]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/iommu/intel/svm.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[thirdparty/linux.git] / drivers / iommu / intel / svm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright © 2015 Intel Corporation.
4 *
5 * Authors: David Woodhouse <dwmw2@infradead.org>
6 */
7
8 #include <linux/mmu_notifier.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/slab.h>
12 #include <linux/rculist.h>
13 #include <linux/pci.h>
14 #include <linux/pci-ats.h>
15 #include <linux/dmar.h>
16 #include <linux/interrupt.h>
17 #include <linux/mm_types.h>
18 #include <linux/xarray.h>
19 #include <asm/page.h>
20 #include <asm/fpu/api.h>
21
22 #include "iommu.h"
23 #include "pasid.h"
24 #include "perf.h"
25 #include "../iommu-sva.h"
26 #include "trace.h"
27
28 static irqreturn_t prq_event_thread(int irq, void *d);
29 static void intel_svm_drain_prq(struct device *dev, u32 pasid);
30 #define to_intel_svm_dev(handle) container_of(handle, struct intel_svm_dev, sva)
31
32 static DEFINE_XARRAY_ALLOC(pasid_private_array);
33 static int pasid_private_add(ioasid_t pasid, void *priv)
34 {
35 return xa_alloc(&pasid_private_array, &pasid, priv,
36 XA_LIMIT(pasid, pasid), GFP_ATOMIC);
37 }
38
39 static void pasid_private_remove(ioasid_t pasid)
40 {
41 xa_erase(&pasid_private_array, pasid);
42 }
43
44 static void *pasid_private_find(ioasid_t pasid)
45 {
46 return xa_load(&pasid_private_array, pasid);
47 }
48
49 static struct intel_svm_dev *
50 svm_lookup_device_by_dev(struct intel_svm *svm, struct device *dev)
51 {
52 struct intel_svm_dev *sdev = NULL, *t;
53
54 rcu_read_lock();
55 list_for_each_entry_rcu(t, &svm->devs, list) {
56 if (t->dev == dev) {
57 sdev = t;
58 break;
59 }
60 }
61 rcu_read_unlock();
62
63 return sdev;
64 }
65
66 int intel_svm_enable_prq(struct intel_iommu *iommu)
67 {
68 struct iopf_queue *iopfq;
69 struct page *pages;
70 int irq, ret;
71
72 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, PRQ_ORDER);
73 if (!pages) {
74 pr_warn("IOMMU: %s: Failed to allocate page request queue\n",
75 iommu->name);
76 return -ENOMEM;
77 }
78 iommu->prq = page_address(pages);
79
80 irq = dmar_alloc_hwirq(IOMMU_IRQ_ID_OFFSET_PRQ + iommu->seq_id, iommu->node, iommu);
81 if (irq <= 0) {
82 pr_err("IOMMU: %s: Failed to create IRQ vector for page request queue\n",
83 iommu->name);
84 ret = -EINVAL;
85 goto free_prq;
86 }
87 iommu->pr_irq = irq;
88
89 snprintf(iommu->iopfq_name, sizeof(iommu->iopfq_name),
90 "dmar%d-iopfq", iommu->seq_id);
91 iopfq = iopf_queue_alloc(iommu->iopfq_name);
92 if (!iopfq) {
93 pr_err("IOMMU: %s: Failed to allocate iopf queue\n", iommu->name);
94 ret = -ENOMEM;
95 goto free_hwirq;
96 }
97 iommu->iopf_queue = iopfq;
98
99 snprintf(iommu->prq_name, sizeof(iommu->prq_name), "dmar%d-prq", iommu->seq_id);
100
101 ret = request_threaded_irq(irq, NULL, prq_event_thread, IRQF_ONESHOT,
102 iommu->prq_name, iommu);
103 if (ret) {
104 pr_err("IOMMU: %s: Failed to request IRQ for page request queue\n",
105 iommu->name);
106 goto free_iopfq;
107 }
108 dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL);
109 dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL);
110 dmar_writeq(iommu->reg + DMAR_PQA_REG, virt_to_phys(iommu->prq) | PRQ_ORDER);
111
112 init_completion(&iommu->prq_complete);
113
114 return 0;
115
116 free_iopfq:
117 iopf_queue_free(iommu->iopf_queue);
118 iommu->iopf_queue = NULL;
119 free_hwirq:
120 dmar_free_hwirq(irq);
121 iommu->pr_irq = 0;
122 free_prq:
123 free_pages((unsigned long)iommu->prq, PRQ_ORDER);
124 iommu->prq = NULL;
125
126 return ret;
