]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/irqchip/irq-gic-v3-its.c
Merge tag 'loongarch-kvm-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhu...
[thirdparty/kernel/stable.git] / drivers / irqchip / irq-gic-v3-its.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
45 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3)
46
47 #define RD_LOCAL_LPI_ENABLED BIT(0)
48 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1)
49 #define RD_LOCAL_MEMRESERVE_DONE BIT(2)
50
51 static u32 lpi_id_bits;
52
53 /*
54 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
55 * deal with (one configuration byte per interrupt). PENDBASE has to
56 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
57 */
58 #define LPI_NRBITS lpi_id_bits
59 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
60 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
61
62 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI
63
64 /*
65 * Collection structure - just an ID, and a redistributor address to
66 * ping. We use one per CPU as a bag of interrupts assigned to this
67 * CPU.
68 */
69 struct its_collection {
70 u64 target_address;
71 u16 col_id;
72 };
73
74 /*
75 * The ITS_BASER structure - contains memory information, cached
76 * value of BASER register configuration and ITS page size.
77 */
78 struct its_baser {
79 void *base;
80 u64 val;
81 u32 order;
82 u32 psz;
83 };
84
85 struct its_device;
86
87 /*
88 * The ITS structure - contains most of the infrastructure, with the
89 * top-level MSI domain, the command queue, the collections, and the
90 * list of devices writing to it.
91 *
92 * dev_alloc_lock has to be taken for device allocations, while the
93 * spinlock must be taken to parse data structures such as the device
94 * list.
95 */
96 struct its_node {
97 raw_spinlock_t lock;
98 struct mutex dev_alloc_lock;
99 struct list_head entry;
100 void __iomem *base;
101 void __iomem *sgir_base;
102 phys_addr_t phys_base;
103 struct its_cmd_block *cmd_base;
104 struct its_cmd_block *cmd_write;
105 struct its_baser tables[GITS_BASER_NR_REGS];
106 struct its_collection *collections;
107 struct fwnode_handle *fwnode_handle;
108 u64 (*get_msi_base)(struct its_device *its_dev);
109 u64 typer;
110 u64 cbaser_save;
111 u32 ctlr_save;
112 u32 mpidr;
113 struct list_head its_device_list;
114 u64 flags;
115 unsigned long list_nr;
116 int numa_node;
117 unsigned int msi_domain_flags;
118 u32 pre_its_base; /* for Socionext Synquacer */
119 int vlpi_redist_offset;
120 };
121
122 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
123 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
124 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
125
126 #define ITS_ITT_ALIGN SZ_256
127
128 /* The maximum number of VPEID bits supported by VLPI commands */
129 #define ITS_MAX_VPEID_BITS \
130 ({ \
131 int nvpeid = 16; \
132 if (gic_rdists->has_rvpeid && \
133 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
134 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
135 GICD_TYPER2_VID); \
136 \
137 nvpeid; \
138 })
139 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
140
141 /* Convert page order to size in bytes */
142 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
143
144 struct event_lpi_map {
145 unsigned long *lpi_map;
146 u16 *col_map;
147 irq_hw_number_t lpi_base;
148 int nr_lpis;
149 raw_spinlock_t vlpi_lock;
150 struct its_vm *vm;
151 struct its_vlpi_map *vlpi_maps;
152 int nr_vlpis;
153 };
154
155 /*
156 * The ITS view of a device - belongs to an ITS, owns an interrupt
157 * translation table, and a list of interrupts. If it some of its
158 * LPIs are injected into a guest (GICv4), the event_map.vm field
159 * indicates which one.
160 */
161 struct its_device {
162 struct list_head entry;
163 struct its_node *its;
164 struct event_lpi_map event_map;
165 void *itt;
166 u32 nr_ites;
167 u32 device_id;
168 bool shared;
169 };
170
171 static struct {
172 raw_spinlock_t lock;
173 struct its_device *dev;
174 struct its_vpe **vpes;
175 int next_victim;
176 } vpe_proxy;
177
178 struct cpu_lpi_count {
179 atomic_t managed;
180 atomic_t unmanaged;
181 };
182
183 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
184
185 static LIST_HEAD(its_nodes);
186 static DEFINE_RAW_SPINLOCK(its_lock);
187 static struct rdists *gic_rdists;
188 static struct irq_domain *its_parent;
189
190 static unsigned long its_list_map;
191 static u16 vmovp_seq_num;
192 static DEFINE_RAW_SPINLOCK(vmovp_lock);
193
194 static DEFINE_IDA(its_vpeid_ida);
195
196 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
197 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
198 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
199 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
200
201 /*
202 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
203 * always have vSGIs mapped.
204 */
205 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
206 {
207 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
208 }
209
210 static u16 get_its_list(struct its_vm *vm)
211 {
212 struct its_node *its;
213 unsigned long its_list = 0;
214
215 list_for_each_entry(its, &its_nodes, entry) {
216 if (!is_v4(its))
217 continue;
218
219 if (require_its_list_vmovp(vm, its))
220 __set_bit(its->list_nr, &its_list);
221 }
222
223 return (u16)its_list;
224 }
225
226 static inline u32 its_get_event_id(struct irq_data *d)
227 {
228 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
229 return d->hwirq - its_dev->event_map.lpi_base;
230 }
231
232 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
233 u32 event)
234 {
235 struct its_node *its = its_dev->its;
236
237 return its->collections + its_dev->event_map.col_map[event];
238 }
239
240 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
241 u32 event)
242 {
243 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
244 return NULL;
245
246 return &its_dev->event_map.vlpi_maps[event];
247 }
248
249 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
250 {
251 if (irqd_is_forwarded_to_vcpu(d)) {
252 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
253 u32 event = its_get_event_id(d);
254
255 return dev_event_to_vlpi_map(its_dev, event);
256 }
257
258 return NULL;
259 }
260
261 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
262 {
263 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
264 return vpe->col_idx;
265 }
266
267 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
268 {
269 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
270 }
271
272 static struct irq_chip its_vpe_irq_chip;
273
274 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
275 {
276 struct its_vpe *vpe = NULL;
277 int cpu;
278
279 if (d->chip == &its_vpe_irq_chip) {
280 vpe = irq_data_get_irq_chip_data(d);
281 } else {
282 struct its_vlpi_map *map = get_vlpi_map(d);
283 if (map)
284 vpe = map->vpe;
285 }
286
287 if (vpe) {
288 cpu = vpe_to_cpuid_lock(vpe, flags);
289 } else {
290 /* Physical LPIs are already locked via the irq_desc lock */
291 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
292 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
293 /* Keep GCC quiet... */
294 *flags = 0;
295 }
296
297 return cpu;
298 }
299
300 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
301 {
302 struct its_vpe *vpe = NULL;
303
304 if (d->chip == &its_vpe_irq_chip) {
305 vpe = irq_data_get_irq_chip_data(d);
306 } else {
307 struct its_vlpi_map *map = get_vlpi_map(d);
308 if (map)
309 vpe = map->vpe;
310 }
311
312 if (vpe)
313 vpe_to_cpuid_unlock(vpe, flags);
314 }
315
316 static struct its_collection *valid_col(struct its_collection *col)
317 {
318 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
319 return NULL;
320
321 return col;
322 }
323
324 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
325 {
326 if (valid_col(its->collections + vpe->col_idx))
327 return vpe;
328
329 return NULL;
330 }
331
332 /*
333 * ITS command descriptors - parameters to be encoded in a command
334 * block.
