782 if (!(*pte & GCR3_VALID)) {
2783 if (!alloc)
2784 return NULL;
2785
2786 root = (void *)get_zeroed_page(GFP_ATOMIC);
2787 if (root == NULL)
2788 return NULL;
2789
2790 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
2791 }
2792
2793 root = iommu_phys_to_virt(*pte & PAGE_MASK);
2794
2795 level -= 1;
2796 }
2797
2798 return pte;
2799 }
2800
2801 static int __set_gcr3(struct protection_domain *domain, u32 pasid,
2802 unsigned long cr3)
2803 {
2804 u64 *pte;
2805
2806 if (domain->iop.mode != PAGE_MODE_NONE)
2807 return -EINVAL;
2808
2809 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
2810 if (pte == NULL)
2811 return -ENOMEM;
2812
2813 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
2814
2815 return __amd_iommu_flush_tlb(domain, pasid);
2816 }
2817
2818 static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
2819 {
2820 u64 *pte;
2821
2822 if (domain->iop.mode != PAGE_MODE_NONE)
2823 return -EINVAL;
2824
2825 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
2826 if (pte == NULL)
2827 return 0;
2828
2829 *pte = 0;
2830
2831 return __amd_iommu_flush_tlb(domain, pasid);
2832 }
2833
2834 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
2835 unsigned long cr3)
2836 {
2837 struct protection_domain *domain = to_pdomain(dom);
2838 unsigned long flags;
2839 int ret;
2840
2841 spin_lock_irqsave(&domain->lock, flags);
2842 ret = __set_gcr3(domain, pasid, cr3);
2843 spin_unlock_irqrestore(&domain->lock, flags);
2844
2845 return ret;
2846 }
2847
2848 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
2849 {
2850 struct protection_domain *domain = to_pdomain(dom);
2851 unsigned long flags;
2852 int ret;
2853
2854 spin_lock_irqsave(&domain->lock, flags);
2855 ret = __clear_gcr3(domain, pasid);
2856 spin_unlock_irqrestore(&domain->lock, flags);
2857
2858 return ret;
2859 }
2860
2861 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
2862 int status, int tag)
2863 {
2864 struct iommu_dev_data *dev_data;
2865 struct amd_iommu *iommu;
2866 struct iommu_cmd cmd;
2867
2868 dev_data = dev_iommu_priv_get(&pdev->dev);
2869 iommu = rlookup_amd_iommu(&pdev->dev);
2870 if (!iommu)
2871 return -ENODEV;
2872
2873 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
2874 tag, dev_data->pri_tlp);
2875
2876 return iommu_queue_command(iommu, &cmd);
2877 }
2878
2879 #ifdef CONFIG_IRQ_REMAP
2880
2881 /*****************************************************************************
2882 *
2883 * Interrupt Remapping Implementation
2884 *
2885 *****************************************************************************/
2886
2887 static struct irq_chip amd_ir_chip;
2888 static DEFINE_SPINLOCK(iommu_table_lock);
2889
2890 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
2891 {
2892 int ret;
2893 u64 data;
2894 unsigned long flags;
2895 struct iommu_cmd cmd, cmd2;
2896
2897 if (iommu->irtcachedis_enabled)
2898 return;
2899
2900 build_inv_irt(&cmd, devid);
2901 data = atomic64_add_return(1, &iommu->cmd_sem_val);
2902 build_completion_wait(&cmd2, iommu, data);
2903
2904 raw_spin_lock_irqsave(&iommu->lock, flags);
2905 ret = __iommu_queue_command_sync(iommu, &cmd, true);
2906 if (ret)
2907 goto out;
2908 ret = __iommu_queue_command_sync(iommu, &cmd2, false);
2909 if (ret)
2910 goto out;
2911 wait_on_sem(iommu, data);
2912 out:
2913 raw_spin_unlock_irqrestore(&iommu->lock, flags);
2914 }
2915
2916 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
2917 struct irq_remap_table *table)
2918 {
2919 u64 dte;
2920 struct dev_table_entry *dev_table = get_dev_table(iommu);
2921
