]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/iommu/rockchip-iommu.c
arch: riscv: add support for building DTB files from DT source data
[thirdparty/linux.git] / drivers / iommu / rockchip-iommu.c
1 /*
2 * IOMMU API for Rockchip
3 *
4 * Module Authors: Simon Xue <xxm@rock-chips.com>
5 * Daniel Kurtz <djkurtz@chromium.org>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/clk.h>
13 #include <linux/compiler.h>
14 #include <linux/delay.h>
15 #include <linux/device.h>
16 #include <linux/dma-iommu.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/errno.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/iommu.h>
22 #include <linux/iopoll.h>
23 #include <linux/list.h>
24 #include <linux/mm.h>
25 #include <linux/init.h>
26 #include <linux/of.h>
27 #include <linux/of_iommu.h>
28 #include <linux/of_platform.h>
29 #include <linux/platform_device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33
34 /** MMU register offsets */
35 #define RK_MMU_DTE_ADDR 0x00 /* Directory table address */
36 #define RK_MMU_STATUS 0x04
37 #define RK_MMU_COMMAND 0x08
38 #define RK_MMU_PAGE_FAULT_ADDR 0x0C /* IOVA of last page fault */
39 #define RK_MMU_ZAP_ONE_LINE 0x10 /* Shootdown one IOTLB entry */
40 #define RK_MMU_INT_RAWSTAT 0x14 /* IRQ status ignoring mask */
41 #define RK_MMU_INT_CLEAR 0x18 /* Acknowledge and re-arm irq */
42 #define RK_MMU_INT_MASK 0x1C /* IRQ enable */
43 #define RK_MMU_INT_STATUS 0x20 /* IRQ status after masking */
44 #define RK_MMU_AUTO_GATING 0x24
45
46 #define DTE_ADDR_DUMMY 0xCAFEBABE
47
48 #define RK_MMU_POLL_PERIOD_US 100
49 #define RK_MMU_FORCE_RESET_TIMEOUT_US 100000
50 #define RK_MMU_POLL_TIMEOUT_US 1000
51
52 /* RK_MMU_STATUS fields */
53 #define RK_MMU_STATUS_PAGING_ENABLED BIT(0)
54 #define RK_MMU_STATUS_PAGE_FAULT_ACTIVE BIT(1)
55 #define RK_MMU_STATUS_STALL_ACTIVE BIT(2)
56 #define RK_MMU_STATUS_IDLE BIT(3)
57 #define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY BIT(4)
58 #define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE BIT(5)
59 #define RK_MMU_STATUS_STALL_NOT_ACTIVE BIT(31)
60
61 /* RK_MMU_COMMAND command values */
62 #define RK_MMU_CMD_ENABLE_PAGING 0 /* Enable memory translation */
63 #define RK_MMU_CMD_DISABLE_PAGING 1 /* Disable memory translation */
64 #define RK_MMU_CMD_ENABLE_STALL 2 /* Stall paging to allow other cmds */
65 #define RK_MMU_CMD_DISABLE_STALL 3 /* Stop stall re-enables paging */
66 #define RK_MMU_CMD_ZAP_CACHE 4 /* Shoot down entire IOTLB */
67 #define RK_MMU_CMD_PAGE_FAULT_DONE 5 /* Clear page fault */
68 #define RK_MMU_CMD_FORCE_RESET 6 /* Reset all registers */
69
70 /* RK_MMU_INT_* register fields */
71 #define RK_MMU_IRQ_PAGE_FAULT 0x01 /* page fault */
72 #define RK_MMU_IRQ_BUS_ERROR 0x02 /* bus read error */
73 #define RK_MMU_IRQ_MASK (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
74
75 #define NUM_DT_ENTRIES 1024
76 #define NUM_PT_ENTRIES 1024
77
78 #define SPAGE_ORDER 12
79 #define SPAGE_SIZE (1 << SPAGE_ORDER)
80
81 /*
82 * Support mapping any size that fits in one page table:
83 * 4 KiB to 4 MiB
84 */
85 #define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
86
87 struct rk_iommu_domain {
88 struct list_head iommus;
89 u32 *dt; /* page directory table */
90 dma_addr_t dt_dma;
91 spinlock_t iommus_lock; /* lock for iommus list */
92 spinlock_t dt_lock; /* lock for modifying page directory table */
93
94 struct iommu_domain domain;
95 };
96
97 /* list of clocks required by IOMMU */
98 static const char * const rk_iommu_clocks[] = {
99 "aclk", "iface",
100 };
101
102 struct rk_iommu {
103 struct device *dev;
104 void __iomem **bases;
105 int num_mmu;
106 struct clk_bulk_data *clocks;
107 int num_clocks;
108 bool reset_disabled;
109 struct iommu_device iommu;
110 struct list_head node; /* entry in rk_iommu_domain.iommus */
111 struct iommu_domain *domain; /* domain to which iommu is attached */
112 struct iommu_group *group;
113 };
114
115 struct rk_iommudata {
116 struct device_link *link; /* runtime PM link from IOMMU to master */
117 struct rk_iommu *iommu;
118 };
119
120 static struct device *dma_dev;
121
122 static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
123 unsigned int count)
124 {
125 size_t size = count * sizeof(u32); /* count of u32 entry */
126
127 dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE);
128 }
129
130 static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
131 {
132 return container_of(dom, struct rk_iommu_domain, domain);
133 }
134
135 /*
136 * The Rockchip rk3288 iommu uses a 2-level page table.
