]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/irqchip/irq-gic-v3-its.c
Merge tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/linux.git] / drivers / irqchip / irq-gic-v3-its.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
45 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3)
46
47 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
48 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1)
49 #define RDIST_FLAGS_FORCE_NON_SHAREABLE (1 << 2)
50
51 #define RD_LOCAL_LPI_ENABLED BIT(0)
52 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1)
53 #define RD_LOCAL_MEMRESERVE_DONE BIT(2)
54
55 static u32 lpi_id_bits;
56
57 /*
58 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
59 * deal with (one configuration byte per interrupt). PENDBASE has to
60 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
61 */
62 #define LPI_NRBITS lpi_id_bits
63 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
64 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
65
66 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI
67
68 /*
69 * Collection structure - just an ID, and a redistributor address to
70 * ping. We use one per CPU as a bag of interrupts assigned to this
71 * CPU.
72 */
73 struct its_collection {
74 u64 target_address;
75 u16 col_id;
76 };
77
78 /*
79 * The ITS_BASER structure - contains memory information, cached
80 * value of BASER register configuration and ITS page size.
81 */
82 struct its_baser {
83 void *base;
84 u64 val;
85 u32 order;
86 u32 psz;
87 };
88
89 struct its_device;
90
91 /*
92 * The ITS structure - contains most of the infrastructure, with the
93 * top-level MSI domain, the command queue, the collections, and the
94 * list of devices writing to it.
95 *
96 * dev_alloc_lock has to be taken for device allocations, while the
97 * spinlock must be taken to parse data structures such as the device
98 * list.
99 */
100 struct its_node {
101 raw_spinlock_t lock;
102 struct mutex dev_alloc_lock;
103 struct list_head entry;
104 void __iomem *base;
105 void __iomem *sgir_base;
106 phys_addr_t phys_base;
107 struct its_cmd_block *cmd_base;
108 struct its_cmd_block *cmd_write;
109 struct its_baser tables[GITS_BASER_NR_REGS];
110 struct its_collection *collections;
111 struct fwnode_handle *fwnode_handle;
112 u64 (*get_msi_base)(struct its_device *its_dev);
113 u64 typer;
114 u64 cbaser_save;
115 u32 ctlr_save;
116 u32 mpidr;
117 struct list_head its_device_list;
118 u64 flags;
119 unsigned long list_nr;
120 int numa_node;
121 unsigned int msi_domain_flags;
122 u32 pre_its_base; /* for Socionext Synquacer */
123 int vlpi_redist_offset;
124 };
125
126 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
127 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
128 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
129
130 #define ITS_ITT_ALIGN SZ_256
131
132 /* The maximum number of VPEID bits supported by VLPI commands */
133 #define ITS_MAX_VPEID_BITS \
134 ({ \
135 int nvpeid = 16; \
136 if (gic_rdists->has_rvpeid && \
137 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
138 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
139 GICD_TYPER2_VID); \
140 \
141 nvpeid; \
142 })
143 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
144
145 /* Convert page order to size in bytes */
146 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
147
148 struct event_lpi_map {
149 unsigned long *lpi_map;
150 u16 *col_map;
151 irq_hw_number_t lpi_base;
152 int nr_lpis;
153 raw_spinlock_t vlpi_lock;
154 struct its_vm *vm;
155 struct its_vlpi_map *vlpi_maps;
156 int nr_vlpis;
157 };
158
159 /*
160 * The ITS view of a device - belongs to an ITS, owns an interrupt
161 * translation table, and a list of interrupts. If it some of its
162 * LPIs are injected into a guest (GICv4), the event_map.vm field
163 * indicates which one.
164 */
165 struct its_device {
166 struct list_head entry;
167 struct its_node *its;
168 struct event_lpi_map event_map;
169 void *itt;
170 u32 nr_ites;
171 u32 device_id;
172 bool shared;
173 };
174
175 static struct {
176 raw_spinlock_t lock;
177 struct its_device *dev;
178 struct its_vpe **vpes;
179 int next_victim;
180 } vpe_proxy;
181
182 struct cpu_lpi_count {
183 atomic_t managed;
184 atomic_t unmanaged;
185 };
186
187 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
188
189 static LIST_HEAD(its_nodes);
190 static DEFINE_RAW_SPINLOCK(its_lock);
191 static struct rdists *gic_rdists;
192 static struct irq_domain *its_parent;
193
194 static unsigned long its_list_map;
195 static u16 vmovp_seq_num;
196 static DEFINE_RAW_SPINLOCK(vmovp_lock);
197
198 static DEFINE_IDA(its_vpeid_ida);
199
200 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
201 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
202 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
203 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
204
205 /*
206 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
207 * always have vSGIs mapped.
208 */
209 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
210 {
211 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
212 }
213
214 static u16 get_its_list(struct its_vm *vm)
215 {
216 struct its_node *its;
217 unsigned long its_list = 0;
218
219 list_for_each_entry(its, &its_nodes, entry) {
220 if (!is_v4(its))
221 continue;
222
223 if (require_its_list_vmovp(vm, its))
224 __set_bit(its->list_nr, &its_list);
225 }
226
227 return (u16)its_list;
228 }
229
230 static inline u32 its_get_event_id(struct irq_data *d)
231 {
232 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
233 return d->hwirq - its_dev->event_map.lpi_base;
234 }
235
236 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
237 u32 event)
238 {
239 struct its_node *its = its_dev->its;
240
241 return its->collections + its_dev->event_map.col_map[event];
242 }
243
244 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
245 u32 event)
246 {
247 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
248 return NULL;
249
250 return &its_dev->event_map.vlpi_maps[event];
251 }
252
253 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
254 {
255 if (irqd_is_forwarded_to_vcpu(d)) {
256 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
257 u32 event = its_get_event_id(d);
258
259 return dev_event_to_vlpi_map(its_dev, event);
260 }
261
262 return NULL;
263 }
264
265 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
266 {
267 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
268 return vpe->col_idx;
269 }
270
271 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
272 {
273 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
274 }
275
276 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
277 {
278 struct its_vlpi_map *map = get_vlpi_map(d);
279 int cpu;
280
281 if (map) {
282 cpu = vpe_to_cpuid_lock(map->vpe, flags);
283 } else {
284 /* Physical LPIs are already locked via the irq_desc lock */
285 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
286 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
287 /* Keep GCC quiet... */
288 *flags = 0;
289 }
290
291 return cpu;
292 }
293
294 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
295 {
296 struct its_vlpi_map *map = get_vlpi_map(d);
297
298 if (map)
299 vpe_to_cpuid_unlock(map->vpe, flags);
300 }
301
302 static struct its_collection *valid_col(struct its_collection *col)
303 {
304 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
305 return NULL;
306
307 return col;
308 }
309
310 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
311 {
312 if (valid_col(its->collections + vpe->col_idx))
313 return vpe;
314
315 return NULL;
316 }
317
318 /*
319 * ITS command descriptors - parameters to be encoded in a command
320 * block.
321 */
322 struct its_cmd_desc {
323 union {
324 struct {
325 struct its_device *dev;
326 u32 event_id;
327 } its_inv_cmd;
328
329 struct {
330 struct its_device *dev;
331 u32 event_id;
332 } its_clear_cmd;
333
334 struct {
335 struct its_device *dev;
336 u32 event_id;
337 } its_int_cmd;
338
339 struct {
340 struct its_device *dev;
341 int valid;
342 } its_mapd_cmd;
343
344 struct {
345 struct its_collection *col;
346 int valid;
347 } its_mapc_cmd;
348
349 struct {
350 struct its_device *dev;
351 u32 phys_id;
352 u32 event_id;
353 } its_mapti_cmd;
354
355 struct {
356 struct its_device *dev;
357 struct its_collection *col;
358 u32 event_id;
359 } its_movi_cmd;
360
361 struct {
362 struct its_device *dev;
363 u32 event_id;
364 } its_discard_cmd;
365
366 struct {
367 struct its_collection *col;
368 } its_invall_cmd;
369
370 struct {
371 struct its_vpe *vpe;
372 } its_vinvall_cmd;
373
374 struct {
375 struct its_vpe *vpe;
376 struct its_collection *col;
377 bool valid;
378 } its_vmapp_cmd;
379
380 struct {
381 struct its_vpe *vpe;
382 struct its_device *dev;
383 u32 virt_id;
384 u32 event_id;
385 bool db_enabled;
386 } its_vmapti_cmd;
387
388 struct {
389 struct its_vpe *vpe;
390 struct its_device *dev;
391 u32 event_id;
392 bool db_enabled;
393 } its_vmovi_cmd;
394
395 struct {
396 struct its_vpe *vpe;
397 struct its_collection *col;
398 u16 seq_num;
399 u16 its_list;
400 } its_vmovp_cmd;
401
402 struct {
403 struct its_vpe *vpe;
404 } its_invdb_cmd;
405
406 struct {
407 struct its_vpe *vpe;
408 u8 sgi;
409 u8 priority;
410 bool enable;
411 bool group;
412 bool clear;
413 } its_vsgi_cmd;
414 };
415 };
416
417 /*
418 * The ITS command block, which is what the ITS actually parses.
419 */
420 struct its_cmd_block {
421 union {
422 u64 raw_cmd[4];
423 __le64 raw_cmd_le[4];
424 };
425 };
426
427 #define ITS_CMD_QUEUE_SZ SZ_64K
428 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
429
430 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
431 struct its_cmd_block *,
432 struct its_cmd_desc *);
433
434 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
435 struct its_cmd_block *,
436 struct its_cmd_desc *);
437
438 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
439 {
440 u64 mask = GENMASK_ULL(h, l);
441 *raw_cmd &= ~mask;
442 *raw_cmd |= (val << l) & mask;
443 }
444
445 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
446 {
447 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
448 }
449
450 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
451 {
452 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
453 }
454
455 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
456 {
457 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
458 }
459
460 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
461 {
462 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
463 }
464
465 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
466 {
467 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
468 }
469
470 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
471 {
472 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
473 }
474
475 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
476 {
477 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
478 }
479
480 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
481 {
482 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
483 }
484
485 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
486 {
487 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
488 }
489
490 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
491 {
492 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
493 }
494
495 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
496 {
497 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
498 }
499
500 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
501 {
502 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
503 }
504
505 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
506 {
507 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
508 }
509
510 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
511 {
512 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
513 }
514
515 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
516 {
517 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
518 }
519
520 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
521 {
522 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
523 }
524
525 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
526 {
527 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
528 }
529
530 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
531 {
532 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
533 }
534
535 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
536 {
537 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
538 }
539
540 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
541 {
542 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
543 }
544
545 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
546 u32 vpe_db_lpi)
547 {
548 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
549 }
550
551 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
552 u32 vpe_db_lpi)
553 {
554 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
555 }
556
557 static void its_encode_db(struct its_cmd_block *cmd, bool db)
558 {
559 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
560 }
561
562 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
563 {
564 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
565 }
566
567 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
568 {
569 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
570 }
571
572 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
573 {
574 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
575 }
576
577 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
578 {
579 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
580 }
581
582 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
583 {
584 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
585 }
586
587 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
588 {
589 /* Let's fixup BE commands */
590 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
591 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
592 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
593 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
594 }
595
596 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
597 struct its_cmd_block *cmd,
598 struct its_cmd_desc *desc)
599 {
600 unsigned long itt_addr;
601 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
602
603 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
604 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
605
606 its_encode_cmd(cmd, GITS_CMD_MAPD);
607 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
608 its_encode_size(cmd, size - 1);
609 its_encode_itt(cmd, itt_addr);
610 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
611
612 its_fixup_cmd(cmd);
613
614 return NULL;
615 }
616
617 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
618 struct its_cmd_block *cmd,
619 struct its_cmd_desc *desc)
620 {
621 its_encode_cmd(cmd, GITS_CMD_MAPC);
622 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
623 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
624 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
625
626 its_fixup_cmd(cmd);
627
628 return desc->its_mapc_cmd.col;
629 }
630
631 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
632 struct its_cmd_block *cmd,
633 struct its_cmd_desc *desc)
634 {
635 struct its_collection *col;
636
637 col = dev_event_to_col(desc->its_mapti_cmd.dev,
638 desc->its_mapti_cmd.event_id);
639
640 its_encode_cmd(cmd, GITS_CMD_MAPTI);
641 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
642 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
643 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
644 its_encode_collection(cmd, col->col_id);
645
646 its_fixup_cmd(cmd);
647
648 return valid_col(col);
649 }
650
651 static struct its_collection *its_build_movi_cmd(struct its_node *its,
652 struct its_cmd_block *cmd,
653 struct its_cmd_desc *desc)
654 {
655 struct its_collection *col;
656
657 col = dev_event_to_col(desc->its_movi_cmd.dev,
658 desc->its_movi_cmd.event_id);
659
660 its_encode_cmd(cmd, GITS_CMD_MOVI);
661 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
662 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
663 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
664
665 its_fixup_cmd(cmd);
666
667 return valid_col(col);
668 }
669
670 static struct its_collection *its_build_discard_cmd(struct its_node *its,
671 struct its_cmd_block *cmd,
672 struct its_cmd_desc *desc)
673 {
674 struct its_collection *col;
675
676 col = dev_event_to_col(desc->its_discard_cmd.dev,
677 desc->its_discard_cmd.event_id);
678
679 its_encode_cmd(cmd, GITS_CMD_DISCARD);
680 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
681 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
682
683 its_fixup_cmd(cmd);
684
685 return valid_col(col);
686 }
687
688 static struct its_collection *its_build_inv_cmd(struct its_node *its,
689 struct its_cmd_block *cmd,
690 struct its_cmd_desc *desc)
691 {
692 struct its_collection *col;
693
694 col = dev_event_to_col(desc->its_inv_cmd.dev,
695 desc->its_inv_cmd.event_id);
696
697 its_encode_cmd(cmd, GITS_CMD_INV);
698 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
699 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
700
701 its_fixup_cmd(cmd);
702
703 return valid_col(col);
704 }
705
706 static struct its_collection *its_build_int_cmd(struct its_node *its,
707 struct its_cmd_block *cmd,
708 struct its_cmd_desc *desc)
709 {
710 struct its_collection *col;
711
712 col = dev_event_to_col(desc->its_int_cmd.dev,
713 desc->its_int_cmd.event_id);
714
715 its_encode_cmd(cmd, GITS_CMD_INT);
716 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
717 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
718
719 its_fixup_cmd(cmd);
720
721 return valid_col(col);
722 }
723
724 static struct its_collection *its_build_clear_cmd(struct its_node *its,
725 struct its_cmd_block *cmd,
726 struct its_cmd_desc *desc)
727 {
728 struct its_collection *col;
729
730 col = dev_event_to_col(desc->its_clear_cmd.dev,
731 desc->its_clear_cmd.event_id);
732
733 its_encode_cmd(cmd, GITS_CMD_CLEAR);
734 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
735 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
736
737 its_fixup_cmd(cmd);
738
739 return valid_col(col);
740 }
741
742 static struct its_collection *its_build_invall_cmd(struct its_node *its,
743 struct its_cmd_block *cmd,
744 struct its_cmd_desc *desc)
745 {
746 its_encode_cmd(cmd, GITS_CMD_INVALL);
747 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
748
749 its_fixup_cmd(cmd);
750
751 return desc->its_invall_cmd.col;
752 }
753
754 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
755 struct its_cmd_block *cmd,
756 struct its_cmd_desc *desc)
757 {
758 its_encode_cmd(cmd, GITS_CMD_VINVALL);
759 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
760
761 its_fixup_cmd(cmd);
762
763 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
764 }
765
766 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
767 struct its_cmd_block *cmd,
768 struct its_cmd_desc *desc)
769 {
770 unsigned long vpt_addr, vconf_addr;
771 u64 target;
772 bool alloc;
773
774 its_encode_cmd(cmd, GITS_CMD_VMAPP);
775 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
776 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
777
778 if (!desc->its_vmapp_cmd.valid) {
779 if (is_v4_1(its)) {
780 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
781 its_encode_alloc(cmd, alloc);
782 }
783
784 goto out;
785 }
786
787 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
788 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
789
790 its_encode_target(cmd, target);
791 its_encode_vpt_addr(cmd, vpt_addr);
792 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
793
794 if (!is_v4_1(its))
795 goto out;
796
797 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
798
799 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
800
801 its_encode_alloc(cmd, alloc);
802
803 /*
804 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
805 * to be unmapped first, and in this case, we may remap the vPE
806 * back while the VPT is not empty. So we can't assume that the
807 * VPT is empty on map. This is why we never advertise PTZ.