2922 dte = dev_table[devid].data[2];
2923 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
2924 dte |= iommu_virt_to_phys(table->table);
2925 dte |= DTE_IRQ_REMAP_INTCTL;
2926 dte |= DTE_INTTABLEN;
2927 dte |= DTE_IRQ_REMAP_ENABLE;
2928
2929 dev_table[devid].data[2] = dte;
2930 }
2931
2932 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
2933 {
2934 struct irq_remap_table *table;
2935 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2936
2937 if (WARN_ONCE(!pci_seg->rlookup_table[devid],
2938 "%s: no iommu for devid %x:%x\n",
2939 __func__, pci_seg->id, devid))
2940 return NULL;
2941
2942 table = pci_seg->irq_lookup_table[devid];
2943 if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
2944 __func__, pci_seg->id, devid))
2945 return NULL;
2946
2947 return table;
2948 }
2949
2950 static struct irq_remap_table *__alloc_irq_table(void)
2951 {
2952 struct irq_remap_table *table;
2953
2954 table = kzalloc(sizeof(*table), GFP_KERNEL);
2955 if (!table)
2956 return NULL;
2957
2958 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2959 if (!table->table) {
2960 kfree(table);
2961 return NULL;
2962 }
2963 raw_spin_lock_init(&table->lock);
2964
2965 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2966 memset(table->table, 0,
2967 MAX_IRQS_PER_TABLE * sizeof(u32));
2968 else
2969 memset(table->table, 0,
2970 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2971 return table;
2972 }
2973
2974 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
2975 struct irq_remap_table *table)
2976 {
2977 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2978
2979 pci_seg->irq_lookup_table[devid] = table;
2980 set_dte_irq_entry(iommu, devid, table);
2981 iommu_flush_dte(iommu, devid);
2982 }
2983
2984 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
2985 void *data)
2986 {
2987 struct irq_remap_table *table = data;
2988 struct amd_iommu_pci_seg *pci_seg;
2989 struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
2990
2991 if (!iommu)
2992 return -EINVAL;
2993
2994 pci_seg = iommu->pci_seg;
2995 pci_seg->irq_lookup_table[alias] = table;
2996 set_dte_irq_entry(iommu, alias, table);
2997 iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
2998
2999 return 0;
3000 }
3001
3002 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
3003 u16 devid, struct pci_dev *pdev)
3004 {
3005 struct irq_remap_table *table = NULL;
3006 struct irq_remap_table *new_table = NULL;
3007 struct amd_iommu_pci_seg *pci_seg;
3008 unsigned long flags;
3009 u16 alias;
3010
3011 spin_lock_irqsave(&iommu_table_lock, flags);
3012
3013 pci_seg = iommu->pci_seg;
3014 table = pci_seg->irq_lookup_table[devid];
3015 if (table)
3016 goto out_unlock;
3017
3018 alias = pci_seg->alias_table[devid];
3019 table = pci_seg->irq_lookup_table[alias];
3020 if (table) {
3021 set_remap_table_entry(iommu, devid, table);
3022 goto out_wait;
3023 }
3024 spin_unlock_irqrestore(&iommu_table_lock, flags);
3025
3026 /* Nothing there yet, allocate new irq remapping table */
3027 new_table = __alloc_irq_table();
3028 if (!new_table)
3029 return NULL;
3030
3031 spin_lock_irqsave(&iommu_table_lock, flags);
3032
3033 table = pci_seg->irq_lookup_table[devid];
3034 if (table)
3035 goto out_unlock;
3036
3037 table = pci_seg->irq_lookup_table[alias];
3038 if (table) {
3039 set_remap_table_entry(iommu, devid, table);
3040 goto out_wait;
3041 }
3042
3043 table = new_table;
3044 new_table = NULL;
3045
3046 if (pdev)
3047 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3048 table);
3049 else
3050 set_remap_table_entry(iommu, devid, table);
3051