137 * The first level is the "Directory Table" (DT).
138 * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
139 * to a "Page Table".
140 * The second level is the 1024 Page Tables (PT).
141 * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
142 * a 4 KB page of physical memory.
143 *
144 * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
145 * Each iommu device has a MMU_DTE_ADDR register that contains the physical
146 * address of the start of the DT page.
147 *
148 * The structure of the page table is as follows:
149 *
150 * DT
151 * MMU_DTE_ADDR -> +-----+
152 * | |
153 * +-----+ PT
154 * | DTE | -> +-----+
155 * +-----+ | | Memory
156 * | | +-----+ Page
157 * | | | PTE | -> +-----+
158 * +-----+ +-----+ | |
159 * | | | |
160 * | | | |
161 * +-----+ | |
162 * | |
163 * | |
164 * +-----+
165 */
166
167 /*
168 * Each DTE has a PT address and a valid bit:
169 * +---------------------+-----------+-+
170 * | PT address | Reserved |V|
171 * +---------------------+-----------+-+
172 * 31:12 - PT address (PTs always starts on a 4 KB boundary)
173 * 11: 1 - Reserved
174 * 0 - 1 if PT @ PT address is valid
175 */
176 #define RK_DTE_PT_ADDRESS_MASK 0xfffff000
177 #define RK_DTE_PT_VALID BIT(0)
178
179 static inline phys_addr_t rk_dte_pt_address(u32 dte)
180 {
181 return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
182 }
183
184 static inline bool rk_dte_is_pt_valid(u32 dte)
185 {
186 return dte & RK_DTE_PT_VALID;
187 }
188
189 static inline u32 rk_mk_dte(dma_addr_t pt_dma)
190 {
191 return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
192 }
193
194 /*
195 * Each PTE has a Page address, some flags and a valid bit:
196 * +---------------------+---+-------+-+
197 * | Page address |Rsv| Flags |V|
198 * +---------------------+---+-------+-+
199 * 31:12 - Page address (Pages always start on a 4 KB boundary)
200 * 11: 9 - Reserved
201 * 8: 1 - Flags
202 * 8 - Read allocate - allocate cache space on read misses
203 * 7 - Read cache - enable cache & prefetch of data
204 * 6 - Write buffer - enable delaying writes on their way to memory
205 * 5 - Write allocate - allocate cache space on write misses
206 * 4 - Write cache - different writes can be merged together
207 * 3 - Override cache attributes
208 * if 1, bits 4-8 control cache attributes
209 * if 0, the system bus defaults are used
210 * 2 - Writable
211 * 1 - Readable
212 * 0 - 1 if Page @ Page address is valid
213 */
214 #define RK_PTE_PAGE_ADDRESS_MASK 0xfffff000
215 #define RK_PTE_PAGE_FLAGS_MASK 0x000001fe
216 #define RK_PTE_PAGE_WRITABLE BIT(2)
217 #define RK_PTE_PAGE_READABLE BIT(1)
218 #define RK_PTE_PAGE_VALID BIT(0)
219
220 static inline phys_addr_t rk_pte_page_address(u32 pte)
221 {
222 return (phys_addr_t)pte & RK_PTE_PAGE_ADDRESS_MASK;
223 }
224
225 static inline bool rk_pte_is_page_valid(u32 pte)
226 {
227 return pte & RK_PTE_PAGE_VALID;
228 }
229
230 /* TODO: set cache flags per prot IOMMU_CACHE */
231 static u32 rk_mk_pte(phys_addr_t page, int prot)
232 {
233 u32 flags = 0;
234 flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
235 flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
236 page &= RK_PTE_PAGE_ADDRESS_MASK;
237 return page | flags | RK_PTE_PAGE_VALID;
238 }
239
240 static u32 rk_mk_pte_invalid(u32 pte)
241 {
242 return pte & ~RK_PTE_PAGE_VALID;
243 }
244
245 /*
246 * rk3288 iova (IOMMU Virtual Address) format
247 * 31 22.21 12.11 0
248 * +-----------+-----------+-------------+
249 * | DTE index | PTE index | Page offset |
250 * +-----------+-----------+-------------+
251 * 31:22 - DTE index - index of DTE in DT
252 * 21:12 - PTE index - index of PTE in PT @ DTE.pt_address
253 * 11: 0 - Page offset - offset into page @ PTE.page_address
254 */
255 #define RK_IOVA_DTE_MASK 0xffc00000
256 #define RK_IOVA_DTE_SHIFT 22
257 #define RK_IOVA_PTE_MASK 0x003ff000
258 #define RK_IOVA_PTE_SHIFT 12
259 #define RK_IOVA_PAGE_MASK 0x00000fff
260 #define RK_IOVA_PAGE_SHIFT 0
261
262 static u32 rk_iova_dte_index(dma_addr_t iova)
263 {
264 return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
265 }
266
267 static u32 rk_iova_pte_index(dma_addr_t iova)
268 {
269 return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
270 }
271
272 static u32 rk_iova_page_offset(dma_addr_t iova)
273 {
274 return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
275 }
276
277 static u32 rk_iommu_read(void __iomem *base, u32 offset)
278 {
279 return readl(base + offset);
280 }
281
282 static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
283 {
284 writel(value, base + offset);
285 }
286
287 static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
288 {
289 int i;
290
291 for (i = 0; i < iommu->num_mmu; i++)
292 writel(command, iommu->bases[i] + RK_MMU_COMMAND);
293 }
294
295 static void rk_iommu_base_command(void __iomem *base, u32 command)
296 {
297 writel(command, base + RK_MMU_COMMAND);
298 }
299 static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start,
300 size_t size)
301 {
302 int i;
303 dma_addr_t iova_end = iova_start + size;
304 /*
305 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
306 * entire iotlb rather than iterate over individual iovas.