335 */
336 struct its_cmd_desc {
337 union {
338 struct {
339 struct its_device *dev;
340 u32 event_id;
341 } its_inv_cmd;
342
343 struct {
344 struct its_device *dev;
345 u32 event_id;
346 } its_clear_cmd;
347
348 struct {
349 struct its_device *dev;
350 u32 event_id;
351 } its_int_cmd;
352
353 struct {
354 struct its_device *dev;
355 int valid;
356 } its_mapd_cmd;
357
358 struct {
359 struct its_collection *col;
360 int valid;
361 } its_mapc_cmd;
362
363 struct {
364 struct its_device *dev;
365 u32 phys_id;
366 u32 event_id;
367 } its_mapti_cmd;
368
369 struct {
370 struct its_device *dev;
371 struct its_collection *col;
372 u32 event_id;
373 } its_movi_cmd;
374
375 struct {
376 struct its_device *dev;
377 u32 event_id;
378 } its_discard_cmd;
379
380 struct {
381 struct its_collection *col;
382 } its_invall_cmd;
383
384 struct {
385 struct its_vpe *vpe;
386 } its_vinvall_cmd;
387
388 struct {
389 struct its_vpe *vpe;
390 struct its_collection *col;
391 bool valid;
392 } its_vmapp_cmd;
393
394 struct {
395 struct its_vpe *vpe;
396 struct its_device *dev;
397 u32 virt_id;
398 u32 event_id;
399 bool db_enabled;
400 } its_vmapti_cmd;
401
402 struct {
403 struct its_vpe *vpe;
404 struct its_device *dev;
405 u32 event_id;
406 bool db_enabled;
407 } its_vmovi_cmd;
408
409 struct {
410 struct its_vpe *vpe;
411 struct its_collection *col;
412 u16 seq_num;
413 u16 its_list;
414 } its_vmovp_cmd;
415
416 struct {
417 struct its_vpe *vpe;
418 } its_invdb_cmd;
419
420 struct {
421 struct its_vpe *vpe;
422 u8 sgi;
423 u8 priority;
424 bool enable;
425 bool group;
426 bool clear;
427 } its_vsgi_cmd;
428 };
429 };
430
431 /*
432 * The ITS command block, which is what the ITS actually parses.
433 */
434 struct its_cmd_block {
435 union {
436 u64 raw_cmd[4];
437 __le64 raw_cmd_le[4];
438 };
439 };
440
441 #define ITS_CMD_QUEUE_SZ SZ_64K
442 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
443
444 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
445 struct its_cmd_block *,
446 struct its_cmd_desc *);
447
448 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
449 struct its_cmd_block *,
450 struct its_cmd_desc *);
451
452 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
453 {
454 u64 mask = GENMASK_ULL(h, l);
455 *raw_cmd &= ~mask;
456 *raw_cmd |= (val << l) & mask;
457 }
458
459 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
460 {
461 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
462 }
463
464 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
465 {
466 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
467 }
468
469 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
470 {
471 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
472 }
473
474 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
475 {
476 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
477 }
478
479 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
480 {
481 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
482 }
483
484 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
485 {
486 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
487 }
488
489 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
490 {
491 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
492 }
493
494 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
495 {
496 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
497 }
498
499 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
500 {
501 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
502 }
503
504 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
505 {
506 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
507 }
508
509 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
510 {
511 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
512 }
513
514 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
515 {
516 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
517 }
518
519 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
520 {
521 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
522 }
523
524 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
525 {
526 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
527 }
528
529 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
530 {
531 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
532 }
533
534 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
535 {
536 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
537 }
538
539 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
540 {
541 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
542 }
543
544 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
545 {
546 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
547 }
548
549 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
550 {
551 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
552 }
553
554 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
555 {
556 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
557 }
558
559 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
560 u32 vpe_db_lpi)
561 {
562 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
563 }
564
565 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
566 u32 vpe_db_lpi)
567 {
568 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
569 }
570
571 static void its_encode_db(struct its_cmd_block *cmd, bool db)
572 {
573 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
574 }
575
576 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
577 {
578 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
579 }
580
581 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
582 {
583 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
584 }
585
586 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
587 {
588 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
589 }
590
591 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
592 {
593 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
594 }
595
596 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
597 {
598 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
599 }
600
601 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
602 {
603 /* Let's fixup BE commands */
604 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
605 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
606 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
607 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
608 }
609
610 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
611 struct its_cmd_block *cmd,
612 struct its_cmd_desc *desc)
613 {
614 unsigned long itt_addr;
615 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
616
617 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
618 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
619
620 its_encode_cmd(cmd, GITS_CMD_MAPD);
621 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
622 its_encode_size(cmd, size - 1);
623 its_encode_itt(cmd, itt_addr);
624 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
625
626 its_fixup_cmd(cmd);
627
628 return NULL;
629 }
630
631 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
632 struct its_cmd_block *cmd,
633 struct its_cmd_desc *desc)
634 {
635 its_encode_cmd(cmd, GITS_CMD_MAPC);
636 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
637 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
638 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