3052 if (devid != alias)
3053 set_remap_table_entry(iommu, alias, table);
3054
3055 out_wait:
3056 iommu_completion_wait(iommu);
3057
3058 out_unlock:
3059 spin_unlock_irqrestore(&iommu_table_lock, flags);
3060
3061 if (new_table) {
3062 kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3063 kfree(new_table);
3064 }
3065 return table;
3066 }
3067
3068 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
3069 bool align, struct pci_dev *pdev)
3070 {
3071 struct irq_remap_table *table;
3072 int index, c, alignment = 1;
3073 unsigned long flags;
3074
3075 table = alloc_irq_table(iommu, devid, pdev);
3076 if (!table)
3077 return -ENODEV;
3078
3079 if (align)
3080 alignment = roundup_pow_of_two(count);
3081
3082 raw_spin_lock_irqsave(&table->lock, flags);
3083
3084 /* Scan table for free entries */
3085 for (index = ALIGN(table->min_index, alignment), c = 0;
3086 index < MAX_IRQS_PER_TABLE;) {
3087 if (!iommu->irte_ops->is_allocated(table, index)) {
3088 c += 1;
3089 } else {
3090 c = 0;
3091 index = ALIGN(index + 1, alignment);
3092 continue;
3093 }
3094
3095 if (c == count) {
3096 for (; c != 0; --c)
3097 iommu->irte_ops->set_allocated(table, index - c + 1);
3098
3099 index -= count - 1;
3100 goto out;
3101 }
3102
3103 index++;
3104 }
3105
3106 index = -ENOSPC;
3107
3108 out:
3109 raw_spin_unlock_irqrestore(&table->lock, flags);
3110
3111 return index;
3112 }
3113
3114 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3115 struct irte_ga *irte)
3116 {
3117 struct irq_remap_table *table;
3118 struct irte_ga *entry;
3119 unsigned long flags;
3120 u128 old;
3121
3122 table = get_irq_table(iommu, devid);
3123 if (!table)
3124 return -ENOMEM;
3125
3126 raw_spin_lock_irqsave(&table->lock, flags);
3127
3128 entry = (struct irte_ga *)table->table;
3129 entry = &entry[index];
3130
3131 /*
3132 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3133 * and it cannot be updated by the hardware or other processors
3134 * behind us, so the return value of cmpxchg16 should be the
3135 * same as the old value.
3136 */
3137 old = entry->irte;
3138 WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte));
3139
3140 raw_spin_unlock_irqrestore(&table->lock, flags);
3141
3142 iommu_flush_irt_and_complete(iommu, devid);
3143
3144 return 0;
3145 }
3146
3147 static int modify_irte(struct amd_iommu *iommu,
3148 u16 devid, int index, union irte *irte)
3149 {
3150 struct irq_remap_table *table;
3151 unsigned long flags;
3152
3153 table = get_irq_table(iommu, devid);
3154 if (!table)
3155 return -ENOMEM;
3156
3157 raw_spin_lock_irqsave(&table->lock, flags);
3158 table->table[index] = irte->val;
3159 raw_spin_unlock_irqrestore(&table->lock, flags);
3160
3161 iommu_flush_irt_and_complete(iommu, devid);
3162
3163 return 0;
3164 }
3165
3166 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3167 {
3168 struct irq_remap_table *table;
3169 unsigned long flags;
3170
3171 table = get_irq_table(iommu, devid);
3172 if (!table)
3173 return;
3174
3175 raw_spin_lock_irqsave(&table->lock, flags);
3176 iommu->irte_ops->clear_allocated(table, index);
3177 raw_spin_unlock_irqrestore(&table->lock, flags);
3178
3179 iommu_flush_irt_and_complete(iommu, devid);
3180 }
3181
3182 static void irte_prepare(void *entry,
3183 u32 delivery_mode, bool dest_mode,
3184 u8 vector, u32 dest_apicid, int devid)
3185 {
3186 union irte *irte = (union irte *) entry;
3187
3188 irte->val = 0;
3189 irte->fields.vector = vector;
3190 irte->fields.int_type = delivery_mode;
3191 irte->fields.destination = dest_apicid;
3192 irte->fields.dm = dest_mode;