307 */
308 for (i = 0; i < iommu->num_mmu; i++) {
309 dma_addr_t iova;
310
311 for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE)
312 rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
313 }
314 }
315
316 static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
317 {
318 bool active = true;
319 int i;
320
321 for (i = 0; i < iommu->num_mmu; i++)
322 active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
323 RK_MMU_STATUS_STALL_ACTIVE);
324
325 return active;
326 }
327
328 static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
329 {
330 bool enable = true;
331 int i;
332
333 for (i = 0; i < iommu->num_mmu; i++)
334 enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
335 RK_MMU_STATUS_PAGING_ENABLED);
336
337 return enable;
338 }
339
340 static bool rk_iommu_is_reset_done(struct rk_iommu *iommu)
341 {
342 bool done = true;
343 int i;
344
345 for (i = 0; i < iommu->num_mmu; i++)
346 done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0;
347
348 return done;
349 }
350
351 static int rk_iommu_enable_stall(struct rk_iommu *iommu)
352 {
353 int ret, i;
354 bool val;
355
356 if (rk_iommu_is_stall_active(iommu))
357 return 0;
358
359 /* Stall can only be enabled if paging is enabled */
360 if (!rk_iommu_is_paging_enabled(iommu))
361 return 0;
362
363 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
364
365 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
366 val, RK_MMU_POLL_PERIOD_US,
367 RK_MMU_POLL_TIMEOUT_US);
368 if (ret)
369 for (i = 0; i < iommu->num_mmu; i++)
370 dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
371 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
372
373 return ret;
374 }
375
376 static int rk_iommu_disable_stall(struct rk_iommu *iommu)
377 {
378 int ret, i;
379 bool val;
380
381 if (!rk_iommu_is_stall_active(iommu))
382 return 0;
383
384 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
385
386 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
387 !val, RK_MMU_POLL_PERIOD_US,
388 RK_MMU_POLL_TIMEOUT_US);
389 if (ret)
390 for (i = 0; i < iommu->num_mmu; i++)
391 dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
392 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
393
394 return ret;
395 }
396
397 static int rk_iommu_enable_paging(struct rk_iommu *iommu)
398 {
399 int ret, i;
400 bool val;
401
402 if (rk_iommu_is_paging_enabled(iommu))
403 return 0;
404
405 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
406
407 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
408 val, RK_MMU_POLL_PERIOD_US,
409 RK_MMU_POLL_TIMEOUT_US);
410 if (ret)
411 for (i = 0; i < iommu->num_mmu; i++)
412 dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
413 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
414
415 return ret;
416 }
417
418 static int rk_iommu_disable_paging(struct rk_iommu *iommu)
419 {
420 int ret, i;
421 bool val;
422
423 if (!rk_iommu_is_paging_enabled(iommu))
424 return 0;
425
426 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
427
428 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
429 !val, RK_MMU_POLL_PERIOD_US,
430 RK_MMU_POLL_TIMEOUT_US);
431 if (ret)
432 for (i = 0; i < iommu->num_mmu; i++)
433 dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
434 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
435
436 return ret;
437 }
438
439 static int rk_iommu_force_reset(struct rk_iommu *iommu)
440 {
441 int ret, i;
442 u32 dte_addr;
443 bool val;
444
445 if (iommu->reset_disabled)
446 return 0;
447
448 /*
449 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
450 * and verifying that upper 5 nybbles are read back.