127 }
128
129 int intel_svm_finish_prq(struct intel_iommu *iommu)
130 {
131 dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL);
132 dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL);
133 dmar_writeq(iommu->reg + DMAR_PQA_REG, 0ULL);
134
135 if (iommu->pr_irq) {
136 free_irq(iommu->pr_irq, iommu);
137 dmar_free_hwirq(iommu->pr_irq);
138 iommu->pr_irq = 0;
139 }
140
141 if (iommu->iopf_queue) {
142 iopf_queue_free(iommu->iopf_queue);
143 iommu->iopf_queue = NULL;
144 }
145
146 free_pages((unsigned long)iommu->prq, PRQ_ORDER);
147 iommu->prq = NULL;
148
149 return 0;
150 }
151
152 void intel_svm_check(struct intel_iommu *iommu)
153 {
154 if (!pasid_supported(iommu))
155 return;
156
157 if (cpu_feature_enabled(X86_FEATURE_GBPAGES) &&
158 !cap_fl1gp_support(iommu->cap)) {
159 pr_err("%s SVM disabled, incompatible 1GB page capability\n",
160 iommu->name);
161 return;
162 }
163
164 if (cpu_feature_enabled(X86_FEATURE_LA57) &&
165 !cap_fl5lp_support(iommu->cap)) {
166 pr_err("%s SVM disabled, incompatible paging mode\n",
167 iommu->name);
168 return;
169 }
170
171 iommu->flags |= VTD_FLAG_SVM_CAPABLE;
172 }
173
174 static void __flush_svm_range_dev(struct intel_svm *svm,
175 struct intel_svm_dev *sdev,
176 unsigned long address,
177 unsigned long pages, int ih)
178 {
179 struct device_domain_info *info = dev_iommu_priv_get(sdev->dev);
180
181 if (WARN_ON(!pages))
182 return;
183
184 qi_flush_piotlb(sdev->iommu, sdev->did, svm->pasid, address, pages, ih);
185 if (info->ats_enabled) {
186 qi_flush_dev_iotlb_pasid(sdev->iommu, sdev->sid, info->pfsid,
187 svm->pasid, sdev->qdep, address,
188 order_base_2(pages));
189 quirk_extra_dev_tlb_flush(info, address, order_base_2(pages),
190 svm->pasid, sdev->qdep);
191 }
192 }
193
194 static void intel_flush_svm_range_dev(struct intel_svm *svm,
195 struct intel_svm_dev *sdev,
196 unsigned long address,
197 unsigned long pages, int ih)
198 {
199 unsigned long shift = ilog2(__roundup_pow_of_two(pages));
200 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + shift));
201 unsigned long start = ALIGN_DOWN(address, align);
202 unsigned long end = ALIGN(address + (pages << VTD_PAGE_SHIFT), align);
203
204 while (start < end) {
205 __flush_svm_range_dev(svm, sdev, start, align >> VTD_PAGE_SHIFT, ih);
206 start += align;
207 }
208 }
209
210 static void intel_flush_svm_range(struct intel_svm *svm, unsigned long address,
211 unsigned long pages, int ih)
212 {
213 struct intel_svm_dev *sdev;
214
215 rcu_read_lock();
216 list_for_each_entry_rcu(sdev, &svm->devs, list)
217 intel_flush_svm_range_dev(svm, sdev, address, pages, ih);
218 rcu_read_unlock();
219 }
220
221 /* Pages have been freed at this point */
222 static void intel_arch_invalidate_secondary_tlbs(struct mmu_notifier *mn,
223 struct mm_struct *mm,
224 unsigned long start, unsigned long end)
225 {
226 struct intel_svm *svm = container_of(mn, struct intel_svm, notifier);
227
228 intel_flush_svm_range(svm, start,
229 (end - start + PAGE_SIZE - 1) >> VTD_PAGE_SHIFT, 0);
230 }
231
232 static void intel_mm_release(struct mmu_notifier *mn, struct mm_struct *mm)
233 {
234 struct intel_svm *svm = container_of(mn, struct intel_svm, notifier);
235 struct intel_svm_dev *sdev;
236
237 /* This might end up being called from exit_mmap(), *before* the page
238 * tables are cleared. And __mmu_notifier_release() will delete us from
239 * the list of notifiers so that our invalidate_range() callback doesn't
240 * get called when the page tables are cleared. So we need to protect
241 * against hardware accessing those page tables.