3193 irte->fields.valid = 1;
3194 }
3195
3196 static void irte_ga_prepare(void *entry,
3197 u32 delivery_mode, bool dest_mode,
3198 u8 vector, u32 dest_apicid, int devid)
3199 {
3200 struct irte_ga *irte = (struct irte_ga *) entry;
3201
3202 irte->lo.val = 0;
3203 irte->hi.val = 0;
3204 irte->lo.fields_remap.int_type = delivery_mode;
3205 irte->lo.fields_remap.dm = dest_mode;
3206 irte->hi.fields.vector = vector;
3207 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3208 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3209 irte->lo.fields_remap.valid = 1;
3210 }
3211
3212 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3213 {
3214 union irte *irte = (union irte *) entry;
3215
3216 irte->fields.valid = 1;
3217 modify_irte(iommu, devid, index, irte);
3218 }
3219
3220 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3221 {
3222 struct irte_ga *irte = (struct irte_ga *) entry;
3223
3224 irte->lo.fields_remap.valid = 1;
3225 modify_irte_ga(iommu, devid, index, irte);
3226 }
3227
3228 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3229 {
3230 union irte *irte = (union irte *) entry;
3231
3232 irte->fields.valid = 0;
3233 modify_irte(iommu, devid, index, irte);
3234 }
3235
3236 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3237 {
3238 struct irte_ga *irte = (struct irte_ga *) entry;
3239
3240 irte->lo.fields_remap.valid = 0;
3241 modify_irte_ga(iommu, devid, index, irte);
3242 }
3243
3244 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3245 u8 vector, u32 dest_apicid)
3246 {
3247 union irte *irte = (union irte *) entry;
3248
3249 irte->fields.vector = vector;
3250 irte->fields.destination = dest_apicid;
3251 modify_irte(iommu, devid, index, irte);
3252 }
3253
3254 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3255 u8 vector, u32 dest_apicid)
3256 {
3257 struct irte_ga *irte = (struct irte_ga *) entry;
3258
3259 if (!irte->lo.fields_remap.guest_mode) {
3260 irte->hi.fields.vector = vector;
3261 irte->lo.fields_remap.destination =
3262 APICID_TO_IRTE_DEST_LO(dest_apicid);
3263 irte->hi.fields.destination =
3264 APICID_TO_IRTE_DEST_HI(dest_apicid);
3265 modify_irte_ga(iommu, devid, index, irte);
3266 }
3267 }
3268
3269 #define IRTE_ALLOCATED (~1U)
3270 static void irte_set_allocated(struct irq_remap_table *table, int index)
3271 {
3272 table->table[index] = IRTE_ALLOCATED;
3273 }
3274
3275 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3276 {
3277 struct irte_ga *ptr = (struct irte_ga *)table->table;
3278 struct irte_ga *irte = &ptr[index];
3279
3280 memset(&irte->lo.val, 0, sizeof(u64));
3281 memset(&irte->hi.val, 0, sizeof(u64));
3282 irte->hi.fields.vector = 0xff;
3283 }
3284
3285 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3286 {
3287 union irte *ptr = (union irte *)table->table;
3288 union irte *irte = &ptr[index];
3289
3290 return irte->val != 0;
3291 }
3292
3293 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3294 {
3295 struct irte_ga *ptr = (struct irte_ga *)table->table;
3296 struct irte_ga *irte = &ptr[index];
3297
3298 return irte->hi.fields.vector != 0;
3299 }
3300
3301 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3302 {
3303 table->table[index] = 0;
3304 }
3305
3306 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3307 {
3308 struct irte_ga *ptr = (struct irte_ga *)table->table;
3309 struct irte_ga *irte = &ptr[index];
3310
3311 memset(&irte->lo.val, 0, sizeof(u64));
3312 memset(&irte->hi.val, 0, sizeof(u64));
3313 }
3314
3315 static int get_devid(struct irq_alloc_info *info)
3316 {
3317 switch (info->type) {