639
640 its_fixup_cmd(cmd);
641
642 return desc->its_mapc_cmd.col;
643 }
644
645 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
646 struct its_cmd_block *cmd,
647 struct its_cmd_desc *desc)
648 {
649 struct its_collection *col;
650
651 col = dev_event_to_col(desc->its_mapti_cmd.dev,
652 desc->its_mapti_cmd.event_id);
653
654 its_encode_cmd(cmd, GITS_CMD_MAPTI);
655 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
656 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
657 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
658 its_encode_collection(cmd, col->col_id);
659
660 its_fixup_cmd(cmd);
661
662 return valid_col(col);
663 }
664
665 static struct its_collection *its_build_movi_cmd(struct its_node *its,
666 struct its_cmd_block *cmd,
667 struct its_cmd_desc *desc)
668 {
669 struct its_collection *col;
670
671 col = dev_event_to_col(desc->its_movi_cmd.dev,
672 desc->its_movi_cmd.event_id);
673
674 its_encode_cmd(cmd, GITS_CMD_MOVI);
675 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
676 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
677 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
678
679 its_fixup_cmd(cmd);
680
681 return valid_col(col);
682 }
683
684 static struct its_collection *its_build_discard_cmd(struct its_node *its,
685 struct its_cmd_block *cmd,
686 struct its_cmd_desc *desc)
687 {
688 struct its_collection *col;
689
690 col = dev_event_to_col(desc->its_discard_cmd.dev,
691 desc->its_discard_cmd.event_id);
692
693 its_encode_cmd(cmd, GITS_CMD_DISCARD);
694 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
695 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
696
697 its_fixup_cmd(cmd);
698
699 return valid_col(col);
700 }
701
702 static struct its_collection *its_build_inv_cmd(struct its_node *its,
703 struct its_cmd_block *cmd,
704 struct its_cmd_desc *desc)
705 {
706 struct its_collection *col;
707
708 col = dev_event_to_col(desc->its_inv_cmd.dev,
709 desc->its_inv_cmd.event_id);
710
711 its_encode_cmd(cmd, GITS_CMD_INV);
712 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
713 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
714
715 its_fixup_cmd(cmd);
716
717 return valid_col(col);
718 }
719
720 static struct its_collection *its_build_int_cmd(struct its_node *its,
721 struct its_cmd_block *cmd,
722 struct its_cmd_desc *desc)
723 {
724 struct its_collection *col;
725
726 col = dev_event_to_col(desc->its_int_cmd.dev,
727 desc->its_int_cmd.event_id);
728
729 its_encode_cmd(cmd, GITS_CMD_INT);
730 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
731 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
732
733 its_fixup_cmd(cmd);
734
735 return valid_col(col);
736 }
737
738 static struct its_collection *its_build_clear_cmd(struct its_node *its,
739 struct its_cmd_block *cmd,
740 struct its_cmd_desc *desc)
741 {
742 struct its_collection *col;
743
744 col = dev_event_to_col(desc->its_clear_cmd.dev,
745 desc->its_clear_cmd.event_id);
746
747 its_encode_cmd(cmd, GITS_CMD_CLEAR);
748 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
749 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
750
751 its_fixup_cmd(cmd);
752
753 return valid_col(col);
754 }
755
756 static struct its_collection *its_build_invall_cmd(struct its_node *its,
757 struct its_cmd_block *cmd,
758 struct its_cmd_desc *desc)
759 {
760 its_encode_cmd(cmd, GITS_CMD_INVALL);
761 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
762
763 its_fixup_cmd(cmd);
764
765 return desc->its_invall_cmd.col;
766 }
767
768 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
769 struct its_cmd_block *cmd,
770 struct its_cmd_desc *desc)
771 {
772 its_encode_cmd(cmd, GITS_CMD_VINVALL);
773 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
774
775 its_fixup_cmd(cmd);
776
777 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
778 }
779
780 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
781 struct its_cmd_block *cmd,
782 struct its_cmd_desc *desc)
783 {
784 unsigned long vpt_addr, vconf_addr;
785 u64 target;
786 bool alloc;
787
788 its_encode_cmd(cmd, GITS_CMD_VMAPP);
789 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
790 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
791
792 if (!desc->its_vmapp_cmd.valid) {
793 if (is_v4_1(its)) {
794 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
795 its_encode_alloc(cmd, alloc);
796 }
797
798 goto out;
799 }
800
801 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
802 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
803
804 its_encode_target(cmd, target);
805 its_encode_vpt_addr(cmd, vpt_addr);
806 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
807
808 if (!is_v4_1(its))
809 goto out;
810
811 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
812
813 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
814
815 its_encode_alloc(cmd, alloc);
816
817 /*
818 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
819 * to be unmapped first, and in this case, we may remap the vPE
820 * back while the VPT is not empty. So we can't assume that the
821 * VPT is empty on map. This is why we never advertise PTZ.
822 */
823 its_encode_ptz(cmd, false);
824 its_encode_vconf_addr(cmd, vconf_addr);
825 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
826
827 out:
828 its_fixup_cmd(cmd);
829
830 return valid_vpe(its, desc->its_vmapp_cmd.vpe);
831 }
832
833 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
834 struct its_cmd_block *cmd,
835 struct its_cmd_desc *desc)
836 {
837 u32 db;
838
839 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
840 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
841 else
842 db = 1023;
843
844 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
845 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
846 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
847 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
848 its_encode_db_phys_id(cmd, db);
849 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
850
851 its_fixup_cmd(cmd);
852
853 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
854 }
855
856 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
857 struct its_cmd_block *cmd,
858 struct its_cmd_desc *desc)
859 {
860 u32 db;
861
862 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
863 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
864 else
865 db = 1023;
866
867 its_encode_cmd(cmd, GITS_CMD_VMOVI);
868 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
869 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
870 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
871 its_encode_db_phys_id(cmd, db);
872 its_encode_db_valid(cmd, true);
873
874 its_fixup_cmd(cmd);
875
876 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
877 }
878
879 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
880 struct its_cmd_block *cmd,
881 struct its_cmd_desc *desc)
882 {
883 u64 target;
884
885 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
886 its_encode_cmd(cmd, GITS_CMD_VMOVP);
887 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
888 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
889 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
890 its_encode_target(cmd, target);
891
892 if (is_v4_1(its)) {
893 its_encode_db(cmd, true);
894 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
895 }
896
