1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
8 #define pr_fmt(fmt) "AMD-Vi: " fmt
9 #define dev_fmt(fmt) pr_fmt(fmt)
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/amba/bus.h>
15 #include <linux/platform_device.h>
16 #include <linux/pci-ats.h>
17 #include <linux/bitmap.h>
18 #include <linux/slab.h>
19 #include <linux/debugfs.h>
20 #include <linux/scatterlist.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-direct.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/iommu-helper.h>
25 #include <linux/iommu.h>
26 #include <linux/delay.h>
27 #include <linux/amd-iommu.h>
28 #include <linux/notifier.h>
29 #include <linux/export.h>
30 #include <linux/irq.h>
31 #include <linux/msi.h>
32 #include <linux/dma-contiguous.h>
33 #include <linux/irqdomain.h>
34 #include <linux/percpu.h>
35 #include <linux/iova.h>
36 #include <asm/irq_remapping.h>
37 #include <asm/io_apic.h>
39 #include <asm/hw_irq.h>
40 #include <asm/msidef.h>
41 #include <asm/proto.h>
42 #include <asm/iommu.h>
46 #include "amd_iommu_proto.h"
47 #include "amd_iommu_types.h"
48 #include "irq_remapping.h"
50 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
52 #define LOOP_TIMEOUT 100000
54 /* IO virtual address start page frame number */
55 #define IOVA_START_PFN (1)
56 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
58 /* Reserved IOVA ranges */
59 #define MSI_RANGE_START (0xfee00000)
60 #define MSI_RANGE_END (0xfeefffff)
61 #define HT_RANGE_START (0xfd00000000ULL)
62 #define HT_RANGE_END (0xffffffffffULL)
65 * This bitmap is used to advertise the page sizes our hardware support
66 * to the IOMMU core, which will then use this information to split
67 * physically contiguous memory regions it is mapping into page sizes
70 * 512GB Pages are not supported due to a hardware bug
72 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
74 static DEFINE_SPINLOCK(pd_bitmap_lock
);
76 /* List of all available dev_data structures */
77 static LLIST_HEAD(dev_data_list
);
79 LIST_HEAD(ioapic_map
);
81 LIST_HEAD(acpihid_map
);
84 * Domain for untranslated devices - only allocated
85 * if iommu=pt passed on kernel cmd line.
87 const struct iommu_ops amd_iommu_ops
;
89 static ATOMIC_NOTIFIER_HEAD(ppr_notifier
);
90 int amd_iommu_max_glx_val
= -1;
93 * general struct to manage commands send to an IOMMU
99 struct kmem_cache
*amd_iommu_irq_cache
;
101 static void update_domain(struct protection_domain
*domain
);
102 static int protection_domain_init(struct protection_domain
*domain
);
103 static void detach_device(struct device
*dev
);
105 /****************************************************************************
109 ****************************************************************************/
111 static inline u16
get_pci_device_id(struct device
*dev
)
113 struct pci_dev
*pdev
= to_pci_dev(dev
);
115 return pci_dev_id(pdev
);
118 static inline int get_acpihid_device_id(struct device
*dev
,
119 struct acpihid_map_entry
**entry
)
121 struct acpi_device
*adev
= ACPI_COMPANION(dev
);
122 struct acpihid_map_entry
*p
;
127 list_for_each_entry(p
, &acpihid_map
, list
) {
128 if (acpi_dev_hid_uid_match(adev
, p
->hid
, p
->uid
)) {
137 static inline int get_device_id(struct device
*dev
)
142 devid
= get_pci_device_id(dev
);
144 devid
= get_acpihid_device_id(dev
, NULL
);
149 static struct protection_domain
*to_pdomain(struct iommu_domain
*dom
)
151 return container_of(dom
, struct protection_domain
, domain
);
154 static struct iommu_dev_data
*alloc_dev_data(u16 devid
)
156 struct iommu_dev_data
*dev_data
;
158 dev_data
= kzalloc(sizeof(*dev_data
), GFP_KERNEL
);
162 spin_lock_init(&dev_data
->lock
);
163 dev_data
->devid
= devid
;
164 ratelimit_default_init(&dev_data
->rs
);
166 llist_add(&dev_data
->dev_data_list
, &dev_data_list
);
170 static struct iommu_dev_data
*search_dev_data(u16 devid
)
172 struct iommu_dev_data
*dev_data
;
173 struct llist_node
*node
;
175 if (llist_empty(&dev_data_list
))
178 node
= dev_data_list
.first
;
179 llist_for_each_entry(dev_data
, node
, dev_data_list
) {
180 if (dev_data
->devid
== devid
)
187 static int clone_alias(struct pci_dev
*pdev
, u16 alias
, void *data
)
189 u16 devid
= pci_dev_id(pdev
);
194 amd_iommu_rlookup_table
[alias
] =
195 amd_iommu_rlookup_table
[devid
];
196 memcpy(amd_iommu_dev_table
[alias
].data
,
197 amd_iommu_dev_table
[devid
].data
,
198 sizeof(amd_iommu_dev_table
[alias
].data
));
203 static void clone_aliases(struct pci_dev
*pdev
)
209 * The IVRS alias stored in the alias table may not be
210 * part of the PCI DMA aliases if it's bus differs
211 * from the original device.
213 clone_alias(pdev
, amd_iommu_alias_table
[pci_dev_id(pdev
)], NULL
);
215 pci_for_each_dma_alias(pdev
, clone_alias
, NULL
);
218 static struct pci_dev
*setup_aliases(struct device
*dev
)
220 struct pci_dev
*pdev
= to_pci_dev(dev
);
223 /* For ACPI HID devices, there are no aliases */
224 if (!dev_is_pci(dev
))
228 * Add the IVRS alias to the pci aliases if it is on the same
229 * bus. The IVRS table may know about a quirk that we don't.
231 ivrs_alias
= amd_iommu_alias_table
[pci_dev_id(pdev
)];
232 if (ivrs_alias
!= pci_dev_id(pdev
) &&
233 PCI_BUS_NUM(ivrs_alias
) == pdev
->bus
->number
)
234 pci_add_dma_alias(pdev
, ivrs_alias
& 0xff, 1);
241 static struct iommu_dev_data
*find_dev_data(u16 devid
)
243 struct iommu_dev_data
*dev_data
;
244 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
246 dev_data
= search_dev_data(devid
);
248 if (dev_data
== NULL
) {
249 dev_data
= alloc_dev_data(devid
);
253 if (translation_pre_enabled(iommu
))
254 dev_data
->defer_attach
= true;
260 struct iommu_dev_data
*get_dev_data(struct device
*dev
)
262 return dev
->archdata
.iommu
;
264 EXPORT_SYMBOL(get_dev_data
);
267 * Find or create an IOMMU group for a acpihid device.
269 static struct iommu_group
*acpihid_device_group(struct device
*dev
)
271 struct acpihid_map_entry
*p
, *entry
= NULL
;
274 devid
= get_acpihid_device_id(dev
, &entry
);
276 return ERR_PTR(devid
);
278 list_for_each_entry(p
, &acpihid_map
, list
) {
279 if ((devid
== p
->devid
) && p
->group
)
280 entry
->group
= p
->group
;
284 entry
->group
= generic_device_group(dev
);
286 iommu_group_ref_get(entry
->group
);
291 static bool pci_iommuv2_capable(struct pci_dev
*pdev
)
293 static const int caps
[] = {
296 PCI_EXT_CAP_ID_PASID
,
300 if (pci_ats_disabled())
303 for (i
= 0; i
< 3; ++i
) {
304 pos
= pci_find_ext_capability(pdev
, caps
[i
]);
312 static bool pdev_pri_erratum(struct pci_dev
*pdev
, u32 erratum
)
314 struct iommu_dev_data
*dev_data
;
316 dev_data
= get_dev_data(&pdev
->dev
);
318 return dev_data
->errata
& (1 << erratum
) ? true : false;
322 * This function checks if the driver got a valid device from the caller to
323 * avoid dereferencing invalid pointers.
325 static bool check_device(struct device
*dev
)
329 if (!dev
|| !dev
->dma_mask
)
332 devid
= get_device_id(dev
);
336 /* Out of our scope? */
337 if (devid
> amd_iommu_last_bdf
)
340 if (amd_iommu_rlookup_table
[devid
] == NULL
)
346 static void init_iommu_group(struct device
*dev
)
348 struct iommu_group
*group
;
350 group
= iommu_group_get_for_dev(dev
);
354 iommu_group_put(group
);
357 static int iommu_init_device(struct device
*dev
)
359 struct iommu_dev_data
*dev_data
;
360 struct amd_iommu
*iommu
;
363 if (dev
->archdata
.iommu
)
366 devid
= get_device_id(dev
);
370 iommu
= amd_iommu_rlookup_table
[devid
];
372 dev_data
= find_dev_data(devid
);
376 dev_data
->pdev
= setup_aliases(dev
);
379 * By default we use passthrough mode for IOMMUv2 capable device.
380 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
381 * invalid address), we ignore the capability for the device so
382 * it'll be forced to go into translation mode.
384 if ((iommu_default_passthrough() || !amd_iommu_force_isolation
) &&
385 dev_is_pci(dev
) && pci_iommuv2_capable(to_pci_dev(dev
))) {
386 struct amd_iommu
*iommu
;
388 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
389 dev_data
->iommu_v2
= iommu
->is_iommu_v2
;
392 dev
->archdata
.iommu
= dev_data
;
394 iommu_device_link(&iommu
->iommu
, dev
);
399 static void iommu_ignore_device(struct device
*dev
)
403 devid
= get_device_id(dev
);
407 amd_iommu_rlookup_table
[devid
] = NULL
;
408 memset(&amd_iommu_dev_table
[devid
], 0, sizeof(struct dev_table_entry
));
413 static void iommu_uninit_device(struct device
*dev
)
415 struct iommu_dev_data
*dev_data
;
416 struct amd_iommu
*iommu
;
419 devid
= get_device_id(dev
);
423 iommu
= amd_iommu_rlookup_table
[devid
];
425 dev_data
= search_dev_data(devid
);
429 if (dev_data
->domain
)
432 iommu_device_unlink(&iommu
->iommu
, dev
);
434 iommu_group_remove_device(dev
);
440 * We keep dev_data around for unplugged devices and reuse it when the
441 * device is re-plugged - not doing so would introduce a ton of races.