808 */
809 its_encode_ptz(cmd, false);
810 its_encode_vconf_addr(cmd, vconf_addr);
811 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
812
813 out:
814 its_fixup_cmd(cmd);
815
816 return valid_vpe(its, desc->its_vmapp_cmd.vpe);
817 }
818
819 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
820 struct its_cmd_block *cmd,
821 struct its_cmd_desc *desc)
822 {
823 u32 db;
824
825 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
826 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
827 else
828 db = 1023;
829
830 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
831 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
832 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
833 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
834 its_encode_db_phys_id(cmd, db);
835 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
836
837 its_fixup_cmd(cmd);
838
839 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
840 }
841
842 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
843 struct its_cmd_block *cmd,
844 struct its_cmd_desc *desc)
845 {
846 u32 db;
847
848 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
849 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
850 else
851 db = 1023;
852
853 its_encode_cmd(cmd, GITS_CMD_VMOVI);
854 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
855 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
856 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
857 its_encode_db_phys_id(cmd, db);
858 its_encode_db_valid(cmd, true);
859
860 its_fixup_cmd(cmd);
861
862 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
863 }
864
865 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
866 struct its_cmd_block *cmd,
867 struct its_cmd_desc *desc)
868 {
869 u64 target;
870
871 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
872 its_encode_cmd(cmd, GITS_CMD_VMOVP);
873 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
874 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
875 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
876 its_encode_target(cmd, target);
877
878 if (is_v4_1(its)) {
879 its_encode_db(cmd, true);
880 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
881 }
882
883 its_fixup_cmd(cmd);
884
885 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
886 }
887
888 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
889 struct its_cmd_block *cmd,
890 struct its_cmd_desc *desc)
891 {
892 struct its_vlpi_map *map;
893
894 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
895 desc->its_inv_cmd.event_id);
896
897 its_encode_cmd(cmd, GITS_CMD_INV);
898 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
899 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
900
901 its_fixup_cmd(cmd);
902
903 return valid_vpe(its, map->vpe);
904 }
905
906 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
907 struct its_cmd_block *cmd,
908 struct its_cmd_desc *desc)
909 {
910 struct its_vlpi_map *map;
911
912 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
913 desc->its_int_cmd.event_id);
914
915 its_encode_cmd(cmd, GITS_CMD_INT);
916 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
917 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
918
919 its_fixup_cmd(cmd);
920
921 return valid_vpe(its, map->vpe);
922 }
923
924 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
925 struct its_cmd_block *cmd,
926 struct its_cmd_desc *desc)
927 {
928 struct its_vlpi_map *map;
929
930 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
931 desc->its_clear_cmd.event_id);
932
933 its_encode_cmd(cmd, GITS_CMD_CLEAR);
934 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
935 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
936
937 its_fixup_cmd(cmd);
938
939 return valid_vpe(its, map->vpe);
940 }
941
942 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
943 struct its_cmd_block *cmd,
944 struct its_cmd_desc *desc)
945 {
946 if (WARN_ON(!is_v4_1(its)))
947 return NULL;
948
949 its_encode_cmd(cmd, GITS_CMD_INVDB);
950 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
951
952 its_fixup_cmd(cmd);
953
954 return valid_vpe(its, desc->its_invdb_cmd.vpe);
955 }
956
957 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
958 struct its_cmd_block *cmd,
959 struct its_cmd_desc *desc)
960 {
961 if (WARN_ON(!is_v4_1(its)))
962 return NULL;
963
964 its_encode_cmd(cmd, GITS_CMD_VSGI);
965 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
966 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
967 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
968 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
969 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
970 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
971
972 its_fixup_cmd(cmd);
973
974 return valid_vpe(its, desc->its_vsgi_cmd.vpe);
975 }
976
977 static u64 its_cmd_ptr_to_offset(struct its_node *its,
978 struct its_cmd_block *ptr)
979 {
980 return (ptr - its->cmd_base) * sizeof(*ptr);
981 }
982
983 static int its_queue_full(struct its_node *its)
984 {
985 int widx;
986 int ridx;
987
988 widx = its->cmd_write - its->cmd_base;
989 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
990
991 /* This is incredibly unlikely to happen, unless the ITS locks up. */
992 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
993 return 1;
994
995 return 0;
996 }
997
998 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
999 {
1000 struct its_cmd_block *cmd;
1001 u32 count = 1000000; /* 1s! */
1002
1003 while (its_queue_full(its)) {
1004 count--;
1005 if (!count) {
1006 pr_err_ratelimited("ITS queue not draining\n");
1007 return NULL;
1008 }
1009 cpu_relax();
1010 udelay(1);
1011 }
1012
1013 cmd = its->cmd_write++;
1014
1015 /* Handle queue wrapping */
1016 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1017 its->cmd_write = its->cmd_base;
1018
1019 /* Clear command */
1020 cmd->raw_cmd[0] = 0;
1021 cmd->raw_cmd[1] = 0;
1022 cmd->raw_cmd[2] = 0;
1023 cmd->raw_cmd[3] = 0;
1024
1025 return cmd;
1026 }
1027
1028 static struct its_cmd_block *its_post_commands(struct its_node *its)
1029 {
1030 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1031
1032 writel_relaxed(wr, its->base + GITS_CWRITER);
1033
1034 return its->cmd_write;
1035 }
1036
1037 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1038 {
1039 /*
1040 * Make sure the commands written to memory are observable by
1041 * the ITS.
1042 */
1043 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1044 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1045 else
1046 dsb(ishst);
1047 }
1048
1049 static int its_wait_for_range_completion(struct its_node *its,
1050 u64 prev_idx,
1051 struct its_cmd_block *to)
1052 {
1053 u64 rd_idx, to_idx, linear_idx;
1054 u32 count = 1000000; /* 1s! */
1055
1056 /* Linearize to_idx if the command set has wrapped around */
1057 to_idx = its_cmd_ptr_to_offset(its, to);
1058 if (to_idx < prev_idx)
1059 to_idx += ITS_CMD_QUEUE_SZ;
1060
1061 linear_idx = prev_idx;
1062
1063 while (1) {
1064 s64 delta;
1065
1066 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1067
1068 /*
1069 * Compute the read pointer progress, taking the
1070 * potential wrap-around into account.
1071 */
1072 delta = rd_idx - prev_idx;
1073 if (rd_idx < prev_idx)
1074 delta += ITS_CMD_QUEUE_SZ;
1075
1076 linear_idx += delta;
1077 if (linear_idx >= to_idx)
1078 break;
1079
1080 count--;
1081 if (!count) {
1082 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1083 to_idx, linear_idx);
1084 return -1;
1085 }
1086 prev_idx = rd_idx;
1087 cpu_relax();
1088 udelay(1);
1089 }
1090
1091 return 0;
1092 }
1093
1094 /* Warning, macro hell follows */
1095 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1096 void name(struct its_node *its, \
1097 buildtype builder, \
1098 struct its_cmd_desc *desc) \
1099 { \
1100 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1101 synctype *sync_obj; \
1102 unsigned long flags; \
1103 u64 rd_idx; \
1104 \
1105 raw_spin_lock_irqsave(&its->lock, flags); \
1106 \
1107 cmd = its_allocate_entry(its); \
1108 if (!cmd) { /* We're soooooo screewed... */ \
1109 raw_spin_unlock_irqrestore(&its->lock, flags); \
1110 return; \
1111 } \
1112 sync_obj = builder(its, cmd, desc); \
1113 its_flush_cmd(its, cmd); \
1114 \
1115 if (sync_obj) { \
1116 sync_cmd = its_allocate_entry(its); \
1117 if (!sync_cmd) \
1118 goto post; \
1119 \
1120 buildfn(its, sync_cmd, sync_obj); \
1121 its_flush_cmd(its, sync_cmd); \
1122 } \
1123 \
1124 post: \
1125 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
1126 next_cmd = its_post_commands(its); \
1127 raw_spin_unlock_irqrestore(&its->lock, flags); \
1128 \
1129 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
1130 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
1131 }
1132
1133 static void its_build_sync_cmd(struct its_node *its,
1134 struct its_cmd_block *sync_cmd,
1135 struct its_collection *sync_col)
1136 {
1137 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1138 its_encode_target(sync_cmd, sync_col->target_address);
1139
1140 its_fixup_cmd(sync_cmd);
1141 }
1142
1143 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1144 struct its_collection, its_build_sync_cmd)
1145
1146 static void its_build_vsync_cmd(struct its_node *its,
1147 struct its_cmd_block *sync_cmd,
1148 struct its_vpe *sync_vpe)
1149 {
1150 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1151 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1152
1153 its_fixup_cmd(sync_cmd);
1154 }
1155
1156 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1157 struct its_vpe, its_build_vsync_cmd)
1158
1159 static void its_send_int(struct its_device *dev, u32 event_id)
1160 {
1161 struct its_cmd_desc desc;
1162
1163 desc.its_int_cmd.dev = dev;
1164 desc.its_int_cmd.event_id = event_id;
1165
1166 its_send_single_command(dev->its, its_build_int_cmd, &desc);
1167 }
1168
1169 static void its_send_clear(struct its_device *dev, u32 event_id)
1170 {
1171 struct its_cmd_desc desc;
1172
1173 desc.its_clear_cmd.dev = dev;
1174 desc.its_clear_cmd.event_id = event_id;
1175
1176 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1177 }
1178
1179 static void its_send_inv(struct its_device *dev, u32 event_id)
1180 {
1181 struct its_cmd_desc desc;
1182
1183 desc.its_inv_cmd.dev = dev;
1184 desc.its_inv_cmd.event_id = event_id;
1185
1186 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1187 }
1188
1189 static void its_send_mapd(struct its_device *dev, int valid)
1190 {
1191 struct its_cmd_desc desc;
1192
1193 desc.its_mapd_cmd.dev = dev;
1194 desc.its_mapd_cmd.valid = !!valid;
1195
1196 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1197 }
1198
1199 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1200 int valid)
1201 {
1202 struct its_cmd_desc desc;
1203
1204 desc.its_mapc_cmd.col = col;
1205 desc.its_mapc_cmd.valid = !!valid;
1206
1207 its_send_single_command(its, its_build_mapc_cmd, &desc);
1208 }
1209
1210 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1211 {
1212 struct its_cmd_desc desc;
1213
1214 desc.its_mapti_cmd.dev = dev;
1215 desc.its_mapti_cmd.phys_id = irq_id;
1216 desc.its_mapti_cmd.event_id = id;
1217
1218 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1219 }
1220
1221 static void its_send_movi(struct its_device *dev,
1222 struct its_collection *col, u32 id)
1223 {
1224 struct its_cmd_desc desc;
1225
1226 desc.its_movi_cmd.dev = dev;
1227 desc.its_movi_cmd.col = col;
1228 desc.its_movi_cmd.event_id = id;
1229
1230 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1231 }
1232
1233 static void its_send_discard(struct its_device *dev, u32 id)
1234 {
1235 struct its_cmd_desc desc;
1236
1237 desc.its_discard_cmd.dev = dev;
1238 desc.its_discard_cmd.event_id = id;
1239
1240 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1241 }
1242
1243 static void its_send_invall(struct its_node *its, struct its_collection *col)
1244 {
1245 struct its_cmd_desc desc;
1246
1247 desc.its_invall_cmd.col = col;
1248
1249 its_send_single_command(its, its_build_invall_cmd, &desc);
1250 }
1251
1252 static void its_send_vmapti(struct its_device *dev, u32 id)
1253 {
1254 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1255 struct its_cmd_desc desc;
1256
1257 desc.its_vmapti_cmd.vpe = map->vpe;
1258 desc.its_vmapti_cmd.dev = dev;
1259 desc.its_vmapti_cmd.virt_id = map->vintid;
1260 desc.its_vmapti_cmd.event_id = id;
1261 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1262
1263 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1264 }
1265
1266 static void its_send_vmovi(struct its_device *dev, u32 id)
1267 {
1268 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1269 struct its_cmd_desc desc;
1270
1271 desc.its_vmovi_cmd.vpe = map->vpe;
1272 desc.its_vmovi_cmd.dev = dev;
1273 desc.its_vmovi_cmd.event_id = id;
1274 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1275
1276 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1277 }
1278
1279 static void its_send_vmapp(struct its_node *its,
1280 struct its_vpe *vpe, bool valid)
1281 {
1282 struct its_cmd_desc desc;
1283
1284 desc.its_vmapp_cmd.vpe = vpe;
1285 desc.its_vmapp_cmd.valid = valid;
1286 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1287
1288 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1289 }
1290
1291 static void its_send_vmovp(struct its_vpe *vpe)
1292 {
1293 struct its_cmd_desc desc = {};
1294 struct its_node *its;
1295 unsigned long flags;
1296 int col_id = vpe->col_idx;
1297
1298 desc.its_vmovp_cmd.vpe = vpe;
1299
1300 if (!its_list_map) {
1301 its = list_first_entry(&its_nodes, struct its_node, entry);
1302 desc.its_vmovp_cmd.col = &its->collections[col_id];
1303 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1304 return;
1305 }
1306
1307 /*
1308 * Yet another marvel of the architecture. If using the
1309 * its_list "feature", we need to make sure that all ITSs
1310 * receive all VMOVP commands in the same order. The only way
1311 * to guarantee this is to make vmovp a serialization point.
1312 *
1313 * Wall <-- Head.
1314 */
1315 raw_spin_lock_irqsave(&vmovp_lock, flags);
1316
1317 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1318 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1319
1320 /* Emit VMOVPs */
1321 list_for_each_entry(its, &its_nodes, entry) {
1322 if (!is_v4(its))
1323 continue;
1324
1325 if (!require_its_list_vmovp(vpe->its_vm, its))
1326 continue;
1327
1328 desc.its_vmovp_cmd.col = &its->collections[col_id];
1329 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1330 }
1331
1332 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1333 }
1334
1335 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1336 {
1337 struct its_cmd_desc desc;
1338
1339 desc.its_vinvall_cmd.vpe = vpe;
1340 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1341 }
1342
1343 static void its_send_vinv(struct its_device *dev, u32 event_id)
1344 {
1345 struct its_cmd_desc desc;
1346
1347 /*
1348 * There is no real VINV command. This is just a normal INV,
1349 * with a VSYNC instead of a SYNC.
1350 */
1351 desc.its_inv_cmd.dev = dev;
1352 desc.its_inv_cmd.event_id = event_id;
1353
1354 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1355 }
1356
1357 static void its_send_vint(struct its_device *dev, u32 event_id)
1358 {
1359 struct its_cmd_desc desc;
1360
1361 /*
1362 * There is no real VINT command. This is just a normal INT,
1363 * with a VSYNC instead of a SYNC.
1364 */
1365 desc.its_int_cmd.dev = dev;
1366 desc.its_int_cmd.event_id = event_id;
1367
1368 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1369 }
1370
1371 static void its_send_vclear(struct its_device *dev, u32 event_id)
1372 {
1373 struct its_cmd_desc desc;
1374
1375 /*
1376 * There is no real VCLEAR command. This is just a normal CLEAR,
1377 * with a VSYNC instead of a SYNC.
1378 */
1379 desc.its_clear_cmd.dev = dev;
1380 desc.its_clear_cmd.event_id = event_id;
1381
1382 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1383 }
1384
1385 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1386 {
1387 struct its_cmd_desc desc;
1388
1389 desc.its_invdb_cmd.vpe = vpe;
1390 its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1391 }
1392
1393 /*
1394 * irqchip functions - assumes MSI, mostly.
1395 */
1396 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1397 {
1398 struct its_vlpi_map *map = get_vlpi_map(d);
1399 irq_hw_number_t hwirq;
1400 void *va;
1401 u8 *cfg;
1402
1403 if (map) {
1404 va = page_address(map->vm->vprop_page);
1405 hwirq = map->vintid;
1406
1407 /* Remember the updated property */
1408 map->properties &= ~clr;
1409 map->properties |= set | LPI_PROP_GROUP1;
1410 } else {
1411 va = gic_rdists->prop_table_va;
1412 hwirq = d->hwirq;
1413 }
1414
1415 cfg = va + hwirq - 8192;
1416 *cfg &= ~clr;
1417 *cfg |= set | LPI_PROP_GROUP1;
1418
1419 /*
1420 * Make the above write visible to the redistributors.
1421 * And yes, we're flushing exactly: One. Single. Byte.
1422 * Humpf...
1423 */
1424 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1425 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1426 else
1427 dsb(ishst);
1428 }
1429
1430 static void wait_for_syncr(void __iomem *rdbase)
1431 {
1432 while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1433 cpu_relax();
1434 }
1435
1436 static void direct_lpi_inv(struct irq_data *d)
1437 {
1438 struct its_vlpi_map *map = get_vlpi_map(d);
1439 void __iomem *rdbase;
1440 unsigned long flags;
1441 u64 val;
1442 int cpu;
1443
1444 if (map) {
1445 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1446
1447 WARN_ON(!is_v4_1(its_dev->its));
1448
1449 val = GICR_INVLPIR_V;
1450 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1451 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1452 } else {
1453 val = d->hwirq;
1454 }
1455
1456 /* Target the redistributor this LPI is currently routed to */
1457 cpu = irq_to_cpuid_lock(d, &flags);
1458 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1459 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1460 gic_write_lpir(val, rdbase + GICR_INVLPIR);
1461
1462 wait_for_syncr(rdbase);
1463 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1464 irq_to_cpuid_unlock(d, flags);
1465 }
1466
1467 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1468 {
1469 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1470
1471 lpi_write_config(d, clr, set);
1472 if (gic_rdists->has_direct_lpi &&
1473 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1474 direct_lpi_inv(d);
1475 else if (!irqd_is_forwarded_to_vcpu(d))
1476 its_send_inv(its_dev, its_get_event_id(d));
1477 else
1478 its_send_vinv(its_dev, its_get_event_id(d));
1479 }
1480
1481 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1482 {
1483 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1484 u32 event = its_get_event_id(d);
1485 struct its_vlpi_map *map;
1486
1487 /*
1488 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1489 * here.
1490 */
1491 if (is_v4_1(its_dev->its))
1492 return;
1493
1494 map = dev_event_to_vlpi_map(its_dev, event);
1495
1496 if (map->db_enabled == enable)
1497 return;
1498
1499 map->db_enabled = enable;
1500
1501 /*
1502 * More fun with the architecture:
1503 *
1504 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1505 * value or to 1023, depending on the enable bit. But that
1506 * would be issuing a mapping for an /existing/ DevID+EventID
1507 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1508 * to the /same/ vPE, using this opportunity to adjust the
1509 * doorbell. Mouahahahaha. We loves it, Precious.
1510 */
1511 its_send_vmovi(its_dev, event);
1512 }
1513
1514 static void its_mask_irq(struct irq_data *d)
1515 {
1516 if (irqd_is_forwarded_to_vcpu(d))
1517 its_vlpi_set_doorbell(d, false);
1518
1519 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1520 }
1521
1522 static void its_unmask_irq(struct irq_data *d)
1523 {
1524 if (irqd_is_forwarded_to_vcpu(d))
1525 its_vlpi_set_doorbell(d, true);
1526
1527 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1528 }
1529
1530 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1531 {
1532 if (irqd_affinity_is_managed(d))
1533 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1534
1535 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1536 }
1537
1538 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1539 {
1540 if (irqd_affinity_is_managed(d))
1541 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1542 else
1543 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1544 }
1545
1546 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1547 {
1548 if (irqd_affinity_is_managed(d))
1549 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1550 else
1551 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1552 }
1553
1554 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1555 const struct cpumask *cpu_mask)
1556 {
1557 unsigned int cpu = nr_cpu_ids, tmp;
1558 int count = S32_MAX;
1559
1560 for_each_cpu(tmp, cpu_mask) {
1561 int this_count = its_read_lpi_count(d, tmp);
1562 if (this_count < count) {
1563 cpu = tmp;
1564 count = this_count;
1565 }
1566 }
1567
1568 return cpu;
1569 }
1570
1571 /*
1572 * As suggested by Thomas Gleixner in:
1573 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1574 */
1575 static int its_select_cpu(struct irq_data *d,
1576 const struct cpumask *aff_mask)
1577 {
1578 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1579 static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1580 static struct cpumask __tmpmask;
1581 struct cpumask *tmpmask;
1582 unsigned long flags;
1583 int cpu, node;
1584 node = its_dev->its->numa_node;
1585 tmpmask = &__tmpmask;
1586
1587 raw_spin_lock_irqsave(&tmpmask_lock, flags);
1588
1589 if (!irqd_affinity_is_managed(d)) {
1590 /* First try the NUMA node */
1591 if (node != NUMA_NO_NODE) {
1592 /*
1593 * Try the intersection of the affinity mask and the
1594 * node mask (and the online mask, just to be safe).