3318 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3319 return get_ioapic_devid(info->devid);
3320 case X86_IRQ_ALLOC_TYPE_HPET:
3321 return get_hpet_devid(info->devid);
3322 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3323 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3324 return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3325 default:
3326 WARN_ON_ONCE(1);
3327 return -1;
3328 }
3329 }
3330
3331 struct irq_remap_ops amd_iommu_irq_ops = {
3332 .prepare = amd_iommu_prepare,
3333 .enable = amd_iommu_enable,
3334 .disable = amd_iommu_disable,
3335 .reenable = amd_iommu_reenable,
3336 .enable_faulting = amd_iommu_enable_faulting,
3337 };
3338
3339 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3340 {
3341 msg->data = index;
3342 msg->address_lo = 0;
3343 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3344 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3345 }
3346
3347 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3348 struct irq_cfg *irq_cfg,
3349 struct irq_alloc_info *info,
3350 int devid, int index, int sub_handle)
3351 {
3352 struct irq_2_irte *irte_info = &data->irq_2_irte;
3353 struct amd_iommu *iommu = data->iommu;
3354
3355 if (!iommu)
3356 return;
3357
3358 data->irq_2_irte.devid = devid;
3359 data->irq_2_irte.index = index + sub_handle;
3360 iommu->irte_ops->prepare(data->entry, apic->delivery_mode,
3361 apic->dest_mode_logical, irq_cfg->vector,
3362 irq_cfg->dest_apicid, devid);
3363
3364 switch (info->type) {
3365 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3366 case X86_IRQ_ALLOC_TYPE_HPET:
3367 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3368 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3369 fill_msi_msg(&data->msi_entry, irte_info->index);
3370 break;
3371
3372 default:
3373 BUG_ON(1);
3374 break;
3375 }
3376 }
3377
3378 struct amd_irte_ops irte_32_ops = {
3379 .prepare = irte_prepare,
3380 .activate = irte_activate,
3381 .deactivate = irte_deactivate,
3382 .set_affinity = irte_set_affinity,
3383 .set_allocated = irte_set_allocated,
3384 .is_allocated = irte_is_allocated,
3385 .clear_allocated = irte_clear_allocated,
3386 };
3387
3388 struct amd_irte_ops irte_128_ops = {
3389 .prepare = irte_ga_prepare,
3390 .activate = irte_ga_activate,
3391 .deactivate = irte_ga_deactivate,
3392 .set_affinity = irte_ga_set_affinity,
3393 .set_allocated = irte_ga_set_allocated,
3394 .is_allocated = irte_ga_is_allocated,
3395 .clear_allocated = irte_ga_clear_allocated,
3396 };
3397
3398 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3399 unsigned int nr_irqs, void *arg)
3400 {
3401 struct irq_alloc_info *info = arg;
3402 struct irq_data *irq_data;
3403 struct amd_ir_data *data = NULL;
3404 struct amd_iommu *iommu;
3405 struct irq_cfg *cfg;
3406 int i, ret, devid, seg, sbdf;
3407 int index;
3408
3409 if (!info)
3410 return -EINVAL;
3411 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
3412 return -EINVAL;
3413
3414 sbdf = get_devid(info);
3415 if (sbdf < 0)
3416 return -EINVAL;
3417
3418 seg = PCI_SBDF_TO_SEGID(sbdf);
3419 devid = PCI_SBDF_TO_DEVID(sbdf);
3420 iommu = __rlookup_amd_iommu(seg, devid);
3421 if (!iommu)
3422 return -EINVAL;
3423
3424 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3425 if (ret < 0)
3426 return ret;
3427
3428 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3429 struct irq_remap_table *table;
3430
3431 table = alloc_irq_table(iommu, devid, NULL);
3432 if (table) {
3433 if (!table->min_index) {
3434 /*
3435 * Keep the first 32 indexes free for IOAPIC
3436 * interrupts.