446 * Helper function to get the first pte of a large mapping
448 static u64
*first_pte_l7(u64
*pte
, unsigned long *page_size
,
449 unsigned long *count
)
451 unsigned long pte_mask
, pg_size
, cnt
;
454 pg_size
= PTE_PAGE_SIZE(*pte
);
455 cnt
= PAGE_SIZE_PTE_COUNT(pg_size
);
456 pte_mask
= ~((cnt
<< 3) - 1);
457 fpte
= (u64
*)(((unsigned long)pte
) & pte_mask
);
460 *page_size
= pg_size
;
468 /****************************************************************************
470 * Interrupt handling functions
472 ****************************************************************************/
474 static void dump_dte_entry(u16 devid
)
478 for (i
= 0; i
< 4; ++i
)
479 pr_err("DTE[%d]: %016llx\n", i
,
480 amd_iommu_dev_table
[devid
].data
[i
]);
483 static void dump_command(unsigned long phys_addr
)
485 struct iommu_cmd
*cmd
= iommu_phys_to_virt(phys_addr
);
488 for (i
= 0; i
< 4; ++i
)
489 pr_err("CMD[%d]: %08x\n", i
, cmd
->data
[i
]);
492 static void amd_iommu_report_page_fault(u16 devid
, u16 domain_id
,
493 u64 address
, int flags
)
495 struct iommu_dev_data
*dev_data
= NULL
;
496 struct pci_dev
*pdev
;
498 pdev
= pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid
),
501 dev_data
= get_dev_data(&pdev
->dev
);
503 if (dev_data
&& __ratelimit(&dev_data
->rs
)) {
504 pci_err(pdev
, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
505 domain_id
, address
, flags
);
506 } else if (printk_ratelimit()) {
507 pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
508 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
509 domain_id
, address
, flags
);
516 static void iommu_print_event(struct amd_iommu
*iommu
, void *__evt
)
518 struct device
*dev
= iommu
->iommu
.dev
;
519 int type
, devid
, pasid
, flags
, tag
;
520 volatile u32
*event
= __evt
;
525 type
= (event
[1] >> EVENT_TYPE_SHIFT
) & EVENT_TYPE_MASK
;
526 devid
= (event
[0] >> EVENT_DEVID_SHIFT
) & EVENT_DEVID_MASK
;
527 pasid
= (event
[0] & EVENT_DOMID_MASK_HI
) |
528 (event
[1] & EVENT_DOMID_MASK_LO
);
529 flags
= (event
[1] >> EVENT_FLAGS_SHIFT
) & EVENT_FLAGS_MASK
;
530 address
= (u64
)(((u64
)event
[3]) << 32) | event
[2];
533 /* Did we hit the erratum? */
534 if (++count
== LOOP_TIMEOUT
) {
535 pr_err("No event written to event log\n");
542 if (type
== EVENT_TYPE_IO_FAULT
) {
543 amd_iommu_report_page_fault(devid
, pasid
, address
, flags
);
548 case EVENT_TYPE_ILL_DEV
:
549 dev_err(dev
, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
550 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
551 pasid
, address
, flags
);
552 dump_dte_entry(devid
);
554 case EVENT_TYPE_DEV_TAB_ERR
:
555 dev_err(dev
, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
556 "address=0x%llx flags=0x%04x]\n",
557 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
560 case EVENT_TYPE_PAGE_TAB_ERR
:
561 dev_err(dev
, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
562 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
563 pasid
, address
, flags
);
565 case EVENT_TYPE_ILL_CMD
:
566 dev_err(dev
, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address
);
567 dump_command(address
);
569 case EVENT_TYPE_CMD_HARD_ERR
:
570 dev_err(dev
, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
573 case EVENT_TYPE_IOTLB_INV_TO
:
574 dev_err(dev
, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
575 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
578 case EVENT_TYPE_INV_DEV_REQ
:
579 dev_err(dev
, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
580 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
581 pasid
, address
, flags
);
583 case EVENT_TYPE_INV_PPR_REQ
:
584 pasid
= PPR_PASID(*((u64
*)__evt
));
585 tag
= event
[1] & 0x03FF;
586 dev_err(dev
, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
587 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
588 pasid
, address
, flags
, tag
);
591 dev_err(dev
, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
592 event
[0], event
[1], event
[2], event
[3]);
595 memset(__evt
, 0, 4 * sizeof(u32
));
598 static void iommu_poll_events(struct amd_iommu
*iommu
)
602 head
= readl(iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
603 tail
= readl(iommu
->mmio_base
+ MMIO_EVT_TAIL_OFFSET
);
605 while (head
!= tail
) {
606 iommu_print_event(iommu
, iommu
->evt_buf
+ head
);
607 head
= (head
+ EVENT_ENTRY_SIZE
) % EVT_BUFFER_SIZE
;
610 writel(head
, iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
613 static void iommu_handle_ppr_entry(struct amd_iommu
*iommu
, u64
*raw
)
615 struct amd_iommu_fault fault
;
617 if (PPR_REQ_TYPE(raw
[0]) != PPR_REQ_FAULT
) {
618 pr_err_ratelimited("Unknown PPR request received\n");
622 fault
.address
= raw
[1];
623 fault
.pasid
= PPR_PASID(raw
[0]);
624 fault
.device_id
= PPR_DEVID(raw
[0]);
625 fault
.tag
= PPR_TAG(raw
[0]);
626 fault
.flags
= PPR_FLAGS(raw
[0]);
628 atomic_notifier_call_chain(&ppr_notifier
, 0, &fault
);
631 static void iommu_poll_ppr_log(struct amd_iommu
*iommu
)
635 if (iommu
->ppr_log
== NULL
)
638 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
639 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
641 while (head
!= tail
) {
646 raw
= (u64
*)(iommu
->ppr_log
+ head
);
649 * Hardware bug: Interrupt may arrive before the entry is
650 * written to memory. If this happens we need to wait for the
653 for (i
= 0; i
< LOOP_TIMEOUT
; ++i
) {
654 if (PPR_REQ_TYPE(raw
[0]) != 0)
659 /* Avoid memcpy function-call overhead */
664 * To detect the hardware bug we need to clear the entry
667 raw
[0] = raw
[1] = 0UL;
669 /* Update head pointer of hardware ring-buffer */
670 head
= (head
+ PPR_ENTRY_SIZE
) % PPR_LOG_SIZE
;
671 writel(head
, iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
673 /* Handle PPR entry */
674 iommu_handle_ppr_entry(iommu
, entry
);
676 /* Refresh ring-buffer information */
677 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
678 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
682 #ifdef CONFIG_IRQ_REMAP
683 static int (*iommu_ga_log_notifier
)(u32
);
685 int amd_iommu_register_ga_log_notifier(int (*notifier
)(u32
))
687 iommu_ga_log_notifier
= notifier
;
691 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier
);
693 static void iommu_poll_ga_log(struct amd_iommu
*iommu
)
695 u32 head
, tail
, cnt
= 0;
697 if (iommu
->ga_log
== NULL
)
700 head
= readl(iommu
->mmio_base
+ MMIO_GA_HEAD_OFFSET
);
701 tail
= readl(iommu
->mmio_base
+ MMIO_GA_TAIL_OFFSET
);
703 while (head
!= tail
) {
707 raw
= (u64
*)(iommu
->ga_log
+ head
);
710 /* Avoid memcpy function-call overhead */
713 /* Update head pointer of hardware ring-buffer */
714 head
= (head
+ GA_ENTRY_SIZE
) % GA_LOG_SIZE
;
715 writel(head
, iommu
->mmio_base
+ MMIO_GA_HEAD_OFFSET
);
717 /* Handle GA entry */
718 switch (GA_REQ_TYPE(log_entry
)) {
720 if (!iommu_ga_log_notifier
)
723 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
724 __func__
, GA_DEVID(log_entry
),
727 if (iommu_ga_log_notifier(GA_TAG(log_entry
)) != 0)
728 pr_err("GA log notifier failed.\n");
735 #endif /* CONFIG_IRQ_REMAP */
737 #define AMD_IOMMU_INT_MASK \
738 (MMIO_STATUS_EVT_INT_MASK | \
739 MMIO_STATUS_PPR_INT_MASK | \
740 MMIO_STATUS_GALOG_INT_MASK)
742 irqreturn_t
amd_iommu_int_thread(int irq
, void *data
)
744 struct amd_iommu
*iommu
= (struct amd_iommu
*) data
;
745 u32 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
747 while (status
& AMD_IOMMU_INT_MASK
) {
748 /* Enable EVT and PPR and GA interrupts again */
749 writel(AMD_IOMMU_INT_MASK
,
750 iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
752 if (status
& MMIO_STATUS_EVT_INT_MASK
) {
753 pr_devel("Processing IOMMU Event Log\n");
754 iommu_poll_events(iommu
);
757 if (status
& MMIO_STATUS_PPR_INT_MASK
) {
758 pr_devel("Processing IOMMU PPR Log\n");
759 iommu_poll_ppr_log(iommu
);
762 #ifdef CONFIG_IRQ_REMAP
763 if (status
& MMIO_STATUS_GALOG_INT_MASK
) {
764 pr_devel("Processing IOMMU GA Log\n");
765 iommu_poll_ga_log(iommu
);
770 * Hardware bug: ERBT1312
771 * When re-enabling interrupt (by writing 1
772 * to clear the bit), the hardware might also try to set
773 * the interrupt bit in the event status register.
774 * In this scenario, the bit will be set, and disable
775 * subsequent interrupts.
777 * Workaround: The IOMMU driver should read back the
778 * status register and check if the interrupt bits are cleared.
779 * If not, driver will need to go through the interrupt handler
780 * again and re-clear the bits
782 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
787 irqreturn_t
amd_iommu_int_handler(int irq
, void *data
)
789 return IRQ_WAKE_THREAD
;
792 /****************************************************************************
794 * IOMMU command queuing functions
796 ****************************************************************************/
798 static int wait_on_sem(volatile u64
*sem
)
802 while (*sem
== 0 && i
< LOOP_TIMEOUT
) {
807 if (i
== LOOP_TIMEOUT
) {
808 pr_alert("Completion-Wait loop timed out\n");
815 static void copy_cmd_to_buffer(struct amd_iommu
*iommu
,
816 struct iommu_cmd
*cmd
)
821 /* Copy command to buffer */
822 tail
= iommu
->cmd_buf_tail
;
823 target
= iommu
->cmd_buf
+ tail
;
824 memcpy(target
, cmd
, sizeof(*cmd
));
826 tail
= (tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
827 iommu
->cmd_buf_tail
= tail
;
829 /* Tell the IOMMU about it */
830 writel(tail
, iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
833 static void build_completion_wait(struct iommu_cmd
*cmd
, u64 address
)
835 u64 paddr
= iommu_virt_to_phys((void *)address
);
837 WARN_ON(address
& 0x7ULL
);
839 memset(cmd
, 0, sizeof(*cmd
));
840 cmd
->data
[0] = lower_32_bits(paddr
) | CMD_COMPL_WAIT_STORE_MASK
;
841 cmd
->data
[1] = upper_32_bits(paddr
);
843 CMD_SET_TYPE(cmd
, CMD_COMPL_WAIT
);
846 static void build_inv_dte(struct iommu_cmd
*cmd
, u16 devid
)
848 memset(cmd
, 0, sizeof(*cmd
));
849 cmd
->data
[0] = devid
;
850 CMD_SET_TYPE(cmd
, CMD_INV_DEV_ENTRY
);
853 static void build_inv_iommu_pages(struct iommu_cmd
*cmd
, u64 address
,
854 size_t size
, u16 domid
, int pde
)
859 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
864 * If we have to flush more than one page, flush all
865 * TLB entries for this domain
867 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
871 address
&= PAGE_MASK
;
873 memset(cmd
, 0, sizeof(*cmd
));
874 cmd
->data
[1] |= domid
;
875 cmd
->data
[2] = lower_32_bits(address
);
876 cmd
->data
[3] = upper_32_bits(address
);
877 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
878 if (s
) /* size bit - we flush more than one 4kb page */
879 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
880 if (pde
) /* PDE bit - we want to flush everything, not only the PTEs */
881 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
884 static void build_inv_iotlb_pages(struct iommu_cmd
*cmd
, u16 devid
, int qdep
,
885 u64 address
, size_t size
)
890 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
895 * If we have to flush more than one page, flush all
896 * TLB entries for this domain
898 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
902 address
&= PAGE_MASK
;
904 memset(cmd
, 0, sizeof(*cmd
));
905 cmd
->data
[0] = devid
;
906 cmd
->data
[0] |= (qdep
& 0xff) << 24;
907 cmd
->data
[1] = devid
;
908 cmd
->data
[2] = lower_32_bits(address
);
909 cmd
->data
[3] = upper_32_bits(address
);
910 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
912 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
915 static void build_inv_iommu_pasid(struct iommu_cmd
*cmd
, u16 domid
, int pasid
,
916 u64 address
, bool size
)
918 memset(cmd
, 0, sizeof(*cmd
));
920 address
&= ~(0xfffULL
);
922 cmd
->data
[0] = pasid
;
923 cmd
->data
[1] = domid
;
924 cmd
->data
[2] = lower_32_bits(address
);
925 cmd
->data
[3] = upper_32_bits(address
);
926 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
927 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
929 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
930 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
933 static void build_inv_iotlb_pasid(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
934 int qdep
, u64 address
, bool size
)
936 memset(cmd
, 0, sizeof(*cmd
));
938 address
&= ~(0xfffULL
);
940 cmd
->data
[0] = devid
;
941 cmd
->data
[0] |= ((pasid
>> 8) & 0xff) << 16;
942 cmd
->data
[0] |= (qdep
& 0xff) << 24;
943 cmd
->data
[1] = devid
;
944 cmd
->data
[1] |= (pasid
& 0xff) << 16;
945 cmd
->data
[2] = lower_32_bits(address
);
946 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
947 cmd
->data
[3] = upper_32_bits(address
);
949 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
950 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
953 static void build_complete_ppr(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
954 int status
, int tag
, bool gn
)
956 memset(cmd
, 0, sizeof(*cmd
));
958 cmd
->data
[0] = devid
;
960 cmd
->data
[1] = pasid
;
961 cmd
->data
[2] = CMD_INV_IOMMU_PAGES_GN_MASK
;
963 cmd
->data
[3] = tag
& 0x1ff;
964 cmd
->data
[3] |= (status
& PPR_STATUS_MASK
) << PPR_STATUS_SHIFT
;
966 CMD_SET_TYPE(cmd
, CMD_COMPLETE_PPR
);
969 static void build_inv_all(struct iommu_cmd
*cmd
)
971 memset(cmd
, 0, sizeof(*cmd
));
972 CMD_SET_TYPE(cmd
, CMD_INV_ALL
);
975 static void build_inv_irt(struct iommu_cmd
*cmd
, u16 devid
)
977 memset(cmd
, 0, sizeof(*cmd
));
978 cmd
->data
[0] = devid
;
979 CMD_SET_TYPE(cmd
, CMD_INV_IRT
);
983 * Writes the command to the IOMMUs command buffer and informs the
984 * hardware about the new command.
986 static int __iommu_queue_command_sync(struct amd_iommu
*iommu
,
987 struct iommu_cmd
*cmd
,
990 unsigned int count
= 0;
993 next_tail
= (iommu
->cmd_buf_tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
995 left
= (iommu
->cmd_buf_head
- next_tail
) % CMD_BUFFER_SIZE
;
998 /* Skip udelay() the first time around */
1000 if (count
== LOOP_TIMEOUT
) {
1001 pr_err("Command buffer timeout\n");
1008 /* Update head and recheck remaining space */
1009 iommu
->cmd_buf_head
= readl(iommu
->mmio_base
+
1010 MMIO_CMD_HEAD_OFFSET
);
1015 copy_cmd_to_buffer(iommu
, cmd
);
1017 /* Do we need to make sure all commands are processed? */
1018 iommu
->need_sync
= sync
;
1023 static int iommu_queue_command_sync(struct amd_iommu
*iommu
,
1024 struct iommu_cmd
*cmd
,
1027 unsigned long flags
;
1030 raw_spin_lock_irqsave(&iommu
->lock
, flags
);
1031 ret
= __iommu_queue_command_sync(iommu
, cmd
, sync
);
1032 raw_spin_unlock_irqrestore(&iommu
->lock
, flags
);
1037 static int iommu_queue_command(struct amd_iommu
*iommu
, struct iommu_cmd
*cmd
)
1039 return iommu_queue_command_sync(iommu
, cmd
, true);
1043 * This function queues a completion wait command into the command
1044 * buffer of an IOMMU
1046 static int iommu_completion_wait(struct amd_iommu
*iommu
)
1048 struct iommu_cmd cmd
;
1049 unsigned long flags
;
1052 if (!iommu
->need_sync
)
1056 build_completion_wait(&cmd
, (u64
)&iommu
->cmd_sem
);
1058 raw_spin_lock_irqsave(&iommu
->lock
, flags
);
1062 ret
= __iommu_queue_command_sync(iommu
, &cmd
, false);
1066 ret
= wait_on_sem(&iommu
->cmd_sem
);
1069 raw_spin_unlock_irqrestore(&iommu
->lock
, flags
);
1074 static int iommu_flush_dte(struct amd_iommu
*iommu
, u16 devid
)
1076 struct iommu_cmd cmd
;
1078 build_inv_dte(&cmd
, devid
);
1080 return iommu_queue_command(iommu
, &cmd
);
1083 static void amd_iommu_flush_dte_all(struct amd_iommu
*iommu
)
1087 for (devid
= 0; devid
<= 0xffff; ++devid
)
1088 iommu_flush_dte(iommu
, devid
);
1090 iommu_completion_wait(iommu
);
1094 * This function uses heavy locking and may disable irqs for some time. But
1095 * this is no issue because it is only called during resume.