1595 */
1596 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1597 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1598
1599 /*
1600 * Ideally, we would check if the mask is empty, and
1601 * try again on the full node here.
1602 *
1603 * But it turns out that the way ACPI describes the
1604 * affinity for ITSs only deals about memory, and
1605 * not target CPUs, so it cannot describe a single
1606 * ITS placed next to two NUMA nodes.
1607 *
1608 * Instead, just fallback on the online mask. This
1609 * diverges from Thomas' suggestion above.
1610 */
1611 cpu = cpumask_pick_least_loaded(d, tmpmask);
1612 if (cpu < nr_cpu_ids)
1613 goto out;
1614
1615 /* If we can't cross sockets, give up */
1616 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1617 goto out;
1618
1619 /* If the above failed, expand the search */
1620 }
1621
1622 /* Try the intersection of the affinity and online masks */
1623 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1624
1625 /* If that doesn't fly, the online mask is the last resort */
1626 if (cpumask_empty(tmpmask))
1627 cpumask_copy(tmpmask, cpu_online_mask);
1628
1629 cpu = cpumask_pick_least_loaded(d, tmpmask);
1630 } else {
1631 cpumask_copy(tmpmask, aff_mask);
1632
1633 /* If we cannot cross sockets, limit the search to that node */
1634 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1635 node != NUMA_NO_NODE)
1636 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1637
1638 cpu = cpumask_pick_least_loaded(d, tmpmask);
1639 }
1640 out:
1641 raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1642
1643 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1644 return cpu;
1645 }
1646
1647 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1648 bool force)
1649 {
1650 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1651 struct its_collection *target_col;
1652 u32 id = its_get_event_id(d);
1653 int cpu, prev_cpu;
1654
1655 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1656 if (irqd_is_forwarded_to_vcpu(d))
1657 return -EINVAL;
1658
1659 prev_cpu = its_dev->event_map.col_map[id];
1660 its_dec_lpi_count(d, prev_cpu);
1661
1662 if (!force)
1663 cpu = its_select_cpu(d, mask_val);
1664 else
1665 cpu = cpumask_pick_least_loaded(d, mask_val);
1666
1667 if (cpu < 0 || cpu >= nr_cpu_ids)
1668 goto err;
1669
1670 /* don't set the affinity when the target cpu is same as current one */
1671 if (cpu != prev_cpu) {
1672 target_col = &its_dev->its->collections[cpu];
1673 its_send_movi(its_dev, target_col, id);
1674 its_dev->event_map.col_map[id] = cpu;
1675 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1676 }
1677
1678 its_inc_lpi_count(d, cpu);
1679
1680 return IRQ_SET_MASK_OK_DONE;
1681
1682 err:
1683 its_inc_lpi_count(d, prev_cpu);
1684 return -EINVAL;
1685 }
1686
1687 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1688 {
1689 struct its_node *its = its_dev->its;
1690
1691 return its->phys_base + GITS_TRANSLATER;
1692 }
1693
1694 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1695 {
1696 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1697 struct its_node *its;
1698 u64 addr;
1699
1700 its = its_dev->its;
1701 addr = its->get_msi_base(its_dev);
1702
1703 msg->address_lo = lower_32_bits(addr);
1704 msg->address_hi = upper_32_bits(addr);
1705 msg->data = its_get_event_id(d);
1706
1707 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1708 }
1709
1710 static int its_irq_set_irqchip_state(struct irq_data *d,
1711 enum irqchip_irq_state which,
1712 bool state)
1713 {
1714 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1715 u32 event = its_get_event_id(d);
1716
1717 if (which != IRQCHIP_STATE_PENDING)
1718 return -EINVAL;
1719
1720 if (irqd_is_forwarded_to_vcpu(d)) {
1721 if (state)
1722 its_send_vint(its_dev, event);
1723 else
1724 its_send_vclear(its_dev, event);
1725 } else {
1726 if (state)
1727 its_send_int(its_dev, event);
1728 else
1729 its_send_clear(its_dev, event);
1730 }
1731
1732 return 0;
1733 }
1734
1735 static int its_irq_retrigger(struct irq_data *d)
1736 {
1737 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1738 }
1739
1740 /*
1741 * Two favourable cases:
1742 *
1743 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1744 * for vSGI delivery
1745 *
1746 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1747 * and we're better off mapping all VPEs always
1748 *
1749 * If neither (a) nor (b) is true, then we map vPEs on demand.
1750 *
1751 */
1752 static bool gic_requires_eager_mapping(void)
1753 {
1754 if (!its_list_map || gic_rdists->has_rvpeid)
1755 return true;
1756
1757 return false;
1758 }
1759
1760 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1761 {
1762 unsigned long flags;
1763
1764 if (gic_requires_eager_mapping())
1765 return;
1766
1767 raw_spin_lock_irqsave(&vmovp_lock, flags);
1768
1769 /*
1770 * If the VM wasn't mapped yet, iterate over the vpes and get
1771 * them mapped now.
1772 */
1773 vm->vlpi_count[its->list_nr]++;
1774
1775 if (vm->vlpi_count[its->list_nr] == 1) {
1776 int i;
1777
1778 for (i = 0; i < vm->nr_vpes; i++) {
1779 struct its_vpe *vpe = vm->vpes[i];
1780 struct irq_data *d = irq_get_irq_data(vpe->irq);
1781
1782 /* Map the VPE to the first possible CPU */
1783 vpe->col_idx = cpumask_first(cpu_online_mask);
1784 its_send_vmapp(its, vpe, true);
1785 its_send_vinvall(its, vpe);
1786 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1787 }
1788 }
1789
1790 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1791 }
1792
1793 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1794 {
1795 unsigned long flags;
1796
1797 /* Not using the ITS list? Everything is always mapped. */
1798 if (gic_requires_eager_mapping())
1799 return;
1800
1801 raw_spin_lock_irqsave(&vmovp_lock, flags);
1802
1803 if (!--vm->vlpi_count[its->list_nr]) {
1804 int i;
1805
1806 for (i = 0; i < vm->nr_vpes; i++)
1807 its_send_vmapp(its, vm->vpes[i], false);
1808 }
1809
1810 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1811 }
1812
1813 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1814 {
1815 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1816 u32 event = its_get_event_id(d);
1817 int ret = 0;
1818
1819 if (!info->map)
1820 return -EINVAL;
1821
1822 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1823
1824 if (!its_dev->event_map.vm) {
1825 struct its_vlpi_map *maps;
1826
1827 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1828 GFP_ATOMIC);
1829 if (!maps) {
1830 ret = -ENOMEM;
1831 goto out;
1832 }
1833
1834 its_dev->event_map.vm = info->map->vm;
1835 its_dev->event_map.vlpi_maps = maps;
1836 } else if (its_dev->event_map.vm != info->map->vm) {
1837 ret = -EINVAL;
1838 goto out;
1839 }
1840
1841 /* Get our private copy of the mapping information */
1842 its_dev->event_map.vlpi_maps[event] = *info->map;
1843
1844 if (irqd_is_forwarded_to_vcpu(d)) {
1845 /* Already mapped, move it around */
1846 its_send_vmovi(its_dev, event);
1847 } else {
1848 /* Ensure all the VPEs are mapped on this ITS */
1849 its_map_vm(its_dev->its, info->map->vm);
1850
1851 /*
1852 * Flag the interrupt as forwarded so that we can
1853 * start poking the virtual property table.
1854 */
1855 irqd_set_forwarded_to_vcpu(d);
1856
1857 /* Write out the property to the prop table */
1858 lpi_write_config(d, 0xff, info->map->properties);
1859
1860 /* Drop the physical mapping */
1861 its_send_discard(its_dev, event);
1862
1863 /* and install the virtual one */
1864 its_send_vmapti(its_dev, event);
1865
1866 /* Increment the number of VLPIs */
1867 its_dev->event_map.nr_vlpis++;
1868 }
1869
1870 out:
1871 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1872 return ret;
1873 }
1874
1875 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1876 {
1877 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1878 struct its_vlpi_map *map;
1879 int ret = 0;
1880
1881 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1882
1883 map = get_vlpi_map(d);
1884
1885 if (!its_dev->event_map.vm || !map) {
1886 ret = -EINVAL;
1887 goto out;
1888 }
1889
1890 /* Copy our mapping information to the incoming request */
1891 *info->map = *map;
1892
1893 out:
1894 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1895 return ret;
1896 }
1897
1898 static int its_vlpi_unmap(struct irq_data *d)
1899 {
1900 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1901 u32 event = its_get_event_id(d);
1902 int ret = 0;
1903
1904 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1905
1906 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1907 ret = -EINVAL;
1908 goto out;
1909 }
1910
1911 /* Drop the virtual mapping */
1912 its_send_discard(its_dev, event);
1913
1914 /* and restore the physical one */
1915 irqd_clr_forwarded_to_vcpu(d);
1916 its_send_mapti(its_dev, d->hwirq, event);
1917 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1918 LPI_PROP_ENABLED |
1919 LPI_PROP_GROUP1));
1920
1921 /* Potentially unmap the VM from this ITS */
1922 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1923
1924 /*
1925 * Drop the refcount and make the device available again if
1926 * this was the last VLPI.
1927 */
1928 if (!--its_dev->event_map.nr_vlpis) {
1929 its_dev->event_map.vm = NULL;
1930 kfree(its_dev->event_map.vlpi_maps);
1931 }
1932
1933 out:
1934 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1935 return ret;
1936 }
1937
1938 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1939 {
1940 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1941
1942 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1943 return -EINVAL;
1944
1945 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1946 lpi_update_config(d, 0xff, info->config);
1947 else
1948 lpi_write_config(d, 0xff, info->config);
1949 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1950
1951 return 0;
1952 }
1953
1954 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1955 {
1956 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1957 struct its_cmd_info *info = vcpu_info;
1958
1959 /* Need a v4 ITS */
1960 if (!is_v4(its_dev->its))
1961 return -EINVAL;
1962
1963 /* Unmap request? */
1964 if (!info)
1965 return its_vlpi_unmap(d);
1966
1967 switch (info->cmd_type) {
1968 case MAP_VLPI:
1969 return its_vlpi_map(d, info);
1970
1971 case GET_VLPI:
1972 return its_vlpi_get(d, info);
1973
1974 case PROP_UPDATE_VLPI:
1975 case PROP_UPDATE_AND_INV_VLPI:
1976 return its_vlpi_prop_update(d, info);
1977
1978 default:
1979 return -EINVAL;
1980 }
1981 }
1982
1983 static struct irq_chip its_irq_chip = {
1984 .name = "ITS",
1985 .irq_mask = its_mask_irq,
1986 .irq_unmask = its_unmask_irq,
1987 .irq_eoi = irq_chip_eoi_parent,
1988 .irq_set_affinity = its_set_affinity,
1989 .irq_compose_msi_msg = its_irq_compose_msi_msg,
1990 .irq_set_irqchip_state = its_irq_set_irqchip_state,
1991 .irq_retrigger = its_irq_retrigger,
1992 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
1993 };
1994
1995
1996 /*
1997 * How we allocate LPIs:
1998 *
1999 * lpi_range_list contains ranges of LPIs that are to available to
2000 * allocate from. To allocate LPIs, just pick the first range that
2001 * fits the required allocation, and reduce it by the required
2002 * amount. Once empty, remove the range from the list.
2003 *
2004 * To free a range of LPIs, add a free range to the list, sort it and
2005 * merge the result if the new range happens to be adjacent to an
2006 * already free block.
2007 *
2008 * The consequence of the above is that allocation is cost is low, but
2009 * freeing is expensive. We assumes that freeing rarely occurs.
2010 */
2011 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
2012
2013 static DEFINE_MUTEX(lpi_range_lock);
2014 static LIST_HEAD(lpi_range_list);
2015
2016 struct lpi_range {
2017 struct list_head entry;
2018 u32 base_id;
2019 u32 span;
2020 };
2021
2022 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2023 {
2024 struct lpi_range *range;
2025
2026 range = kmalloc(sizeof(*range), GFP_KERNEL);
2027 if (range) {
2028 range->base_id = base;
2029 range->span = span;
2030 }
2031
2032 return range;
2033 }
2034
2035 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2036 {
2037 struct lpi_range *range, *tmp;
2038 int err = -ENOSPC;
2039
2040 mutex_lock(&lpi_range_lock);
2041
2042 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2043 if (range->span >= nr_lpis) {
2044 *base = range->base_id;
2045 range->base_id += nr_lpis;
2046 range->span -= nr_lpis;
2047
2048 if (range->span == 0) {
2049 list_del(&range->entry);
2050 kfree(range);
2051 }
2052
2053 err = 0;
2054 break;
2055 }
2056 }
2057
2058 mutex_unlock(&lpi_range_lock);
2059
2060 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2061 return err;
2062 }
2063
2064 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2065 {
2066 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2067 return;
2068 if (a->base_id + a->span != b->base_id)
2069 return;
2070 b->base_id = a->base_id;
2071 b->span += a->span;
2072 list_del(&a->entry);
2073 kfree(a);
2074 }
2075
2076 static int free_lpi_range(u32 base, u32 nr_lpis)
2077 {
2078 struct lpi_range *new, *old;
2079
2080 new = mk_lpi_range(base, nr_lpis);
2081 if (!new)
2082 return -ENOMEM;
2083
2084 mutex_lock(&lpi_range_lock);
2085
2086 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2087 if (old->base_id < base)
2088 break;
2089 }
2090 /*
2091 * old is the last element with ->base_id smaller than base,
2092 * so new goes right after it. If there are no elements with
2093 * ->base_id smaller than base, &old->entry ends up pointing
2094 * at the head of the list, and inserting new it the start of
2095 * the list is the right thing to do in that case as well.
2096 */
2097 list_add(&new->entry, &old->entry);
2098 /*
2099 * Now check if we can merge with the preceding and/or
2100 * following ranges.
2101 */
2102 merge_lpi_ranges(old, new);
2103 merge_lpi_ranges(new, list_next_entry(new, entry));
2104
2105 mutex_unlock(&lpi_range_lock);
2106 return 0;
2107 }
2108
2109 static int __init its_lpi_init(u32 id_bits)
2110 {
2111 u32 lpis = (1UL << id_bits) - 8192;
2112 u32 numlpis;
2113 int err;
2114
2115 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2116
2117 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2118 lpis = numlpis;
2119 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2120 lpis);
2121 }
2122
2123 /*
2124 * Initializing the allocator is just the same as freeing the
2125 * full range of LPIs.
2126 */
2127 err = free_lpi_range(8192, lpis);
2128 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2129 return err;
2130 }
2131
2132 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2133 {
2134 unsigned long *bitmap = NULL;
2135 int err = 0;
2136
2137 do {
2138 err = alloc_lpi_range(nr_irqs, base);
2139 if (!err)
2140 break;
2141
2142 nr_irqs /= 2;
2143 } while (nr_irqs > 0);
2144
2145 if (!nr_irqs)
2146 err = -ENOSPC;
2147
2148 if (err)
2149 goto out;
2150
2151 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2152 if (!bitmap)
2153 goto out;
2154
2155 *nr_ids = nr_irqs;
2156
2157 out:
2158 if (!bitmap)
2159 *base = *nr_ids = 0;
2160
2161 return bitmap;
2162 }
2163
2164 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2165 {
2166 WARN_ON(free_lpi_range(base, nr_ids));
2167 bitmap_free(bitmap);
2168 }
2169
2170 static void gic_reset_prop_table(void *va)
2171 {
2172 /* Priority 0xa0, Group-1, disabled */
2173 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2174
2175 /* Make sure the GIC will observe the written configuration */
2176 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2177 }
2178
2179 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2180 {
2181 struct page *prop_page;
2182
2183 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2184 if (!prop_page)
2185 return NULL;
2186
2187 gic_reset_prop_table(page_address(prop_page));
2188
2189 return prop_page;
2190 }
2191
2192 static void its_free_prop_table(struct page *prop_page)
2193 {
2194 free_pages((unsigned long)page_address(prop_page),
2195 get_order(LPI_PROPBASE_SZ));
2196 }
2197
2198 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2199 {
2200 phys_addr_t start, end, addr_end;
2201 u64 i;
2202
2203 /*
2204 * We don't bother checking for a kdump kernel as by
2205 * construction, the LPI tables are out of this kernel's
2206 * memory map.