242 *
243 * We do it by clearing the entry in the PASID table and then flushing
244 * the IOTLB and the PASID table caches. This might upset hardware;
245 * perhaps we'll want to point the PASID to a dummy PGD (like the zero
246 * page) so that we end up taking a fault that the hardware really
247 * *has* to handle gracefully without affecting other processes.
248 */
249 rcu_read_lock();
250 list_for_each_entry_rcu(sdev, &svm->devs, list)
251 intel_pasid_tear_down_entry(sdev->iommu, sdev->dev,
252 svm->pasid, true);
253 rcu_read_unlock();
254
255 }
256
257 static const struct mmu_notifier_ops intel_mmuops = {
258 .release = intel_mm_release,
259 .arch_invalidate_secondary_tlbs = intel_arch_invalidate_secondary_tlbs,
260 };
261
262 static DEFINE_MUTEX(pasid_mutex);
263
264 static int pasid_to_svm_sdev(struct device *dev, unsigned int pasid,
265 struct intel_svm **rsvm,
266 struct intel_svm_dev **rsdev)
267 {
268 struct intel_svm_dev *sdev = NULL;
269 struct intel_svm *svm;
270
271 /* The caller should hold the pasid_mutex lock */
272 if (WARN_ON(!mutex_is_locked(&pasid_mutex)))
273 return -EINVAL;
274
275 if (pasid == IOMMU_PASID_INVALID || pasid >= PASID_MAX)
276 return -EINVAL;
277
278 svm = pasid_private_find(pasid);
279 if (IS_ERR(svm))
280 return PTR_ERR(svm);
281
282 if (!svm)
283 goto out;
284
285 /*
286 * If we found svm for the PASID, there must be at least one device
287 * bond.