451 */
452 for (i = 0; i < iommu->num_mmu; i++) {
453 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, DTE_ADDR_DUMMY);
454
455 dte_addr = rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR);
456 if (dte_addr != (DTE_ADDR_DUMMY & RK_DTE_PT_ADDRESS_MASK)) {
457 dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
458 return -EFAULT;
459 }
460 }
461
462 rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
463
464 ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val,
465 val, RK_MMU_FORCE_RESET_TIMEOUT_US,
466 RK_MMU_POLL_TIMEOUT_US);
467 if (ret) {
468 dev_err(iommu->dev, "FORCE_RESET command timed out\n");
469 return ret;
470 }
471
472 return 0;
473 }
474
475 static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
476 {
477 void __iomem *base = iommu->bases[index];
478 u32 dte_index, pte_index, page_offset;
479 u32 mmu_dte_addr;
480 phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
481 u32 *dte_addr;
482 u32 dte;
483 phys_addr_t pte_addr_phys = 0;
484 u32 *pte_addr = NULL;
485 u32 pte = 0;
486 phys_addr_t page_addr_phys = 0;
487 u32 page_flags = 0;
488
489 dte_index = rk_iova_dte_index(iova);
490 pte_index = rk_iova_pte_index(iova);
491 page_offset = rk_iova_page_offset(iova);
492
493 mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
494 mmu_dte_addr_phys = (phys_addr_t)mmu_dte_addr;
495
496 dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
497 dte_addr = phys_to_virt(dte_addr_phys);
498 dte = *dte_addr;
499
500 if (!rk_dte_is_pt_valid(dte))
501 goto print_it;
502
503 pte_addr_phys = rk_dte_pt_address(dte) + (pte_index * 4);
504 pte_addr = phys_to_virt(pte_addr_phys);
505 pte = *pte_addr;
506
507 if (!rk_pte_is_page_valid(pte))
508 goto print_it;
509
510 page_addr_phys = rk_pte_page_address(pte) + page_offset;
511 page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
512
513 print_it:
514 dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
515 &iova, dte_index, pte_index, page_offset);
516 dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
517 &mmu_dte_addr_phys, &dte_addr_phys, dte,
518 rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
519 rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
520 }
521
522 static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
523 {
524 struct rk_iommu *iommu = dev_id;
525 u32 status;
526 u32 int_status;
527 dma_addr_t iova;
528 irqreturn_t ret = IRQ_NONE;
529 int i, err;
530
531 err = pm_runtime_get_if_in_use(iommu->dev);
532 if (WARN_ON_ONCE(err <= 0))
533 return ret;
534
535 if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)))
536 goto out;
537
538 for (i = 0; i < iommu->num_mmu; i++) {
539 int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
540 if (int_status == 0)
541 continue;
542
543 ret = IRQ_HANDLED;
544 iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
545
546 if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
547 int flags;
548
549 status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
550 flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
551 IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
552
553 dev_err(iommu->dev, "Page fault at %pad of type %s\n",
554 &iova,
555 (flags == IOMMU_FAULT_WRITE) ? "write" : "read");
556
557 log_iova(iommu, i, iova);
558
559 /*
560 * Report page fault to any installed handlers.
561 * Ignore the return code, though, since we always zap cache
562 * and clear the page fault anyway.
563 */
564 if (iommu->domain)
565 report_iommu_fault(iommu->domain, iommu->dev, iova,
566 flags);
567 else
568 dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
569
570 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
571 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
572 }
573
574 if (int_status & RK_MMU_IRQ_BUS_ERROR)
575 dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
576
577 if (int_status & ~RK_MMU_IRQ_MASK)
578 dev_err(iommu->dev, "unexpected int_status: %#08x\n",
579 int_status);
580
581 rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
582 }
583
584 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
585
586 out:
587 pm_runtime_put(iommu->dev);
588 return ret;
589 }
590
591 static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
592 dma_addr_t iova)
593 {
594 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
595 unsigned long flags;
596 phys_addr_t pt_phys, phys = 0;
597 u32 dte, pte;
598 u32 *page_table;
599
600 spin_lock_irqsave(&rk_domain->dt_lock, flags);
601
602 dte = rk_domain->dt[rk_iova_dte_index(iova)];
603 if (!rk_dte_is_pt_valid(dte))
604 goto out;
605
606 pt_phys = rk_dte_pt_address(dte);
607 page_table = (u32 *)phys_to_virt(pt_phys);
608 pte = page_table[rk_iova_pte_index(iova)];
609 if (!rk_pte_is_page_valid(pte))
610 goto out;
611
612 phys = rk_pte_page_address(pte) + rk_iova_page_offset(iova);
613 out:
614 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
615
616 return phys;
617 }
618
619 static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
620 dma_addr_t iova, size_t size)
621 {
622 struct list_head *pos;
623 unsigned long flags;
624
625 /* shootdown these iova from all iommus using this domain */
626 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
627 list_for_each(pos, &rk_domain->iommus) {
628 struct rk_iommu *iommu;
629 int ret;
630
631 iommu = list_entry(pos, struct rk_iommu, node);
632
633 /* Only zap TLBs of IOMMUs that are powered on. */
634 ret = pm_runtime_get_if_in_use(iommu->dev);
635 if (WARN_ON_ONCE(ret < 0))
636 continue;
637 if (ret) {