3437 */
3438 table->min_index = 32;
3439 for (i = 0; i < 32; ++i)
3440 iommu->irte_ops->set_allocated(table, i);
3441 }
3442 WARN_ON(table->min_index != 32);
3443 index = info->ioapic.pin;
3444 } else {
3445 index = -ENOMEM;
3446 }
3447 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3448 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3449 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3450
3451 index = alloc_irq_index(iommu, devid, nr_irqs, align,
3452 msi_desc_to_pci_dev(info->desc));
3453 } else {
3454 index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
3455 }
3456
3457 if (index < 0) {
3458 pr_warn("Failed to allocate IRTE\n");
3459 ret = index;
3460 goto out_free_parent;
3461 }
3462
3463 for (i = 0; i < nr_irqs; i++) {
3464 irq_data = irq_domain_get_irq_data(domain, virq + i);
3465 cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3466 if (!cfg) {
3467 ret = -EINVAL;
3468 goto out_free_data;
3469 }
3470
3471 ret = -ENOMEM;
3472 data = kzalloc(sizeof(*data), GFP_KERNEL);
3473 if (!data)
3474 goto out_free_data;
3475
3476 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3477 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3478 else
3479 data->entry = kzalloc(sizeof(struct irte_ga),
3480 GFP_KERNEL);
3481 if (!data->entry) {
3482 kfree(data);
3483 goto out_free_data;
3484 }
3485
3486 data->iommu = iommu;
3487 irq_data->hwirq = (devid << 16) + i;
3488 irq_data->chip_data = data;
3489 irq_data->chip = &amd_ir_chip;
3490 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3491 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3492 }
3493
3494 return 0;
3495
3496 out_free_data:
3497 for (i--; i >= 0; i--) {
3498 irq_data = irq_domain_get_irq_data(domain, virq + i);
3499 if (irq_data)
3500 kfree(irq_data->chip_data);
3501 }
3502 for (i = 0; i < nr_irqs; i++)
3503 free_irte(iommu, devid, index + i);
3504 out_free_parent:
3505 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3506 return ret;
3507 }
3508
3509 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3510 unsigned int nr_irqs)
3511 {
3512 struct irq_2_irte *irte_info;
3513 struct irq_data *irq_data;
3514 struct amd_ir_data *data;
3515 int i;
3516
3517 for (i = 0; i < nr_irqs; i++) {
3518 irq_data = irq_domain_get_irq_data(domain, virq + i);
3519 if (irq_data && irq_data->chip_data) {
3520 data = irq_data->chip_data;
3521 irte_info = &data->irq_2_irte;
3522 free_irte(data->iommu, irte_info->devid, irte_info->index);
3523 kfree(data->entry);
3524 kfree(data);
3525 }
3526 }
3527 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3528 }
3529
3530 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3531 struct amd_ir_data *ir_data,
3532 struct irq_2_irte *irte_info,
3533 struct irq_cfg *cfg);
3534
3535 static int irq_remapping_activate(struct irq_domain *domain,
3536 struct irq_data *irq_data, bool reserve)
3537 {
3538 struct amd_ir_data *data = irq_data->chip_data;
3539 struct irq_2_irte *irte_info = &data->irq_2_irte;
3540 struct amd_iommu *iommu = data->iommu;
3541 struct irq_cfg *cfg = irqd_cfg(irq_data);
3542
3543 if (!iommu)
3544 return 0;
3545
3546 iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3547 irte_info->index);
3548 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3549 return 0;
3550 }
3551
3552 static void irq_remapping_deactivate(struct irq_domain *domain,
3553 struct irq_data *irq_data)
3554 {
3555 struct amd_ir_data *data = irq_data->chip_data;
3556 struct irq_2_irte *irte_info = &data->irq_2_irte;
3557 struct amd_iommu *iommu = data->iommu;
3558
3559 if (iommu)
3560 iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3561 irte_info->index);
3562 }
3563
3564 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3565 enum irq_domain_bus_token bus_token)
3566 {
3567 struct amd_iommu *iommu;
3568 int devid = -1;
3569
3570 if (!amd_iommu_irq_remap)
3571 return 0;
3572
3573 if (x86_fwspec_is_ioapic(fwspec))
3574 devid = get_ioapic_devid(fwspec->param[0]);