2207 */
2208 if (is_kdump_kernel())
2209 return true;
2210
2211 addr_end = addr + size - 1;
2212
2213 for_each_reserved_mem_range(i, &start, &end) {
2214 if (addr >= start && addr_end <= end)
2215 return true;
2216 }
2217
2218 /* Not found, not a good sign... */
2219 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2220 &addr, &addr_end);
2221 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2222 return false;
2223 }
2224
2225 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2226 {
2227 if (efi_enabled(EFI_CONFIG_TABLES))
2228 return efi_mem_reserve_persistent(addr, size);
2229
2230 return 0;
2231 }
2232
2233 static int __init its_setup_lpi_prop_table(void)
2234 {
2235 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2236 u64 val;
2237
2238 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2239 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2240
2241 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2242 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2243 LPI_PROPBASE_SZ,
2244 MEMREMAP_WB);
2245 gic_reset_prop_table(gic_rdists->prop_table_va);
2246 } else {
2247 struct page *page;
2248
2249 lpi_id_bits = min_t(u32,
2250 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2251 ITS_MAX_LPI_NRBITS);
2252 page = its_allocate_prop_table(GFP_NOWAIT);
2253 if (!page) {
2254 pr_err("Failed to allocate PROPBASE\n");
2255 return -ENOMEM;
2256 }
2257
2258 gic_rdists->prop_table_pa = page_to_phys(page);
2259 gic_rdists->prop_table_va = page_address(page);
2260 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2261 LPI_PROPBASE_SZ));
2262 }
2263
2264 pr_info("GICv3: using LPI property table @%pa\n",
2265 &gic_rdists->prop_table_pa);
2266
2267 return its_lpi_init(lpi_id_bits);
2268 }
2269
2270 static const char *its_base_type_string[] = {
2271 [GITS_BASER_TYPE_DEVICE] = "Devices",
2272 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
2273 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
2274 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
2275 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
2276 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
2277 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
2278 };
2279
2280 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2281 {
2282 u32 idx = baser - its->tables;
2283
2284 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2285 }
2286
2287 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2288 u64 val)
2289 {
2290 u32 idx = baser - its->tables;
2291
2292 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2293 baser->val = its_read_baser(its, baser);
2294 }
2295
2296 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2297 u64 cache, u64 shr, u32 order, bool indirect)
2298 {
2299 u64 val = its_read_baser(its, baser);
2300 u64 esz = GITS_BASER_ENTRY_SIZE(val);
2301 u64 type = GITS_BASER_TYPE(val);
2302 u64 baser_phys, tmp;
2303 u32 alloc_pages, psz;
2304 struct page *page;
2305 void *base;
2306
2307 psz = baser->psz;
2308 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2309 if (alloc_pages > GITS_BASER_PAGES_MAX) {
2310 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2311 &its->phys_base, its_base_type_string[type],
2312 alloc_pages, GITS_BASER_PAGES_MAX);
2313 alloc_pages = GITS_BASER_PAGES_MAX;
2314 order = get_order(GITS_BASER_PAGES_MAX * psz);
2315 }
2316
2317 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2318 if (!page)
2319 return -ENOMEM;
2320
2321 base = (void *)page_address(page);
2322 baser_phys = virt_to_phys(base);
2323
2324 /* Check if the physical address of the memory is above 48bits */
2325 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2326
2327 /* 52bit PA is supported only when PageSize=64K */
2328 if (psz != SZ_64K) {
2329 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2330 free_pages((unsigned long)base, order);
2331 return -ENXIO;
2332 }
2333
2334 /* Convert 52bit PA to 48bit field */
2335 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2336 }
2337
2338 retry_baser:
2339 val = (baser_phys |
2340 (type << GITS_BASER_TYPE_SHIFT) |
2341 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
2342 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
2343 cache |
2344 shr |
2345 GITS_BASER_VALID);
2346
2347 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
2348
2349 switch (psz) {
2350 case SZ_4K:
2351 val |= GITS_BASER_PAGE_SIZE_4K;
2352 break;
2353 case SZ_16K:
2354 val |= GITS_BASER_PAGE_SIZE_16K;
2355 break;
2356 case SZ_64K:
2357 val |= GITS_BASER_PAGE_SIZE_64K;
2358 break;
2359 }
2360
2361 its_write_baser(its, baser, val);
2362 tmp = baser->val;
2363
2364 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
2365 tmp &= ~GITS_BASER_SHAREABILITY_MASK;
2366
2367 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2368 /*
2369 * Shareability didn't stick. Just use
2370 * whatever the read reported, which is likely
2371 * to be the only thing this redistributor
2372 * supports. If that's zero, make it
2373 * non-cacheable as well.
2374 */
2375 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2376 if (!shr) {
2377 cache = GITS_BASER_nC;
2378 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2379 }
2380 goto retry_baser;
2381 }
2382
2383 if (val != tmp) {
2384 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2385 &its->phys_base, its_base_type_string[type],
2386 val, tmp);
2387 free_pages((unsigned long)base, order);
2388 return -ENXIO;
2389 }
2390
2391 baser->order = order;
2392 baser->base = base;
2393 baser->psz = psz;
2394 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2395
2396 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2397 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2398 its_base_type_string[type],
2399 (unsigned long)virt_to_phys(base),
2400 indirect ? "indirect" : "flat", (int)esz,
2401 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2402
2403 return 0;
2404 }
2405
2406 static bool its_parse_indirect_baser(struct its_node *its,
2407 struct its_baser *baser,
2408 u32 *order, u32 ids)
2409 {
2410 u64 tmp = its_read_baser(its, baser);
2411 u64 type = GITS_BASER_TYPE(tmp);
2412 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2413 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2414 u32 new_order = *order;
2415 u32 psz = baser->psz;
2416 bool indirect = false;
2417
2418 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2419 if ((esz << ids) > (psz * 2)) {
2420 /*
2421 * Find out whether hw supports a single or two-level table by
2422 * table by reading bit at offset '62' after writing '1' to it.
2423 */
2424 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2425 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2426
2427 if (indirect) {
2428 /*
2429 * The size of the lvl2 table is equal to ITS page size
2430 * which is 'psz'. For computing lvl1 table size,
2431 * subtract ID bits that sparse lvl2 table from 'ids'
2432 * which is reported by ITS hardware times lvl1 table
2433 * entry size.
2434 */
2435 ids -= ilog2(psz / (int)esz);
2436 esz = GITS_LVL1_ENTRY_SIZE;
2437 }
2438 }
2439
2440 /*
2441 * Allocate as many entries as required to fit the
2442 * range of device IDs that the ITS can grok... The ID
2443 * space being incredibly sparse, this results in a
2444 * massive waste of memory if two-level device table
2445 * feature is not supported by hardware.
2446 */
2447 new_order = max_t(u32, get_order(esz << ids), new_order);
2448 if (new_order > MAX_ORDER) {
2449 new_order = MAX_ORDER;
2450 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2451 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2452 &its->phys_base, its_base_type_string[type],
2453 device_ids(its), ids);
2454 }
2455
2456 *order = new_order;
2457
2458 return indirect;
2459 }
2460
2461 static u32 compute_common_aff(u64 val)
2462 {
2463 u32 aff, clpiaff;
2464
2465 aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2466 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2467
2468 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2469 }
2470
2471 static u32 compute_its_aff(struct its_node *its)
2472 {
2473 u64 val;
2474 u32 svpet;
2475
2476 /*
2477 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2478 * the resulting affinity. We then use that to see if this match
2479 * our own affinity.
2480 */
2481 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2482 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2483 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2484 return compute_common_aff(val);
2485 }
2486
2487 static struct its_node *find_sibling_its(struct its_node *cur_its)
2488 {
2489 struct its_node *its;
2490 u32 aff;
2491
2492 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2493 return NULL;
2494
2495 aff = compute_its_aff(cur_its);
2496
2497 list_for_each_entry(its, &its_nodes, entry) {
2498 u64 baser;
2499
2500 if (!is_v4_1(its) || its == cur_its)
2501 continue;
2502
2503 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2504 continue;
2505
2506 if (aff != compute_its_aff(its))
2507 continue;
2508
2509 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2510 baser = its->tables[2].val;
2511 if (!(baser & GITS_BASER_VALID))
2512 continue;
2513
2514 return its;
2515 }
2516
2517 return NULL;
2518 }
2519
2520 static void its_free_tables(struct its_node *its)
2521 {
2522 int i;
2523
2524 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2525 if (its->tables[i].base) {
2526 free_pages((unsigned long)its->tables[i].base,
2527 its->tables[i].order);
2528 its->tables[i].base = NULL;
2529 }
2530 }
2531 }
2532
2533 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2534 {
2535 u64 psz = SZ_64K;
2536
2537 while (psz) {
2538 u64 val, gpsz;
2539
2540 val = its_read_baser(its, baser);
2541 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2542
2543 switch (psz) {
2544 case SZ_64K:
2545 gpsz = GITS_BASER_PAGE_SIZE_64K;
2546 break;
2547 case SZ_16K:
2548 gpsz = GITS_BASER_PAGE_SIZE_16K;
2549 break;
2550 case SZ_4K:
2551 default:
2552 gpsz = GITS_BASER_PAGE_SIZE_4K;
2553 break;
2554 }
2555
2556 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2557
2558 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2559 its_write_baser(its, baser, val);
2560
2561 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2562 break;
2563
2564 switch (psz) {
2565 case SZ_64K:
2566 psz = SZ_16K;
2567 break;
2568 case SZ_16K:
2569 psz = SZ_4K;
2570 break;
2571 case SZ_4K:
2572 default:
2573 return -1;
2574 }
2575 }
2576
2577 baser->psz = psz;
2578 return 0;
2579 }
2580
2581 static int its_alloc_tables(struct its_node *its)
2582 {
2583 u64 shr = GITS_BASER_InnerShareable;
2584 u64 cache = GITS_BASER_RaWaWb;
2585 int err, i;
2586
2587 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2588 /* erratum 24313: ignore memory access type */
2589 cache = GITS_BASER_nCnB;
2590
2591 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2592 struct its_baser *baser = its->tables + i;
2593 u64 val = its_read_baser(its, baser);
2594 u64 type = GITS_BASER_TYPE(val);
2595 bool indirect = false;
2596 u32 order;
2597
2598 if (type == GITS_BASER_TYPE_NONE)
2599 continue;
2600
2601 if (its_probe_baser_psz(its, baser)) {
2602 its_free_tables(its);
2603 return -ENXIO;
2604 }
2605
2606 order = get_order(baser->psz);
2607
2608 switch (type) {
2609 case GITS_BASER_TYPE_DEVICE:
2610 indirect = its_parse_indirect_baser(its, baser, &order,
2611 device_ids(its));
2612 break;
2613
2614 case GITS_BASER_TYPE_VCPU:
2615 if (is_v4_1(its)) {
2616 struct its_node *sibling;
2617
2618 WARN_ON(i != 2);
2619 if ((sibling = find_sibling_its(its))) {
2620 *baser = sibling->tables[2];
2621 its_write_baser(its, baser, baser->val);
2622 continue;
2623 }
2624 }
2625
2626 indirect = its_parse_indirect_baser(its, baser, &order,
2627 ITS_MAX_VPEID_BITS);
2628 break;
2629 }
2630
2631 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2632 if (err < 0) {
2633 its_free_tables(its);
2634 return err;
2635 }
2636
2637 /* Update settings which will be used for next BASERn */
2638 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2639 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2640 }
2641
2642 return 0;
2643 }
2644
2645 static u64 inherit_vpe_l1_table_from_its(void)
2646 {
2647 struct its_node *its;
2648 u64 val;
2649 u32 aff;
2650
2651 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2652 aff = compute_common_aff(val);
2653
2654 list_for_each_entry(its, &its_nodes, entry) {
2655 u64 baser, addr;
2656
2657 if (!is_v4_1(its))
2658 continue;
2659
2660 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2661 continue;
2662
2663 if (aff != compute_its_aff(its))
2664 continue;
2665
2666 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2667 baser = its->tables[2].val;
2668 if (!(baser & GITS_BASER_VALID))
2669 continue;
2670
2671 /* We have a winner! */
2672 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2673
2674 val = GICR_VPROPBASER_4_1_VALID;
2675 if (baser & GITS_BASER_INDIRECT)
2676 val |= GICR_VPROPBASER_4_1_INDIRECT;
2677 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2678 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2679 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2680 case GIC_PAGE_SIZE_64K:
2681 addr = GITS_BASER_ADDR_48_to_52(baser);
2682 break;
2683 default:
2684 addr = baser & GENMASK_ULL(47, 12);
2685 break;
2686 }
2687 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2688 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2689 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2690 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2691 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2692 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2693
2694 return val;
2695 }
2696
2697 return 0;
2698 }
2699
2700 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2701 {
2702 u32 aff;
2703 u64 val;
2704 int cpu;
2705
2706 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2707 aff = compute_common_aff(val);
2708
2709 for_each_possible_cpu(cpu) {
2710 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2711
2712 if (!base || cpu == smp_processor_id())
2713 continue;
2714
2715 val = gic_read_typer(base + GICR_TYPER);
2716 if (aff != compute_common_aff(val))
2717 continue;
2718
2719 /*
2720 * At this point, we have a victim. This particular CPU
2721 * has already booted, and has an affinity that matches
2722 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2723 * Make sure we don't write the Z bit in that case.
2724 */
2725 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2726 val &= ~GICR_VPROPBASER_4_1_Z;
2727
2728 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2729 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2730
2731 return val;
2732 }
2733
2734 return 0;
2735 }
2736
2737 static bool allocate_vpe_l2_table(int cpu, u32 id)
2738 {
2739 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2740 unsigned int psz, esz, idx, npg, gpsz;
2741 u64 val;
2742 struct page *page;
2743 __le64 *table;
2744
2745 if (!gic_rdists->has_rvpeid)
2746 return true;
2747
2748 /* Skip non-present CPUs */
2749 if (!base)
2750 return true;
2751
2752 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2753
2754 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2755 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2756 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2757
2758 switch (gpsz) {
2759 default:
2760 WARN_ON(1);
2761 fallthrough;
2762 case GIC_PAGE_SIZE_4K:
2763 psz = SZ_4K;
2764 break;
2765 case GIC_PAGE_SIZE_16K:
2766 psz = SZ_16K;
2767 break;
2768 case GIC_PAGE_SIZE_64K:
2769 psz = SZ_64K;
2770 break;
2771 }
2772
2773 /* Don't allow vpe_id that exceeds single, flat table limit */
2774 if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2775 return (id < (npg * psz / (esz * SZ_8)));
2776
2777 /* Compute 1st level table index & check if that exceeds table limit */
2778 idx = id >> ilog2(psz / (esz * SZ_8));
2779 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2780 return false;
2781
2782 table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2783
2784 /* Allocate memory for 2nd level table */
2785 if (!table[idx]) {
2786 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2787 if (!page)
2788 return false;
2789
2790 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2791 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2792 gic_flush_dcache_to_poc(page_address(page), psz);
2793
2794 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2795
2796 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2797 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2798 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2799
2800 /* Ensure updated table contents are visible to RD hardware */
2801 dsb(sy);
2802 }
2803
2804 return true;
2805 }
2806
2807 static int allocate_vpe_l1_table(void)
2808 {
2809 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2810 u64 val, gpsz, npg, pa;
2811 unsigned int psz = SZ_64K;
2812 unsigned int np, epp, esz;
2813 struct page *page;
2814
2815 if (!gic_rdists->has_rvpeid)
2816 return 0;
2817
2818 /*
2819 * if VPENDBASER.Valid is set, disable any previously programmed
2820 * VPE by setting PendingLast while clearing Valid. This has the
2821 * effect of making sure no doorbell will be generated and we can
2822 * then safely clear VPROPBASER.Valid.
2823 */
2824 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2825 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2826 vlpi_base + GICR_VPENDBASER);
2827
2828 /*
2829 * If we can inherit the configuration from another RD, let's do
2830 * so. Otherwise, we have to go through the allocation process. We
2831 * assume that all RDs have the exact same requirements, as
2832 * nothing will work otherwise.
2833 */
2834 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2835 if (val & GICR_VPROPBASER_4_1_VALID)
2836 goto out;
2837
2838 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2839 if (!gic_data_rdist()->vpe_table_mask)
2840 return -ENOMEM;
2841
2842 val = inherit_vpe_l1_table_from_its();
2843 if (val & GICR_VPROPBASER_4_1_VALID)
2844 goto out;
2845
2846 /* First probe the page size */
2847 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2848 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2849 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2850 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2851 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2852
2853 switch (gpsz) {
2854 default:
2855 gpsz = GIC_PAGE_SIZE_4K;
2856 fallthrough;
2857 case GIC_PAGE_SIZE_4K:
2858 psz = SZ_4K;
2859 break;
2860 case GIC_PAGE_SIZE_16K:
2861 psz = SZ_16K;
2862 break;
2863 case GIC_PAGE_SIZE_64K:
2864 psz = SZ_64K;
2865 break;
2866 }
2867
2868 /*
2869 * Start populating the register from scratch, including RO fields
2870 * (which we want to print in debug cases...)
2871 */
2872 val = 0;
2873 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2874 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2875
2876 /* How many entries per GIC page? */
2877 esz++;
2878 epp = psz / (esz * SZ_8);
2879
2880 /*
2881 * If we need more than just a single L1 page, flag the table
2882 * as indirect and compute the number of required L1 pages.
2883 */
2884 if (epp < ITS_MAX_VPEID) {
2885 int nl2;
2886
2887 val |= GICR_VPROPBASER_4_1_INDIRECT;
2888
2889 /* Number of L2 pages required to cover the VPEID space */
2890 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2891
2892 /* Number of L1 pages to point to the L2 pages */
2893 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2894 } else {
2895 npg = 1;
2896 }
2897
2898 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2899
2900 /* Right, that's the number of CPU pages we need for L1 */
2901 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2902
2903 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2904 np, npg, psz, epp, esz);
2905 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2906 if (!page)
2907 return -ENOMEM;
2908
2909 gic_data_rdist()->vpe_l1_base = page_address(page);
2910 pa = virt_to_phys(page_address(page));
2911 WARN_ON(!IS_ALIGNED(pa, psz));
2912
2913 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2914 val |= GICR_VPROPBASER_RaWb;
2915 val |= GICR_VPROPBASER_InnerShareable;
2916 val |= GICR_VPROPBASER_4_1_Z;
2917 val |= GICR_VPROPBASER_4_1_VALID;
2918
2919 out:
2920 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2921 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2922
2923 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2924 smp_processor_id(), val,
2925 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2926
2927 return 0;
2928 }
2929
2930 static int its_alloc_collections(struct its_node *its)
2931 {
2932 int i;
2933
2934 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2935 GFP_KERNEL);
2936 if (!its->collections)
2937 return -ENOMEM;
2938
2939 for (i = 0; i < nr_cpu_ids; i++)
2940 its->collections[i].target_address = ~0ULL;
2941
2942 return 0;
2943 }
2944
2945 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2946 {
2947 struct page *pend_page;
2948
2949 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2950 get_order(LPI_PENDBASE_SZ));
2951 if (!pend_page)
2952 return NULL;
2953
2954 /* Make sure the GIC will observe the zero-ed page */
2955 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2956
2957 return pend_page;
2958 }
2959
2960 static void its_free_pending_table(struct page *pt)
2961 {
2962 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2963 }
2964
2965 /*
2966 * Booting with kdump and LPIs enabled is generally fine. Any other
2967 * case is wrong in the absence of firmware/EFI support.
2968 */
2969 static bool enabled_lpis_allowed(void)
2970 {
2971 phys_addr_t addr;
2972 u64 val;
2973
2974 /* Check whether the property table is in a reserved region */
2975 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2976 addr = val & GENMASK_ULL(51, 12);
2977
2978 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2979 }
2980
2981 static int __init allocate_lpi_tables(void)
2982 {
2983 u64 val;
2984 int err, cpu;
2985
2986 /*
2987 * If LPIs are enabled while we run this from the boot CPU,
2988 * flag the RD tables as pre-allocated if the stars do align.