288 */
289 if (WARN_ON(list_empty(&svm->devs)))
290 return -EINVAL;
291 sdev = svm_lookup_device_by_dev(svm, dev);
292
293 out:
294 *rsvm = svm;
295 *rsdev = sdev;
296
297 return 0;
298 }
299
300 static int intel_svm_bind_mm(struct intel_iommu *iommu, struct device *dev,
301 struct mm_struct *mm)
302 {
303 struct device_domain_info *info = dev_iommu_priv_get(dev);
304 struct intel_svm_dev *sdev;
305 struct intel_svm *svm;
306 unsigned long sflags;
307 int ret = 0;
308
309 svm = pasid_private_find(mm->pasid);
310 if (!svm) {
311 svm = kzalloc(sizeof(*svm), GFP_KERNEL);
312 if (!svm)
313 return -ENOMEM;
314
315 svm->pasid = mm->pasid;
316 svm->mm = mm;
317 INIT_LIST_HEAD_RCU(&svm->devs);
318
319 svm->notifier.ops = &intel_mmuops;
320 ret = mmu_notifier_register(&svm->notifier, mm);
321 if (ret) {
322 kfree(svm);
323 return ret;
324 }
325
326 ret = pasid_private_add(svm->pasid, svm);
327 if (ret) {
328 mmu_notifier_unregister(&svm->notifier, mm);
329 kfree(svm);
330 return ret;
331 }
332 }
333
334 sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
335 if (!sdev) {
336 ret = -ENOMEM;
337 goto free_svm;
338 }
339
340 sdev->dev = dev;
341 sdev->iommu = iommu;
342 sdev->did = FLPT_DEFAULT_DID;
343 sdev->sid = PCI_DEVID(info->bus, info->devfn);
344 init_rcu_head(&sdev->rcu);
345 if (info->ats_enabled) {
346 sdev->qdep = info->ats_qdep;
347 if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
348 sdev->qdep = 0;
349 }
350
351 /* Setup the pasid table: */
352 sflags = cpu_feature_enabled(X86_FEATURE_LA57) ? PASID_FLAG_FL5LP : 0;
353 ret = intel_pasid_setup_first_level(iommu, dev, mm->pgd, mm->pasid,
354 FLPT_DEFAULT_DID, sflags);
355 if (ret)
356 goto free_sdev;
357
358 list_add_rcu(&sdev->list, &svm->devs);
359
360 return 0;
361
362 free_sdev:
363 kfree(sdev);
364 free_svm:
365 if (list_empty(&svm->devs)) {
366 mmu_notifier_unregister(&svm->notifier, mm);
367 pasid_private_remove(mm->pasid);
368 kfree(svm);
369 }
370
371 return ret;
372 }
373
374 /* Caller must hold pasid_mutex */
375 static int intel_svm_unbind_mm(struct device *dev, u32 pasid)
376 {
377 struct intel_svm_dev *sdev;
378 struct intel_iommu *iommu;
379 struct intel_svm *svm;
380 struct mm_struct *mm;
381 int ret = -EINVAL;
382
383 iommu = device_to_iommu(dev, NULL, NULL);
384 if (!iommu)
385 goto out;
386
387 ret = pasid_to_svm_sdev(dev, pasid, &svm, &sdev);
388 if (ret)
389 goto out;
390 mm = svm->mm;
391
392 if (sdev) {
393 list_del_rcu(&sdev->list);
394 /*
395 * Flush the PASID cache and IOTLB for this device.
396 * Note that we do depend on the hardware *not* using
397 * the PASID any more. Just as we depend on other
398 * devices never using PASIDs that they have no right
399 * to use. We have a *shared* PASID table, because it's
400 * large and has to be physically contiguous. So it's
401 * hard to be as defensive as we might like.
402 */
403 intel_pasid_tear_down_entry(iommu, dev, svm->pasid, false);
404 intel_svm_drain_prq(dev, svm->pasid);
405 kfree_rcu(sdev, rcu);
406
407 if (list_empty(&svm->devs)) {
408 if (svm->notifier.ops)
409 mmu_notifier_unregister(&svm->notifier, mm);
410 pasid_private_remove(svm->pasid);
411 /*
412 * We mandate that no page faults may be outstanding
413 * for the PASID when intel_svm_unbind_mm() is called.
414 * If that is not obeyed, subtle errors will happen.
415 * Let's make them less subtle...