3575 else if (x86_fwspec_is_hpet(fwspec))
3576 devid = get_hpet_devid(fwspec->param[0]);
3577
3578 if (devid < 0)
3579 return 0;
3580 iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3581
3582 return iommu && iommu->ir_domain == d;
3583 }
3584
3585 static const struct irq_domain_ops amd_ir_domain_ops = {
3586 .select = irq_remapping_select,
3587 .alloc = irq_remapping_alloc,
3588 .free = irq_remapping_free,
3589 .activate = irq_remapping_activate,
3590 .deactivate = irq_remapping_deactivate,
3591 };
3592
3593 int amd_iommu_activate_guest_mode(void *data)
3594 {
3595 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3596 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3597 u64 valid;
3598
3599 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry)
3600 return 0;
3601
3602 valid = entry->lo.fields_vapic.valid;
3603
3604 entry->lo.val = 0;
3605 entry->hi.val = 0;
3606
3607 entry->lo.fields_vapic.valid = valid;
3608 entry->lo.fields_vapic.guest_mode = 1;
3609 entry->lo.fields_vapic.ga_log_intr = 1;
3610 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
3611 entry->hi.fields.vector = ir_data->ga_vector;
3612 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
3613
3614 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3615 ir_data->irq_2_irte.index, entry);
3616 }
3617 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3618
3619 int amd_iommu_deactivate_guest_mode(void *data)
3620 {
3621 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3622 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3623 struct irq_cfg *cfg = ir_data->cfg;
3624 u64 valid;
3625
3626 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3627 !entry || !entry->lo.fields_vapic.guest_mode)
3628 return 0;
3629
3630 valid = entry->lo.fields_remap.valid;
3631
3632 entry->lo.val = 0;
3633 entry->hi.val = 0;
3634
3635 entry->lo.fields_remap.valid = valid;
3636 entry->lo.fields_remap.dm = apic->dest_mode_logical;
3637 entry->lo.fields_remap.int_type = apic->delivery_mode;
3638 entry->hi.fields.vector = cfg->vector;
3639 entry->lo.fields_remap.destination =
3640 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3641 entry->hi.fields.destination =
3642 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3643
3644 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3645 ir_data->irq_2_irte.index, entry);
3646 }
3647 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3648
3649 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3650 {
3651 int ret;
3652 struct amd_iommu_pi_data *pi_data = vcpu_info;
3653 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3654 struct amd_ir_data *ir_data = data->chip_data;
3655 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3656 struct iommu_dev_data *dev_data;
3657
3658 if (ir_data->iommu == NULL)
3659 return -EINVAL;
3660
3661 dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3662
3663 /* Note:
3664 * This device has never been set up for guest mode.
3665 * we should not modify the IRTE
3666 */
3667 if (!dev_data || !dev_data->use_vapic)
3668 return 0;
3669
3670 ir_data->cfg = irqd_cfg(data);
3671 pi_data->ir_data = ir_data;
3672
3673 /* Note:
3674 * SVM tries to set up for VAPIC mode, but we are in
3675 * legacy mode. So, we force legacy mode instead.
3676 */
3677 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3678 pr_debug("%s: Fall back to using intr legacy remap\n",
3679 __func__);
3680 pi_data->is_guest_mode = false;
3681 }
3682
3683 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3684 if (pi_data->is_guest_mode) {
3685 ir_data->ga_root_ptr = (pi_data->base >> 12);
3686 ir_data->ga_vector = vcpu_pi_info->vector;
3687 ir_data->ga_tag = pi_data->ga_tag;
3688 ret = amd_iommu_activate_guest_mode(ir_data);
3689 if (!ret)
3690 ir_data->cached_ga_tag = pi_data->ga_tag;
3691 } else {
3692 ret = amd_iommu_deactivate_guest_mode(ir_data);
3693
3694 /*
3695 * This communicates the ga_tag back to the caller
3696 * so that it can do all the necessary clean up.