2989 */
2990 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2991 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2992 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2993 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2994 pr_info("GICv3: Using preallocated redistributor tables\n");
2995 }
2996
2997 err = its_setup_lpi_prop_table();
2998 if (err)
2999 return err;
3000
3001 /*
3002 * We allocate all the pending tables anyway, as we may have a
3003 * mix of RDs that have had LPIs enabled, and some that
3004 * don't. We'll free the unused ones as each CPU comes online.
3005 */
3006 for_each_possible_cpu(cpu) {
3007 struct page *pend_page;
3008
3009 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3010 if (!pend_page) {
3011 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3012 return -ENOMEM;
3013 }
3014
3015 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3016 }
3017
3018 return 0;
3019 }
3020
3021 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3022 {
3023 u32 count = 1000000; /* 1s! */
3024 bool clean;
3025 u64 val;
3026
3027 do {
3028 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3029 clean = !(val & GICR_VPENDBASER_Dirty);
3030 if (!clean) {
3031 count--;
3032 cpu_relax();
3033 udelay(1);
3034 }
3035 } while (!clean && count);
3036
3037 if (unlikely(!clean))
3038 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3039
3040 return val;
3041 }
3042
3043 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3044 {
3045 u64 val;
3046
3047 /* Make sure we wait until the RD is done with the initial scan */
3048 val = read_vpend_dirty_clear(vlpi_base);
3049 val &= ~GICR_VPENDBASER_Valid;
3050 val &= ~clr;
3051 val |= set;
3052 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3053
3054 val = read_vpend_dirty_clear(vlpi_base);
3055 if (unlikely(val & GICR_VPENDBASER_Dirty))
3056 val |= GICR_VPENDBASER_PendingLast;
3057
3058 return val;
3059 }
3060
3061 static void its_cpu_init_lpis(void)
3062 {
3063 void __iomem *rbase = gic_data_rdist_rd_base();
3064 struct page *pend_page;
3065 phys_addr_t paddr;
3066 u64 val, tmp;
3067
3068 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3069 return;
3070
3071 val = readl_relaxed(rbase + GICR_CTLR);
3072 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3073 (val & GICR_CTLR_ENABLE_LPIS)) {
3074 /*
3075 * Check that we get the same property table on all
3076 * RDs. If we don't, this is hopeless.
3077 */
3078 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3079 paddr &= GENMASK_ULL(51, 12);
3080 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3081 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3082
3083 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3084 paddr &= GENMASK_ULL(51, 16);
3085
3086 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3087 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3088
3089 goto out;
3090 }
3091
3092 pend_page = gic_data_rdist()->pend_page;
3093 paddr = page_to_phys(pend_page);
3094
3095 /* set PROPBASE */
3096 val = (gic_rdists->prop_table_pa |
3097 GICR_PROPBASER_InnerShareable |
3098 GICR_PROPBASER_RaWaWb |
3099 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3100
3101 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3102 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3103
3104 if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3105 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3106
3107 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3108 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3109 /*
3110 * The HW reports non-shareable, we must
3111 * remove the cacheability attributes as
3112 * well.
3113 */
3114 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3115 GICR_PROPBASER_CACHEABILITY_MASK);
3116 val |= GICR_PROPBASER_nC;
3117 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3118 }
3119 pr_info_once("GIC: using cache flushing for LPI property table\n");
3120 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3121 }
3122
3123 /* set PENDBASE */
3124 val = (page_to_phys(pend_page) |
3125 GICR_PENDBASER_InnerShareable |
3126 GICR_PENDBASER_RaWaWb);
3127
3128 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3129 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3130
3131 if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3132 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3133
3134 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3135 /*
3136 * The HW reports non-shareable, we must remove the
3137 * cacheability attributes as well.
3138 */
3139 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3140 GICR_PENDBASER_CACHEABILITY_MASK);
3141 val |= GICR_PENDBASER_nC;
3142 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3143 }
3144
3145 /* Enable LPIs */
3146 val = readl_relaxed(rbase + GICR_CTLR);
3147 val |= GICR_CTLR_ENABLE_LPIS;
3148 writel_relaxed(val, rbase + GICR_CTLR);
3149
3150 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3151 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3152
3153 /*
3154 * It's possible for CPU to receive VLPIs before it is
3155 * scheduled as a vPE, especially for the first CPU, and the
3156 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3157 * as out of range and dropped by GIC.
3158 * So we initialize IDbits to known value to avoid VLPI drop.
3159 */
3160 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3161 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3162 smp_processor_id(), val);
3163 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3164
3165 /*
3166 * Also clear Valid bit of GICR_VPENDBASER, in case some
3167 * ancient programming gets left in and has possibility of
3168 * corrupting memory.
3169 */
3170 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3171 }
3172
3173 if (allocate_vpe_l1_table()) {
3174 /*
3175 * If the allocation has failed, we're in massive trouble.
3176 * Disable direct injection, and pray that no VM was
3177 * already running...
3178 */
3179 gic_rdists->has_rvpeid = false;
3180 gic_rdists->has_vlpis = false;
3181 }
3182
3183 /* Make sure the GIC has seen the above */
3184 dsb(sy);
3185 out:
3186 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3187 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3188 smp_processor_id(),
3189 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3190 "reserved" : "allocated",
3191 &paddr);
3192 }
3193
3194 static void its_cpu_init_collection(struct its_node *its)
3195 {
3196 int cpu = smp_processor_id();
3197 u64 target;
3198
3199 /* avoid cross node collections and its mapping */
3200 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3201 struct device_node *cpu_node;
3202
3203 cpu_node = of_get_cpu_node(cpu, NULL);
3204 if (its->numa_node != NUMA_NO_NODE &&
3205 its->numa_node != of_node_to_nid(cpu_node))
3206 return;
3207 }
3208
3209 /*
3210 * We now have to bind each collection to its target
3211 * redistributor.
3212 */
3213 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3214 /*
3215 * This ITS wants the physical address of the
3216 * redistributor.
3217 */
3218 target = gic_data_rdist()->phys_base;
3219 } else {
3220 /* This ITS wants a linear CPU number. */
3221 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3222 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3223 }
3224
3225 /* Perform collection mapping */
3226 its->collections[cpu].target_address = target;
3227 its->collections[cpu].col_id = cpu;
3228
3229 its_send_mapc(its, &its->collections[cpu], 1);
3230 its_send_invall(its, &its->collections[cpu]);
3231 }
3232
3233 static void its_cpu_init_collections(void)
3234 {
3235 struct its_node *its;
3236
3237 raw_spin_lock(&its_lock);
3238
3239 list_for_each_entry(its, &its_nodes, entry)
3240 its_cpu_init_collection(its);
3241
3242 raw_spin_unlock(&its_lock);
3243 }
3244
3245 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3246 {
3247 struct its_device *its_dev = NULL, *tmp;
3248 unsigned long flags;
3249
3250 raw_spin_lock_irqsave(&its->lock, flags);
3251
3252 list_for_each_entry(tmp, &its->its_device_list, entry) {
3253 if (tmp->device_id == dev_id) {
3254 its_dev = tmp;
3255 break;
3256 }
3257 }
3258
3259 raw_spin_unlock_irqrestore(&its->lock, flags);
3260
3261 return its_dev;
3262 }
3263
3264 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3265 {
3266 int i;
3267
3268 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3269 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3270 return &its->tables[i];
3271 }
3272
3273 return NULL;
3274 }
3275
3276 static bool its_alloc_table_entry(struct its_node *its,
3277 struct its_baser *baser, u32 id)
3278 {
3279 struct page *page;
3280 u32 esz, idx;
3281 __le64 *table;
3282
3283 /* Don't allow device id that exceeds single, flat table limit */
3284 esz = GITS_BASER_ENTRY_SIZE(baser->val);
3285 if (!(baser->val & GITS_BASER_INDIRECT))
3286 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3287
3288 /* Compute 1st level table index & check if that exceeds table limit */
3289 idx = id >> ilog2(baser->psz / esz);
3290 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3291 return false;
3292
3293 table = baser->base;
3294
3295 /* Allocate memory for 2nd level table */
3296 if (!table[idx]) {
3297 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3298 get_order(baser->psz));
3299 if (!page)
3300 return false;
3301
3302 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3303 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3304 gic_flush_dcache_to_poc(page_address(page), baser->psz);
3305
3306 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3307
3308 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3309 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3310 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3311
3312 /* Ensure updated table contents are visible to ITS hardware */
3313 dsb(sy);
3314 }
3315
3316 return true;
3317 }
3318
3319 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3320 {
3321 struct its_baser *baser;
3322
3323 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3324
3325 /* Don't allow device id that exceeds ITS hardware limit */
3326 if (!baser)
3327 return (ilog2(dev_id) < device_ids(its));
3328
3329 return its_alloc_table_entry(its, baser, dev_id);
3330 }
3331
3332 static bool its_alloc_vpe_table(u32 vpe_id)
3333 {
3334 struct its_node *its;
3335 int cpu;
3336
3337 /*
3338 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3339 * could try and only do it on ITSs corresponding to devices
3340 * that have interrupts targeted at this VPE, but the
3341 * complexity becomes crazy (and you have tons of memory
3342 * anyway, right?).
3343 */
3344 list_for_each_entry(its, &its_nodes, entry) {
3345 struct its_baser *baser;
3346
3347 if (!is_v4(its))
3348 continue;
3349
3350 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3351 if (!baser)
3352 return false;
3353
3354 if (!its_alloc_table_entry(its, baser, vpe_id))
3355 return false;
3356 }
3357
3358 /* Non v4.1? No need to iterate RDs and go back early. */
3359 if (!gic_rdists->has_rvpeid)
3360 return true;
3361
3362 /*
3363 * Make sure the L2 tables are allocated for all copies of
3364 * the L1 table on *all* v4.1 RDs.
3365 */
3366 for_each_possible_cpu(cpu) {
3367 if (!allocate_vpe_l2_table(cpu, vpe_id))
3368 return false;
3369 }
3370
3371 return true;
3372 }
3373
3374 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3375 int nvecs, bool alloc_lpis)
3376 {
3377 struct its_device *dev;
3378 unsigned long *lpi_map = NULL;
3379 unsigned long flags;
3380 u16 *col_map = NULL;
3381 void *itt;
3382 int lpi_base;
3383 int nr_lpis;
3384 int nr_ites;
3385 int sz;
3386
3387 if (!its_alloc_device_table(its, dev_id))
3388 return NULL;
3389
3390 if (WARN_ON(!is_power_of_2(nvecs)))
3391 nvecs = roundup_pow_of_two(nvecs);
3392
3393 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3394 /*
3395 * Even if the device wants a single LPI, the ITT must be
3396 * sized as a power of two (and you need at least one bit...).
3397 */
3398 nr_ites = max(2, nvecs);
3399 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3400 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3401 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3402 if (alloc_lpis) {
3403 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3404 if (lpi_map)
3405 col_map = kcalloc(nr_lpis, sizeof(*col_map),
3406 GFP_KERNEL);
3407 } else {
3408 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3409 nr_lpis = 0;
3410 lpi_base = 0;
3411 }
3412
3413 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3414 kfree(dev);
3415 kfree(itt);
3416 bitmap_free(lpi_map);
3417 kfree(col_map);
3418 return NULL;
3419 }
3420
3421 gic_flush_dcache_to_poc(itt, sz);
3422
3423 dev->its = its;
3424 dev->itt = itt;
3425 dev->nr_ites = nr_ites;
3426 dev->event_map.lpi_map = lpi_map;
3427 dev->event_map.col_map = col_map;
3428 dev->event_map.lpi_base = lpi_base;
3429 dev->event_map.nr_lpis = nr_lpis;
3430 raw_spin_lock_init(&dev->event_map.vlpi_lock);
3431 dev->device_id = dev_id;
3432 INIT_LIST_HEAD(&dev->entry);
3433
3434 raw_spin_lock_irqsave(&its->lock, flags);
3435 list_add(&dev->entry, &its->its_device_list);
3436 raw_spin_unlock_irqrestore(&its->lock, flags);
3437
3438 /* Map device to its ITT */
3439 its_send_mapd(dev, 1);
3440
3441 return dev;
3442 }
3443
3444 static void its_free_device(struct its_device *its_dev)
3445 {
3446 unsigned long flags;
3447
3448 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3449 list_del(&its_dev->entry);
3450 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3451 kfree(its_dev->event_map.col_map);
3452 kfree(its_dev->itt);
3453 kfree(its_dev);
3454 }
3455
3456 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3457 {
3458 int idx;
3459
3460 /* Find a free LPI region in lpi_map and allocate them. */
3461 idx = bitmap_find_free_region(dev->event_map.lpi_map,
3462 dev->event_map.nr_lpis,
3463 get_count_order(nvecs));
3464 if (idx < 0)
3465 return -ENOSPC;
3466
3467 *hwirq = dev->event_map.lpi_base + idx;
3468
3469 return 0;
3470 }
3471
3472 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3473 int nvec, msi_alloc_info_t *info)
3474 {
3475 struct its_node *its;
3476 struct its_device *its_dev;
3477 struct msi_domain_info *msi_info;
3478 u32 dev_id;
3479 int err = 0;
3480
3481 /*
3482 * We ignore "dev" entirely, and rely on the dev_id that has
3483 * been passed via the scratchpad. This limits this domain's
3484 * usefulness to upper layers that definitely know that they
3485 * are built on top of the ITS.
3486 */
3487 dev_id = info->scratchpad[0].ul;
3488
3489 msi_info = msi_get_domain_info(domain);
3490 its = msi_info->data;
3491
3492 if (!gic_rdists->has_direct_lpi &&
3493 vpe_proxy.dev &&
3494 vpe_proxy.dev->its == its &&
3495 dev_id == vpe_proxy.dev->device_id) {
3496 /* Bad luck. Get yourself a better implementation */
3497 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3498 dev_id);
3499 return -EINVAL;
3500 }
3501
3502 mutex_lock(&its->dev_alloc_lock);
3503 its_dev = its_find_device(its, dev_id);
3504 if (its_dev) {
3505 /*
3506 * We already have seen this ID, probably through
3507 * another alias (PCI bridge of some sort). No need to
3508 * create the device.
3509 */
3510 its_dev->shared = true;
3511 pr_debug("Reusing ITT for devID %x\n", dev_id);
3512 goto out;
3513 }
3514
3515 its_dev = its_create_device(its, dev_id, nvec, true);
3516 if (!its_dev) {
3517 err = -ENOMEM;
3518 goto out;
3519 }
3520
3521 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3522 its_dev->shared = true;
3523
3524 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3525 out:
3526 mutex_unlock(&its->dev_alloc_lock);
3527 info->scratchpad[0].ptr = its_dev;
3528 return err;
3529 }
3530
3531 static struct msi_domain_ops its_msi_domain_ops = {
3532 .msi_prepare = its_msi_prepare,
3533 };
3534
3535 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3536 unsigned int virq,
3537 irq_hw_number_t hwirq)
3538 {
3539 struct irq_fwspec fwspec;
3540
3541 if (irq_domain_get_of_node(domain->parent)) {
3542 fwspec.fwnode = domain->parent->fwnode;
3543 fwspec.param_count = 3;
3544 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3545 fwspec.param[1] = hwirq;
3546 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3547 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3548 fwspec.fwnode = domain->parent->fwnode;
3549 fwspec.param_count = 2;
3550 fwspec.param[0] = hwirq;
3551 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3552 } else {
3553 return -EINVAL;
3554 }
3555
3556 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3557 }
3558
3559 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3560 unsigned int nr_irqs, void *args)
3561 {
3562 msi_alloc_info_t *info = args;
3563 struct its_device *its_dev = info->scratchpad[0].ptr;
3564 struct its_node *its = its_dev->its;
3565 struct irq_data *irqd;
3566 irq_hw_number_t hwirq;
3567 int err;
3568 int i;
3569
3570 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3571 if (err)
3572 return err;
3573
3574 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3575 if (err)
3576 return err;
3577
3578 for (i = 0; i < nr_irqs; i++) {
3579 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3580 if (err)
3581 return err;
3582
3583 irq_domain_set_hwirq_and_chip(domain, virq + i,
3584 hwirq + i, &its_irq_chip, its_dev);
3585 irqd = irq_get_irq_data(virq + i);
3586 irqd_set_single_target(irqd);
3587 irqd_set_affinity_on_activate(irqd);
3588 pr_debug("ID:%d pID:%d vID:%d\n",
3589 (int)(hwirq + i - its_dev->event_map.lpi_base),
3590 (int)(hwirq + i), virq + i);
3591 }
3592
3593 return 0;
3594 }
3595
3596 static int its_irq_domain_activate(struct irq_domain *domain,
3597 struct irq_data *d, bool reserve)
3598 {
3599 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3600 u32 event = its_get_event_id(d);
3601 int cpu;
3602
3603 cpu = its_select_cpu(d, cpu_online_mask);
3604 if (cpu < 0 || cpu >= nr_cpu_ids)
3605 return -EINVAL;
3606
3607 its_inc_lpi_count(d, cpu);
3608 its_dev->event_map.col_map[event] = cpu;
3609 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3610
3611 /* Map the GIC IRQ and event to the device */
3612 its_send_mapti(its_dev, d->hwirq, event);
3613 return 0;
3614 }
3615
3616 static void its_irq_domain_deactivate(struct irq_domain *domain,
3617 struct irq_data *d)
3618 {
3619 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3620 u32 event = its_get_event_id(d);
3621
3622 its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3623 /* Stop the delivery of interrupts */
3624 its_send_discard(its_dev, event);
3625 }
3626
3627 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3628 unsigned int nr_irqs)
3629 {
3630 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3631 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3632 struct its_node *its = its_dev->its;
3633 int i;
3634
3635 bitmap_release_region(its_dev->event_map.lpi_map,
3636 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3637 get_count_order(nr_irqs));
3638
3639 for (i = 0; i < nr_irqs; i++) {
3640 struct irq_data *data = irq_domain_get_irq_data(domain,
3641 virq + i);
3642 /* Nuke the entry in the domain */
3643 irq_domain_reset_irq_data(data);
3644 }
3645
3646 mutex_lock(&its->dev_alloc_lock);
3647
3648 /*
3649 * If all interrupts have been freed, start mopping the
3650 * floor. This is conditioned on the device not being shared.