638 WARN_ON(clk_bulk_enable(iommu->num_clocks,
639 iommu->clocks));
640 rk_iommu_zap_lines(iommu, iova, size);
641 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
642 pm_runtime_put(iommu->dev);
643 }
644 }
645 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
646 }
647
648 static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
649 dma_addr_t iova, size_t size)
650 {
651 rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
652 if (size > SPAGE_SIZE)
653 rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
654 SPAGE_SIZE);
655 }
656
657 static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
658 dma_addr_t iova)
659 {
660 u32 *page_table, *dte_addr;
661 u32 dte_index, dte;
662 phys_addr_t pt_phys;
663 dma_addr_t pt_dma;
664
665 assert_spin_locked(&rk_domain->dt_lock);
666
667 dte_index = rk_iova_dte_index(iova);
668 dte_addr = &rk_domain->dt[dte_index];
669 dte = *dte_addr;
670 if (rk_dte_is_pt_valid(dte))
671 goto done;
672
673 page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32);
674 if (!page_table)
675 return ERR_PTR(-ENOMEM);
676
677 pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
678 if (dma_mapping_error(dma_dev, pt_dma)) {
679 dev_err(dma_dev, "DMA mapping error while allocating page table\n");
680 free_page((unsigned long)page_table);
681 return ERR_PTR(-ENOMEM);
682 }
683
684 dte = rk_mk_dte(pt_dma);
685 *dte_addr = dte;
686
687 rk_table_flush(rk_domain, pt_dma, NUM_PT_ENTRIES);
688 rk_table_flush(rk_domain,
689 rk_domain->dt_dma + dte_index * sizeof(u32), 1);
690 done:
691 pt_phys = rk_dte_pt_address(dte);
692 return (u32 *)phys_to_virt(pt_phys);
693 }
694
695 static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
696 u32 *pte_addr, dma_addr_t pte_dma,
697 size_t size)
698 {
699 unsigned int pte_count;
700 unsigned int pte_total = size / SPAGE_SIZE;
701
702 assert_spin_locked(&rk_domain->dt_lock);
703
704 for (pte_count = 0; pte_count < pte_total; pte_count++) {
705 u32 pte = pte_addr[pte_count];
706 if (!rk_pte_is_page_valid(pte))
707 break;
708
709 pte_addr[pte_count] = rk_mk_pte_invalid(pte);
710 }
711
712 rk_table_flush(rk_domain, pte_dma, pte_count);
713
714 return pte_count * SPAGE_SIZE;
715 }
716
717 static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
718 dma_addr_t pte_dma, dma_addr_t iova,
719 phys_addr_t paddr, size_t size, int prot)
720 {
721 unsigned int pte_count;
722 unsigned int pte_total = size / SPAGE_SIZE;
723 phys_addr_t page_phys;
724
725 assert_spin_locked(&rk_domain->dt_lock);
726
727 for (pte_count = 0; pte_count < pte_total; pte_count++) {
728 u32 pte = pte_addr[pte_count];
729
730 if (rk_pte_is_page_valid(pte))
731 goto unwind;
732
733 pte_addr[pte_count] = rk_mk_pte(paddr, prot);
734
735 paddr += SPAGE_SIZE;
736 }
737
738 rk_table_flush(rk_domain, pte_dma, pte_total);
739
740 /*
741 * Zap the first and last iova to evict from iotlb any previously
742 * mapped cachelines holding stale values for its dte and pte.
743 * We only zap the first and last iova, since only they could have
744 * dte or pte shared with an existing mapping.
745 */
746 rk_iommu_zap_iova_first_last(rk_domain, iova, size);
747
748 return 0;
749 unwind:
750 /* Unmap the range of iovas that we just mapped */
751 rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
752 pte_count * SPAGE_SIZE);
753
754 iova += pte_count * SPAGE_SIZE;
755 page_phys = rk_pte_page_address(pte_addr[pte_count]);
756 pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
757 &iova, &page_phys, &paddr, prot);
758
759 return -EADDRINUSE;
760 }
761
762 static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
763 phys_addr_t paddr, size_t size, int prot)
764 {
765 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
766 unsigned long flags;
767 dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
768 u32 *page_table, *pte_addr;
769 u32 dte_index, pte_index;
770 int ret;
771
772 spin_lock_irqsave(&rk_domain->dt_lock, flags);
773
774 /*
775 * pgsize_bitmap specifies iova sizes that fit in one page table
776 * (1024 4-KiB pages = 4 MiB).
777 * So, size will always be 4096 <= size <= 4194304.
778 * Since iommu_map() guarantees that both iova and size will be
779 * aligned, we will always only be mapping from a single dte here.
780 */
781 page_table = rk_dte_get_page_table(rk_domain, iova);
782 if (IS_ERR(page_table)) {
783 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
784 return PTR_ERR(page_table);
785 }
786
787 dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
788 pte_index = rk_iova_pte_index(iova);
789 pte_addr = &page_table[pte_index];
790 pte_dma = rk_dte_pt_address(dte_index) + pte_index * sizeof(u32);
791 ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
792 paddr, size, prot);
793
794 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
795
796 return ret;
797 }
798
799 static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
800 size_t size)
801 {
802 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
803 unsigned long flags;
804 dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
805 phys_addr_t pt_phys;
806 u32 dte;
807 u32 *pte_addr;
808 size_t unmap_size;
809
810 spin_lock_irqsave(&rk_domain->dt_lock, flags);
811
812 /*
813 * pgsize_bitmap specifies iova sizes that fit in one page table
814 * (1024 4-KiB pages = 4 MiB).
815 * So, size will always be 4096 <= size <= 4194304.
816 * Since iommu_unmap() guarantees that both iova and size will be
817 * aligned, we will always only be unmapping from a single dte here.