897 its_fixup_cmd(cmd);
898
899 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
900 }
901
902 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
903 struct its_cmd_block *cmd,
904 struct its_cmd_desc *desc)
905 {
906 struct its_vlpi_map *map;
907
908 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
909 desc->its_inv_cmd.event_id);
910
911 its_encode_cmd(cmd, GITS_CMD_INV);
912 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
913 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
914
915 its_fixup_cmd(cmd);
916
917 return valid_vpe(its, map->vpe);
918 }
919
920 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
921 struct its_cmd_block *cmd,
922 struct its_cmd_desc *desc)
923 {
924 struct its_vlpi_map *map;
925
926 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
927 desc->its_int_cmd.event_id);
928
929 its_encode_cmd(cmd, GITS_CMD_INT);
930 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
931 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
932
933 its_fixup_cmd(cmd);
934
935 return valid_vpe(its, map->vpe);
936 }
937
938 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
939 struct its_cmd_block *cmd,
940 struct its_cmd_desc *desc)
941 {
942 struct its_vlpi_map *map;
943
944 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
945 desc->its_clear_cmd.event_id);
946
947 its_encode_cmd(cmd, GITS_CMD_CLEAR);
948 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
949 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
950
951 its_fixup_cmd(cmd);
952
953 return valid_vpe(its, map->vpe);
954 }
955
956 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
957 struct its_cmd_block *cmd,
958 struct its_cmd_desc *desc)
959 {
960 if (WARN_ON(!is_v4_1(its)))
961 return NULL;
962
963 its_encode_cmd(cmd, GITS_CMD_INVDB);
964 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
965
966 its_fixup_cmd(cmd);
967
968 return valid_vpe(its, desc->its_invdb_cmd.vpe);
969 }
970
971 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
972 struct its_cmd_block *cmd,
973 struct its_cmd_desc *desc)
974 {
975 if (WARN_ON(!is_v4_1(its)))
976 return NULL;
977
978 its_encode_cmd(cmd, GITS_CMD_VSGI);
979 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
980 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
981 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
982 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
983 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
984 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
985
986 its_fixup_cmd(cmd);
987
988 return valid_vpe(its, desc->its_vsgi_cmd.vpe);
989 }
990
991 static u64 its_cmd_ptr_to_offset(struct its_node *its,
992 struct its_cmd_block *ptr)
993 {
994 return (ptr - its->cmd_base) * sizeof(*ptr);
995 }
996
997 static int its_queue_full(struct its_node *its)
998 {
999 int widx;
1000 int ridx;
1001
1002 widx = its->cmd_write - its->cmd_base;
1003 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1004
1005 /* This is incredibly unlikely to happen, unless the ITS locks up. */
1006 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1007 return 1;
1008
1009 return 0;
1010 }
1011
1012 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1013 {
1014 struct its_cmd_block *cmd;
1015 u32 count = 1000000; /* 1s! */
1016
1017 while (its_queue_full(its)) {
1018 count--;
1019 if (!count) {
1020 pr_err_ratelimited("ITS queue not draining\n");
1021 return NULL;
1022 }
1023 cpu_relax();
1024 udelay(1);
1025 }
1026
1027 cmd = its->cmd_write++;
1028
1029 /* Handle queue wrapping */
1030 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1031 its->cmd_write = its->cmd_base;
1032
1033 /* Clear command */
1034 cmd->raw_cmd[0] = 0;
1035 cmd->raw_cmd[1] = 0;
1036 cmd->raw_cmd[2] = 0;
1037 cmd->raw_cmd[3] = 0;
1038
1039 return cmd;
1040 }
1041
1042 static struct its_cmd_block *its_post_commands(struct its_node *its)
1043 {
1044 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1045
1046 writel_relaxed(wr, its->base + GITS_CWRITER);
1047
1048 return its->cmd_write;
1049 }
1050
1051 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1052 {
1053 /*
1054 * Make sure the commands written to memory are observable by
1055 * the ITS.
1056 */
1057 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1058 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1059 else
1060 dsb(ishst);
1061 }
1062
1063 static int its_wait_for_range_completion(struct its_node *its,
1064 u64 prev_idx,
1065 struct its_cmd_block *to)
1066 {
1067 u64 rd_idx, to_idx, linear_idx;
1068 u32 count = 1000000; /* 1s! */
1069
1070 /* Linearize to_idx if the command set has wrapped around */
1071 to_idx = its_cmd_ptr_to_offset(its, to);
1072 if (to_idx < prev_idx)
1073 to_idx += ITS_CMD_QUEUE_SZ;
1074
1075 linear_idx = prev_idx;
1076
1077 while (1) {
1078 s64 delta;
1079
1080 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1081
1082 /*
1083 * Compute the read pointer progress, taking the
1084 * potential wrap-around into account.
1085 */
1086 delta = rd_idx - prev_idx;
1087 if (rd_idx < prev_idx)
1088 delta += ITS_CMD_QUEUE_SZ;
1089
1090 linear_idx += delta;
1091 if (linear_idx >= to_idx)
1092 break;
1093
1094 count--;
1095 if (!count) {
1096 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1097 to_idx, linear_idx);
1098 return -1;
1099 }
1100 prev_idx = rd_idx;
1101 cpu_relax();
1102 udelay(1);
1103 }
1104
1105 return 0;
1106 }
1107
1108 /* Warning, macro hell follows */
1109 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1110 void name(struct its_node *its, \
1111 buildtype builder, \
1112 struct its_cmd_desc *desc) \
1113 { \
1114 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1115 synctype *sync_obj; \
1116 unsigned long flags; \
1117 u64 rd_idx; \
1118 \
1119 raw_spin_lock_irqsave(&its->lock, flags); \
1120 \
1121 cmd = its_allocate_entry(its); \
1122 if (!cmd) { /* We're soooooo screewed... */ \
1123 raw_spin_unlock_irqrestore(&its->lock, flags); \
1124 return; \
1125 } \
1126 sync_obj = builder(its, cmd, desc); \
1127 its_flush_cmd(its, cmd); \
1128 \
1129 if (sync_obj) { \
1130 sync_cmd = its_allocate_entry(its); \
1131 if (!sync_cmd) \
1132 goto post; \
1133 \
1134 buildfn(its, sync_cmd, sync_obj); \
1135 its_flush_cmd(its, sync_cmd); \
1136 } \
1137 \
1138 post: \
1139 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
1140 next_cmd = its_post_commands(its); \
1141 raw_spin_unlock_irqrestore(&its->lock, flags); \
1142 \
1143 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
1144 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
1145 }
1146
1147 static void its_build_sync_cmd(struct its_node *its,
1148 struct its_cmd_block *sync_cmd,
1149 struct its_collection *sync_col)
1150 {
1151 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1152 its_encode_target(sync_cmd, sync_col->target_address);
1153
1154 its_fixup_cmd(sync_cmd);
1155 }
1156
1157 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1158 struct its_collection, its_build_sync_cmd)
1159
1160 static void its_build_vsync_cmd(struct its_node *its,
1161 struct its_cmd_block *sync_cmd,
1162 struct its_vpe *sync_vpe)
1163 {
1164 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1165 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1166
1167 its_fixup_cmd(sync_cmd);
1168 }
1169
1170 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1171 struct its_vpe, its_build_vsync_cmd)