416 */
417 memset(svm, 0x6b, sizeof(*svm));
418 kfree(svm);
419 }
420 }
421 out:
422 return ret;
423 }
424
425 /* Page request queue descriptor */
426 struct page_req_dsc {
427 union {
428 struct {
429 u64 type:8;
430 u64 pasid_present:1;
431 u64 priv_data_present:1;
432 u64 rsvd:6;
433 u64 rid:16;
434 u64 pasid:20;
435 u64 exe_req:1;
436 u64 pm_req:1;
437 u64 rsvd2:10;
438 };
439 u64 qw_0;
440 };
441 union {
442 struct {
443 u64 rd_req:1;
444 u64 wr_req:1;
445 u64 lpig:1;
446 u64 prg_index:9;
447 u64 addr:52;
448 };
449 u64 qw_1;
450 };
451 u64 priv_data[2];
452 };
453
454 static bool is_canonical_address(u64 addr)
455 {
456 int shift = 64 - (__VIRTUAL_MASK_SHIFT + 1);
457 long saddr = (long) addr;
458
459 return (((saddr << shift) >> shift) == saddr);
460 }
461
462 /**
463 * intel_svm_drain_prq - Drain page requests and responses for a pasid
464 * @dev: target device
465 * @pasid: pasid for draining
466 *
467 * Drain all pending page requests and responses related to @pasid in both
468 * software and hardware. This is supposed to be called after the device
469 * driver has stopped DMA, the pasid entry has been cleared, and both IOTLB
470 * and DevTLB have been invalidated.
471 *
472 * It waits until all pending page requests for @pasid in the page fault
473 * queue are completed by the prq handling thread. Then follow the steps
474 * described in VT-d spec CH7.10 to drain all page requests and page
475 * responses pending in the hardware.
476 */
477 static void intel_svm_drain_prq(struct device *dev, u32 pasid)
478 {
479 struct device_domain_info *info;
480 struct dmar_domain *domain;
481 struct intel_iommu *iommu;
482 struct qi_desc desc[3];
483 struct pci_dev *pdev;
484 int head, tail;
485 u16 sid, did;
486 int qdep;
487
488 info = dev_iommu_priv_get(dev);
489 if (WARN_ON(!info || !dev_is_pci(dev)))
490 return;
491
492 if (!info->pri_enabled)
493 return;
494
495 iommu = info->iommu;
496 domain = info->domain;
497 pdev = to_pci_dev(dev);
498 sid = PCI_DEVID(info->bus, info->devfn);
499 did = domain_id_iommu(domain, iommu);
500 qdep = pci_ats_queue_depth(pdev);
501
502 /*
503 * Check and wait until all pending page requests in the queue are
504 * handled by the prq handling thread.
505 */
506 prq_retry:
507 reinit_completion(&iommu->prq_complete);
508 tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK;
509 head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK;
510 while (head != tail) {
511 struct page_req_dsc *req;
512
513 req = &iommu->prq[head / sizeof(*req)];
514 if (!req->pasid_present || req->pasid != pasid) {
515 head = (head + sizeof(*req)) & PRQ_RING_MASK;
516 continue;
517 }
518
519 wait_for_completion(&iommu->prq_complete);
520 goto prq_retry;
521 }
522
523 /*
524 * A work in IO page fault workqueue may try to lock pasid_mutex now.
525 * Holding pasid_mutex while waiting in iopf_queue_flush_dev() for
526 * all works in the workqueue to finish may cause deadlock.
527 *
528 * It's unnecessary to hold pasid_mutex in iopf_queue_flush_dev().
529 * Unlock it to allow the works to be handled while waiting for
530 * them to finish.
531 */
532 lockdep_assert_held(&pasid_mutex);
533 mutex_unlock(&pasid_mutex);
534 iopf_queue_flush_dev(dev);
535 mutex_lock(&pasid_mutex);
536
537 /*
538 * Perform steps described in VT-d spec CH7.10 to drain page
539 * requests and responses in hardware.