818 */
819 dte = rk_domain->dt[rk_iova_dte_index(iova)];
820 /* Just return 0 if iova is unmapped */
821 if (!rk_dte_is_pt_valid(dte)) {
822 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
823 return 0;
824 }
825
826 pt_phys = rk_dte_pt_address(dte);
827 pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
828 pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
829 unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
830
831 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
832
833 /* Shootdown iotlb entries for iova range that was just unmapped */
834 rk_iommu_zap_iova(rk_domain, iova, unmap_size);
835
836 return unmap_size;
837 }
838
839 static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
840 {
841 struct rk_iommudata *data = dev->archdata.iommu;
842
843 return data ? data->iommu : NULL;
844 }
845
846 /* Must be called with iommu powered on and attached */
847 static void rk_iommu_disable(struct rk_iommu *iommu)
848 {
849 int i;
850
851 /* Ignore error while disabling, just keep going */
852 WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks));
853 rk_iommu_enable_stall(iommu);
854 rk_iommu_disable_paging(iommu);
855 for (i = 0; i < iommu->num_mmu; i++) {
856 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
857 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
858 }
859 rk_iommu_disable_stall(iommu);
860 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
861 }
862
863 /* Must be called with iommu powered on and attached */
864 static int rk_iommu_enable(struct rk_iommu *iommu)
865 {
866 struct iommu_domain *domain = iommu->domain;
867 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
868 int ret, i;
869
870 ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks);
871 if (ret)
872 return ret;
873
874 ret = rk_iommu_enable_stall(iommu);
875 if (ret)
876 goto out_disable_clocks;
877
878 ret = rk_iommu_force_reset(iommu);
879 if (ret)
880 goto out_disable_stall;
881
882 for (i = 0; i < iommu->num_mmu; i++) {
883 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
884 rk_domain->dt_dma);
885 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
886 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
887 }
888
889 ret = rk_iommu_enable_paging(iommu);
890
891 out_disable_stall:
892 rk_iommu_disable_stall(iommu);
893 out_disable_clocks:
894 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
895 return ret;
896 }
897
898 static void rk_iommu_detach_device(struct iommu_domain *domain,
899 struct device *dev)
900 {
901 struct rk_iommu *iommu;
902 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
903 unsigned long flags;
904 int ret;
905
906 /* Allow 'virtual devices' (eg drm) to detach from domain */
907 iommu = rk_iommu_from_dev(dev);
908 if (!iommu)
909 return;
910
911 dev_dbg(dev, "Detaching from iommu domain\n");
912
913 /* iommu already detached */
914 if (iommu->domain != domain)
915 return;
916
917 iommu->domain = NULL;
918
919 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
920 list_del_init(&iommu->node);
921 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
922
923 ret = pm_runtime_get_if_in_use(iommu->dev);
924 WARN_ON_ONCE(ret < 0);
925 if (ret > 0) {
926 rk_iommu_disable(iommu);
927 pm_runtime_put(iommu->dev);
928 }
929 }
930
931 static int rk_iommu_attach_device(struct iommu_domain *domain,
932 struct device *dev)
933 {
934 struct rk_iommu *iommu;
935 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
936 unsigned long flags;
937 int ret;
938
939 /*
940 * Allow 'virtual devices' (e.g., drm) to attach to domain.
941 * Such a device does not belong to an iommu group.
942 */
943 iommu = rk_iommu_from_dev(dev);
944 if (!iommu)
945 return 0;
946
947 dev_dbg(dev, "Attaching to iommu domain\n");
948
949 /* iommu already attached */
950 if (iommu->domain == domain)
951 return 0;
952
953 if (iommu->domain)
954 rk_iommu_detach_device(iommu->domain, dev);
955
956 iommu->domain = domain;
957
958 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
959 list_add_tail(&iommu->node, &rk_domain->iommus);
960 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
961
962 ret = pm_runtime_get_if_in_use(iommu->dev);
963 if (!ret || WARN_ON_ONCE(ret < 0))
964 return 0;
965
966 ret = rk_iommu_enable(iommu);
967 if (ret)
968 rk_iommu_detach_device(iommu->domain, dev);
969
970 pm_runtime_put(iommu->dev);
971
972 return ret;
973 }
974
975 static struct iommu_domain *rk_iommu_domain_alloc(unsigned type)
976 {
977 struct rk_iommu_domain *rk_domain;
978
979 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
980 return NULL;
981
982 if (!dma_dev)
983 return NULL;
984
985 rk_domain = devm_kzalloc(dma_dev, sizeof(*rk_domain), GFP_KERNEL);
986 if (!rk_domain)
987 return NULL;
988
989 if (type == IOMMU_DOMAIN_DMA &&
990 iommu_get_dma_cookie(&rk_domain->domain))
991 return NULL;
992
993 /*
994 * rk32xx iommus use a 2 level pagetable.
995 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
996 * Allocate one 4 KiB page for each table.