1172
1173 static void its_send_int(struct its_device *dev, u32 event_id)
1174 {
1175 struct its_cmd_desc desc;
1176
1177 desc.its_int_cmd.dev = dev;
1178 desc.its_int_cmd.event_id = event_id;
1179
1180 its_send_single_command(dev->its, its_build_int_cmd, &desc);
1181 }
1182
1183 static void its_send_clear(struct its_device *dev, u32 event_id)
1184 {
1185 struct its_cmd_desc desc;
1186
1187 desc.its_clear_cmd.dev = dev;
1188 desc.its_clear_cmd.event_id = event_id;
1189
1190 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1191 }
1192
1193 static void its_send_inv(struct its_device *dev, u32 event_id)
1194 {
1195 struct its_cmd_desc desc;
1196
1197 desc.its_inv_cmd.dev = dev;
1198 desc.its_inv_cmd.event_id = event_id;
1199
1200 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1201 }
1202
1203 static void its_send_mapd(struct its_device *dev, int valid)
1204 {
1205 struct its_cmd_desc desc;
1206
1207 desc.its_mapd_cmd.dev = dev;
1208 desc.its_mapd_cmd.valid = !!valid;
1209
1210 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1211 }
1212
1213 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1214 int valid)
1215 {
1216 struct its_cmd_desc desc;
1217
1218 desc.its_mapc_cmd.col = col;
1219 desc.its_mapc_cmd.valid = !!valid;
1220
1221 its_send_single_command(its, its_build_mapc_cmd, &desc);
1222 }
1223
1224 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1225 {
1226 struct its_cmd_desc desc;
1227
1228 desc.its_mapti_cmd.dev = dev;
1229 desc.its_mapti_cmd.phys_id = irq_id;
1230 desc.its_mapti_cmd.event_id = id;
1231
1232 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1233 }
1234
1235 static void its_send_movi(struct its_device *dev,
1236 struct its_collection *col, u32 id)
1237 {
1238 struct its_cmd_desc desc;
1239
1240 desc.its_movi_cmd.dev = dev;
1241 desc.its_movi_cmd.col = col;
1242 desc.its_movi_cmd.event_id = id;
1243
1244 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1245 }
1246
1247 static void its_send_discard(struct its_device *dev, u32 id)
1248 {
1249 struct its_cmd_desc desc;
1250
1251 desc.its_discard_cmd.dev = dev;
1252 desc.its_discard_cmd.event_id = id;
1253
1254 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1255 }
1256
1257 static void its_send_invall(struct its_node *its, struct its_collection *col)
1258 {
1259 struct its_cmd_desc desc;
1260
1261 desc.its_invall_cmd.col = col;
1262
1263 its_send_single_command(its, its_build_invall_cmd, &desc);
1264 }
1265
1266 static void its_send_vmapti(struct its_device *dev, u32 id)
1267 {
1268 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1269 struct its_cmd_desc desc;
1270
1271 desc.its_vmapti_cmd.vpe = map->vpe;
1272 desc.its_vmapti_cmd.dev = dev;
1273 desc.its_vmapti_cmd.virt_id = map->vintid;
1274 desc.its_vmapti_cmd.event_id = id;
1275 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1276
1277 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1278 }
1279
1280 static void its_send_vmovi(struct its_device *dev, u32 id)
1281 {
1282 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1283 struct its_cmd_desc desc;
1284
1285 desc.its_vmovi_cmd.vpe = map->vpe;
1286 desc.its_vmovi_cmd.dev = dev;
1287 desc.its_vmovi_cmd.event_id = id;
1288 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1289
1290 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1291 }
1292
1293 static void its_send_vmapp(struct its_node *its,
1294 struct its_vpe *vpe, bool valid)
1295 {
1296 struct its_cmd_desc desc;
1297
1298 desc.its_vmapp_cmd.vpe = vpe;
1299 desc.its_vmapp_cmd.valid = valid;
1300 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1301
1302 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1303 }
1304
1305 static void its_send_vmovp(struct its_vpe *vpe)
1306 {
1307 struct its_cmd_desc desc = {};
1308 struct its_node *its;
1309 unsigned long flags;
1310 int col_id = vpe->col_idx;
1311
1312 desc.its_vmovp_cmd.vpe = vpe;
1313
1314 if (!its_list_map) {
1315 its = list_first_entry(&its_nodes, struct its_node, entry);
1316 desc.its_vmovp_cmd.col = &its->collections[col_id];
1317 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1318 return;
1319 }
1320
1321 /*
1322 * Yet another marvel of the architecture. If using the
1323 * its_list "feature", we need to make sure that all ITSs
1324 * receive all VMOVP commands in the same order. The only way
1325 * to guarantee this is to make vmovp a serialization point.
1326 *
1327 * Wall <-- Head.
1328 */
1329 raw_spin_lock_irqsave(&vmovp_lock, flags);
1330
1331 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1332 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1333
1334 /* Emit VMOVPs */
1335 list_for_each_entry(its, &its_nodes, entry) {
1336 if (!is_v4(its))
1337 continue;
1338
1339 if (!require_its_list_vmovp(vpe->its_vm, its))
1340 continue;
1341
1342 desc.its_vmovp_cmd.col = &its->collections[col_id];
1343 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1344 }
1345
1346 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1347 }
1348
1349 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1350 {
1351 struct its_cmd_desc desc;
1352
1353 desc.its_vinvall_cmd.vpe = vpe;
1354 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1355 }
1356
1357 static void its_send_vinv(struct its_device *dev, u32 event_id)
1358 {
1359 struct its_cmd_desc desc;
1360
1361 /*
1362 * There is no real VINV command. This is just a normal INV,
1363 * with a VSYNC instead of a SYNC.
1364 */
1365 desc.its_inv_cmd.dev = dev;
1366 desc.its_inv_cmd.event_id = event_id;
1367
1368 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1369 }
1370
1371 static void its_send_vint(struct its_device *dev, u32 event_id)
1372 {
1373 struct its_cmd_desc desc;
1374
1375 /*
1376 * There is no real VINT command. This is just a normal INT,
1377 * with a VSYNC instead of a SYNC.
1378 */
1379 desc.its_int_cmd.dev = dev;
1380 desc.its_int_cmd.event_id = event_id;
1381
1382 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1383 }
1384
1385 static void its_send_vclear(struct its_device *dev, u32 event_id)
1386 {
1387 struct its_cmd_desc desc;
1388
1389 /*
1390 * There is no real VCLEAR command. This is just a normal CLEAR,
1391 * with a VSYNC instead of a SYNC.
1392 */
1393 desc.its_clear_cmd.dev = dev;
1394 desc.its_clear_cmd.event_id = event_id;
1395
1396 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1397 }
1398
1399 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1400 {
1401 struct its_cmd_desc desc;
1402
1403 desc.its_invdb_cmd.vpe = vpe;
1404 its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1405 }
1406
1407 /*
1408 * irqchip functions - assumes MSI, mostly.
1409 */
1410 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1411 {
1412 struct its_vlpi_map *map = get_vlpi_map(d);
1413 irq_hw_number_t hwirq;
1414 void *va;
1415 u8 *cfg;
1416
1417 if (map) {
1418 va = page_address(map->vm->vprop_page);
1419 hwirq = map->vintid;
1420
1421 /* Remember the updated property */
1422 map->properties &= ~clr;
1423 map->properties |= set | LPI_PROP_GROUP1;
1424 } else {
1425 va = gic_rdists->prop_table_va;
1426 hwirq = d->hwirq;
1427 }
1428
1429 cfg = va + hwirq - 8192;
1430 *cfg &= ~clr;
1431 *cfg |= set | LPI_PROP_GROUP1;
1432
1433 /*
1434 * Make the above write visible to the redistributors.
1435 * And yes, we're flushing exactly: One. Single. Byte.
1436 * Humpf...