1097 static void amd_iommu_flush_tlb_all(struct amd_iommu
*iommu
)
1101 for (dom_id
= 0; dom_id
<= 0xffff; ++dom_id
) {
1102 struct iommu_cmd cmd
;
1103 build_inv_iommu_pages(&cmd
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
1105 iommu_queue_command(iommu
, &cmd
);
1108 iommu_completion_wait(iommu
);
1111 static void amd_iommu_flush_tlb_domid(struct amd_iommu
*iommu
, u32 dom_id
)
1113 struct iommu_cmd cmd
;
1115 build_inv_iommu_pages(&cmd
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
1117 iommu_queue_command(iommu
, &cmd
);
1119 iommu_completion_wait(iommu
);
1122 static void amd_iommu_flush_all(struct amd_iommu
*iommu
)
1124 struct iommu_cmd cmd
;
1126 build_inv_all(&cmd
);
1128 iommu_queue_command(iommu
, &cmd
);
1129 iommu_completion_wait(iommu
);
1132 static void iommu_flush_irt(struct amd_iommu
*iommu
, u16 devid
)
1134 struct iommu_cmd cmd
;
1136 build_inv_irt(&cmd
, devid
);
1138 iommu_queue_command(iommu
, &cmd
);
1141 static void amd_iommu_flush_irt_all(struct amd_iommu
*iommu
)
1145 for (devid
= 0; devid
<= MAX_DEV_TABLE_ENTRIES
; devid
++)
1146 iommu_flush_irt(iommu
, devid
);
1148 iommu_completion_wait(iommu
);
1151 void iommu_flush_all_caches(struct amd_iommu
*iommu
)
1153 if (iommu_feature(iommu
, FEATURE_IA
)) {
1154 amd_iommu_flush_all(iommu
);
1156 amd_iommu_flush_dte_all(iommu
);
1157 amd_iommu_flush_irt_all(iommu
);
1158 amd_iommu_flush_tlb_all(iommu
);
1163 * Command send function for flushing on-device TLB
1165 static int device_flush_iotlb(struct iommu_dev_data
*dev_data
,
1166 u64 address
, size_t size
)
1168 struct amd_iommu
*iommu
;
1169 struct iommu_cmd cmd
;
1172 qdep
= dev_data
->ats
.qdep
;
1173 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1175 build_inv_iotlb_pages(&cmd
, dev_data
->devid
, qdep
, address
, size
);
1177 return iommu_queue_command(iommu
, &cmd
);
1180 static int device_flush_dte_alias(struct pci_dev
*pdev
, u16 alias
, void *data
)
1182 struct amd_iommu
*iommu
= data
;
1184 return iommu_flush_dte(iommu
, alias
);
1188 * Command send function for invalidating a device table entry
1190 static int device_flush_dte(struct iommu_dev_data
*dev_data
)
1192 struct amd_iommu
*iommu
;
1196 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1199 ret
= pci_for_each_dma_alias(dev_data
->pdev
,
1200 device_flush_dte_alias
, iommu
);
1202 ret
= iommu_flush_dte(iommu
, dev_data
->devid
);
1206 alias
= amd_iommu_alias_table
[dev_data
->devid
];
1207 if (alias
!= dev_data
->devid
) {
1208 ret
= iommu_flush_dte(iommu
, alias
);
1213 if (dev_data
->ats
.enabled
)
1214 ret
= device_flush_iotlb(dev_data
, 0, ~0UL);
1220 * TLB invalidation function which is called from the mapping functions.
1221 * It invalidates a single PTE if the range to flush is within a single
1222 * page. Otherwise it flushes the whole TLB of the IOMMU.
1224 static void __domain_flush_pages(struct protection_domain
*domain
,
1225 u64 address
, size_t size
, int pde
)
1227 struct iommu_dev_data
*dev_data
;
1228 struct iommu_cmd cmd
;
1231 build_inv_iommu_pages(&cmd
, address
, size
, domain
->id
, pde
);
1233 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
1234 if (!domain
->dev_iommu
[i
])
1238 * Devices of this domain are behind this IOMMU
1239 * We need a TLB flush
1241 ret
|= iommu_queue_command(amd_iommus
[i
], &cmd
);
1244 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
1246 if (!dev_data
->ats
.enabled
)
1249 ret
|= device_flush_iotlb(dev_data
, address
, size
);
1255 static void domain_flush_pages(struct protection_domain
*domain
,
1256 u64 address
, size_t size
)
1258 __domain_flush_pages(domain
, address
, size
, 0);
1261 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1262 static void domain_flush_tlb_pde(struct protection_domain
*domain
)
1264 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 1);
1267 static void domain_flush_complete(struct protection_domain
*domain
)
1271 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
1272 if (domain
&& !domain
->dev_iommu
[i
])
1276 * Devices of this domain are behind this IOMMU
1277 * We need to wait for completion of all commands.
1279 iommu_completion_wait(amd_iommus
[i
]);
1283 /* Flush the not present cache if it exists */
1284 static void domain_flush_np_cache(struct protection_domain
*domain
,
1285 dma_addr_t iova
, size_t size
)
1287 if (unlikely(amd_iommu_np_cache
)) {
1288 unsigned long flags
;
1290 spin_lock_irqsave(&domain
->lock
, flags
);
1291 domain_flush_pages(domain
, iova
, size
);
1292 domain_flush_complete(domain
);
1293 spin_unlock_irqrestore(&domain
->lock
, flags
);
1299 * This function flushes the DTEs for all devices in domain
1301 static void domain_flush_devices(struct protection_domain
*domain
)
1303 struct iommu_dev_data
*dev_data
;
1305 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
1306 device_flush_dte(dev_data
);
1309 /****************************************************************************
1311 * The functions below are used the create the page table mappings for
1312 * unity mapped regions.
1314 ****************************************************************************/
1316 static void free_page_list(struct page
*freelist
)
1318 while (freelist
!= NULL
) {
1319 unsigned long p
= (unsigned long)page_address(freelist
);
1320 freelist
= freelist
->freelist
;
1325 static struct page
*free_pt_page(unsigned long pt
, struct page
*freelist
)
1327 struct page
*p
= virt_to_page((void *)pt
);
1329 p
->freelist
= freelist
;
1334 #define DEFINE_FREE_PT_FN(LVL, FN) \
1335 static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist) \
1343 for (i = 0; i < 512; ++i) { \
1344 /* PTE present? */ \
1345 if (!IOMMU_PTE_PRESENT(pt[i])) \
1349 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1350 PM_PTE_LEVEL(pt[i]) == 7) \
1353 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1354 freelist = FN(p, freelist); \
1357 return free_pt_page((unsigned long)pt, freelist); \
1360 DEFINE_FREE_PT_FN(l2
, free_pt_page
)
1361 DEFINE_FREE_PT_FN(l3
, free_pt_l2
)
1362 DEFINE_FREE_PT_FN(l4
, free_pt_l3
)
1363 DEFINE_FREE_PT_FN(l5
, free_pt_l4
)
1364 DEFINE_FREE_PT_FN(l6
, free_pt_l5
)
1366 static struct page
*free_sub_pt(unsigned long root
, int mode
,
1367 struct page
*freelist
)
1370 case PAGE_MODE_NONE
:
1371 case PAGE_MODE_7_LEVEL
:
1373 case PAGE_MODE_1_LEVEL
:
1374 freelist
= free_pt_page(root
, freelist
);
1376 case PAGE_MODE_2_LEVEL
:
1377 freelist
= free_pt_l2(root
, freelist
);
1379 case PAGE_MODE_3_LEVEL
:
1380 freelist
= free_pt_l3(root
, freelist
);
1382 case PAGE_MODE_4_LEVEL
:
1383 freelist
= free_pt_l4(root
, freelist
);
1385 case PAGE_MODE_5_LEVEL
:
1386 freelist
= free_pt_l5(root
, freelist
);
1388 case PAGE_MODE_6_LEVEL
:
1389 freelist
= free_pt_l6(root
, freelist
);
1398 static void free_pagetable(struct protection_domain
*domain
)
1400 unsigned long root
= (unsigned long)domain
->pt_root
;
1401 struct page
*freelist
= NULL
;
1403 BUG_ON(domain
->mode
< PAGE_MODE_NONE
||
1404 domain
->mode
> PAGE_MODE_6_LEVEL
);
1406 freelist
= free_sub_pt(root
, domain
->mode
, freelist
);
1408 free_page_list(freelist
);
1412 * This function is used to add another level to an IO page table. Adding
1413 * another level increases the size of the address space by 9 bits to a size up
1416 static bool increase_address_space(struct protection_domain
*domain
,
1417 unsigned long address
,
1420 unsigned long flags
;
1424 spin_lock_irqsave(&domain
->lock
, flags
);
1426 if (address
<= PM_LEVEL_SIZE(domain
->mode
) ||
1427 WARN_ON_ONCE(domain
->mode
== PAGE_MODE_6_LEVEL
))
1430 pte
= (void *)get_zeroed_page(gfp
);
1434 *pte
= PM_LEVEL_PDE(domain
->mode
,
1435 iommu_virt_to_phys(domain
->pt_root
));
1436 domain
->pt_root
= pte
;
1442 spin_unlock_irqrestore(&domain
->lock
, flags
);
1447 static u64
*alloc_pte(struct protection_domain
*domain
,
1448 unsigned long address
,
1449 unsigned long page_size
,
1457 BUG_ON(!is_power_of_2(page_size
));
1459 while (address
> PM_LEVEL_SIZE(domain
->mode
))
1460 *updated
= increase_address_space(domain
, address
, gfp
) || *updated
;
1462 level
= domain
->mode
- 1;
1463 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1464 address
= PAGE_SIZE_ALIGN(address
, page_size
);
1465 end_lvl
= PAGE_SIZE_LEVEL(page_size
);
1467 while (level
> end_lvl
) {
1472 pte_level
= PM_PTE_LEVEL(__pte
);
1475 * If we replace a series of large PTEs, we need
1476 * to tear down all of them.
1478 if (IOMMU_PTE_PRESENT(__pte
) &&
1479 pte_level
== PAGE_MODE_7_LEVEL
) {
1480 unsigned long count
, i
;
1483 lpte
= first_pte_l7(pte
, NULL
, &count
);
1486 * Unmap the replicated PTEs that still match the
1487 * original large mapping
1489 for (i
= 0; i
< count
; ++i
)
1490 cmpxchg64(&lpte
[i
], __pte
, 0ULL);
1496 if (!IOMMU_PTE_PRESENT(__pte
) ||
1497 pte_level
== PAGE_MODE_NONE
) {
1498 page
= (u64
*)get_zeroed_page(gfp
);
1503 __npte
= PM_LEVEL_PDE(level
, iommu_virt_to_phys(page
));
1505 /* pte could have been changed somewhere. */
1506 if (cmpxchg64(pte
, __pte
, __npte
) != __pte
)
1507 free_page((unsigned long)page
);
1508 else if (IOMMU_PTE_PRESENT(__pte
))
1514 /* No level skipping support yet */
1515 if (pte_level
!= level
)
1520 pte
= IOMMU_PTE_PAGE(__pte
);
1522 if (pte_page
&& level
== end_lvl
)
1525 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1532 * This function checks if there is a PTE for a given dma address. If
1533 * there is one, it returns the pointer to it.
1535 static u64
*fetch_pte(struct protection_domain
*domain
,
1536 unsigned long address
,
1537 unsigned long *page_size
)
1544 if (address
> PM_LEVEL_SIZE(domain
->mode
))
1547 level
= domain
->mode
- 1;
1548 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1549 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1554 if (!IOMMU_PTE_PRESENT(*pte
))
1558 if (PM_PTE_LEVEL(*pte
) == 7 ||
1559 PM_PTE_LEVEL(*pte
) == 0)
1562 /* No level skipping support yet */
1563 if (PM_PTE_LEVEL(*pte
) != level
)
1568 /* Walk to the next level */
1569 pte
= IOMMU_PTE_PAGE(*pte
);
1570 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1571 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1575 * If we have a series of large PTEs, make
1576 * sure to return a pointer to the first one.
1578 if (PM_PTE_LEVEL(*pte
) == PAGE_MODE_7_LEVEL
)
1579 pte
= first_pte_l7(pte
, page_size
, NULL
);
1584 static struct page
*free_clear_pte(u64
*pte
, u64 pteval
, struct page
*freelist
)
1589 while (cmpxchg64(pte
, pteval
, 0) != pteval
) {
1590 pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
1594 if (!IOMMU_PTE_PRESENT(pteval
))
1597 pt
= (unsigned long)IOMMU_PTE_PAGE(pteval
);
1598 mode
= IOMMU_PTE_MODE(pteval
);
1600 return free_sub_pt(pt
, mode
, freelist
);
1604 * Generic mapping functions. It maps a physical address into a DMA
1605 * address space. It allocates the page table pages if necessary.