3651 */
3652 if (!its_dev->shared &&
3653 bitmap_empty(its_dev->event_map.lpi_map,
3654 its_dev->event_map.nr_lpis)) {
3655 its_lpi_free(its_dev->event_map.lpi_map,
3656 its_dev->event_map.lpi_base,
3657 its_dev->event_map.nr_lpis);
3658
3659 /* Unmap device/itt */
3660 its_send_mapd(its_dev, 0);
3661 its_free_device(its_dev);
3662 }
3663
3664 mutex_unlock(&its->dev_alloc_lock);
3665
3666 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3667 }
3668
3669 static const struct irq_domain_ops its_domain_ops = {
3670 .alloc = its_irq_domain_alloc,
3671 .free = its_irq_domain_free,
3672 .activate = its_irq_domain_activate,
3673 .deactivate = its_irq_domain_deactivate,
3674 };
3675
3676 /*
3677 * This is insane.
3678 *
3679 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3680 * likely), the only way to perform an invalidate is to use a fake
3681 * device to issue an INV command, implying that the LPI has first
3682 * been mapped to some event on that device. Since this is not exactly
3683 * cheap, we try to keep that mapping around as long as possible, and
3684 * only issue an UNMAP if we're short on available slots.
3685 *
3686 * Broken by design(tm).
3687 *
3688 * GICv4.1, on the other hand, mandates that we're able to invalidate
3689 * by writing to a MMIO register. It doesn't implement the whole of
3690 * DirectLPI, but that's good enough. And most of the time, we don't
3691 * even have to invalidate anything, as the redistributor can be told
3692 * whether to generate a doorbell or not (we thus leave it enabled,
3693 * always).
3694 */
3695 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3696 {
3697 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3698 if (gic_rdists->has_rvpeid)
3699 return;
3700
3701 /* Already unmapped? */
3702 if (vpe->vpe_proxy_event == -1)
3703 return;
3704
3705 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3706 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3707
3708 /*
3709 * We don't track empty slots at all, so let's move the
3710 * next_victim pointer if we can quickly reuse that slot
3711 * instead of nuking an existing entry. Not clear that this is
3712 * always a win though, and this might just generate a ripple
3713 * effect... Let's just hope VPEs don't migrate too often.
3714 */
3715 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3716 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3717
3718 vpe->vpe_proxy_event = -1;
3719 }
3720
3721 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3722 {
3723 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3724 if (gic_rdists->has_rvpeid)
3725 return;
3726
3727 if (!gic_rdists->has_direct_lpi) {
3728 unsigned long flags;
3729
3730 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3731 its_vpe_db_proxy_unmap_locked(vpe);
3732 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3733 }
3734 }
3735
3736 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3737 {
3738 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3739 if (gic_rdists->has_rvpeid)
3740 return;
3741
3742 /* Already mapped? */
3743 if (vpe->vpe_proxy_event != -1)
3744 return;
3745
3746 /* This slot was already allocated. Kick the other VPE out. */
3747 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3748 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3749
3750 /* Map the new VPE instead */
3751 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3752 vpe->vpe_proxy_event = vpe_proxy.next_victim;
3753 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3754
3755 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3756 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3757 }
3758
3759 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3760 {
3761 unsigned long flags;
3762 struct its_collection *target_col;
3763
3764 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3765 if (gic_rdists->has_rvpeid)
3766 return;
3767
3768 if (gic_rdists->has_direct_lpi) {
3769 void __iomem *rdbase;
3770
3771 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3772 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3773 wait_for_syncr(rdbase);
3774
3775 return;
3776 }
3777
3778 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3779
3780 its_vpe_db_proxy_map_locked(vpe);
3781
3782 target_col = &vpe_proxy.dev->its->collections[to];
3783 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3784 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3785
3786 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3787 }
3788
3789 static int its_vpe_set_affinity(struct irq_data *d,
3790 const struct cpumask *mask_val,
3791 bool force)
3792 {
3793 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3794 int from, cpu = cpumask_first(mask_val);
3795 unsigned long flags;
3796
3797 /*
3798 * Changing affinity is mega expensive, so let's be as lazy as
3799 * we can and only do it if we really have to. Also, if mapped
3800 * into the proxy device, we need to move the doorbell
3801 * interrupt to its new location.
3802 *
3803 * Another thing is that changing the affinity of a vPE affects
3804 * *other interrupts* such as all the vLPIs that are routed to
3805 * this vPE. This means that the irq_desc lock is not enough to
3806 * protect us, and that we must ensure nobody samples vpe->col_idx
3807 * during the update, hence the lock below which must also be
3808 * taken on any vLPI handling path that evaluates vpe->col_idx.
3809 */
3810 from = vpe_to_cpuid_lock(vpe, &flags);
3811 if (from == cpu)
3812 goto out;
3813
3814 vpe->col_idx = cpu;
3815
3816 /*
3817 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3818 * is sharing its VPE table with the current one.
3819 */
3820 if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3821 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3822 goto out;
3823
3824 its_send_vmovp(vpe);
3825 its_vpe_db_proxy_move(vpe, from, cpu);
3826
3827 out:
3828 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3829 vpe_to_cpuid_unlock(vpe, flags);
3830
3831 return IRQ_SET_MASK_OK_DONE;
3832 }
3833
3834 static void its_wait_vpt_parse_complete(void)
3835 {
3836 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3837 u64 val;
3838
3839 if (!gic_rdists->has_vpend_valid_dirty)
3840 return;
3841
3842 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3843 val,
3844 !(val & GICR_VPENDBASER_Dirty),
3845 1, 500));
3846 }
3847
3848 static void its_vpe_schedule(struct its_vpe *vpe)
3849 {
3850 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3851 u64 val;
3852
3853 /* Schedule the VPE */
3854 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3855 GENMASK_ULL(51, 12);
3856 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3857 val |= GICR_VPROPBASER_RaWb;
3858 val |= GICR_VPROPBASER_InnerShareable;
3859 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3860
3861 val = virt_to_phys(page_address(vpe->vpt_page)) &
3862 GENMASK_ULL(51, 16);
3863 val |= GICR_VPENDBASER_RaWaWb;
3864 val |= GICR_VPENDBASER_InnerShareable;
3865 /*
3866 * There is no good way of finding out if the pending table is
3867 * empty as we can race against the doorbell interrupt very
3868 * easily. So in the end, vpe->pending_last is only an
3869 * indication that the vcpu has something pending, not one
3870 * that the pending table is empty. A good implementation
3871 * would be able to read its coarse map pretty quickly anyway,
3872 * making this a tolerable issue.
3873 */
3874 val |= GICR_VPENDBASER_PendingLast;
3875 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3876 val |= GICR_VPENDBASER_Valid;
3877 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3878 }
3879
3880 static void its_vpe_deschedule(struct its_vpe *vpe)
3881 {
3882 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3883 u64 val;
3884
3885 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3886
3887 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3888 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3889 }
3890
3891 static void its_vpe_invall(struct its_vpe *vpe)
3892 {
3893 struct its_node *its;
3894
3895 list_for_each_entry(its, &its_nodes, entry) {
3896 if (!is_v4(its))
3897 continue;
3898
3899 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3900 continue;
3901
3902 /*
3903 * Sending a VINVALL to a single ITS is enough, as all
3904 * we need is to reach the redistributors.
3905 */
3906 its_send_vinvall(its, vpe);
3907 return;
3908 }
3909 }
3910
3911 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3912 {
3913 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3914 struct its_cmd_info *info = vcpu_info;
3915
3916 switch (info->cmd_type) {
3917 case SCHEDULE_VPE:
3918 its_vpe_schedule(vpe);
3919 return 0;
3920
3921 case DESCHEDULE_VPE:
3922 its_vpe_deschedule(vpe);
3923 return 0;
3924
3925 case COMMIT_VPE:
3926 its_wait_vpt_parse_complete();
3927 return 0;
3928
3929 case INVALL_VPE:
3930 its_vpe_invall(vpe);
3931 return 0;
3932
3933 default:
3934 return -EINVAL;
3935 }
3936 }
3937
3938 static void its_vpe_send_cmd(struct its_vpe *vpe,
3939 void (*cmd)(struct its_device *, u32))
3940 {
3941 unsigned long flags;
3942
3943 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3944
3945 its_vpe_db_proxy_map_locked(vpe);
3946 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3947
3948 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3949 }
3950
3951 static void its_vpe_send_inv(struct irq_data *d)
3952 {
3953 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3954
3955 if (gic_rdists->has_direct_lpi) {
3956 void __iomem *rdbase;
3957
3958 /* Target the redistributor this VPE is currently known on */
3959 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3960 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3961 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3962 wait_for_syncr(rdbase);
3963 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3964 } else {
3965 its_vpe_send_cmd(vpe, its_send_inv);
3966 }
3967 }
3968
3969 static void its_vpe_mask_irq(struct irq_data *d)
3970 {
3971 /*
3972 * We need to unmask the LPI, which is described by the parent
3973 * irq_data. Instead of calling into the parent (which won't
3974 * exactly do the right thing, let's simply use the
3975 * parent_data pointer. Yes, I'm naughty.
3976 */
3977 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3978 its_vpe_send_inv(d);
3979 }
3980
3981 static void its_vpe_unmask_irq(struct irq_data *d)
3982 {
3983 /* Same hack as above... */
3984 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3985 its_vpe_send_inv(d);
3986 }
3987
3988 static int its_vpe_set_irqchip_state(struct irq_data *d,
3989 enum irqchip_irq_state which,
3990 bool state)
3991 {
3992 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3993
3994 if (which != IRQCHIP_STATE_PENDING)
3995 return -EINVAL;
3996
3997 if (gic_rdists->has_direct_lpi) {
3998 void __iomem *rdbase;
3999
4000 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4001 if (state) {
4002 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4003 } else {
4004 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4005 wait_for_syncr(rdbase);
4006 }
4007 } else {
4008 if (state)
4009 its_vpe_send_cmd(vpe, its_send_int);
4010 else
4011 its_vpe_send_cmd(vpe, its_send_clear);
4012 }
4013
4014 return 0;
4015 }
4016
4017 static int its_vpe_retrigger(struct irq_data *d)
4018 {
4019 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4020 }
4021
4022 static struct irq_chip its_vpe_irq_chip = {
4023 .name = "GICv4-vpe",
4024 .irq_mask = its_vpe_mask_irq,
4025 .irq_unmask = its_vpe_unmask_irq,
4026 .irq_eoi = irq_chip_eoi_parent,
4027 .irq_set_affinity = its_vpe_set_affinity,
4028 .irq_retrigger = its_vpe_retrigger,
4029 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
4030 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
4031 };
4032
4033 static struct its_node *find_4_1_its(void)
4034 {
4035 static struct its_node *its = NULL;
4036
4037 if (!its) {
4038 list_for_each_entry(its, &its_nodes, entry) {
4039 if (is_v4_1(its))
4040 return its;
4041 }
4042
4043 /* Oops? */
4044 its = NULL;
4045 }
4046
4047 return its;
4048 }
4049
4050 static void its_vpe_4_1_send_inv(struct irq_data *d)
4051 {
4052 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4053 struct its_node *its;
4054
4055 /*
4056 * GICv4.1 wants doorbells to be invalidated using the
4057 * INVDB command in order to be broadcast to all RDs. Send
4058 * it to the first valid ITS, and let the HW do its magic.
4059 */
4060 its = find_4_1_its();
4061 if (its)
4062 its_send_invdb(its, vpe);
4063 }
4064
4065 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4066 {
4067 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4068 its_vpe_4_1_send_inv(d);
4069 }
4070
4071 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4072 {
4073 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4074 its_vpe_4_1_send_inv(d);
4075 }
4076
4077 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4078 struct its_cmd_info *info)
4079 {
4080 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4081 u64 val = 0;
4082
4083 /* Schedule the VPE */
4084 val |= GICR_VPENDBASER_Valid;
4085 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4086 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4087 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4088
4089 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4090 }
4091
4092 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4093 struct its_cmd_info *info)
4094 {
4095 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4096 u64 val;
4097
4098 if (info->req_db) {
4099 unsigned long flags;
4100
4101 /*
4102 * vPE is going to block: make the vPE non-resident with
4103 * PendingLast clear and DB set. The GIC guarantees that if
4104 * we read-back PendingLast clear, then a doorbell will be
4105 * delivered when an interrupt comes.
4106 *
4107 * Note the locking to deal with the concurrent update of
4108 * pending_last from the doorbell interrupt handler that can
4109 * run concurrently.
4110 */
4111 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4112 val = its_clear_vpend_valid(vlpi_base,
4113 GICR_VPENDBASER_PendingLast,
4114 GICR_VPENDBASER_4_1_DB);
4115 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4116 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4117 } else {
4118 /*
4119 * We're not blocking, so just make the vPE non-resident
4120 * with PendingLast set, indicating that we'll be back.
4121 */
4122 val = its_clear_vpend_valid(vlpi_base,
4123 0,
4124 GICR_VPENDBASER_PendingLast);
4125 vpe->pending_last = true;
4126 }
4127 }
4128
4129 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4130 {
4131 void __iomem *rdbase;
4132 unsigned long flags;
4133 u64 val;
4134 int cpu;
4135
4136 val = GICR_INVALLR_V;
4137 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4138
4139 /* Target the redistributor this vPE is currently known on */
4140 cpu = vpe_to_cpuid_lock(vpe, &flags);
4141 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4142 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4143 gic_write_lpir(val, rdbase + GICR_INVALLR);
4144
4145 wait_for_syncr(rdbase);
4146 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4147 vpe_to_cpuid_unlock(vpe, flags);
4148 }
4149
4150 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4151 {
4152 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4153 struct its_cmd_info *info = vcpu_info;
4154
4155 switch (info->cmd_type) {
4156 case SCHEDULE_VPE:
4157 its_vpe_4_1_schedule(vpe, info);
4158 return 0;
4159
4160 case DESCHEDULE_VPE:
4161 its_vpe_4_1_deschedule(vpe, info);
4162 return 0;
4163
4164 case COMMIT_VPE:
4165 its_wait_vpt_parse_complete();
4166 return 0;
4167
4168 case INVALL_VPE:
4169 its_vpe_4_1_invall(vpe);
4170 return 0;
4171
4172 default:
4173 return -EINVAL;
4174 }
4175 }
4176
4177 static struct irq_chip its_vpe_4_1_irq_chip = {
4178 .name = "GICv4.1-vpe",
4179 .irq_mask = its_vpe_4_1_mask_irq,
4180 .irq_unmask = its_vpe_4_1_unmask_irq,
4181 .irq_eoi = irq_chip_eoi_parent,
4182 .irq_set_affinity = its_vpe_set_affinity,
4183 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
4184 };
4185
4186 static void its_configure_sgi(struct irq_data *d, bool clear)
4187 {
4188 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4189 struct its_cmd_desc desc;
4190
4191 desc.its_vsgi_cmd.vpe = vpe;
4192 desc.its_vsgi_cmd.sgi = d->hwirq;
4193 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4194 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4195 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4196 desc.its_vsgi_cmd.clear = clear;
4197
4198 /*
4199 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4200 * destination VPE is mapped there. Since we map them eagerly at
4201 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4202 */
4203 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4204 }
4205
4206 static void its_sgi_mask_irq(struct irq_data *d)
4207 {
4208 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4209
4210 vpe->sgi_config[d->hwirq].enabled = false;
4211 its_configure_sgi(d, false);
4212 }
4213
4214 static void its_sgi_unmask_irq(struct irq_data *d)
4215 {
4216 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4217
4218 vpe->sgi_config[d->hwirq].enabled = true;
4219 its_configure_sgi(d, false);
4220 }
4221
4222 static int its_sgi_set_affinity(struct irq_data *d,
4223 const struct cpumask *mask_val,
4224 bool force)
4225 {
4226 /*
4227 * There is no notion of affinity for virtual SGIs, at least
4228 * not on the host (since they can only be targeting a vPE).
4229 * Tell the kernel we've done whatever it asked for.
4230 */
4231 irq_data_update_effective_affinity(d, mask_val);
4232 return IRQ_SET_MASK_OK;
4233 }
4234
4235 static int its_sgi_set_irqchip_state(struct irq_data *d,
4236 enum irqchip_irq_state which,
4237 bool state)
4238 {
4239 if (which != IRQCHIP_STATE_PENDING)
4240 return -EINVAL;
4241
4242 if (state) {
4243 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4244 struct its_node *its = find_4_1_its();
4245 u64 val;
4246
4247 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4248 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4249 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4250 } else {
4251 its_configure_sgi(d, true);
4252 }
4253
4254 return 0;
4255 }
4256
4257 static int its_sgi_get_irqchip_state(struct irq_data *d,
4258 enum irqchip_irq_state which, bool *val)
4259 {
4260 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4261 void __iomem *base;
4262 unsigned long flags;
4263 u32 count = 1000000; /* 1s! */
4264 u32 status;
4265 int cpu;
4266
4267 if (which != IRQCHIP_STATE_PENDING)
4268 return -EINVAL;
4269
4270 /*
4271 * Locking galore! We can race against two different events:
4272 *
4273 * - Concurrent vPE affinity change: we must make sure it cannot
4274 * happen, or we'll talk to the wrong redistributor. This is
4275 * identical to what happens with vLPIs.
4276 *
4277 * - Concurrent VSGIPENDR access: As it involves accessing two
4278 * MMIO registers, this must be made atomic one way or another.