1437 */
1438 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1439 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1440 else
1441 dsb(ishst);
1442 }
1443
1444 static void wait_for_syncr(void __iomem *rdbase)
1445 {
1446 while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1447 cpu_relax();
1448 }
1449
1450 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1451 {
1452 void __iomem *rdbase;
1453 unsigned long flags;
1454 int cpu;
1455
1456 /* Target the redistributor this LPI is currently routed to */
1457 cpu = irq_to_cpuid_lock(d, &flags);
1458 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1459
1460 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1461 gic_write_lpir(val, rdbase + GICR_INVLPIR);
1462 wait_for_syncr(rdbase);
1463
1464 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1465 irq_to_cpuid_unlock(d, flags);
1466 }
1467
1468 static void direct_lpi_inv(struct irq_data *d)
1469 {
1470 struct its_vlpi_map *map = get_vlpi_map(d);
1471 u64 val;
1472
1473 if (map) {
1474 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1475
1476 WARN_ON(!is_v4_1(its_dev->its));
1477
1478 val = GICR_INVLPIR_V;
1479 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1480 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1481 } else {
1482 val = d->hwirq;
1483 }
1484
1485 __direct_lpi_inv(d, val);
1486 }
1487
1488 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1489 {
1490 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1491
1492 lpi_write_config(d, clr, set);
1493 if (gic_rdists->has_direct_lpi &&
1494 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1495 direct_lpi_inv(d);
1496 else if (!irqd_is_forwarded_to_vcpu(d))
1497 its_send_inv(its_dev, its_get_event_id(d));
1498 else
1499 its_send_vinv(its_dev, its_get_event_id(d));
1500 }
1501
1502 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1503 {
1504 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1505 u32 event = its_get_event_id(d);
1506 struct its_vlpi_map *map;
1507
1508 /*
1509 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1510 * here.
1511 */
1512 if (is_v4_1(its_dev->its))
1513 return;
1514
1515 map = dev_event_to_vlpi_map(its_dev, event);
1516
1517 if (map->db_enabled == enable)
1518 return;
1519
1520 map->db_enabled = enable;
1521
1522 /*
1523 * More fun with the architecture:
1524 *
1525 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1526 * value or to 1023, depending on the enable bit. But that
1527 * would be issuing a mapping for an /existing/ DevID+EventID
1528 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1529 * to the /same/ vPE, using this opportunity to adjust the
1530 * doorbell. Mouahahahaha. We loves it, Precious.
1531 */
1532 its_send_vmovi(its_dev, event);
1533 }
1534
1535 static void its_mask_irq(struct irq_data *d)
1536 {
1537 if (irqd_is_forwarded_to_vcpu(d))
1538 its_vlpi_set_doorbell(d, false);
1539
1540 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1541 }
1542
1543 static void its_unmask_irq(struct irq_data *d)
1544 {
1545 if (irqd_is_forwarded_to_vcpu(d))
1546 its_vlpi_set_doorbell(d, true);
1547
1548 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1549 }
1550
1551 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1552 {
1553 if (irqd_affinity_is_managed(d))
1554 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1555
1556 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1557 }
1558
1559 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1560 {
1561 if (irqd_affinity_is_managed(d))
1562 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1563 else
1564 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1565 }
1566
1567 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1568 {
1569 if (irqd_affinity_is_managed(d))
1570 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1571 else
1572 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1573 }
1574
1575 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1576 const struct cpumask *cpu_mask)
1577 {
1578 unsigned int cpu = nr_cpu_ids, tmp;
1579 int count = S32_MAX;
1580
1581 for_each_cpu(tmp, cpu_mask) {
1582 int this_count = its_read_lpi_count(d, tmp);
1583 if (this_count < count) {
1584 cpu = tmp;
1585 count = this_count;
1586 }
1587 }
1588
1589 return cpu;
1590 }
1591
1592 /*
1593 * As suggested by Thomas Gleixner in:
1594 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1595 */
1596 static int its_select_cpu(struct irq_data *d,
1597 const struct cpumask *aff_mask)
1598 {
1599 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1600 static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1601 static struct cpumask __tmpmask;
1602 struct cpumask *tmpmask;
1603 unsigned long flags;
1604 int cpu, node;
1605 node = its_dev->its->numa_node;
1606 tmpmask = &__tmpmask;
1607
1608 raw_spin_lock_irqsave(&tmpmask_lock, flags);
1609
1610 if (!irqd_affinity_is_managed(d)) {
1611 /* First try the NUMA node */
1612 if (node != NUMA_NO_NODE) {
1613 /*
1614 * Try the intersection of the affinity mask and the
1615 * node mask (and the online mask, just to be safe).
1616 */
1617 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1618 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1619
1620 /*
1621 * Ideally, we would check if the mask is empty, and
1622 * try again on the full node here.
1623 *
1624 * But it turns out that the way ACPI describes the
1625 * affinity for ITSs only deals about memory, and
1626 * not target CPUs, so it cannot describe a single
1627 * ITS placed next to two NUMA nodes.
1628 *
1629 * Instead, just fallback on the online mask. This
1630 * diverges from Thomas' suggestion above.
1631 */
1632 cpu = cpumask_pick_least_loaded(d, tmpmask);
1633 if (cpu < nr_cpu_ids)
1634 goto out;
1635
1636 /* If we can't cross sockets, give up */
1637 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1638 goto out;
1639
1640 /* If the above failed, expand the search */
1641 }
1642
1643 /* Try the intersection of the affinity and online masks */
1644 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1645
1646 /* If that doesn't fly, the online mask is the last resort */
1647 if (cpumask_empty(tmpmask))
1648 cpumask_copy(tmpmask, cpu_online_mask);
1649
1650 cpu = cpumask_pick_least_loaded(d, tmpmask);
1651 } else {
1652 cpumask_copy(tmpmask, aff_mask);
1653
1654 /* If we cannot cross sockets, limit the search to that node */
1655 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1656 node != NUMA_NO_NODE)
1657 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1658
1659 cpu = cpumask_pick_least_loaded(d, tmpmask);
1660 }
1661 out:
1662 raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1663
1664 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1665 return cpu;
1666 }
1667
1668 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1669 bool force)
1670 {
1671 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1672 struct its_collection *target_col;
1673 u32 id = its_get_event_id(d);
1674 int cpu, prev_cpu;
1675
1676 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1677 if (irqd_is_forwarded_to_vcpu(d))
1678 return -EINVAL;
1679
1680 prev_cpu = its_dev->event_map.col_map[id];
1681 its_dec_lpi_count(d, prev_cpu);
1682
1683 if (!force)
1684 cpu = its_select_cpu(d, mask_val);
1685 else
1686 cpu = cpumask_pick_least_loaded(d, mask_val);
1687
1688 if (cpu < 0 || cpu >= nr_cpu_ids)
1689 goto err;
1690
1691 /* don't set the affinity when the target cpu is same as current one */
1692 if (cpu != prev_cpu) {
1693 target_col = &its_dev->its->collections[cpu];
1694 its_send_movi(its_dev, target_col, id);
1695 its_dev->event_map.col_map[id] = cpu;
1696 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1697 }
1698
1699 its_inc_lpi_count(d, cpu);
1700
1701 return IRQ_SET_MASK_OK_DONE;
1702
1703 err:
1704 its_inc_lpi_count(d, prev_cpu);
1705 return -EINVAL;
1706 }
1707
1708 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1709 {
1710 struct its_node *its = its_dev->its;
1711
1712 return its->phys_base + GITS_TRANSLATER;
1713 }
1714
1715 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1716 {
1717 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1718 struct its_node *its;
1719 u64 addr;
1720
1721 its = its_dev->its;
1722 addr = its->get_msi_base(its_dev);
1723
1724 msg->address_lo = lower_32_bits(addr);
1725 msg->address_hi = upper_32_bits(addr);
1726 msg->data = its_get_event_id(d);
1727
1728 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1729 }
1730
1731 static int its_irq_set_irqchip_state(struct irq_data *d,
1732 enum irqchip_irq_state which,
1733 bool state)
1734 {
1735 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1736 u32 event = its_get_event_id(d);
1737
1738 if (which != IRQCHIP_STATE_PENDING)
1739 return -EINVAL;
1740
1741 if (irqd_is_forwarded_to_vcpu(d)) {
1742 if (state)
1743 its_send_vint(its_dev, event);
1744 else
1745 its_send_vclear(its_dev, event);
1746 } else {
1747 if (state)
1748 its_send_int(its_dev, event);
1749 else
1750 its_send_clear(its_dev, event);
1751 }
1752
1753 return 0;
1754 }
1755
1756 static int its_irq_retrigger(struct irq_data *d)
1757 {
1758 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1759 }
1760
1761 /*
1762 * Two favourable cases:
1763 *
1764 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1765 * for vSGI delivery
1766 *
1767 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1768 * and we're better off mapping all VPEs always
1769 *
1770 * If neither (a) nor (b) is true, then we map vPEs on demand.