1606 * In the future it can be extended to a generic mapping function
1607 * supporting all features of AMD IOMMU page tables like level skipping
1608 * and full 64 bit address spaces.
1610 static int iommu_map_page(struct protection_domain
*dom
,
1611 unsigned long bus_addr
,
1612 unsigned long phys_addr
,
1613 unsigned long page_size
,
1617 struct page
*freelist
= NULL
;
1618 bool updated
= false;
1622 BUG_ON(!IS_ALIGNED(bus_addr
, page_size
));
1623 BUG_ON(!IS_ALIGNED(phys_addr
, page_size
));
1626 if (!(prot
& IOMMU_PROT_MASK
))
1629 count
= PAGE_SIZE_PTE_COUNT(page_size
);
1630 pte
= alloc_pte(dom
, bus_addr
, page_size
, NULL
, gfp
, &updated
);
1636 for (i
= 0; i
< count
; ++i
)
1637 freelist
= free_clear_pte(&pte
[i
], pte
[i
], freelist
);
1639 if (freelist
!= NULL
)
1643 __pte
= PAGE_SIZE_PTE(__sme_set(phys_addr
), page_size
);
1644 __pte
|= PM_LEVEL_ENC(7) | IOMMU_PTE_PR
| IOMMU_PTE_FC
;
1646 __pte
= __sme_set(phys_addr
) | IOMMU_PTE_PR
| IOMMU_PTE_FC
;
1648 if (prot
& IOMMU_PROT_IR
)
1649 __pte
|= IOMMU_PTE_IR
;
1650 if (prot
& IOMMU_PROT_IW
)
1651 __pte
|= IOMMU_PTE_IW
;
1653 for (i
= 0; i
< count
; ++i
)
1660 unsigned long flags
;
1662 spin_lock_irqsave(&dom
->lock
, flags
);
1664 spin_unlock_irqrestore(&dom
->lock
, flags
);
1667 /* Everything flushed out, free pages now */
1668 free_page_list(freelist
);
1673 static unsigned long iommu_unmap_page(struct protection_domain
*dom
,
1674 unsigned long bus_addr
,
1675 unsigned long page_size
)
1677 unsigned long long unmapped
;
1678 unsigned long unmap_size
;
1681 BUG_ON(!is_power_of_2(page_size
));
1685 while (unmapped
< page_size
) {
1687 pte
= fetch_pte(dom
, bus_addr
, &unmap_size
);
1692 count
= PAGE_SIZE_PTE_COUNT(unmap_size
);
1693 for (i
= 0; i
< count
; i
++)
1697 bus_addr
= (bus_addr
& ~(unmap_size
- 1)) + unmap_size
;
1698 unmapped
+= unmap_size
;
1701 BUG_ON(unmapped
&& !is_power_of_2(unmapped
));
1706 /****************************************************************************
1708 * The next functions belong to the domain allocation. A domain is
1709 * allocated for every IOMMU as the default domain. If device isolation
1710 * is enabled, every device get its own domain. The most important thing
1711 * about domains is the page table mapping the DMA address space they
1714 ****************************************************************************/
1716 static u16
domain_id_alloc(void)
1720 spin_lock(&pd_bitmap_lock
);
1721 id
= find_first_zero_bit(amd_iommu_pd_alloc_bitmap
, MAX_DOMAIN_ID
);
1723 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1724 __set_bit(id
, amd_iommu_pd_alloc_bitmap
);
1727 spin_unlock(&pd_bitmap_lock
);
1732 static void domain_id_free(int id
)
1734 spin_lock(&pd_bitmap_lock
);
1735 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1736 __clear_bit(id
, amd_iommu_pd_alloc_bitmap
);
1737 spin_unlock(&pd_bitmap_lock
);
1740 static void free_gcr3_tbl_level1(u64
*tbl
)
1745 for (i
= 0; i
< 512; ++i
) {
1746 if (!(tbl
[i
] & GCR3_VALID
))
1749 ptr
= iommu_phys_to_virt(tbl
[i
] & PAGE_MASK
);
1751 free_page((unsigned long)ptr
);
1755 static void free_gcr3_tbl_level2(u64
*tbl
)
1760 for (i
= 0; i
< 512; ++i
) {
1761 if (!(tbl
[i
] & GCR3_VALID
))
1764 ptr
= iommu_phys_to_virt(tbl
[i
] & PAGE_MASK
);
1766 free_gcr3_tbl_level1(ptr
);
1770 static void free_gcr3_table(struct protection_domain
*domain
)
1772 if (domain
->glx
== 2)
1773 free_gcr3_tbl_level2(domain
->gcr3_tbl
);
1774 else if (domain
->glx
== 1)
1775 free_gcr3_tbl_level1(domain
->gcr3_tbl
);
1777 BUG_ON(domain
->glx
!= 0);
1779 free_page((unsigned long)domain
->gcr3_tbl
);
1783 * Free a domain, only used if something went wrong in the
1784 * allocation path and we need to free an already allocated page table
1786 static void dma_ops_domain_free(struct protection_domain
*domain
)
1791 iommu_put_dma_cookie(&domain
->domain
);
1793 free_pagetable(domain
);
1796 domain_id_free(domain
->id
);
1802 * Allocates a new protection domain usable for the dma_ops functions.
1803 * It also initializes the page table and the address allocator data
1804 * structures required for the dma_ops interface
1806 static struct protection_domain
*dma_ops_domain_alloc(void)
1808 struct protection_domain
*domain
;
1810 domain
= kzalloc(sizeof(struct protection_domain
), GFP_KERNEL
);
1814 if (protection_domain_init(domain
))
1817 domain
->mode
= PAGE_MODE_3_LEVEL
;
1818 domain
->pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
1819 domain
->flags
= PD_DMA_OPS_MASK
;
1820 if (!domain
->pt_root
)
1823 if (iommu_get_dma_cookie(&domain
->domain
) == -ENOMEM
)
1829 dma_ops_domain_free(domain
);
1835 * little helper function to check whether a given protection domain is a
1838 static bool dma_ops_domain(struct protection_domain
*domain
)
1840 return domain
->flags
& PD_DMA_OPS_MASK
;
1843 static void set_dte_entry(u16 devid
, struct protection_domain
*domain
,
1850 if (domain
->mode
!= PAGE_MODE_NONE
)
1851 pte_root
= iommu_virt_to_phys(domain
->pt_root
);
1853 pte_root
|= (domain
->mode
& DEV_ENTRY_MODE_MASK
)
1854 << DEV_ENTRY_MODE_SHIFT
;
1855 pte_root
|= DTE_FLAG_IR
| DTE_FLAG_IW
| DTE_FLAG_V
| DTE_FLAG_TV
;
1857 flags
= amd_iommu_dev_table
[devid
].data
[1];
1860 flags
|= DTE_FLAG_IOTLB
;
1863 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
1865 if (iommu_feature(iommu
, FEATURE_EPHSUP
))
1866 pte_root
|= 1ULL << DEV_ENTRY_PPR
;
1869 if (domain
->flags
& PD_IOMMUV2_MASK
) {
1870 u64 gcr3
= iommu_virt_to_phys(domain
->gcr3_tbl
);
1871 u64 glx
= domain
->glx
;
1874 pte_root
|= DTE_FLAG_GV
;
1875 pte_root
|= (glx
& DTE_GLX_MASK
) << DTE_GLX_SHIFT
;
1877 /* First mask out possible old values for GCR3 table */
1878 tmp
= DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B
;
1881 tmp
= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C
;
1884 /* Encode GCR3 table into DTE */
1885 tmp
= DTE_GCR3_VAL_A(gcr3
) << DTE_GCR3_SHIFT_A
;
1888 tmp
= DTE_GCR3_VAL_B(gcr3
) << DTE_GCR3_SHIFT_B
;
1891 tmp
= DTE_GCR3_VAL_C(gcr3
) << DTE_GCR3_SHIFT_C
;
1895 flags
&= ~DEV_DOMID_MASK
;
1896 flags
|= domain
->id
;
1898 old_domid
= amd_iommu_dev_table
[devid
].data
[1] & DEV_DOMID_MASK
;
1899 amd_iommu_dev_table
[devid
].data
[1] = flags
;
1900 amd_iommu_dev_table
[devid
].data
[0] = pte_root
;
1903 * A kdump kernel might be replacing a domain ID that was copied from
1904 * the previous kernel--if so, it needs to flush the translation cache
1905 * entries for the old domain ID that is being overwritten
1908 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
1910 amd_iommu_flush_tlb_domid(iommu
, old_domid
);
1914 static void clear_dte_entry(u16 devid
)
1916 /* remove entry from the device table seen by the hardware */
1917 amd_iommu_dev_table
[devid
].data
[0] = DTE_FLAG_V
| DTE_FLAG_TV
;
1918 amd_iommu_dev_table
[devid
].data
[1] &= DTE_FLAG_MASK
;
1920 amd_iommu_apply_erratum_63(devid
);
1923 static void do_attach(struct iommu_dev_data
*dev_data
,
1924 struct protection_domain
*domain
)
1926 struct amd_iommu
*iommu
;
1929 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1930 ats
= dev_data
->ats
.enabled
;
1932 /* Update data structures */
1933 dev_data
->domain
= domain
;
1934 list_add(&dev_data
->list
, &domain
->dev_list
);
1936 /* Do reference counting */
1937 domain
->dev_iommu
[iommu
->index
] += 1;
1938 domain
->dev_cnt
+= 1;
1940 /* Update device table */
1941 set_dte_entry(dev_data
->devid
, domain
, ats
, dev_data
->iommu_v2
);
1942 clone_aliases(dev_data
->pdev
);
1944 device_flush_dte(dev_data
);
1947 static void do_detach(struct iommu_dev_data
*dev_data
)
1949 struct protection_domain
*domain
= dev_data
->domain
;
1950 struct amd_iommu
*iommu
;
1952 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1954 /* Update data structures */
1955 dev_data
->domain
= NULL
;
1956 list_del(&dev_data
->list
);
1957 clear_dte_entry(dev_data
->devid
);
1958 clone_aliases(dev_data
->pdev
);
1960 /* Flush the DTE entry */
1961 device_flush_dte(dev_data
);
1964 domain_flush_tlb_pde(domain
);
1966 /* Wait for the flushes to finish */
1967 domain_flush_complete(domain
);
1969 /* decrease reference counters - needs to happen after the flushes */
1970 domain
->dev_iommu
[iommu
->index
] -= 1;
1971 domain
->dev_cnt
-= 1;
1974 static void pdev_iommuv2_disable(struct pci_dev
*pdev
)
1976 pci_disable_ats(pdev
);
1977 pci_disable_pri(pdev
);
1978 pci_disable_pasid(pdev
);
1981 /* FIXME: Change generic reset-function to do the same */
1982 static int pri_reset_while_enabled(struct pci_dev
*pdev
)
1987 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
1991 pci_read_config_word(pdev
, pos
+ PCI_PRI_CTRL
, &control
);
1992 control
|= PCI_PRI_CTRL_RESET
;
1993 pci_write_config_word(pdev
, pos
+ PCI_PRI_CTRL
, control
);
1998 static int pdev_iommuv2_enable(struct pci_dev
*pdev
)
2003 /* FIXME: Hardcode number of outstanding requests for now */
2005 if (pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE
))
2007 reset_enable
= pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_ENABLE_RESET
);
2009 /* Only allow access to user-accessible pages */
2010 ret
= pci_enable_pasid(pdev
, 0);
2014 /* First reset the PRI state of the device */
2015 ret
= pci_reset_pri(pdev
);
2020 ret
= pci_enable_pri(pdev
, reqs
);
2025 ret
= pri_reset_while_enabled(pdev
);
2030 ret
= pci_enable_ats(pdev
, PAGE_SHIFT
);
2037 pci_disable_pri(pdev
);
2038 pci_disable_pasid(pdev
);
2044 * If a device is not yet associated with a domain, this function makes the
2045 * device visible in the domain
2047 static int attach_device(struct device
*dev
,
2048 struct protection_domain
*domain
)
2050 struct pci_dev
*pdev
;
2051 struct iommu_dev_data
*dev_data
;
2052 unsigned long flags
;
2055 spin_lock_irqsave(&domain
->lock
, flags
);
2057 dev_data
= get_dev_data(dev
);
2059 spin_lock(&dev_data
->lock
);
2062 if (dev_data
->domain
!= NULL
)
2065 if (!dev_is_pci(dev
))
2066 goto skip_ats_check
;
2068 pdev
= to_pci_dev(dev
);
2069 if (domain
->flags
& PD_IOMMUV2_MASK
) {
2071 if (!dev_data
->passthrough
)
2074 if (dev_data
->iommu_v2
) {
2075 if (pdev_iommuv2_enable(pdev
) != 0)
2078 dev_data
->ats
.enabled
= true;
2079 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2080 dev_data
->pri_tlp
= pci_prg_resp_pasid_required(pdev
);
2082 } else if (amd_iommu_iotlb_sup
&&
2083 pci_enable_ats(pdev
, PAGE_SHIFT
) == 0) {
2084 dev_data
->ats
.enabled
= true;
2085 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2091 do_attach(dev_data
, domain
);
2094 * We might boot into a crash-kernel here. The crashed kernel
2095 * left the caches in the IOMMU dirty. So we have to flush
2096 * here to evict all dirty stuff.