3697 */
3698 if (!ret)
3699 ir_data->cached_ga_tag = 0;
3700 }
3701
3702 return ret;
3703 }
3704
3705
3706 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3707 struct amd_ir_data *ir_data,
3708 struct irq_2_irte *irte_info,
3709 struct irq_cfg *cfg)
3710 {
3711
3712 /*
3713 * Atomically updates the IRTE with the new destination, vector
3714 * and flushes the interrupt entry cache.
3715 */
3716 iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3717 irte_info->index, cfg->vector,
3718 cfg->dest_apicid);
3719 }
3720
3721 static int amd_ir_set_affinity(struct irq_data *data,
3722 const struct cpumask *mask, bool force)
3723 {
3724 struct amd_ir_data *ir_data = data->chip_data;
3725 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3726 struct irq_cfg *cfg = irqd_cfg(data);
3727 struct irq_data *parent = data->parent_data;
3728 struct amd_iommu *iommu = ir_data->iommu;
3729 int ret;
3730
3731 if (!iommu)
3732 return -ENODEV;
3733
3734 ret = parent->chip->irq_set_affinity(parent, mask, force);
3735 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3736 return ret;
3737
3738 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3739 /*
3740 * After this point, all the interrupts will start arriving
3741 * at the new destination. So, time to cleanup the previous
3742 * vector allocation.
3743 */
3744 vector_schedule_cleanup(cfg);
3745
3746 return IRQ_SET_MASK_OK_DONE;
3747 }
3748
3749 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3750 {
3751 struct amd_ir_data *ir_data = irq_data->chip_data;
3752
3753 *msg = ir_data->msi_entry;
3754 }
3755
3756 static struct irq_chip amd_ir_chip = {
3757 .name = "AMD-IR",
3758 .irq_ack = apic_ack_irq,
3759 .irq_set_affinity = amd_ir_set_affinity,
3760 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
3761 .irq_compose_msi_msg = ir_compose_msi_msg,
3762 };
3763
3764 static const struct msi_parent_ops amdvi_msi_parent_ops = {
3765 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED |
3766 MSI_FLAG_MULTI_PCI_MSI |
3767 MSI_FLAG_PCI_IMS,
3768 .prefix = "IR-",
3769 .init_dev_msi_info = msi_parent_init_dev_msi_info,
3770 };
3771
3772 static const struct msi_parent_ops virt_amdvi_msi_parent_ops = {
3773 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED |
3774 MSI_FLAG_MULTI_PCI_MSI,
3775 .prefix = "vIR-",
3776 .init_dev_msi_info = msi_parent_init_dev_msi_info,
3777 };
3778
3779 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3780 {
3781 struct fwnode_handle *fn;
3782
3783 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3784 if (!fn)
3785 return -ENOMEM;
3786 iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0,
3787 fn, &amd_ir_domain_ops, iommu);
3788 if (!iommu->ir_domain) {
3789 irq_domain_free_fwnode(fn);
3790 return -ENOMEM;
3791 }
3792
3793 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_AMDVI);
3794 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
3795 IRQ_DOMAIN_FLAG_ISOLATED_MSI;
3796
3797 if (amd_iommu_np_cache)
3798 iommu->ir_domain->msi_parent_ops = &virt_amdvi_msi_parent_ops;
3799 else
3800 iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops;
3801
3802 return 0;
3803 }
3804
3805 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3806 {
3807 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3808 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3809
3810 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3811 !entry || !entry->lo.fields_vapic.guest_mode)
3812 return 0;
3813
3814 if (!ir_data->iommu)
3815 return -ENODEV;
3816
3817 if (cpu >= 0) {
3818 entry->lo.fields_vapic.destination =
3819 APICID_TO_IRTE_DEST_LO(cpu);
3820 entry->hi.fields.destination =
3821 APICID_TO_IRTE_DEST_HI(cpu);
3822 }
3823 entry->lo.fields_vapic.is_run = is_run;
3824
3825 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3826 ir_data->irq_2_irte.index, entry);
3827 }
3828 EXPORT_SYMBOL(amd_iommu_update_ga);
3829 #endif