1771 *
1772 */
1773 static bool gic_requires_eager_mapping(void)
1774 {
1775 if (!its_list_map || gic_rdists->has_rvpeid)
1776 return true;
1777
1778 return false;
1779 }
1780
1781 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1782 {
1783 unsigned long flags;
1784
1785 if (gic_requires_eager_mapping())
1786 return;
1787
1788 raw_spin_lock_irqsave(&vmovp_lock, flags);
1789
1790 /*
1791 * If the VM wasn't mapped yet, iterate over the vpes and get
1792 * them mapped now.
1793 */
1794 vm->vlpi_count[its->list_nr]++;
1795
1796 if (vm->vlpi_count[its->list_nr] == 1) {
1797 int i;
1798
1799 for (i = 0; i < vm->nr_vpes; i++) {
1800 struct its_vpe *vpe = vm->vpes[i];
1801 struct irq_data *d = irq_get_irq_data(vpe->irq);
1802
1803 /* Map the VPE to the first possible CPU */
1804 vpe->col_idx = cpumask_first(cpu_online_mask);
1805 its_send_vmapp(its, vpe, true);
1806 its_send_vinvall(its, vpe);
1807 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1808 }
1809 }
1810
1811 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1812 }
1813
1814 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1815 {
1816 unsigned long flags;
1817
1818 /* Not using the ITS list? Everything is always mapped. */
1819 if (gic_requires_eager_mapping())
1820 return;
1821
1822 raw_spin_lock_irqsave(&vmovp_lock, flags);
1823
1824 if (!--vm->vlpi_count[its->list_nr]) {
1825 int i;
1826
1827 for (i = 0; i < vm->nr_vpes; i++)
1828 its_send_vmapp(its, vm->vpes[i], false);
1829 }
1830
1831 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1832 }
1833
1834 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1835 {
1836 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1837 u32 event = its_get_event_id(d);
1838 int ret = 0;
1839
1840 if (!info->map)
1841 return -EINVAL;
1842
1843 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1844
1845 if (!its_dev->event_map.vm) {
1846 struct its_vlpi_map *maps;
1847
1848 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1849 GFP_ATOMIC);
1850 if (!maps) {
1851 ret = -ENOMEM;
1852 goto out;
1853 }
1854
1855 its_dev->event_map.vm = info->map->vm;
1856 its_dev->event_map.vlpi_maps = maps;
1857 } else if (its_dev->event_map.vm != info->map->vm) {
1858 ret = -EINVAL;
1859 goto out;
1860 }
1861
1862 /* Get our private copy of the mapping information */
1863 its_dev->event_map.vlpi_maps[event] = *info->map;
1864
1865 if (irqd_is_forwarded_to_vcpu(d)) {
1866 /* Already mapped, move it around */
1867 its_send_vmovi(its_dev, event);
1868 } else {
1869 /* Ensure all the VPEs are mapped on this ITS */
1870 its_map_vm(its_dev->its, info->map->vm);
1871
1872 /*
1873 * Flag the interrupt as forwarded so that we can
1874 * start poking the virtual property table.
1875 */
1876 irqd_set_forwarded_to_vcpu(d);
1877
1878 /* Write out the property to the prop table */
1879 lpi_write_config(d, 0xff, info->map->properties);
1880
1881 /* Drop the physical mapping */
1882 its_send_discard(its_dev, event);
1883
1884 /* and install the virtual one */
1885 its_send_vmapti(its_dev, event);
1886
1887 /* Increment the number of VLPIs */
1888 its_dev->event_map.nr_vlpis++;
1889 }
1890
1891 out:
1892 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1893 return ret;
1894 }
1895
1896 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1897 {
1898 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1899 struct its_vlpi_map *map;
1900 int ret = 0;
1901
1902 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1903
1904 map = get_vlpi_map(d);
1905
1906 if (!its_dev->event_map.vm || !map) {
1907 ret = -EINVAL;
1908 goto out;
1909 }
1910
1911 /* Copy our mapping information to the incoming request */
1912 *info->map = *map;
1913
1914 out:
1915 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1916 return ret;
1917 }
1918
1919 static int its_vlpi_unmap(struct irq_data *d)
1920 {
1921 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1922 u32 event = its_get_event_id(d);
1923 int ret = 0;
1924
1925 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1926
1927 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1928 ret = -EINVAL;
1929 goto out;
1930 }
1931
1932 /* Drop the virtual mapping */
1933 its_send_discard(its_dev, event);
1934
1935 /* and restore the physical one */
1936 irqd_clr_forwarded_to_vcpu(d);
1937 its_send_mapti(its_dev, d->hwirq, event);
1938 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1939 LPI_PROP_ENABLED |
1940 LPI_PROP_GROUP1));
1941
1942 /* Potentially unmap the VM from this ITS */
1943 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1944
1945 /*
1946 * Drop the refcount and make the device available again if
1947 * this was the last VLPI.