2098 domain_flush_tlb_pde(domain
);
2100 domain_flush_complete(domain
);
2103 spin_unlock(&dev_data
->lock
);
2105 spin_unlock_irqrestore(&domain
->lock
, flags
);
2111 * Removes a device from a protection domain (with devtable_lock held)
2113 static void detach_device(struct device
*dev
)
2115 struct protection_domain
*domain
;
2116 struct iommu_dev_data
*dev_data
;
2117 unsigned long flags
;
2119 dev_data
= get_dev_data(dev
);
2120 domain
= dev_data
->domain
;
2122 spin_lock_irqsave(&domain
->lock
, flags
);
2124 spin_lock(&dev_data
->lock
);
2127 * First check if the device is still attached. It might already
2128 * be detached from its domain because the generic
2129 * iommu_detach_group code detached it and we try again here in
2130 * our alias handling.
2132 if (WARN_ON(!dev_data
->domain
))
2135 do_detach(dev_data
);
2137 if (!dev_is_pci(dev
))
2140 if (domain
->flags
& PD_IOMMUV2_MASK
&& dev_data
->iommu_v2
)
2141 pdev_iommuv2_disable(to_pci_dev(dev
));
2142 else if (dev_data
->ats
.enabled
)
2143 pci_disable_ats(to_pci_dev(dev
));
2145 dev_data
->ats
.enabled
= false;
2148 spin_unlock(&dev_data
->lock
);
2150 spin_unlock_irqrestore(&domain
->lock
, flags
);
2153 static int amd_iommu_add_device(struct device
*dev
)
2155 struct iommu_dev_data
*dev_data
;
2156 struct iommu_domain
*domain
;
2157 struct amd_iommu
*iommu
;
2160 if (!check_device(dev
) || get_dev_data(dev
))
2163 devid
= get_device_id(dev
);
2167 iommu
= amd_iommu_rlookup_table
[devid
];
2169 ret
= iommu_init_device(dev
);
2171 if (ret
!= -ENOTSUPP
)
2172 dev_err(dev
, "Failed to initialize - trying to proceed anyway\n");
2174 iommu_ignore_device(dev
);
2175 dev
->dma_ops
= NULL
;
2178 init_iommu_group(dev
);
2180 dev_data
= get_dev_data(dev
);
2184 if (dev_data
->iommu_v2
)
2185 iommu_request_dm_for_dev(dev
);
2187 /* Domains are initialized for this device - have a look what we ended up with */
2188 domain
= iommu_get_domain_for_dev(dev
);
2189 if (domain
->type
== IOMMU_DOMAIN_IDENTITY
)
2190 dev_data
->passthrough
= true;
2191 else if (domain
->type
== IOMMU_DOMAIN_DMA
)
2192 iommu_setup_dma_ops(dev
, IOVA_START_PFN
<< PAGE_SHIFT
, 0);
2195 iommu_completion_wait(iommu
);
2200 static void amd_iommu_remove_device(struct device
*dev
)
2202 struct amd_iommu
*iommu
;
2205 if (!check_device(dev
))
2208 devid
= get_device_id(dev
);
2212 iommu
= amd_iommu_rlookup_table
[devid
];
2214 iommu_uninit_device(dev
);
2215 iommu_completion_wait(iommu
);
2218 static struct iommu_group
*amd_iommu_device_group(struct device
*dev
)
2220 if (dev_is_pci(dev
))
2221 return pci_device_group(dev
);
2223 return acpihid_device_group(dev
);
2226 static int amd_iommu_domain_get_attr(struct iommu_domain
*domain
,
2227 enum iommu_attr attr
, void *data
)
2229 switch (domain
->type
) {
2230 case IOMMU_DOMAIN_UNMANAGED
:
2232 case IOMMU_DOMAIN_DMA
:
2234 case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
:
2235 *(int *)data
= !amd_iommu_unmap_flush
;
2246 /*****************************************************************************
2248 * The next functions belong to the dma_ops mapping/unmapping code.
2250 *****************************************************************************/
2252 static void update_device_table(struct protection_domain
*domain
)
2254 struct iommu_dev_data
*dev_data
;
2256 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
2257 set_dte_entry(dev_data
->devid
, domain
, dev_data
->ats
.enabled
,
2258 dev_data
->iommu_v2
);
2259 clone_aliases(dev_data
->pdev
);
2263 static void update_domain(struct protection_domain
*domain
)
2265 update_device_table(domain
);
2267 domain_flush_devices(domain
);
2268 domain_flush_tlb_pde(domain
);
2271 int __init
amd_iommu_init_api(void)
2275 ret
= iova_cache_get();
2279 err
= bus_set_iommu(&pci_bus_type
, &amd_iommu_ops
);
2282 #ifdef CONFIG_ARM_AMBA
2283 err
= bus_set_iommu(&amba_bustype
, &amd_iommu_ops
);
2287 err
= bus_set_iommu(&platform_bus_type
, &amd_iommu_ops
);
2294 int __init
amd_iommu_init_dma_ops(void)
2296 swiotlb
= (iommu_default_passthrough() || sme_me_mask
) ? 1 : 0;
2298 if (amd_iommu_unmap_flush
)
2299 pr_info("IO/TLB flush on unmap enabled\n");
2301 pr_info("Lazy IO/TLB flushing enabled\n");
2307 /*****************************************************************************
2309 * The following functions belong to the exported interface of AMD IOMMU
2311 * This interface allows access to lower level functions of the IOMMU
2312 * like protection domain handling and assignement of devices to domains
2313 * which is not possible with the dma_ops interface.
2315 *****************************************************************************/
2317 static void cleanup_domain(struct protection_domain
*domain
)
2319 struct iommu_dev_data
*entry
;
2320 unsigned long flags
;
2322 spin_lock_irqsave(&domain
->lock
, flags
);
2324 while (!list_empty(&domain
->dev_list
)) {
2325 entry
= list_first_entry(&domain
->dev_list
,
2326 struct iommu_dev_data
, list
);
2327 BUG_ON(!entry
->domain
);
2331 spin_unlock_irqrestore(&domain
->lock
, flags
);
2334 static void protection_domain_free(struct protection_domain
*domain
)
2340 domain_id_free(domain
->id
);
2345 static int protection_domain_init(struct protection_domain
*domain
)
2347 spin_lock_init(&domain
->lock
);
2348 domain
->id
= domain_id_alloc();
2351 INIT_LIST_HEAD(&domain
->dev_list
);
2356 static struct protection_domain
*protection_domain_alloc(void)
2358 struct protection_domain
*domain
;
2360 domain
= kzalloc(sizeof(*domain
), GFP_KERNEL
);
2364 if (protection_domain_init(domain
))
2375 static struct iommu_domain
*amd_iommu_domain_alloc(unsigned type
)
2377 struct protection_domain
*pdomain
;
2380 case IOMMU_DOMAIN_UNMANAGED
:
2381 pdomain
= protection_domain_alloc();
2385 pdomain
->mode
= PAGE_MODE_3_LEVEL
;
2386 pdomain
->pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
2387 if (!pdomain
->pt_root
) {
2388 protection_domain_free(pdomain
);
2392 pdomain
->domain
.geometry
.aperture_start
= 0;
2393 pdomain
->domain
.geometry
.aperture_end
= ~0ULL;
2394 pdomain
->domain
.geometry
.force_aperture
= true;
2397 case IOMMU_DOMAIN_DMA
:
2398 pdomain
= dma_ops_domain_alloc();
2400 pr_err("Failed to allocate\n");
2404 case IOMMU_DOMAIN_IDENTITY
:
2405 pdomain
= protection_domain_alloc();
2409 pdomain
->mode
= PAGE_MODE_NONE
;
2415 return &pdomain
->domain
;
2418 static void amd_iommu_domain_free(struct iommu_domain
*dom
)
2420 struct protection_domain
*domain
;
2422 domain
= to_pdomain(dom
);
2424 if (domain
->dev_cnt
> 0)
2425 cleanup_domain(domain
);
2427 BUG_ON(domain
->dev_cnt
!= 0);
2432 switch (dom
->type
) {
2433 case IOMMU_DOMAIN_DMA
:
2434 /* Now release the domain */
2435 dma_ops_domain_free(domain
);
2438 if (domain
->mode
!= PAGE_MODE_NONE
)
2439 free_pagetable(domain
);
2441 if (domain
->flags
& PD_IOMMUV2_MASK
)
2442 free_gcr3_table(domain
);
2444 protection_domain_free(domain
);
2449 static void amd_iommu_detach_device(struct iommu_domain
*dom
,
2452 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
2453 struct amd_iommu
*iommu
;
2456 if (!check_device(dev
))
2459 devid
= get_device_id(dev
);
2463 if (dev_data
->domain
!= NULL
)
2466 iommu
= amd_iommu_rlookup_table
[devid
];
2470 #ifdef CONFIG_IRQ_REMAP
2471 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) &&
2472 (dom
->type
== IOMMU_DOMAIN_UNMANAGED
))
2473 dev_data
->use_vapic
= 0;
2476 iommu_completion_wait(iommu
);
2479 static int amd_iommu_attach_device(struct iommu_domain
*dom
,
2482 struct protection_domain
*domain
= to_pdomain(dom
);
2483 struct iommu_dev_data
*dev_data
;
2484 struct amd_iommu
*iommu
;
2487 if (!check_device(dev
))
2490 dev_data
= dev
->archdata
.iommu
;
2491 dev_data
->defer_attach
= false;
2493 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
2497 if (dev_data
->domain
)
2500 ret
= attach_device(dev
, domain
);
2502 #ifdef CONFIG_IRQ_REMAP
2503 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
)) {
2504 if (dom
->type
== IOMMU_DOMAIN_UNMANAGED
)
2505 dev_data
->use_vapic
= 1;
2507 dev_data
->use_vapic
= 0;
2511 iommu_completion_wait(iommu
);
2516 static int amd_iommu_map(struct iommu_domain
*dom
, unsigned long iova
,
2517 phys_addr_t paddr
, size_t page_size
, int iommu_prot
,
2520 struct protection_domain
*domain
= to_pdomain(dom
);
2524 if (domain
->mode
== PAGE_MODE_NONE
)
2527 if (iommu_prot
& IOMMU_READ
)
2528 prot
|= IOMMU_PROT_IR
;
2529 if (iommu_prot
& IOMMU_WRITE
)
2530 prot
|= IOMMU_PROT_IW
;
2532 ret
= iommu_map_page(domain
, iova
, paddr
, page_size
, prot
, gfp
);
2534 domain_flush_np_cache(domain
, iova
, page_size
);
2539 static size_t amd_iommu_unmap(struct iommu_domain
*dom
, unsigned long iova
,
2541 struct iommu_iotlb_gather
*gather
)
2543 struct protection_domain
*domain
= to_pdomain(dom
);
2545 if (domain
->mode
== PAGE_MODE_NONE
)
2548 return iommu_unmap_page(domain
, iova
, page_size
);
2551 static phys_addr_t
amd_iommu_iova_to_phys(struct iommu_domain
*dom
,
2554 struct protection_domain
*domain
= to_pdomain(dom
);
2555 unsigned long offset_mask
, pte_pgsize
;
2558 if (domain
->mode
== PAGE_MODE_NONE
)
2561 pte
= fetch_pte(domain
, iova
, &pte_pgsize
);
2563 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
2566 offset_mask
= pte_pgsize
- 1;
2567 __pte
= __sme_clr(*pte
& PM_ADDR_MASK
);
2569 return (__pte
& ~offset_mask
) | (iova
& offset_mask
);
2572 static bool amd_iommu_capable(enum iommu_cap cap
)
2575 case IOMMU_CAP_CACHE_COHERENCY
:
2577 case IOMMU_CAP_INTR_REMAP
:
2578 return (irq_remapping_enabled
== 1);
2579 case IOMMU_CAP_NOEXEC
:
2588 static void amd_iommu_get_resv_regions(struct device
*dev
,
2589 struct list_head
*head
)
2591 struct iommu_resv_region
*region
;
2592 struct unity_map_entry
*entry
;
2595 devid
= get_device_id(dev
);
2599 list_for_each_entry(entry
, &amd_iommu_unity_map
, list
) {
2603 if (devid
< entry
->devid_start
|| devid
> entry
->devid_end
)
2606 type
= IOMMU_RESV_DIRECT
;
2607 length
= entry
->address_end
- entry
->address_start
;
2608 if (entry
->prot
& IOMMU_PROT_IR
)
2610 if (entry
->prot
& IOMMU_PROT_IW
)
2611 prot
|= IOMMU_WRITE
;
2612 if (entry
->prot
& IOMMU_UNITY_MAP_FLAG_EXCL_RANGE
)
2613 /* Exclusion range */
2614 type
= IOMMU_RESV_RESERVED
;
2616 region
= iommu_alloc_resv_region(entry
->address_start
,
2617 length
, prot
, type
);
2619 dev_err(dev
, "Out of memory allocating dm-regions\n");
2622 list_add_tail(®ion
->list
, head
);
2625 region
= iommu_alloc_resv_region(MSI_RANGE_START
,
2626 MSI_RANGE_END
- MSI_RANGE_START
+ 1,
2630 list_add_tail(®ion
->list
, head
);
2632 region
= iommu_alloc_resv_region(HT_RANGE_START
,
2633 HT_RANGE_END
- HT_RANGE_START
+ 1,
2634 0, IOMMU_RESV_RESERVED
);
2637 list_add_tail(®ion
->list
, head
);
2640 static bool amd_iommu_is_attach_deferred(struct iommu_domain
*domain
,
2643 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
2644 return dev_data
->defer_attach
;
2647 static void amd_iommu_flush_iotlb_all(struct iommu_domain
*domain
)
2649 struct protection_domain
*dom
= to_pdomain(domain
);
2650 unsigned long flags
;
2652 spin_lock_irqsave(&dom
->lock
, flags
);
2653 domain_flush_tlb_pde(dom
);
2654 domain_flush_complete(dom
);
2655 spin_unlock_irqrestore(&dom
->lock
, flags
);
2658 static void amd_iommu_iotlb_sync(struct iommu_domain
*domain
,
2659 struct iommu_iotlb_gather
*gather
)
2661 amd_iommu_flush_iotlb_all(domain
);
2664 const struct iommu_ops amd_iommu_ops
= {
2665 .capable
= amd_iommu_capable
,
2666 .domain_alloc
= amd_iommu_domain_alloc
,
2667 .domain_free
= amd_iommu_domain_free
,
2668 .attach_dev
= amd_iommu_attach_device
,
2669 .detach_dev
= amd_iommu_detach_device
,
2670 .map
= amd_iommu_map
,
2671 .unmap
= amd_iommu_unmap
,
2672 .iova_to_phys
= amd_iommu_iova_to_phys
,
2673 .add_device
= amd_iommu_add_device
,
2674 .remove_device
= amd_iommu_remove_device
,
2675 .device_group
= amd_iommu_device_group
,
2676 .domain_get_attr
= amd_iommu_domain_get_attr
,
2677 .get_resv_regions
= amd_iommu_get_resv_regions
,
2678 .put_resv_regions
= generic_iommu_put_resv_regions
,
2679 .is_attach_deferred
= amd_iommu_is_attach_deferred
,
2680 .pgsize_bitmap
= AMD_IOMMU_PGSIZES
,
2681 .flush_iotlb_all
= amd_iommu_flush_iotlb_all
,
2682 .iotlb_sync
= amd_iommu_iotlb_sync
,
2685 /*****************************************************************************
2687 * The next functions do a basic initialization of IOMMU for pass through
2690 * In passthrough mode the IOMMU is initialized and enabled but not used for
2691 * DMA-API translation.