540 */
541 memset(desc, 0, sizeof(desc));
542 desc[0].qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
543 QI_IWD_FENCE |
544 QI_IWD_TYPE;
545 desc[1].qw0 = QI_EIOTLB_PASID(pasid) |
546 QI_EIOTLB_DID(did) |
547 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
548 QI_EIOTLB_TYPE;
549 desc[2].qw0 = QI_DEV_EIOTLB_PASID(pasid) |
550 QI_DEV_EIOTLB_SID(sid) |
551 QI_DEV_EIOTLB_QDEP(qdep) |
552 QI_DEIOTLB_TYPE |
553 QI_DEV_IOTLB_PFSID(info->pfsid);
554 qi_retry:
555 reinit_completion(&iommu->prq_complete);
556 qi_submit_sync(iommu, desc, 3, QI_OPT_WAIT_DRAIN);
557 if (readl(iommu->reg + DMAR_PRS_REG) & DMA_PRS_PRO) {
558 wait_for_completion(&iommu->prq_complete);
559 goto qi_retry;
560 }
561 }
562
563 static int prq_to_iommu_prot(struct page_req_dsc *req)
564 {
565 int prot = 0;
566
567 if (req->rd_req)
568 prot |= IOMMU_FAULT_PERM_READ;
569 if (req->wr_req)
570 prot |= IOMMU_FAULT_PERM_WRITE;
571 if (req->exe_req)
572 prot |= IOMMU_FAULT_PERM_EXEC;
573 if (req->pm_req)
574 prot |= IOMMU_FAULT_PERM_PRIV;
575
576 return prot;
577 }
578
579 static int intel_svm_prq_report(struct intel_iommu *iommu, struct device *dev,
580 struct page_req_dsc *desc)
581 {
582 struct iommu_fault_event event;
583
584 if (!dev || !dev_is_pci(dev))
585 return -ENODEV;
586
587 /* Fill in event data for device specific processing */
588 memset(&event, 0, sizeof(struct iommu_fault_event));
589 event.fault.type = IOMMU_FAULT_PAGE_REQ;
590 event.fault.prm.addr = (u64)desc->addr << VTD_PAGE_SHIFT;
591 event.fault.prm.pasid = desc->pasid;
592 event.fault.prm.grpid = desc->prg_index;
593 event.fault.prm.perm = prq_to_iommu_prot(desc);
594
595 if (desc->lpig)
596 event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE;
597 if (desc->pasid_present) {
598 event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PASID_VALID;
599 event.fault.prm.flags |= IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
600 }
601 if (desc->priv_data_present) {
602 /*
603 * Set last page in group bit if private data is present,
604 * page response is required as it does for LPIG.
605 * iommu_report_device_fault() doesn't understand this vendor
606 * specific requirement thus we set last_page as a workaround.
607 */
608 event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE;
609 event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PRIV_DATA;
610 event.fault.prm.private_data[0] = desc->priv_data[0];
611 event.fault.prm.private_data[1] = desc->priv_data[1];
612 } else if (dmar_latency_enabled(iommu, DMAR_LATENCY_PRQ)) {
613 /*
614 * If the private data fields are not used by hardware, use it
615 * to monitor the prq handle latency.
616 */
617 event.fault.prm.private_data[0] = ktime_to_ns(ktime_get());
618 }
619
620 return iommu_report_device_fault(dev, &event);
621 }
622
623 static void handle_bad_prq_event(struct intel_iommu *iommu,
624 struct page_req_dsc *req, int result)
625 {
626 struct qi_desc desc;
627
628 pr_err("%s: Invalid page request: %08llx %08llx\n",
629 iommu->name, ((unsigned long long *)req)[0],
630 ((unsigned long long *)req)[1]);
631
632 /*
633 * Per VT-d spec. v3.0 ch7.7, system software must
634 * respond with page group response if private data
635 * is present (PDP) or last page in group (LPIG) bit
636 * is set. This is an additional VT-d feature beyond
637 * PCI ATS spec.