997 */
998 rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32);
999 if (!rk_domain->dt)
1000 goto err_put_cookie;
1001
1002 rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt,
1003 SPAGE_SIZE, DMA_TO_DEVICE);
1004 if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) {
1005 dev_err(dma_dev, "DMA map error for DT\n");
1006 goto err_free_dt;
1007 }
1008
1009 rk_table_flush(rk_domain, rk_domain->dt_dma, NUM_DT_ENTRIES);
1010
1011 spin_lock_init(&rk_domain->iommus_lock);
1012 spin_lock_init(&rk_domain->dt_lock);
1013 INIT_LIST_HEAD(&rk_domain->iommus);
1014
1015 rk_domain->domain.geometry.aperture_start = 0;
1016 rk_domain->domain.geometry.aperture_end = DMA_BIT_MASK(32);
1017 rk_domain->domain.geometry.force_aperture = true;
1018
1019 return &rk_domain->domain;
1020
1021 err_free_dt:
1022 free_page((unsigned long)rk_domain->dt);
1023 err_put_cookie:
1024 if (type == IOMMU_DOMAIN_DMA)
1025 iommu_put_dma_cookie(&rk_domain->domain);
1026
1027 return NULL;
1028 }
1029
1030 static void rk_iommu_domain_free(struct iommu_domain *domain)
1031 {
1032 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1033 int i;
1034
1035 WARN_ON(!list_empty(&rk_domain->iommus));
1036
1037 for (i = 0; i < NUM_DT_ENTRIES; i++) {
1038 u32 dte = rk_domain->dt[i];
1039 if (rk_dte_is_pt_valid(dte)) {
1040 phys_addr_t pt_phys = rk_dte_pt_address(dte);
1041 u32 *page_table = phys_to_virt(pt_phys);
1042 dma_unmap_single(dma_dev, pt_phys,
1043 SPAGE_SIZE, DMA_TO_DEVICE);
1044 free_page((unsigned long)page_table);
1045 }
1046 }
1047
1048 dma_unmap_single(dma_dev, rk_domain->dt_dma,
1049 SPAGE_SIZE, DMA_TO_DEVICE);
1050 free_page((unsigned long)rk_domain->dt);
1051
1052 if (domain->type == IOMMU_DOMAIN_DMA)
1053 iommu_put_dma_cookie(&rk_domain->domain);
1054 }
1055
1056 static int rk_iommu_add_device(struct device *dev)
1057 {
1058 struct iommu_group *group;
1059 struct rk_iommu *iommu;
1060 struct rk_iommudata *data;
1061
1062 data = dev->archdata.iommu;
1063 if (!data)
1064 return -ENODEV;
1065
1066 iommu = rk_iommu_from_dev(dev);
1067
1068 group = iommu_group_get_for_dev(dev);
1069 if (IS_ERR(group))
1070 return PTR_ERR(group);
1071 iommu_group_put(group);
1072
1073 iommu_device_link(&iommu->iommu, dev);
1074 data->link = device_link_add(dev, iommu->dev,
1075 DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME);
1076
1077 return 0;
1078 }
1079
1080 static void rk_iommu_remove_device(struct device *dev)
1081 {
1082 struct rk_iommu *iommu;
1083 struct rk_iommudata *data = dev->archdata.iommu;
1084
1085 iommu = rk_iommu_from_dev(dev);
1086
1087 device_link_del(data->link);
1088 iommu_device_unlink(&iommu->iommu, dev);
1089 iommu_group_remove_device(dev);
1090 }
1091
1092 static struct iommu_group *rk_iommu_device_group(struct device *dev)
1093 {
1094 struct rk_iommu *iommu;
1095
1096 iommu = rk_iommu_from_dev(dev);
1097
1098 return iommu_group_ref_get(iommu->group);
1099 }
1100
1101 static int rk_iommu_of_xlate(struct device *dev,
1102 struct of_phandle_args *args)
1103 {
1104 struct platform_device *iommu_dev;
1105 struct rk_iommudata *data;
1106
1107 data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL);
1108 if (!data)
1109 return -ENOMEM;
1110
1111 iommu_dev = of_find_device_by_node(args->np);
1112
1113 data->iommu = platform_get_drvdata(iommu_dev);
1114 dev->archdata.iommu = data;
1115
1116 platform_device_put(iommu_dev);
1117
1118 return 0;
1119 }
1120
1121 static const struct iommu_ops rk_iommu_ops = {
1122 .domain_alloc = rk_iommu_domain_alloc,
1123 .domain_free = rk_iommu_domain_free,
1124 .attach_dev = rk_iommu_attach_device,
1125 .detach_dev = rk_iommu_detach_device,
1126 .map = rk_iommu_map,
1127 .unmap = rk_iommu_unmap,
1128 .add_device = rk_iommu_add_device,
1129 .remove_device = rk_iommu_remove_device,
1130 .iova_to_phys = rk_iommu_iova_to_phys,
1131 .device_group = rk_iommu_device_group,
1132 .pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
1133 .of_xlate = rk_iommu_of_xlate,
1134 };
1135
1136 static int rk_iommu_probe(struct platform_device *pdev)
1137 {
1138 struct device *dev = &pdev->dev;
1139 struct rk_iommu *iommu;
1140 struct resource *res;
1141 int num_res = pdev->num_resources;
1142 int err, i, irq;
1143
1144 iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
1145 if (!iommu)
1146 return -ENOMEM;
1147
1148 platform_set_drvdata(pdev, iommu);
1149 iommu->dev = dev;
1150 iommu->num_mmu = 0;
1151
1152 iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases),
1153 GFP_KERNEL);
1154 if (!iommu->bases)
1155 return -ENOMEM;
1156
1157 for (i = 0; i < num_res; i++) {
1158 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1159 if (!res)
1160 continue;
1161 iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
1162 if (IS_ERR(iommu->bases[i]))
1163 continue;
1164 iommu->num_mmu++;
1165 }
1166 if (iommu->num_mmu == 0)
1167 return PTR_ERR(iommu->bases[0]);
1168
1169 iommu->reset_disabled = device_property_read_bool(dev,
1170 "rockchip,disable-mmu-reset");
1171
1172 iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks);
1173 iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks,
1174 sizeof(*iommu->clocks), GFP_KERNEL);
1175 if (!iommu->clocks)
1176 return -ENOMEM;
1177
1178 for (i = 0; i < iommu->num_clocks; ++i)
1179 iommu->clocks[i].id = rk_iommu_clocks[i];
1180
1181 /*
1182 * iommu clocks should be present for all new devices and devicetrees
1183 * but there are older devicetrees without clocks out in the wild.