2693 *****************************************************************************/
2695 /* IOMMUv2 specific functions */
2696 int amd_iommu_register_ppr_notifier(struct notifier_block
*nb
)
2698 return atomic_notifier_chain_register(&ppr_notifier
, nb
);
2700 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier
);
2702 int amd_iommu_unregister_ppr_notifier(struct notifier_block
*nb
)
2704 return atomic_notifier_chain_unregister(&ppr_notifier
, nb
);
2706 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier
);
2708 void amd_iommu_domain_direct_map(struct iommu_domain
*dom
)
2710 struct protection_domain
*domain
= to_pdomain(dom
);
2711 unsigned long flags
;
2713 spin_lock_irqsave(&domain
->lock
, flags
);
2715 /* Update data structure */
2716 domain
->mode
= PAGE_MODE_NONE
;
2718 /* Make changes visible to IOMMUs */
2719 update_domain(domain
);
2721 /* Page-table is not visible to IOMMU anymore, so free it */
2722 free_pagetable(domain
);
2724 spin_unlock_irqrestore(&domain
->lock
, flags
);
2726 EXPORT_SYMBOL(amd_iommu_domain_direct_map
);
2728 int amd_iommu_domain_enable_v2(struct iommu_domain
*dom
, int pasids
)
2730 struct protection_domain
*domain
= to_pdomain(dom
);
2731 unsigned long flags
;
2734 if (pasids
<= 0 || pasids
> (PASID_MASK
+ 1))
2737 /* Number of GCR3 table levels required */
2738 for (levels
= 0; (pasids
- 1) & ~0x1ff; pasids
>>= 9)
2741 if (levels
> amd_iommu_max_glx_val
)
2744 spin_lock_irqsave(&domain
->lock
, flags
);
2747 * Save us all sanity checks whether devices already in the
2748 * domain support IOMMUv2. Just force that the domain has no
2749 * devices attached when it is switched into IOMMUv2 mode.
2752 if (domain
->dev_cnt
> 0 || domain
->flags
& PD_IOMMUV2_MASK
)
2756 domain
->gcr3_tbl
= (void *)get_zeroed_page(GFP_ATOMIC
);
2757 if (domain
->gcr3_tbl
== NULL
)
2760 domain
->glx
= levels
;
2761 domain
->flags
|= PD_IOMMUV2_MASK
;
2763 update_domain(domain
);
2768 spin_unlock_irqrestore(&domain
->lock
, flags
);
2772 EXPORT_SYMBOL(amd_iommu_domain_enable_v2
);
2774 static int __flush_pasid(struct protection_domain
*domain
, int pasid
,
2775 u64 address
, bool size
)
2777 struct iommu_dev_data
*dev_data
;
2778 struct iommu_cmd cmd
;
2781 if (!(domain
->flags
& PD_IOMMUV2_MASK
))
2784 build_inv_iommu_pasid(&cmd
, domain
->id
, pasid
, address
, size
);
2787 * IOMMU TLB needs to be flushed before Device TLB to
2788 * prevent device TLB refill from IOMMU TLB
2790 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
2791 if (domain
->dev_iommu
[i
] == 0)
2794 ret
= iommu_queue_command(amd_iommus
[i
], &cmd
);
2799 /* Wait until IOMMU TLB flushes are complete */
2800 domain_flush_complete(domain
);
2802 /* Now flush device TLBs */
2803 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
2804 struct amd_iommu
*iommu
;
2808 There might be non-IOMMUv2 capable devices in an IOMMUv2
2811 if (!dev_data
->ats
.enabled
)
2814 qdep
= dev_data
->ats
.qdep
;
2815 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
2817 build_inv_iotlb_pasid(&cmd
, dev_data
->devid
, pasid
,
2818 qdep
, address
, size
);
2820 ret
= iommu_queue_command(iommu
, &cmd
);
2825 /* Wait until all device TLBs are flushed */
2826 domain_flush_complete(domain
);
2835 static int __amd_iommu_flush_page(struct protection_domain
*domain
, int pasid
,
2838 return __flush_pasid(domain
, pasid
, address
, false);
2841 int amd_iommu_flush_page(struct iommu_domain
*dom
, int pasid
,
2844 struct protection_domain
*domain
= to_pdomain(dom
);
2845 unsigned long flags
;
2848 spin_lock_irqsave(&domain
->lock
, flags
);
2849 ret
= __amd_iommu_flush_page(domain
, pasid
, address
);
2850 spin_unlock_irqrestore(&domain
->lock
, flags
);
2854 EXPORT_SYMBOL(amd_iommu_flush_page
);
2856 static int __amd_iommu_flush_tlb(struct protection_domain
*domain
, int pasid
)
2858 return __flush_pasid(domain
, pasid
, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
2862 int amd_iommu_flush_tlb(struct iommu_domain
*dom
, int pasid
)
2864 struct protection_domain
*domain
= to_pdomain(dom
);
2865 unsigned long flags
;
2868 spin_lock_irqsave(&domain
->lock
, flags
);
2869 ret
= __amd_iommu_flush_tlb(domain
, pasid
);
2870 spin_unlock_irqrestore(&domain
->lock
, flags
);
2874 EXPORT_SYMBOL(amd_iommu_flush_tlb
);
2876 static u64
*__get_gcr3_pte(u64
*root
, int level
, int pasid
, bool alloc
)
2883 index
= (pasid
>> (9 * level
)) & 0x1ff;
2889 if (!(*pte
& GCR3_VALID
)) {
2893 root
= (void *)get_zeroed_page(GFP_ATOMIC
);
2897 *pte
= iommu_virt_to_phys(root
) | GCR3_VALID
;
2900 root
= iommu_phys_to_virt(*pte
& PAGE_MASK
);
2908 static int __set_gcr3(struct protection_domain
*domain
, int pasid
,
2913 if (domain
->mode
!= PAGE_MODE_NONE
)
2916 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, true);
2920 *pte
= (cr3
& PAGE_MASK
) | GCR3_VALID
;
2922 return __amd_iommu_flush_tlb(domain
, pasid
);
2925 static int __clear_gcr3(struct protection_domain
*domain
, int pasid
)
2929 if (domain
->mode
!= PAGE_MODE_NONE
)
2932 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, false);
2938 return __amd_iommu_flush_tlb(domain
, pasid
);
2941 int amd_iommu_domain_set_gcr3(struct iommu_domain
*dom
, int pasid
,
2944 struct protection_domain
*domain
= to_pdomain(dom
);
2945 unsigned long flags
;
2948 spin_lock_irqsave(&domain
->lock
, flags
);
2949 ret
= __set_gcr3(domain
, pasid
, cr3
);
2950 spin_unlock_irqrestore(&domain
->lock
, flags
);
2954 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3
);
2956 int amd_iommu_domain_clear_gcr3(struct iommu_domain
*dom
, int pasid
)
2958 struct protection_domain
*domain
= to_pdomain(dom
);
2959 unsigned long flags
;
2962 spin_lock_irqsave(&domain
->lock
, flags
);
2963 ret
= __clear_gcr3(domain
, pasid
);
2964 spin_unlock_irqrestore(&domain
->lock
, flags
);
2968 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3
);
2970 int amd_iommu_complete_ppr(struct pci_dev
*pdev
, int pasid
,
2971 int status
, int tag
)
2973 struct iommu_dev_data
*dev_data
;
2974 struct amd_iommu
*iommu
;
2975 struct iommu_cmd cmd
;
2977 dev_data
= get_dev_data(&pdev
->dev
);
2978 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
2980 build_complete_ppr(&cmd
, dev_data
->devid
, pasid
, status
,
2981 tag
, dev_data
->pri_tlp
);
2983 return iommu_queue_command(iommu
, &cmd
);
2985 EXPORT_SYMBOL(amd_iommu_complete_ppr
);
2987 struct iommu_domain
*amd_iommu_get_v2_domain(struct pci_dev
*pdev
)
2989 struct protection_domain
*pdomain
;
2990 struct iommu_domain
*io_domain
;
2991 struct device
*dev
= &pdev
->dev
;
2993 if (!check_device(dev
))
2996 pdomain
= get_dev_data(dev
)->domain
;
2997 if (pdomain
== NULL
&& get_dev_data(dev
)->defer_attach
) {
2998 get_dev_data(dev
)->defer_attach
= false;
2999 io_domain
= iommu_get_domain_for_dev(dev
);
3000 pdomain
= to_pdomain(io_domain
);
3001 attach_device(dev
, pdomain
);
3003 if (pdomain
== NULL
)
3006 if (!dma_ops_domain(pdomain
))
3009 /* Only return IOMMUv2 domains */
3010 if (!(pdomain
->flags
& PD_IOMMUV2_MASK
))
3013 return &pdomain
->domain
;
3015 EXPORT_SYMBOL(amd_iommu_get_v2_domain
);
3017 void amd_iommu_enable_device_erratum(struct pci_dev
*pdev
, u32 erratum
)
3019 struct iommu_dev_data
*dev_data
;
3021 if (!amd_iommu_v2_supported())
3024 dev_data
= get_dev_data(&pdev
->dev
);
3025 dev_data
->errata
|= (1 << erratum
);
3027 EXPORT_SYMBOL(amd_iommu_enable_device_erratum
);
3029 int amd_iommu_device_info(struct pci_dev
*pdev
,
3030 struct amd_iommu_device_info
*info
)
3035 if (pdev
== NULL
|| info
== NULL
)
3038 if (!amd_iommu_v2_supported())
3041 memset(info
, 0, sizeof(*info
));
3043 if (!pci_ats_disabled()) {
3044 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ATS
);
3046 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_ATS_SUP
;
3049 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
3051 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRI_SUP
;
3053 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PASID
);
3057 max_pasids
= 1 << (9 * (amd_iommu_max_glx_val
+ 1));
3058 max_pasids
= min(max_pasids
, (1 << 20));
3060 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PASID_SUP
;
3061 info
->max_pasids
= min(pci_max_pasids(pdev
), max_pasids
);
3063 features
= pci_pasid_features(pdev
);
3064 if (features
& PCI_PASID_CAP_EXEC
)
3065 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP
;
3066 if (features
& PCI_PASID_CAP_PRIV
)
3067 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP
;
3072 EXPORT_SYMBOL(amd_iommu_device_info
);
3074 #ifdef CONFIG_IRQ_REMAP
3076 /*****************************************************************************
3078 * Interrupt Remapping Implementation
3080 *****************************************************************************/
3082 static struct irq_chip amd_ir_chip
;
3083 static DEFINE_SPINLOCK(iommu_table_lock
);
3085 static void set_dte_irq_entry(u16 devid
, struct irq_remap_table
*table
)
3089 dte
= amd_iommu_dev_table
[devid
].data
[2];
3090 dte
&= ~DTE_IRQ_PHYS_ADDR_MASK
;
3091 dte
|= iommu_virt_to_phys(table
->table
);
3092 dte
|= DTE_IRQ_REMAP_INTCTL
;
3093 dte
|= DTE_IRQ_TABLE_LEN
;
3094 dte
|= DTE_IRQ_REMAP_ENABLE
;
3096 amd_iommu_dev_table
[devid
].data
[2] = dte
;
3099 static struct irq_remap_table
*get_irq_table(u16 devid
)
3101 struct irq_remap_table
*table
;
3103 if (WARN_ONCE(!amd_iommu_rlookup_table
[devid
],
3104 "%s: no iommu for devid %x\n", __func__
, devid
))
3107 table
= irq_lookup_table
[devid
];
3108 if (WARN_ONCE(!table
, "%s: no table for devid %x\n", __func__
, devid
))
3114 static struct irq_remap_table
*__alloc_irq_table(void)
3116 struct irq_remap_table
*table
;
3118 table
= kzalloc(sizeof(*table
), GFP_KERNEL
);
3122 table
->table
= kmem_cache_alloc(amd_iommu_irq_cache
, GFP_KERNEL
);
3123 if (!table
->table
) {
3127 raw_spin_lock_init(&table
->lock
);
3129 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir
))
3130 memset(table
->table
, 0,
3131 MAX_IRQS_PER_TABLE
* sizeof(u32
));
3133 memset(table
->table
, 0,
3134 (MAX_IRQS_PER_TABLE
* (sizeof(u64
) * 2)));
3138 static void set_remap_table_entry(struct amd_iommu
*iommu
, u16 devid
,
3139 struct irq_remap_table
*table
)
3141 irq_lookup_table
[devid
] = table
;
3142 set_dte_irq_entry(devid
, table
);
3143 iommu_flush_dte(iommu
, devid
);
3146 static int set_remap_table_entry_alias(struct pci_dev
*pdev
, u16 alias
,
3149 struct irq_remap_table
*table
= data
;
3151 irq_lookup_table
[alias
] = table
;
3152 set_dte_irq_entry(alias
, table
);
3154 iommu_flush_dte(amd_iommu_rlookup_table
[alias
], alias
);
3159 static struct irq_remap_table
*alloc_irq_table(u16 devid
, struct pci_dev
*pdev
)
3161 struct irq_remap_table
*table
= NULL
;
3162 struct irq_remap_table
*new_table
= NULL
;
3163 struct amd_iommu
*iommu
;
3164 unsigned long flags
;
3167 spin_lock_irqsave(&iommu_table_lock
, flags
);
3169 iommu
= amd_iommu_rlookup_table
[devid
];