638 */
639 if (!req->lpig && !req->priv_data_present)
640 return;
641
642 desc.qw0 = QI_PGRP_PASID(req->pasid) |
643 QI_PGRP_DID(req->rid) |
644 QI_PGRP_PASID_P(req->pasid_present) |
645 QI_PGRP_PDP(req->priv_data_present) |
646 QI_PGRP_RESP_CODE(result) |
647 QI_PGRP_RESP_TYPE;
648 desc.qw1 = QI_PGRP_IDX(req->prg_index) |
649 QI_PGRP_LPIG(req->lpig);
650
651 if (req->priv_data_present) {
652 desc.qw2 = req->priv_data[0];
653 desc.qw3 = req->priv_data[1];
654 } else {
655 desc.qw2 = 0;
656 desc.qw3 = 0;
657 }
658
659 qi_submit_sync(iommu, &desc, 1, 0);
660 }
661
662 static irqreturn_t prq_event_thread(int irq, void *d)
663 {
664 struct intel_iommu *iommu = d;
665 struct page_req_dsc *req;
666 int head, tail, handled;
667 struct pci_dev *pdev;
668 u64 address;
669
670 /*
671 * Clear PPR bit before reading head/tail registers, to ensure that
672 * we get a new interrupt if needed.
673 */
674 writel(DMA_PRS_PPR, iommu->reg + DMAR_PRS_REG);
675
676 tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK;
677 head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK;
678 handled = (head != tail);
679 while (head != tail) {
680 req = &iommu->prq[head / sizeof(*req)];
681 address = (u64)req->addr << VTD_PAGE_SHIFT;
682
683 if (unlikely(!req->pasid_present)) {
684 pr_err("IOMMU: %s: Page request without PASID\n",
685 iommu->name);
686 bad_req:
687 handle_bad_prq_event(iommu, req, QI_RESP_INVALID);
688 goto prq_advance;
689 }
690
691 if (unlikely(!is_canonical_address(address))) {
692 pr_err("IOMMU: %s: Address is not canonical\n",
693 iommu->name);
694 goto bad_req;
695 }
696
697 if (unlikely(req->pm_req && (req->rd_req | req->wr_req))) {
698 pr_err("IOMMU: %s: Page request in Privilege Mode\n",
699 iommu->name);
700 goto bad_req;
701 }
702
703 if (unlikely(req->exe_req && req->rd_req)) {
704 pr_err("IOMMU: %s: Execution request not supported\n",
705 iommu->name);
706 goto bad_req;
707 }
708
709 /* Drop Stop Marker message. No need for a response. */
710 if (unlikely(req->lpig && !req->rd_req && !req->wr_req))
711 goto prq_advance;
712
713 pdev = pci_get_domain_bus_and_slot(iommu->segment,
714 PCI_BUS_NUM(req->rid),
715 req->rid & 0xff);
716 /*
717 * If prq is to be handled outside iommu driver via receiver of
718 * the fault notifiers, we skip the page response here.
719 */
720 if (!pdev)
721 goto bad_req;
722
723 if (intel_svm_prq_report(iommu, &pdev->dev, req))
724 handle_bad_prq_event(iommu, req, QI_RESP_INVALID);
725 else
726 trace_prq_report(iommu, &pdev->dev, req->qw_0, req->qw_1,
727 req->priv_data[0], req->priv_data[1],
728 iommu->prq_seq_number++);
729 pci_dev_put(pdev);
730 prq_advance:
731 head = (head + sizeof(*req)) & PRQ_RING_MASK;
732 }
733
734 dmar_writeq(iommu->reg + DMAR_PQH_REG, tail);
735
736 /*
737 * Clear the page request overflow bit and wake up all threads that
738 * are waiting for the completion of this handling.