1184 * So clocks as optional for the time being.
1185 */
1186 err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks);
1187 if (err == -ENOENT)
1188 iommu->num_clocks = 0;
1189 else if (err)
1190 return err;
1191
1192 err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks);
1193 if (err)
1194 return err;
1195
1196 iommu->group = iommu_group_alloc();
1197 if (IS_ERR(iommu->group)) {
1198 err = PTR_ERR(iommu->group);
1199 goto err_unprepare_clocks;
1200 }
1201
1202 err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev));
1203 if (err)
1204 goto err_put_group;
1205
1206 iommu_device_set_ops(&iommu->iommu, &rk_iommu_ops);
1207 iommu_device_set_fwnode(&iommu->iommu, &dev->of_node->fwnode);
1208
1209 err = iommu_device_register(&iommu->iommu);
1210 if (err)
1211 goto err_remove_sysfs;
1212
1213 /*
1214 * Use the first registered IOMMU device for domain to use with DMA
1215 * API, since a domain might not physically correspond to a single
1216 * IOMMU device..
1217 */
1218 if (!dma_dev)
1219 dma_dev = &pdev->dev;
1220
1221 bus_set_iommu(&platform_bus_type, &rk_iommu_ops);
1222
1223 pm_runtime_enable(dev);
1224
1225 i = 0;
1226 while ((irq = platform_get_irq(pdev, i++)) != -ENXIO) {
1227 if (irq < 0)
1228 return irq;
1229
1230 err = devm_request_irq(iommu->dev, irq, rk_iommu_irq,
1231 IRQF_SHARED, dev_name(dev), iommu);
1232 if (err) {
1233 pm_runtime_disable(dev);
1234 goto err_remove_sysfs;
1235 }
1236 }
1237
1238 return 0;
1239 err_remove_sysfs:
1240 iommu_device_sysfs_remove(&iommu->iommu);
1241 err_put_group:
1242 iommu_group_put(iommu->group);
1243 err_unprepare_clocks:
1244 clk_bulk_unprepare(iommu->num_clocks, iommu->clocks);
1245 return err;
1246 }
1247
1248 static void rk_iommu_shutdown(struct platform_device *pdev)
1249 {
1250 struct rk_iommu *iommu = platform_get_drvdata(pdev);
1251 int i = 0, irq;
1252
1253 while ((irq = platform_get_irq(pdev, i++)) != -ENXIO)
1254 devm_free_irq(iommu->dev, irq, iommu);
1255
1256 pm_runtime_force_suspend(&pdev->dev);
1257 }
1258
1259 static int __maybe_unused rk_iommu_suspend(struct device *dev)
1260 {
1261 struct rk_iommu *iommu = dev_get_drvdata(dev);
1262
1263 if (!iommu->domain)
1264 return 0;
1265
1266 rk_iommu_disable(iommu);
1267 return 0;
1268 }
1269
1270 static int __maybe_unused rk_iommu_resume(struct device *dev)
1271 {
1272 struct rk_iommu *iommu = dev_get_drvdata(dev);
1273
1274 if (!iommu->domain)
1275 return 0;
1276
1277 return rk_iommu_enable(iommu);
1278 }
1279
1280 static const struct dev_pm_ops rk_iommu_pm_ops = {
1281 SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL)
1282 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1283 pm_runtime_force_resume)
1284 };
1285
1286 static const struct of_device_id rk_iommu_dt_ids[] = {
1287 { .compatible = "rockchip,iommu" },
1288 { /* sentinel */ }
1289 };
1290
1291 static struct platform_driver rk_iommu_driver = {
1292 .probe = rk_iommu_probe,
1293 .shutdown = rk_iommu_shutdown,
1294 .driver = {
1295 .name = "rk_iommu",
1296 .of_match_table = rk_iommu_dt_ids,
1297 .pm = &rk_iommu_pm_ops,
1298 .suppress_bind_attrs = true,
1299 },
1300 };
1301
1302 static int __init rk_iommu_init(void)
1303 {
1304 return platform_driver_register(&rk_iommu_driver);
1305 }
1306 subsys_initcall(rk_iommu_init);