3173 table
= irq_lookup_table
[devid
];
3177 alias
= amd_iommu_alias_table
[devid
];
3178 table
= irq_lookup_table
[alias
];
3180 set_remap_table_entry(iommu
, devid
, table
);
3183 spin_unlock_irqrestore(&iommu_table_lock
, flags
);
3185 /* Nothing there yet, allocate new irq remapping table */
3186 new_table
= __alloc_irq_table();
3190 spin_lock_irqsave(&iommu_table_lock
, flags
);
3192 table
= irq_lookup_table
[devid
];
3196 table
= irq_lookup_table
[alias
];
3198 set_remap_table_entry(iommu
, devid
, table
);
3206 pci_for_each_dma_alias(pdev
, set_remap_table_entry_alias
,
3209 set_remap_table_entry(iommu
, devid
, table
);
3212 set_remap_table_entry(iommu
, alias
, table
);
3215 iommu_completion_wait(iommu
);
3218 spin_unlock_irqrestore(&iommu_table_lock
, flags
);
3221 kmem_cache_free(amd_iommu_irq_cache
, new_table
->table
);
3227 static int alloc_irq_index(u16 devid
, int count
, bool align
,
3228 struct pci_dev
*pdev
)
3230 struct irq_remap_table
*table
;
3231 int index
, c
, alignment
= 1;
3232 unsigned long flags
;
3233 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
3238 table
= alloc_irq_table(devid
, pdev
);
3243 alignment
= roundup_pow_of_two(count
);
3245 raw_spin_lock_irqsave(&table
->lock
, flags
);
3247 /* Scan table for free entries */
3248 for (index
= ALIGN(table
->min_index
, alignment
), c
= 0;
3249 index
< MAX_IRQS_PER_TABLE
;) {
3250 if (!iommu
->irte_ops
->is_allocated(table
, index
)) {
3254 index
= ALIGN(index
+ 1, alignment
);
3260 iommu
->irte_ops
->set_allocated(table
, index
- c
+ 1);
3272 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3277 static int modify_irte_ga(u16 devid
, int index
, struct irte_ga
*irte
,
3278 struct amd_ir_data
*data
)
3280 struct irq_remap_table
*table
;
3281 struct amd_iommu
*iommu
;
3282 unsigned long flags
;
3283 struct irte_ga
*entry
;
3285 iommu
= amd_iommu_rlookup_table
[devid
];
3289 table
= get_irq_table(devid
);
3293 raw_spin_lock_irqsave(&table
->lock
, flags
);
3295 entry
= (struct irte_ga
*)table
->table
;
3296 entry
= &entry
[index
];
3297 entry
->lo
.fields_remap
.valid
= 0;
3298 entry
->hi
.val
= irte
->hi
.val
;
3299 entry
->lo
.val
= irte
->lo
.val
;
3300 entry
->lo
.fields_remap
.valid
= 1;
3304 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3306 iommu_flush_irt(iommu
, devid
);
3307 iommu_completion_wait(iommu
);
3312 static int modify_irte(u16 devid
, int index
, union irte
*irte
)
3314 struct irq_remap_table
*table
;
3315 struct amd_iommu
*iommu
;
3316 unsigned long flags
;
3318 iommu
= amd_iommu_rlookup_table
[devid
];
3322 table
= get_irq_table(devid
);
3326 raw_spin_lock_irqsave(&table
->lock
, flags
);
3327 table
->table
[index
] = irte
->val
;
3328 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3330 iommu_flush_irt(iommu
, devid
);
3331 iommu_completion_wait(iommu
);
3336 static void free_irte(u16 devid
, int index
)
3338 struct irq_remap_table
*table
;
3339 struct amd_iommu
*iommu
;
3340 unsigned long flags
;
3342 iommu
= amd_iommu_rlookup_table
[devid
];
3346 table
= get_irq_table(devid
);
3350 raw_spin_lock_irqsave(&table
->lock
, flags
);
3351 iommu
->irte_ops
->clear_allocated(table
, index
);
3352 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3354 iommu_flush_irt(iommu
, devid
);
3355 iommu_completion_wait(iommu
);
3358 static void irte_prepare(void *entry
,
3359 u32 delivery_mode
, u32 dest_mode
,
3360 u8 vector
, u32 dest_apicid
, int devid
)
3362 union irte
*irte
= (union irte
*) entry
;
3365 irte
->fields
.vector
= vector
;
3366 irte
->fields
.int_type
= delivery_mode
;
3367 irte
->fields
.destination
= dest_apicid
;
3368 irte
->fields
.dm
= dest_mode
;
3369 irte
->fields
.valid
= 1;
3372 static void irte_ga_prepare(void *entry
,
3373 u32 delivery_mode
, u32 dest_mode
,
3374 u8 vector
, u32 dest_apicid
, int devid
)
3376 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3380 irte
->lo
.fields_remap
.int_type
= delivery_mode
;
3381 irte
->lo
.fields_remap
.dm
= dest_mode
;
3382 irte
->hi
.fields
.vector
= vector
;
3383 irte
->lo
.fields_remap
.destination
= APICID_TO_IRTE_DEST_LO(dest_apicid
);
3384 irte
->hi
.fields
.destination
= APICID_TO_IRTE_DEST_HI(dest_apicid
);
3385 irte
->lo
.fields_remap
.valid
= 1;
3388 static void irte_activate(void *entry
, u16 devid
, u16 index
)
3390 union irte
*irte
= (union irte
*) entry
;
3392 irte
->fields
.valid
= 1;
3393 modify_irte(devid
, index
, irte
);
3396 static void irte_ga_activate(void *entry
, u16 devid
, u16 index
)
3398 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3400 irte
->lo
.fields_remap
.valid
= 1;
3401 modify_irte_ga(devid
, index
, irte
, NULL
);
3404 static void irte_deactivate(void *entry
, u16 devid
, u16 index
)
3406 union irte
*irte
= (union irte
*) entry
;
3408 irte
->fields
.valid
= 0;
3409 modify_irte(devid
, index
, irte
);
3412 static void irte_ga_deactivate(void *entry
, u16 devid
, u16 index
)
3414 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3416 irte
->lo
.fields_remap
.valid
= 0;
3417 modify_irte_ga(devid
, index
, irte
, NULL
);
3420 static void irte_set_affinity(void *entry
, u16 devid
, u16 index
,
3421 u8 vector
, u32 dest_apicid
)
3423 union irte
*irte
= (union irte
*) entry
;
3425 irte
->fields
.vector
= vector
;
3426 irte
->fields
.destination
= dest_apicid
;
3427 modify_irte(devid
, index
, irte
);
3430 static void irte_ga_set_affinity(void *entry
, u16 devid
, u16 index
,
3431 u8 vector
, u32 dest_apicid
)
3433 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3435 if (!irte
->lo
.fields_remap
.guest_mode
) {
3436 irte
->hi
.fields
.vector
= vector
;
3437 irte
->lo
.fields_remap
.destination
=
3438 APICID_TO_IRTE_DEST_LO(dest_apicid
);
3439 irte
->hi
.fields
.destination
=
3440 APICID_TO_IRTE_DEST_HI(dest_apicid
);
3441 modify_irte_ga(devid
, index
, irte
, NULL
);
3445 #define IRTE_ALLOCATED (~1U)
3446 static void irte_set_allocated(struct irq_remap_table
*table
, int index
)
3448 table
->table
[index
] = IRTE_ALLOCATED
;
3451 static void irte_ga_set_allocated(struct irq_remap_table
*table
, int index
)
3453 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
3454 struct irte_ga
*irte
= &ptr
[index
];
3456 memset(&irte
->lo
.val
, 0, sizeof(u64
));
3457 memset(&irte
->hi
.val
, 0, sizeof(u64
));
3458 irte
->hi
.fields
.vector
= 0xff;
3461 static bool irte_is_allocated(struct irq_remap_table
*table
, int index
)
3463 union irte
*ptr
= (union irte
*)table
->table
;
3464 union irte
*irte
= &ptr
[index
];
3466 return irte
->val
!= 0;
3469 static bool irte_ga_is_allocated(struct irq_remap_table
*table
, int index
)
3471 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
3472 struct irte_ga
*irte
= &ptr
[index
];
3474 return irte
->hi
.fields
.vector
!= 0;
3477 static void irte_clear_allocated(struct irq_remap_table
*table
, int index
)
3479 table
->table
[index
] = 0;
3482 static void irte_ga_clear_allocated(struct irq_remap_table
*table
, int index
)
3484 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
3485 struct irte_ga
*irte
= &ptr
[index
];
3487 memset(&irte
->lo
.val
, 0, sizeof(u64
));
3488 memset(&irte
->hi
.val
, 0, sizeof(u64
));
3491 static int get_devid(struct irq_alloc_info
*info
)
3495 switch (info
->type
) {
3496 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
3497 devid
= get_ioapic_devid(info
->ioapic_id
);
3499 case X86_IRQ_ALLOC_TYPE_HPET
:
3500 devid
= get_hpet_devid(info
->hpet_id
);
3502 case X86_IRQ_ALLOC_TYPE_MSI
:
3503 case X86_IRQ_ALLOC_TYPE_MSIX
:
3504 devid
= get_device_id(&info
->msi_dev
->dev
);
3514 static struct irq_domain
*get_ir_irq_domain(struct irq_alloc_info
*info
)
3516 struct amd_iommu
*iommu
;
3522 devid
= get_devid(info
);
3524 iommu
= amd_iommu_rlookup_table
[devid
];
3526 return iommu
->ir_domain
;
3532 static struct irq_domain
*get_irq_domain(struct irq_alloc_info
*info
)
3534 struct amd_iommu
*iommu
;
3540 switch (info
->type
) {
3541 case X86_IRQ_ALLOC_TYPE_MSI
:
3542 case X86_IRQ_ALLOC_TYPE_MSIX
:
3543 devid
= get_device_id(&info
->msi_dev
->dev
);
3547 iommu
= amd_iommu_rlookup_table
[devid
];
3549 return iommu
->msi_domain
;
3558 struct irq_remap_ops amd_iommu_irq_ops
= {
3559 .prepare
= amd_iommu_prepare
,
3560 .enable
= amd_iommu_enable
,
3561 .disable
= amd_iommu_disable
,
3562 .reenable
= amd_iommu_reenable
,
3563 .enable_faulting
= amd_iommu_enable_faulting
,
3564 .get_ir_irq_domain
= get_ir_irq_domain
,
3565 .get_irq_domain
= get_irq_domain
,
3568 static void irq_remapping_prepare_irte(struct amd_ir_data
*data
,
3569 struct irq_cfg
*irq_cfg
,
3570 struct irq_alloc_info
*info
,
3571 int devid
, int index
, int sub_handle
)
3573 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
3574 struct msi_msg
*msg
= &data
->msi_entry
;
3575 struct IO_APIC_route_entry
*entry
;
3576 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
3581 data
->irq_2_irte
.devid
= devid
;
3582 data
->irq_2_irte
.index
= index
+ sub_handle
;
3583 iommu
->irte_ops
->prepare(data
->entry
, apic
->irq_delivery_mode
,
3584 apic
->irq_dest_mode
, irq_cfg
->vector
,
3585 irq_cfg
->dest_apicid
, devid
);
3587 switch (info
->type
) {
3588 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
3589 /* Setup IOAPIC entry */
3590 entry
= info
->ioapic_entry
;
3591 info
->ioapic_entry
= NULL
;
3592 memset(entry
, 0, sizeof(*entry
));
3593 entry
->vector
= index
;
3595 entry
->trigger
= info
->ioapic_trigger
;
3596 entry
->polarity
= info
->ioapic_polarity
;
3597 /* Mask level triggered irqs. */
3598 if (info
->ioapic_trigger
)
3602 case X86_IRQ_ALLOC_TYPE_HPET
:
3603 case X86_IRQ_ALLOC_TYPE_MSI
:
3604 case X86_IRQ_ALLOC_TYPE_MSIX
:
3605 msg
->address_hi
= MSI_ADDR_BASE_HI
;
3606 msg
->address_lo
= MSI_ADDR_BASE_LO
;
3607 msg
->data
= irte_info
->index
;
3616 struct amd_irte_ops irte_32_ops
= {
3617 .prepare
= irte_prepare
,
3618 .activate
= irte_activate
,
3619 .deactivate
= irte_deactivate
,
3620 .set_affinity
= irte_set_affinity
,
3621 .set_allocated
= irte_set_allocated
,
3622 .is_allocated
= irte_is_allocated
,
3623 .clear_allocated
= irte_clear_allocated
,
3626 struct amd_irte_ops irte_128_ops
= {
3627 .prepare
= irte_ga_prepare
,
3628 .activate
= irte_ga_activate
,
3629 .deactivate
= irte_ga_deactivate
,
3630 .set_affinity
= irte_ga_set_affinity
,
3631 .set_allocated
= irte_ga_set_allocated
,
3632 .is_allocated
= irte_ga_is_allocated
,
3633 .clear_allocated
= irte_ga_clear_allocated
,
3636 static int irq_remapping_alloc(struct irq_domain
*domain
, unsigned int virq
,
3637 unsigned int nr_irqs
, void *arg
)
3639 struct irq_alloc_info
*info
= arg
;
3640 struct irq_data
*irq_data
;
3641 struct amd_ir_data
*data
= NULL
;
3642 struct irq_cfg
*cfg
;
3648 if (nr_irqs
> 1 && info
->type
!= X86_IRQ_ALLOC_TYPE_MSI
&&
3649 info
->type
!= X86_IRQ_ALLOC_TYPE_MSIX
)
3653 * With IRQ remapping enabled, don't need contiguous CPU vectors
3654 * to support multiple MSI interrupts.