739 */
740 if (readl(iommu->reg + DMAR_PRS_REG) & DMA_PRS_PRO) {
741 pr_info_ratelimited("IOMMU: %s: PRQ overflow detected\n",
742 iommu->name);
743 head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK;
744 tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK;
745 if (head == tail) {
746 iopf_queue_discard_partial(iommu->iopf_queue);
747 writel(DMA_PRS_PRO, iommu->reg + DMAR_PRS_REG);
748 pr_info_ratelimited("IOMMU: %s: PRQ overflow cleared",
749 iommu->name);
750 }
751 }
752
753 if (!completion_done(&iommu->prq_complete))
754 complete(&iommu->prq_complete);
755
756 return IRQ_RETVAL(handled);
757 }
758
759 int intel_svm_page_response(struct device *dev,
760 struct iommu_fault_event *evt,
761 struct iommu_page_response *msg)
762 {
763 struct iommu_fault_page_request *prm;
764 struct intel_iommu *iommu;
765 bool private_present;
766 bool pasid_present;
767 bool last_page;
768 u8 bus, devfn;
769 int ret = 0;
770 u16 sid;
771
772 if (!dev || !dev_is_pci(dev))
773 return -ENODEV;
774
775 iommu = device_to_iommu(dev, &bus, &devfn);
776 if (!iommu)
777 return -ENODEV;
778
779 if (!msg || !evt)
780 return -EINVAL;
781
782 prm = &evt->fault.prm;
783 sid = PCI_DEVID(bus, devfn);
784 pasid_present = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PASID_VALID;
785 private_present = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PRIV_DATA;
786 last_page = prm->flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE;
787
788 if (!pasid_present) {
789 ret = -EINVAL;
790 goto out;
791 }
792
793 if (prm->pasid == 0 || prm->pasid >= PASID_MAX) {
794 ret = -EINVAL;
795 goto out;
796 }
797
798 /*
799 * Per VT-d spec. v3.0 ch7.7, system software must respond
800 * with page group response if private data is present (PDP)
801 * or last page in group (LPIG) bit is set. This is an
802 * additional VT-d requirement beyond PCI ATS spec.
803 */
804 if (last_page || private_present) {
805 struct qi_desc desc;
806
807 desc.qw0 = QI_PGRP_PASID(prm->pasid) | QI_PGRP_DID(sid) |
808 QI_PGRP_PASID_P(pasid_present) |
809 QI_PGRP_PDP(private_present) |
810 QI_PGRP_RESP_CODE(msg->code) |
811 QI_PGRP_RESP_TYPE;
812 desc.qw1 = QI_PGRP_IDX(prm->grpid) | QI_PGRP_LPIG(last_page);
813 desc.qw2 = 0;
814 desc.qw3 = 0;
815
816 if (private_present) {
817 desc.qw2 = prm->private_data[0];
818 desc.qw3 = prm->private_data[1];
819 } else if (prm->private_data[0]) {
820 dmar_latency_update(iommu, DMAR_LATENCY_PRQ,
821 ktime_to_ns(ktime_get()) - prm->private_data[0]);
822 }
823
824 qi_submit_sync(iommu, &desc, 1, 0);
825 }
826 out:
827 return ret;
828 }
829
830 void intel_svm_remove_dev_pasid(struct device *dev, ioasid_t pasid)
831 {
832 mutex_lock(&pasid_mutex);
833 intel_svm_unbind_mm(dev, pasid);
834 mutex_unlock(&pasid_mutex);
835 }
836
837 static int intel_svm_set_dev_pasid(struct iommu_domain *domain,
838 struct device *dev, ioasid_t pasid)
839 {
840 struct device_domain_info *info = dev_iommu_priv_get(dev);
841 struct intel_iommu *iommu = info->iommu;
842 struct mm_struct *mm = domain->mm;
843 int ret;
844
845 mutex_lock(&pasid_mutex);
846 ret = intel_svm_bind_mm(iommu, dev, mm);
847 mutex_unlock(&pasid_mutex);
848
849 return ret;
850 }
851
852 static void intel_svm_domain_free(struct iommu_domain *domain)
853 {
854 kfree(to_dmar_domain(domain));
855 }
856
857 static const struct iommu_domain_ops intel_svm_domain_ops = {
858 .set_dev_pasid = intel_svm_set_dev_pasid,
859 .free = intel_svm_domain_free
860 };
861
862 struct iommu_domain *intel_svm_domain_alloc(void)
863 {
864 struct dmar_domain *domain;
865
866 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
867 if (!domain)
868 return NULL;
869 domain->domain.ops = &intel_svm_domain_ops;
870
871 return &domain->domain;
872 }