4279 */
4280 cpu = vpe_to_cpuid_lock(vpe, &flags);
4281 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4282 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4283 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4284 do {
4285 status = readl_relaxed(base + GICR_VSGIPENDR);
4286 if (!(status & GICR_VSGIPENDR_BUSY))
4287 goto out;
4288
4289 count--;
4290 if (!count) {
4291 pr_err_ratelimited("Unable to get SGI status\n");
4292 goto out;
4293 }
4294 cpu_relax();
4295 udelay(1);
4296 } while (count);
4297
4298 out:
4299 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4300 vpe_to_cpuid_unlock(vpe, flags);
4301
4302 if (!count)
4303 return -ENXIO;
4304
4305 *val = !!(status & (1 << d->hwirq));
4306
4307 return 0;
4308 }
4309
4310 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4311 {
4312 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4313 struct its_cmd_info *info = vcpu_info;
4314
4315 switch (info->cmd_type) {
4316 case PROP_UPDATE_VSGI:
4317 vpe->sgi_config[d->hwirq].priority = info->priority;
4318 vpe->sgi_config[d->hwirq].group = info->group;
4319 its_configure_sgi(d, false);
4320 return 0;
4321
4322 default:
4323 return -EINVAL;
4324 }
4325 }
4326
4327 static struct irq_chip its_sgi_irq_chip = {
4328 .name = "GICv4.1-sgi",
4329 .irq_mask = its_sgi_mask_irq,
4330 .irq_unmask = its_sgi_unmask_irq,
4331 .irq_set_affinity = its_sgi_set_affinity,
4332 .irq_set_irqchip_state = its_sgi_set_irqchip_state,
4333 .irq_get_irqchip_state = its_sgi_get_irqchip_state,
4334 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
4335 };
4336
4337 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4338 unsigned int virq, unsigned int nr_irqs,
4339 void *args)
4340 {
4341 struct its_vpe *vpe = args;
4342 int i;
4343
4344 /* Yes, we do want 16 SGIs */
4345 WARN_ON(nr_irqs != 16);
4346
4347 for (i = 0; i < 16; i++) {
4348 vpe->sgi_config[i].priority = 0;
4349 vpe->sgi_config[i].enabled = false;
4350 vpe->sgi_config[i].group = false;
4351
4352 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4353 &its_sgi_irq_chip, vpe);
4354 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4355 }
4356
4357 return 0;
4358 }
4359
4360 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4361 unsigned int virq,
4362 unsigned int nr_irqs)
4363 {
4364 /* Nothing to do */
4365 }
4366
4367 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4368 struct irq_data *d, bool reserve)
4369 {
4370 /* Write out the initial SGI configuration */
4371 its_configure_sgi(d, false);
4372 return 0;
4373 }
4374
4375 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4376 struct irq_data *d)
4377 {
4378 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4379
4380 /*
4381 * The VSGI command is awkward:
4382 *
4383 * - To change the configuration, CLEAR must be set to false,
4384 * leaving the pending bit unchanged.
4385 * - To clear the pending bit, CLEAR must be set to true, leaving
4386 * the configuration unchanged.
4387 *
4388 * You just can't do both at once, hence the two commands below.
4389 */
4390 vpe->sgi_config[d->hwirq].enabled = false;
4391 its_configure_sgi(d, false);
4392 its_configure_sgi(d, true);
4393 }
4394
4395 static const struct irq_domain_ops its_sgi_domain_ops = {
4396 .alloc = its_sgi_irq_domain_alloc,
4397 .free = its_sgi_irq_domain_free,
4398 .activate = its_sgi_irq_domain_activate,
4399 .deactivate = its_sgi_irq_domain_deactivate,
4400 };
4401
4402 static int its_vpe_id_alloc(void)
4403 {
4404 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4405 }
4406
4407 static void its_vpe_id_free(u16 id)
4408 {
4409 ida_simple_remove(&its_vpeid_ida, id);
4410 }
4411
4412 static int its_vpe_init(struct its_vpe *vpe)
4413 {
4414 struct page *vpt_page;
4415 int vpe_id;
4416
4417 /* Allocate vpe_id */
4418 vpe_id = its_vpe_id_alloc();
4419 if (vpe_id < 0)
4420 return vpe_id;
4421
4422 /* Allocate VPT */
4423 vpt_page = its_allocate_pending_table(GFP_KERNEL);
4424 if (!vpt_page) {
4425 its_vpe_id_free(vpe_id);
4426 return -ENOMEM;
4427 }
4428
4429 if (!its_alloc_vpe_table(vpe_id)) {
4430 its_vpe_id_free(vpe_id);
4431 its_free_pending_table(vpt_page);
4432 return -ENOMEM;
4433 }
4434
4435 raw_spin_lock_init(&vpe->vpe_lock);
4436 vpe->vpe_id = vpe_id;
4437 vpe->vpt_page = vpt_page;
4438 if (gic_rdists->has_rvpeid)
4439 atomic_set(&vpe->vmapp_count, 0);
4440 else
4441 vpe->vpe_proxy_event = -1;
4442
4443 return 0;
4444 }
4445
4446 static void its_vpe_teardown(struct its_vpe *vpe)
4447 {
4448 its_vpe_db_proxy_unmap(vpe);
4449 its_vpe_id_free(vpe->vpe_id);
4450 its_free_pending_table(vpe->vpt_page);
4451 }
4452
4453 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4454 unsigned int virq,
4455 unsigned int nr_irqs)
4456 {
4457 struct its_vm *vm = domain->host_data;
4458 int i;
4459
4460 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4461
4462 for (i = 0; i < nr_irqs; i++) {
4463 struct irq_data *data = irq_domain_get_irq_data(domain,
4464 virq + i);
4465 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4466
4467 BUG_ON(vm != vpe->its_vm);
4468
4469 clear_bit(data->hwirq, vm->db_bitmap);
4470 its_vpe_teardown(vpe);
4471 irq_domain_reset_irq_data(data);
4472 }
4473
4474 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4475 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4476 its_free_prop_table(vm->vprop_page);
4477 }
4478 }
4479
4480 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4481 unsigned int nr_irqs, void *args)
4482 {
4483 struct irq_chip *irqchip = &its_vpe_irq_chip;
4484 struct its_vm *vm = args;
4485 unsigned long *bitmap;
4486 struct page *vprop_page;
4487 int base, nr_ids, i, err = 0;
4488
4489 BUG_ON(!vm);
4490
4491 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4492 if (!bitmap)
4493 return -ENOMEM;
4494
4495 if (nr_ids < nr_irqs) {
4496 its_lpi_free(bitmap, base, nr_ids);
4497 return -ENOMEM;
4498 }
4499
4500 vprop_page = its_allocate_prop_table(GFP_KERNEL);
4501 if (!vprop_page) {
4502 its_lpi_free(bitmap, base, nr_ids);
4503 return -ENOMEM;
4504 }
4505
4506 vm->db_bitmap = bitmap;
4507 vm->db_lpi_base = base;
4508 vm->nr_db_lpis = nr_ids;
4509 vm->vprop_page = vprop_page;
4510
4511 if (gic_rdists->has_rvpeid)
4512 irqchip = &its_vpe_4_1_irq_chip;
4513
4514 for (i = 0; i < nr_irqs; i++) {
4515 vm->vpes[i]->vpe_db_lpi = base + i;
4516 err = its_vpe_init(vm->vpes[i]);
4517 if (err)
4518 break;
4519 err = its_irq_gic_domain_alloc(domain, virq + i,
4520 vm->vpes[i]->vpe_db_lpi);
4521 if (err)
4522 break;
4523 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4524 irqchip, vm->vpes[i]);
4525 set_bit(i, bitmap);
4526 }
4527
4528 if (err) {
4529 if (i > 0)
4530 its_vpe_irq_domain_free(domain, virq, i);
4531
4532 its_lpi_free(bitmap, base, nr_ids);
4533 its_free_prop_table(vprop_page);
4534 }
4535
4536 return err;
4537 }
4538
4539 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4540 struct irq_data *d, bool reserve)
4541 {
4542 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4543 struct its_node *its;
4544
4545 /*
4546 * If we use the list map, we issue VMAPP on demand... Unless
4547 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4548 * so that VSGIs can work.
4549 */
4550 if (!gic_requires_eager_mapping())
4551 return 0;
4552
4553 /* Map the VPE to the first possible CPU */
4554 vpe->col_idx = cpumask_first(cpu_online_mask);
4555
4556 list_for_each_entry(its, &its_nodes, entry) {
4557 if (!is_v4(its))
4558 continue;
4559
4560 its_send_vmapp(its, vpe, true);
4561 its_send_vinvall(its, vpe);
4562 }
4563
4564 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4565
4566 return 0;
4567 }
4568
4569 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4570 struct irq_data *d)
4571 {
4572 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4573 struct its_node *its;
4574
4575 /*
4576 * If we use the list map on GICv4.0, we unmap the VPE once no
4577 * VLPIs are associated with the VM.
4578 */
4579 if (!gic_requires_eager_mapping())
4580 return;
4581
4582 list_for_each_entry(its, &its_nodes, entry) {
4583 if (!is_v4(its))
4584 continue;
4585
4586 its_send_vmapp(its, vpe, false);
4587 }
4588
4589 /*
4590 * There may be a direct read to the VPT after unmapping the
4591 * vPE, to guarantee the validity of this, we make the VPT
4592 * memory coherent with the CPU caches here.
4593 */
4594 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4595 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4596 LPI_PENDBASE_SZ);
4597 }
4598
4599 static const struct irq_domain_ops its_vpe_domain_ops = {
4600 .alloc = its_vpe_irq_domain_alloc,
4601 .free = its_vpe_irq_domain_free,
4602 .activate = its_vpe_irq_domain_activate,
4603 .deactivate = its_vpe_irq_domain_deactivate,
4604 };
4605
4606 static int its_force_quiescent(void __iomem *base)
4607 {
4608 u32 count = 1000000; /* 1s */
4609 u32 val;
4610
4611 val = readl_relaxed(base + GITS_CTLR);
4612 /*
4613 * GIC architecture specification requires the ITS to be both
4614 * disabled and quiescent for writes to GITS_BASER<n> or
4615 * GITS_CBASER to not have UNPREDICTABLE results.
4616 */
4617 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4618 return 0;
4619
4620 /* Disable the generation of all interrupts to this ITS */
4621 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4622 writel_relaxed(val, base + GITS_CTLR);
4623
4624 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4625 while (1) {
4626 val = readl_relaxed(base + GITS_CTLR);
4627 if (val & GITS_CTLR_QUIESCENT)
4628 return 0;
4629
4630 count--;
4631 if (!count)
4632 return -EBUSY;
4633
4634 cpu_relax();
4635 udelay(1);
4636 }
4637 }
4638
4639 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4640 {
4641 struct its_node *its = data;
4642
4643 /* erratum 22375: only alloc 8MB table size (20 bits) */
4644 its->typer &= ~GITS_TYPER_DEVBITS;
4645 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4646 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4647
4648 return true;
4649 }
4650
4651 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4652 {
4653 struct its_node *its = data;
4654
4655 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4656
4657 return true;
4658 }
4659
4660 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4661 {
4662 struct its_node *its = data;
4663
4664 /* On QDF2400, the size of the ITE is 16Bytes */
4665 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4666 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4667
4668 return true;
4669 }
4670
4671 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4672 {
4673 struct its_node *its = its_dev->its;
4674
4675 /*
4676 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4677 * which maps 32-bit writes targeted at a separate window of
4678 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4679 * with device ID taken from bits [device_id_bits + 1:2] of
4680 * the window offset.
4681 */
4682 return its->pre_its_base + (its_dev->device_id << 2);
4683 }
4684
4685 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4686 {
4687 struct its_node *its = data;
4688 u32 pre_its_window[2];
4689 u32 ids;
4690
4691 if (!fwnode_property_read_u32_array(its->fwnode_handle,
4692 "socionext,synquacer-pre-its",
4693 pre_its_window,
4694 ARRAY_SIZE(pre_its_window))) {
4695
4696 its->pre_its_base = pre_its_window[0];
4697 its->get_msi_base = its_irq_get_msi_base_pre_its;
4698
4699 ids = ilog2(pre_its_window[1]) - 2;
4700 if (device_ids(its) > ids) {
4701 its->typer &= ~GITS_TYPER_DEVBITS;
4702 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4703 }
4704
4705 /* the pre-ITS breaks isolation, so disable MSI remapping */
4706 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4707 return true;
4708 }
4709 return false;
4710 }
4711
4712 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4713 {
4714 struct its_node *its = data;
4715
4716 /*
4717 * Hip07 insists on using the wrong address for the VLPI
4718 * page. Trick it into doing the right thing...
4719 */
4720 its->vlpi_redist_offset = SZ_128K;
4721 return true;
4722 }
4723
4724 static bool __maybe_unused its_enable_rk3588001(void *data)
4725 {
4726 struct its_node *its = data;
4727
4728 if (!of_machine_is_compatible("rockchip,rk3588"))
4729 return false;
4730
4731 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4732 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4733
4734 return true;
4735 }
4736
4737 static const struct gic_quirk its_quirks[] = {
4738 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4739 {
4740 .desc = "ITS: Cavium errata 22375, 24313",
4741 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4742 .mask = 0xffff0fff,
4743 .init = its_enable_quirk_cavium_22375,
4744 },
4745 #endif
4746 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4747 {
4748 .desc = "ITS: Cavium erratum 23144",
4749 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4750 .mask = 0xffff0fff,
4751 .init = its_enable_quirk_cavium_23144,
4752 },
4753 #endif
4754 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4755 {
4756 .desc = "ITS: QDF2400 erratum 0065",
4757 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
4758 .mask = 0xffffffff,
4759 .init = its_enable_quirk_qdf2400_e0065,
4760 },
4761 #endif
4762 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4763 {
4764 /*
4765 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4766 * implementation, but with a 'pre-ITS' added that requires
4767 * special handling in software.
4768 */
4769 .desc = "ITS: Socionext Synquacer pre-ITS",
4770 .iidr = 0x0001143b,
4771 .mask = 0xffffffff,
4772 .init = its_enable_quirk_socionext_synquacer,
4773 },
4774 #endif
4775 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4776 {
4777 .desc = "ITS: Hip07 erratum 161600802",
4778 .iidr = 0x00000004,
4779 .mask = 0xffffffff,
4780 .init = its_enable_quirk_hip07_161600802,
4781 },
4782 #endif
4783 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4784 {
4785 .desc = "ITS: Rockchip erratum RK3588001",
4786 .iidr = 0x0201743b,
4787 .mask = 0xffffffff,
4788 .init = its_enable_rk3588001,
4789 },
4790 #endif
4791 {
4792 }
4793 };
4794
4795 static void its_enable_quirks(struct its_node *its)
4796 {
4797 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4798
4799 gic_enable_quirks(iidr, its_quirks, its);
4800 }
4801
4802 static int its_save_disable(void)
4803 {
4804 struct its_node *its;
4805 int err = 0;
4806
4807 raw_spin_lock(&its_lock);
4808 list_for_each_entry(its, &its_nodes, entry) {
4809 void __iomem *base;
4810
4811 base = its->base;
4812 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4813 err = its_force_quiescent(base);
4814 if (err) {
4815 pr_err("ITS@%pa: failed to quiesce: %d\n",
4816 &its->phys_base, err);
4817 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4818 goto err;
4819 }
4820
4821 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4822 }
4823
4824 err:
4825 if (err) {
4826 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4827 void __iomem *base;
4828
4829 base = its->base;
4830 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4831 }
4832 }
4833 raw_spin_unlock(&its_lock);
4834
4835 return err;
4836 }
4837
4838 static void its_restore_enable(void)
4839 {
4840 struct its_node *its;
4841 int ret;
4842
4843 raw_spin_lock(&its_lock);
4844 list_for_each_entry(its, &its_nodes, entry) {
4845 void __iomem *base;
4846 int i;
4847
4848 base = its->base;
4849
4850 /*
4851 * Make sure that the ITS is disabled. If it fails to quiesce,
4852 * don't restore it since writing to CBASER or BASER<n>
4853 * registers is undefined according to the GIC v3 ITS
4854 * Specification.
4855 *
4856 * Firmware resuming with the ITS enabled is terminally broken.
4857 */
4858 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4859 ret = its_force_quiescent(base);
4860 if (ret) {
4861 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4862 &its->phys_base, ret);
4863 continue;
4864 }
4865
4866 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4867
4868 /*
4869 * Writing CBASER resets CREADR to 0, so make CWRITER and
4870 * cmd_write line up with it.
4871 */
4872 its->cmd_write = its->cmd_base;
4873 gits_write_cwriter(0, base + GITS_CWRITER);
4874
4875 /* Restore GITS_BASER from the value cache. */
4876 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4877 struct its_baser *baser = &its->tables[i];
4878
4879 if (!(baser->val & GITS_BASER_VALID))
4880 continue;
4881
4882 its_write_baser(its, baser, baser->val);
4883 }
4884 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4885
4886 /*
4887 * Reinit the collection if it's stored in the ITS. This is
4888 * indicated by the col_id being less than the HCC field.
4889 * CID < HCC as specified in the GIC v3 Documentation.
4890 */
4891 if (its->collections[smp_processor_id()].col_id <
4892 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4893 its_cpu_init_collection(its);
4894 }
4895 raw_spin_unlock(&its_lock);
4896 }
4897
4898 static struct syscore_ops its_syscore_ops = {
4899 .suspend = its_save_disable,
4900 .resume = its_restore_enable,
4901 };
4902
4903 static void __init __iomem *its_map_one(struct resource *res, int *err)
4904 {
4905 void __iomem *its_base;
4906 u32 val;
4907
4908 its_base = ioremap(res->start, SZ_64K);
4909 if (!its_base) {
4910 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4911 *err = -ENOMEM;
4912 return NULL;
4913 }
4914
4915 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4916 if (val != 0x30 && val != 0x40) {
4917 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4918 *err = -ENODEV;
4919 goto out_unmap;
4920 }
4921
4922 *err = its_force_quiescent(its_base);
4923 if (*err) {
4924 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4925 goto out_unmap;
4926 }
4927
4928 return its_base;
4929
4930 out_unmap:
4931 iounmap(its_base);
4932 return NULL;
4933 }
4934
4935 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4936 {
4937 struct irq_domain *inner_domain;
4938 struct msi_domain_info *info;
4939
4940 info = kzalloc(sizeof(*info), GFP_KERNEL);
4941 if (!info)
4942 return -ENOMEM;
4943
4944 info->ops = &its_msi_domain_ops;
4945 info->data = its;
4946
4947 inner_domain = irq_domain_create_hierarchy(its_parent,
4948 its->msi_domain_flags, 0,
4949 handle, &its_domain_ops,
4950 info);
4951 if (!inner_domain) {
4952 kfree(info);
4953 return -ENOMEM;
4954 }
4955
4956 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4957
4958 return 0;
4959 }
4960
4961 static int its_init_vpe_domain(void)
4962 {
4963 struct its_node *its;
4964 u32 devid;
4965 int entries;
4966
4967 if (gic_rdists->has_direct_lpi) {
4968 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4969 return 0;
4970 }
4971
4972 /* Any ITS will do, even if not v4 */
4973 its = list_first_entry(&its_nodes, struct its_node, entry);
4974
4975 entries = roundup_pow_of_two(nr_cpu_ids);
4976 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4977 GFP_KERNEL);
4978 if (!vpe_proxy.vpes)
4979 return -ENOMEM;
4980
4981 /* Use the last possible DevID */
4982 devid = GENMASK(device_ids(its) - 1, 0);
4983 vpe_proxy.dev = its_create_device(its, devid, entries, false);
4984 if (!vpe_proxy.dev) {
4985 kfree(vpe_proxy.vpes);
4986 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4987 return -ENOMEM;
4988 }
4989
4990 BUG_ON(entries > vpe_proxy.dev->nr_ites);
4991
4992 raw_spin_lock_init(&vpe_proxy.lock);
4993 vpe_proxy.next_victim = 0;
4994 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4995 devid, vpe_proxy.dev->nr_ites);
4996
4997 return 0;
4998 }
4999
5000 static int __init its_compute_its_list_map(struct resource *res,
5001 void __iomem *its_base)
5002 {
5003 int its_number;
5004 u32 ctlr;
5005
5006 /*
5007 * This is assumed to be done early enough that we're
5008 * guaranteed to be single-threaded, hence no
5009 * locking. Should this change, we should address
5010 * this.