3656 if (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
)
3657 info
->flags
&= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS
;
3659 devid
= get_devid(info
);
3663 ret
= irq_domain_alloc_irqs_parent(domain
, virq
, nr_irqs
, arg
);
3667 if (info
->type
== X86_IRQ_ALLOC_TYPE_IOAPIC
) {
3668 struct irq_remap_table
*table
;
3669 struct amd_iommu
*iommu
;
3671 table
= alloc_irq_table(devid
, NULL
);
3673 if (!table
->min_index
) {
3675 * Keep the first 32 indexes free for IOAPIC
3678 table
->min_index
= 32;
3679 iommu
= amd_iommu_rlookup_table
[devid
];
3680 for (i
= 0; i
< 32; ++i
)
3681 iommu
->irte_ops
->set_allocated(table
, i
);
3683 WARN_ON(table
->min_index
!= 32);
3684 index
= info
->ioapic_pin
;
3688 } else if (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
||
3689 info
->type
== X86_IRQ_ALLOC_TYPE_MSIX
) {
3690 bool align
= (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
);
3692 index
= alloc_irq_index(devid
, nr_irqs
, align
, info
->msi_dev
);
3694 index
= alloc_irq_index(devid
, nr_irqs
, false, NULL
);
3698 pr_warn("Failed to allocate IRTE\n");
3700 goto out_free_parent
;
3703 for (i
= 0; i
< nr_irqs
; i
++) {
3704 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
3705 cfg
= irqd_cfg(irq_data
);
3706 if (!irq_data
|| !cfg
) {
3712 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
3716 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir
))
3717 data
->entry
= kzalloc(sizeof(union irte
), GFP_KERNEL
);
3719 data
->entry
= kzalloc(sizeof(struct irte_ga
),
3726 irq_data
->hwirq
= (devid
<< 16) + i
;
3727 irq_data
->chip_data
= data
;
3728 irq_data
->chip
= &amd_ir_chip
;
3729 irq_remapping_prepare_irte(data
, cfg
, info
, devid
, index
, i
);
3730 irq_set_status_flags(virq
+ i
, IRQ_MOVE_PCNTXT
);
3736 for (i
--; i
>= 0; i
--) {
3737 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
3739 kfree(irq_data
->chip_data
);
3741 for (i
= 0; i
< nr_irqs
; i
++)
3742 free_irte(devid
, index
+ i
);
3744 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
3748 static void irq_remapping_free(struct irq_domain
*domain
, unsigned int virq
,
3749 unsigned int nr_irqs
)
3751 struct irq_2_irte
*irte_info
;
3752 struct irq_data
*irq_data
;
3753 struct amd_ir_data
*data
;
3756 for (i
= 0; i
< nr_irqs
; i
++) {
3757 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
3758 if (irq_data
&& irq_data
->chip_data
) {
3759 data
= irq_data
->chip_data
;
3760 irte_info
= &data
->irq_2_irte
;
3761 free_irte(irte_info
->devid
, irte_info
->index
);
3766 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
3769 static void amd_ir_update_irte(struct irq_data
*irqd
, struct amd_iommu
*iommu
,
3770 struct amd_ir_data
*ir_data
,
3771 struct irq_2_irte
*irte_info
,
3772 struct irq_cfg
*cfg
);
3774 static int irq_remapping_activate(struct irq_domain
*domain
,
3775 struct irq_data
*irq_data
, bool reserve
)
3777 struct amd_ir_data
*data
= irq_data
->chip_data
;
3778 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
3779 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
3780 struct irq_cfg
*cfg
= irqd_cfg(irq_data
);
3785 iommu
->irte_ops
->activate(data
->entry
, irte_info
->devid
,
3787 amd_ir_update_irte(irq_data
, iommu
, data
, irte_info
, cfg
);
3791 static void irq_remapping_deactivate(struct irq_domain
*domain
,
3792 struct irq_data
*irq_data
)
3794 struct amd_ir_data
*data
= irq_data
->chip_data
;
3795 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
3796 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
3799 iommu
->irte_ops
->deactivate(data
->entry
, irte_info
->devid
,
3803 static const struct irq_domain_ops amd_ir_domain_ops
= {
3804 .alloc
= irq_remapping_alloc
,
3805 .free
= irq_remapping_free
,
3806 .activate
= irq_remapping_activate
,
3807 .deactivate
= irq_remapping_deactivate
,
3810 int amd_iommu_activate_guest_mode(void *data
)
3812 struct amd_ir_data
*ir_data
= (struct amd_ir_data
*)data
;
3813 struct irte_ga
*entry
= (struct irte_ga
*) ir_data
->entry
;
3815 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) ||
3816 !entry
|| entry
->lo
.fields_vapic
.guest_mode
)
3822 entry
->lo
.fields_vapic
.guest_mode
= 1;
3823 entry
->lo
.fields_vapic
.ga_log_intr
= 1;
3824 entry
->hi
.fields
.ga_root_ptr
= ir_data
->ga_root_ptr
;
3825 entry
->hi
.fields
.vector
= ir_data
->ga_vector
;
3826 entry
->lo
.fields_vapic
.ga_tag
= ir_data
->ga_tag
;
3828 return modify_irte_ga(ir_data
->irq_2_irte
.devid
,
3829 ir_data
->irq_2_irte
.index
, entry
, ir_data
);
3831 EXPORT_SYMBOL(amd_iommu_activate_guest_mode
);
3833 int amd_iommu_deactivate_guest_mode(void *data
)
3835 struct amd_ir_data
*ir_data
= (struct amd_ir_data
*)data
;
3836 struct irte_ga
*entry
= (struct irte_ga
*) ir_data
->entry
;
3837 struct irq_cfg
*cfg
= ir_data
->cfg
;
3839 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) ||
3840 !entry
|| !entry
->lo
.fields_vapic
.guest_mode
)
3846 entry
->lo
.fields_remap
.dm
= apic
->irq_dest_mode
;
3847 entry
->lo
.fields_remap
.int_type
= apic
->irq_delivery_mode
;
3848 entry
->hi
.fields
.vector
= cfg
->vector
;
3849 entry
->lo
.fields_remap
.destination
=
3850 APICID_TO_IRTE_DEST_LO(cfg
->dest_apicid
);
3851 entry
->hi
.fields
.destination
=
3852 APICID_TO_IRTE_DEST_HI(cfg
->dest_apicid
);
3854 return modify_irte_ga(ir_data
->irq_2_irte
.devid
,
3855 ir_data
->irq_2_irte
.index
, entry
, ir_data
);
3857 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode
);
3859 static int amd_ir_set_vcpu_affinity(struct irq_data
*data
, void *vcpu_info
)
3862 struct amd_iommu
*iommu
;
3863 struct amd_iommu_pi_data
*pi_data
= vcpu_info
;
3864 struct vcpu_data
*vcpu_pi_info
= pi_data
->vcpu_data
;
3865 struct amd_ir_data
*ir_data
= data
->chip_data
;
3866 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
3867 struct iommu_dev_data
*dev_data
= search_dev_data(irte_info
->devid
);
3870 * This device has never been set up for guest mode.
3871 * we should not modify the IRTE
3873 if (!dev_data
|| !dev_data
->use_vapic
)
3876 ir_data
->cfg
= irqd_cfg(data
);
3877 pi_data
->ir_data
= ir_data
;
3880 * SVM tries to set up for VAPIC mode, but we are in
3881 * legacy mode. So, we force legacy mode instead.
3883 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
)) {
3884 pr_debug("%s: Fall back to using intr legacy remap\n",
3886 pi_data
->is_guest_mode
= false;
3889 iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
3893 pi_data
->prev_ga_tag
= ir_data
->cached_ga_tag
;
3894 if (pi_data
->is_guest_mode
) {
3895 ir_data
->ga_root_ptr
= (pi_data
->base
>> 12);
3896 ir_data
->ga_vector
= vcpu_pi_info
->vector
;
3897 ir_data
->ga_tag
= pi_data
->ga_tag
;
3898 ret
= amd_iommu_activate_guest_mode(ir_data
);
3900 ir_data
->cached_ga_tag
= pi_data
->ga_tag
;
3902 ret
= amd_iommu_deactivate_guest_mode(ir_data
);
3905 * This communicates the ga_tag back to the caller
3906 * so that it can do all the necessary clean up.
3909 ir_data
->cached_ga_tag
= 0;
3916 static void amd_ir_update_irte(struct irq_data
*irqd
, struct amd_iommu
*iommu
,
3917 struct amd_ir_data
*ir_data
,
3918 struct irq_2_irte
*irte_info
,
3919 struct irq_cfg
*cfg
)
3923 * Atomically updates the IRTE with the new destination, vector
3924 * and flushes the interrupt entry cache.
3926 iommu
->irte_ops
->set_affinity(ir_data
->entry
, irte_info
->devid
,
3927 irte_info
->index
, cfg
->vector
,
3931 static int amd_ir_set_affinity(struct irq_data
*data
,
3932 const struct cpumask
*mask
, bool force
)
3934 struct amd_ir_data
*ir_data
= data
->chip_data
;
3935 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
3936 struct irq_cfg
*cfg
= irqd_cfg(data
);
3937 struct irq_data
*parent
= data
->parent_data
;
3938 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
3944 ret
= parent
->chip
->irq_set_affinity(parent
, mask
, force
);
3945 if (ret
< 0 || ret
== IRQ_SET_MASK_OK_DONE
)
3948 amd_ir_update_irte(data
, iommu
, ir_data
, irte_info
, cfg
);
3950 * After this point, all the interrupts will start arriving
3951 * at the new destination. So, time to cleanup the previous
3952 * vector allocation.
3954 send_cleanup_vector(cfg
);
3956 return IRQ_SET_MASK_OK_DONE
;
3959 static void ir_compose_msi_msg(struct irq_data
*irq_data
, struct msi_msg
*msg
)
3961 struct amd_ir_data
*ir_data
= irq_data
->chip_data
;
3963 *msg
= ir_data
->msi_entry
;
3966 static struct irq_chip amd_ir_chip
= {
3968 .irq_ack
= apic_ack_irq
,
3969 .irq_set_affinity
= amd_ir_set_affinity
,
3970 .irq_set_vcpu_affinity
= amd_ir_set_vcpu_affinity
,
3971 .irq_compose_msi_msg
= ir_compose_msi_msg
,
3974 int amd_iommu_create_irq_domain(struct amd_iommu
*iommu
)
3976 struct fwnode_handle
*fn
;
3978 fn
= irq_domain_alloc_named_id_fwnode("AMD-IR", iommu
->index
);
3981 iommu
->ir_domain
= irq_domain_create_tree(fn
, &amd_ir_domain_ops
, iommu
);
3982 irq_domain_free_fwnode(fn
);
3983 if (!iommu
->ir_domain
)
3986 iommu
->ir_domain
->parent
= arch_get_ir_parent_domain();
3987 iommu
->msi_domain
= arch_create_remap_msi_irq_domain(iommu
->ir_domain
,
3993 int amd_iommu_update_ga(int cpu
, bool is_run
, void *data
)
3995 unsigned long flags
;
3996 struct amd_iommu
*iommu
;
3997 struct irq_remap_table
*table
;
3998 struct amd_ir_data
*ir_data
= (struct amd_ir_data
*)data
;
3999 int devid
= ir_data
->irq_2_irte
.devid
;
4000 struct irte_ga
*entry
= (struct irte_ga
*) ir_data
->entry
;
4001 struct irte_ga
*ref
= (struct irte_ga
*) ir_data
->ref
;
4003 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) ||
4004 !ref
|| !entry
|| !entry
->lo
.fields_vapic
.guest_mode
)
4007 iommu
= amd_iommu_rlookup_table
[devid
];
4011 table
= get_irq_table(devid
);
4015 raw_spin_lock_irqsave(&table
->lock
, flags
);
4017 if (ref
->lo
.fields_vapic
.guest_mode
) {
4019 ref
->lo
.fields_vapic
.destination
=
4020 APICID_TO_IRTE_DEST_LO(cpu
);
4021 ref
->hi
.fields
.destination
=
4022 APICID_TO_IRTE_DEST_HI(cpu
);
4024 ref
->lo
.fields_vapic
.is_run
= is_run
;
4028 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
4030 iommu_flush_irt(iommu
, devid
);
4031 iommu_completion_wait(iommu
);
4034 EXPORT_SYMBOL(amd_iommu_update_ga
);