5011 */
5012 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5013 if (its_number >= GICv4_ITS_LIST_MAX) {
5014 pr_err("ITS@%pa: No ITSList entry available!\n",
5015 &res->start);
5016 return -EINVAL;
5017 }
5018
5019 ctlr = readl_relaxed(its_base + GITS_CTLR);
5020 ctlr &= ~GITS_CTLR_ITS_NUMBER;
5021 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5022 writel_relaxed(ctlr, its_base + GITS_CTLR);
5023 ctlr = readl_relaxed(its_base + GITS_CTLR);
5024 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5025 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5026 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5027 }
5028
5029 if (test_and_set_bit(its_number, &its_list_map)) {
5030 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5031 &res->start, its_number);
5032 return -EINVAL;
5033 }
5034
5035 return its_number;
5036 }
5037
5038 static int __init its_probe_one(struct resource *res,
5039 struct fwnode_handle *handle, int numa_node)
5040 {
5041 struct its_node *its;
5042 void __iomem *its_base;
5043 u64 baser, tmp, typer;
5044 struct page *page;
5045 u32 ctlr;
5046 int err;
5047
5048 its_base = its_map_one(res, &err);
5049 if (!its_base)
5050 return err;
5051
5052 pr_info("ITS %pR\n", res);
5053
5054 its = kzalloc(sizeof(*its), GFP_KERNEL);
5055 if (!its) {
5056 err = -ENOMEM;
5057 goto out_unmap;
5058 }
5059
5060 raw_spin_lock_init(&its->lock);
5061 mutex_init(&its->dev_alloc_lock);
5062 INIT_LIST_HEAD(&its->entry);
5063 INIT_LIST_HEAD(&its->its_device_list);
5064 typer = gic_read_typer(its_base + GITS_TYPER);
5065 its->typer = typer;
5066 its->base = its_base;
5067 its->phys_base = res->start;
5068 if (is_v4(its)) {
5069 if (!(typer & GITS_TYPER_VMOVP)) {
5070 err = its_compute_its_list_map(res, its_base);
5071 if (err < 0)
5072 goto out_free_its;
5073
5074 its->list_nr = err;
5075
5076 pr_info("ITS@%pa: Using ITS number %d\n",
5077 &res->start, err);
5078 } else {
5079 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5080 }
5081
5082 if (is_v4_1(its)) {
5083 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5084
5085 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5086 if (!its->sgir_base) {
5087 err = -ENOMEM;
5088 goto out_free_its;
5089 }
5090
5091 its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5092
5093 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5094 &res->start, its->mpidr, svpet);
5095 }
5096 }
5097
5098 its->numa_node = numa_node;
5099
5100 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5101 get_order(ITS_CMD_QUEUE_SZ));
5102 if (!page) {
5103 err = -ENOMEM;
5104 goto out_unmap_sgir;
5105 }
5106 its->cmd_base = (void *)page_address(page);
5107 its->cmd_write = its->cmd_base;
5108 its->fwnode_handle = handle;
5109 its->get_msi_base = its_irq_get_msi_base;
5110 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5111
5112 its_enable_quirks(its);
5113
5114 err = its_alloc_tables(its);
5115 if (err)
5116 goto out_free_cmd;
5117
5118 err = its_alloc_collections(its);
5119 if (err)
5120 goto out_free_tables;
5121
5122 baser = (virt_to_phys(its->cmd_base) |
5123 GITS_CBASER_RaWaWb |
5124 GITS_CBASER_InnerShareable |
5125 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5126 GITS_CBASER_VALID);
5127
5128 gits_write_cbaser(baser, its->base + GITS_CBASER);
5129 tmp = gits_read_cbaser(its->base + GITS_CBASER);
5130
5131 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5132 tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5133
5134 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5135 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5136 /*
5137 * The HW reports non-shareable, we must
5138 * remove the cacheability attributes as
5139 * well.
5140 */
5141 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5142 GITS_CBASER_CACHEABILITY_MASK);
5143 baser |= GITS_CBASER_nC;
5144 gits_write_cbaser(baser, its->base + GITS_CBASER);
5145 }
5146 pr_info("ITS: using cache flushing for cmd queue\n");
5147 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5148 }
5149
5150 gits_write_cwriter(0, its->base + GITS_CWRITER);
5151 ctlr = readl_relaxed(its->base + GITS_CTLR);
5152 ctlr |= GITS_CTLR_ENABLE;
5153 if (is_v4(its))
5154 ctlr |= GITS_CTLR_ImDe;
5155 writel_relaxed(ctlr, its->base + GITS_CTLR);
5156
5157 err = its_init_domain(handle, its);
5158 if (err)
5159 goto out_free_tables;
5160
5161 raw_spin_lock(&its_lock);
5162 list_add(&its->entry, &its_nodes);
5163 raw_spin_unlock(&its_lock);
5164
5165 return 0;
5166
5167 out_free_tables:
5168 its_free_tables(its);
5169 out_free_cmd:
5170 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5171 out_unmap_sgir:
5172 if (its->sgir_base)
5173 iounmap(its->sgir_base);
5174 out_free_its:
5175 kfree(its);
5176 out_unmap:
5177 iounmap(its_base);
5178 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5179 return err;
5180 }
5181
5182 static bool gic_rdists_supports_plpis(void)
5183 {
5184 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5185 }
5186
5187 static int redist_disable_lpis(void)
5188 {
5189 void __iomem *rbase = gic_data_rdist_rd_base();
5190 u64 timeout = USEC_PER_SEC;
5191 u64 val;
5192
5193 if (!gic_rdists_supports_plpis()) {
5194 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5195 return -ENXIO;
5196 }
5197
5198 val = readl_relaxed(rbase + GICR_CTLR);
5199 if (!(val & GICR_CTLR_ENABLE_LPIS))
5200 return 0;
5201
5202 /*
5203 * If coming via a CPU hotplug event, we don't need to disable
5204 * LPIs before trying to re-enable them. They are already
5205 * configured and all is well in the world.
5206 *
5207 * If running with preallocated tables, there is nothing to do.
5208 */
5209 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5210 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5211 return 0;
5212
5213 /*
5214 * From that point on, we only try to do some damage control.
5215 */
5216 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5217 smp_processor_id());
5218 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5219
5220 /* Disable LPIs */
5221 val &= ~GICR_CTLR_ENABLE_LPIS;
5222 writel_relaxed(val, rbase + GICR_CTLR);
5223
5224 /* Make sure any change to GICR_CTLR is observable by the GIC */
5225 dsb(sy);
5226
5227 /*
5228 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5229 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5230 * Error out if we time out waiting for RWP to clear.
5231 */
5232 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5233 if (!timeout) {
5234 pr_err("CPU%d: Timeout while disabling LPIs\n",
5235 smp_processor_id());
5236 return -ETIMEDOUT;
5237 }
5238 udelay(1);
5239 timeout--;
5240 }
5241
5242 /*
5243 * After it has been written to 1, it is IMPLEMENTATION
5244 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5245 * cleared to 0. Error out if clearing the bit failed.
5246 */
5247 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5248 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5249 return -EBUSY;
5250 }
5251
5252 return 0;
5253 }
5254
5255 int its_cpu_init(void)
5256 {
5257 if (!list_empty(&its_nodes)) {
5258 int ret;
5259
5260 ret = redist_disable_lpis();
5261 if (ret)
5262 return ret;
5263
5264 its_cpu_init_lpis();
5265 its_cpu_init_collections();
5266 }
5267
5268 return 0;
5269 }
5270
5271 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5272 {
5273 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5274 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5275 }
5276
5277 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5278 rdist_memreserve_cpuhp_cleanup_workfn);
5279
5280 static int its_cpu_memreserve_lpi(unsigned int cpu)
5281 {
5282 struct page *pend_page;
5283 int ret = 0;
5284
5285 /* This gets to run exactly once per CPU */
5286 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5287 return 0;
5288
5289 pend_page = gic_data_rdist()->pend_page;
5290 if (WARN_ON(!pend_page)) {
5291 ret = -ENOMEM;
5292 goto out;
5293 }
5294 /*
5295 * If the pending table was pre-programmed, free the memory we
5296 * preemptively allocated. Otherwise, reserve that memory for
5297 * later kexecs.
5298 */
5299 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5300 its_free_pending_table(pend_page);
5301 gic_data_rdist()->pend_page = NULL;
5302 } else {
5303 phys_addr_t paddr = page_to_phys(pend_page);
5304 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5305 }
5306
5307 out:
5308 /* Last CPU being brought up gets to issue the cleanup */
5309 if (!IS_ENABLED(CONFIG_SMP) ||
5310 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5311 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5312
5313 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5314 return ret;
5315 }
5316
5317 /* Mark all the BASER registers as invalid before they get reprogrammed */
5318 static int __init its_reset_one(struct resource *res)
5319 {
5320 void __iomem *its_base;
5321 int err, i;
5322
5323 its_base = its_map_one(res, &err);
5324 if (!its_base)
5325 return err;
5326
5327 for (i = 0; i < GITS_BASER_NR_REGS; i++)
5328 gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5329
5330 iounmap(its_base);
5331 return 0;
5332 }
5333
5334 static const struct of_device_id its_device_id[] = {
5335 { .compatible = "arm,gic-v3-its", },
5336 {},
5337 };
5338
5339 static int __init its_of_probe(struct device_node *node)
5340 {
5341 struct device_node *np;
5342 struct resource res;
5343
5344 /*
5345 * Make sure *all* the ITS are reset before we probe any, as
5346 * they may be sharing memory. If any of the ITS fails to
5347 * reset, don't even try to go any further, as this could
5348 * result in something even worse.
5349 */
5350 for (np = of_find_matching_node(node, its_device_id); np;
5351 np = of_find_matching_node(np, its_device_id)) {
5352 int err;
5353
5354 if (!of_device_is_available(np) ||
5355 !of_property_read_bool(np, "msi-controller") ||
5356 of_address_to_resource(np, 0, &res))
5357 continue;
5358
5359 err = its_reset_one(&res);
5360 if (err)
5361 return err;
5362 }
5363
5364 for (np = of_find_matching_node(node, its_device_id); np;
5365 np = of_find_matching_node(np, its_device_id)) {
5366 if (!of_device_is_available(np))
5367 continue;
5368 if (!of_property_read_bool(np, "msi-controller")) {
5369 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5370 np);
5371 continue;
5372 }
5373
5374 if (of_address_to_resource(np, 0, &res)) {
5375 pr_warn("%pOF: no regs?\n", np);
5376 continue;
5377 }
5378
5379 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5380 }
5381 return 0;
5382 }
5383
5384 #ifdef CONFIG_ACPI
5385
5386 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5387
5388 #ifdef CONFIG_ACPI_NUMA
5389 struct its_srat_map {
5390 /* numa node id */
5391 u32 numa_node;
5392 /* GIC ITS ID */
5393 u32 its_id;
5394 };
5395
5396 static struct its_srat_map *its_srat_maps __initdata;
5397 static int its_in_srat __initdata;
5398
5399 static int __init acpi_get_its_numa_node(u32 its_id)
5400 {
5401 int i;
5402
5403 for (i = 0; i < its_in_srat; i++) {
5404 if (its_id == its_srat_maps[i].its_id)
5405 return its_srat_maps[i].numa_node;
5406 }
5407 return NUMA_NO_NODE;
5408 }
5409
5410 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5411 const unsigned long end)
5412 {
5413 return 0;
5414 }
5415
5416 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5417 const unsigned long end)
5418 {
5419 int node;
5420 struct acpi_srat_gic_its_affinity *its_affinity;
5421
5422 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5423 if (!its_affinity)
5424 return -EINVAL;
5425
5426 if (its_affinity->header.length < sizeof(*its_affinity)) {
5427 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5428 its_affinity->header.length);
5429 return -EINVAL;
5430 }
5431
5432 /*
5433 * Note that in theory a new proximity node could be created by this
5434 * entry as it is an SRAT resource allocation structure.
5435 * We do not currently support doing so.
5436 */
5437 node = pxm_to_node(its_affinity->proximity_domain);
5438
5439 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5440 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5441 return 0;
5442 }
5443
5444 its_srat_maps[its_in_srat].numa_node = node;
5445 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5446 its_in_srat++;
5447 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5448 its_affinity->proximity_domain, its_affinity->its_id, node);
5449
5450 return 0;
5451 }
5452
5453 static void __init acpi_table_parse_srat_its(void)
5454 {
5455 int count;
5456
5457 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5458 sizeof(struct acpi_table_srat),
5459 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5460 gic_acpi_match_srat_its, 0);
5461 if (count <= 0)
5462 return;
5463
5464 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5465 GFP_KERNEL);
5466 if (!its_srat_maps)
5467 return;
5468
5469 acpi_table_parse_entries(ACPI_SIG_SRAT,
5470 sizeof(struct acpi_table_srat),
5471 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5472 gic_acpi_parse_srat_its, 0);
5473 }
5474
5475 /* free the its_srat_maps after ITS probing */
5476 static void __init acpi_its_srat_maps_free(void)
5477 {
5478 kfree(its_srat_maps);
5479 }
5480 #else
5481 static void __init acpi_table_parse_srat_its(void) { }
5482 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5483 static void __init acpi_its_srat_maps_free(void) { }
5484 #endif
5485
5486 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5487 const unsigned long end)
5488 {
5489 struct acpi_madt_generic_translator *its_entry;
5490 struct fwnode_handle *dom_handle;
5491 struct resource res;
5492 int err;
5493
5494 its_entry = (struct acpi_madt_generic_translator *)header;
5495 memset(&res, 0, sizeof(res));
5496 res.start = its_entry->base_address;
5497 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5498 res.flags = IORESOURCE_MEM;
5499
5500 dom_handle = irq_domain_alloc_fwnode(&res.start);
5501 if (!dom_handle) {
5502 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5503 &res.start);
5504 return -ENOMEM;
5505 }
5506
5507 err = iort_register_domain_token(its_entry->translation_id, res.start,
5508 dom_handle);
5509 if (err) {
5510 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5511 &res.start, its_entry->translation_id);
5512 goto dom_err;
5513 }
5514
5515 err = its_probe_one(&res, dom_handle,
5516 acpi_get_its_numa_node(its_entry->translation_id));
5517 if (!err)
5518 return 0;
5519
5520 iort_deregister_domain_token(its_entry->translation_id);
5521 dom_err:
5522 irq_domain_free_fwnode(dom_handle);
5523 return err;
5524 }
5525
5526 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5527 const unsigned long end)
5528 {
5529 struct acpi_madt_generic_translator *its_entry;
5530 struct resource res;
5531
5532 its_entry = (struct acpi_madt_generic_translator *)header;
5533 res = (struct resource) {
5534 .start = its_entry->base_address,
5535 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5536 .flags = IORESOURCE_MEM,
5537 };
5538
5539 return its_reset_one(&res);
5540 }
5541
5542 static void __init its_acpi_probe(void)
5543 {
5544 acpi_table_parse_srat_its();
5545 /*
5546 * Make sure *all* the ITS are reset before we probe any, as
5547 * they may be sharing memory. If any of the ITS fails to
5548 * reset, don't even try to go any further, as this could
5549 * result in something even worse.
5550 */
5551 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5552 its_acpi_reset, 0) > 0)
5553 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5554 gic_acpi_parse_madt_its, 0);
5555 acpi_its_srat_maps_free();
5556 }
5557 #else
5558 static void __init its_acpi_probe(void) { }
5559 #endif
5560
5561 int __init its_lpi_memreserve_init(void)
5562 {
5563 int state;
5564
5565 if (!efi_enabled(EFI_CONFIG_TABLES))
5566 return 0;
5567
5568 if (list_empty(&its_nodes))
5569 return 0;
5570
5571 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5572 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5573 "irqchip/arm/gicv3/memreserve:online",
5574 its_cpu_memreserve_lpi,
5575 NULL);
5576 if (state < 0)
5577 return state;
5578
5579 gic_rdists->cpuhp_memreserve_state = state;
5580
5581 return 0;
5582 }
5583
5584 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5585 struct irq_domain *parent_domain)
5586 {
5587 struct device_node *of_node;
5588 struct its_node *its;
5589 bool has_v4 = false;
5590 bool has_v4_1 = false;
5591 int err;
5592
5593 gic_rdists = rdists;
5594
5595 its_parent = parent_domain;
5596 of_node = to_of_node(handle);
5597 if (of_node)
5598 its_of_probe(of_node);
5599 else
5600 its_acpi_probe();
5601
5602 if (list_empty(&its_nodes)) {
5603 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5604 return -ENXIO;
5605 }
5606
5607 err = allocate_lpi_tables();
5608 if (err)
5609 return err;
5610
5611 list_for_each_entry(its, &its_nodes, entry) {
5612 has_v4 |= is_v4(its);
5613 has_v4_1 |= is_v4_1(its);
5614 }
5615
5616 /* Don't bother with inconsistent systems */
5617 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5618 rdists->has_rvpeid = false;
5619
5620 if (has_v4 & rdists->has_vlpis) {
5621 const struct irq_domain_ops *sgi_ops;
5622
5623 if (has_v4_1)
5624 sgi_ops = &its_sgi_domain_ops;
5625 else
5626 sgi_ops = NULL;
5627
5628 if (its_init_vpe_domain() ||
5629 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5630 rdists->has_vlpis = false;
5631 pr_err("ITS: Disabling GICv4 support\n");
5632 }
5633 }
5634
5635 register_syscore_ops(&its_syscore_ops);
5636
5637 return 0;
5638 }