1948 */
1949 if (!--its_dev->event_map.nr_vlpis) {
1950 its_dev->event_map.vm = NULL;
1951 kfree(its_dev->event_map.vlpi_maps);
1952 }
1953
1954 out:
1955 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1956 return ret;
1957 }
1958
1959 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1960 {
1961 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1962
1963 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1964 return -EINVAL;
1965
1966 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1967 lpi_update_config(d, 0xff, info->config);
1968 else
1969 lpi_write_config(d, 0xff, info->config);
1970 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1971
1972 return 0;
1973 }
1974
1975 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1976 {
1977 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1978 struct its_cmd_info *info = vcpu_info;
1979
1980 /* Need a v4 ITS */
1981 if (!is_v4(its_dev->its))
1982 return -EINVAL;
1983
1984 /* Unmap request? */
1985 if (!info)
1986 return its_vlpi_unmap(d);
1987
1988 switch (info->cmd_type) {
1989 case MAP_VLPI:
1990 return its_vlpi_map(d, info);
1991
1992 case GET_VLPI:
1993 return its_vlpi_get(d, info);
1994
1995 case PROP_UPDATE_VLPI:
1996 case PROP_UPDATE_AND_INV_VLPI:
1997 return its_vlpi_prop_update(d, info);
1998
1999 default:
2000 return -EINVAL;
2001 }
2002 }
2003
2004 static struct irq_chip its_irq_chip = {
2005 .name = "ITS",
2006 .irq_mask = its_mask_irq,
2007 .irq_unmask = its_unmask_irq,
2008 .irq_eoi = irq_chip_eoi_parent,
2009 .irq_set_affinity = its_set_affinity,
2010 .irq_compose_msi_msg = its_irq_compose_msi_msg,
2011 .irq_set_irqchip_state = its_irq_set_irqchip_state,
2012 .irq_retrigger = its_irq_retrigger,
2013 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
2014 };
2015
2016
2017 /*
2018 * How we allocate LPIs:
2019 *
2020 * lpi_range_list contains ranges of LPIs that are to available to
2021 * allocate from. To allocate LPIs, just pick the first range that
2022 * fits the required allocation, and reduce it by the required
2023 * amount. Once empty, remove the range from the list.
2024 *
2025 * To free a range of LPIs, add a free range to the list, sort it and
2026 * merge the result if the new range happens to be adjacent to an
2027 * already free block.
2028 *
2029 * The consequence of the above is that allocation is cost is low, but
2030 * freeing is expensive. We assumes that freeing rarely occurs.
2031 */
2032 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
2033
2034 static DEFINE_MUTEX(lpi_range_lock);
2035 static LIST_HEAD(lpi_range_list);
2036
2037 struct lpi_range {
2038 struct list_head entry;
2039 u32 base_id;
2040 u32 span;
2041 };
2042
2043 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2044 {
2045 struct lpi_range *range;
2046
2047 range = kmalloc(sizeof(*range), GFP_KERNEL);
2048 if (range) {
2049 range->base_id = base;
2050 range->span = span;
2051 }
2052
2053 return range;
2054 }
2055
2056 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2057 {
2058 struct lpi_range *range, *tmp;
2059 int err = -ENOSPC;
2060
2061 mutex_lock(&lpi_range_lock);
2062
2063 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2064 if (range->span >= nr_lpis) {
2065 *base = range->base_id;
2066 range->base_id += nr_lpis;
2067 range->span -= nr_lpis;
2068
2069 if (range->span == 0) {
2070 list_del(&range->entry);
2071 kfree(range);
2072 }
2073
2074 err = 0;
2075 break;
2076 }
2077 }
2078
2079 mutex_unlock(&lpi_range_lock);
2080
2081 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2082 return err;
2083 }
2084
2085 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2086 {
2087 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2088 return;
2089 if (a->base_id + a->span != b->base_id)
2090 return;
2091 b->base_id = a->base_id;
2092 b->span += a->span;
2093 list_del(&a->entry);
2094 kfree(a);
2095 }
2096
2097 static int free_lpi_range(u32 base, u32 nr_lpis)
2098 {
2099 struct lpi_range *new, *old;
2100
2101 new = mk_lpi_range(base, nr_lpis);
2102 if (!new)
2103 return -ENOMEM;
2104
2105 mutex_lock(&lpi_range_lock);
2106
2107 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2108 if (old->base_id < base)
2109 break;
2110 }
2111 /*
2112 * old is the last element with ->base_id smaller than base,
2113 * so new goes right after it. If there are no elements with
2114 * ->base_id smaller than base, &old->entry ends up pointing
2115 * at the head of the list, and inserting new it the start of
2116 * the list is the right thing to do in that case as well.
2117 */
2118 list_add(&new->entry, &old->entry);
2119 /*
2120 * Now check if we can merge with the preceding and/or
2121 * following ranges.
2122 */
2123 merge_lpi_ranges(old, new);
2124 merge_lpi_ranges(new, list_next_entry(new, entry));
2125
2126 mutex_unlock(&lpi_range_lock);
2127 return 0;
2128 }
2129
2130 static int __init its_lpi_init(u32 id_bits)
2131 {
2132 u32 lpis = (1UL << id_bits) - 8192;
2133 u32 numlpis;
2134 int err;
2135
2136 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2137
2138 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2139 lpis = numlpis;
2140 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2141 lpis);
2142 }
2143
2144 /*
2145 * Initializing the allocator is just the same as freeing the
2146 * full range of LPIs.
2147 */
2148 err = free_lpi_range(8192, lpis);
2149 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2150 return err;
2151 }
2152
2153 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2154 {
2155 unsigned long *bitmap = NULL;
2156 int err = 0;
2157
2158 do {
2159 err = alloc_lpi_range(nr_irqs, base);
2160 if (!err)
2161 break;
2162
2163 nr_irqs /= 2;
2164 } while (nr_irqs > 0);
2165
2166 if (!nr_irqs)
2167 err = -ENOSPC;
2168
2169 if (err)
2170 goto out;
2171
2172 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2173 if (!bitmap)
2174 goto out;
2175
2176 *nr_ids = nr_irqs;
2177
2178 out:
2179 if (!bitmap)
2180 *base = *nr_ids = 0;
2181
2182 return bitmap;
2183 }
2184
2185 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2186 {
2187 WARN_ON(free_lpi_range(base, nr_ids));
2188 bitmap_free(bitmap);
2189 }
2190
2191 static void gic_reset_prop_table(void *va)
2192 {
2193 /* Priority 0xa0, Group-1, disabled */
2194 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2195
2196 /* Make sure the GIC will observe the written configuration */
2197 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2198 }
2199
2200 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2201 {
2202 struct page *prop_page;
2203
2204 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2205 if (!prop_page)
2206 return NULL;
2207
2208 gic_reset_prop_table(page_address(prop_page));
2209
2210 return prop_page;
2211 }
2212
2213 static void its_free_prop_table(struct page *prop_page)
2214 {
2215 free_pages((unsigned long)page_address(prop_page),
2216 get_order(LPI_PROPBASE_SZ));
2217 }
2218
2219 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2220 {
2221 phys_addr_t start, end, addr_end;
2222 u64 i;
2223
2224 /*
2225 * We don't bother checking for a kdump kernel as by
2226 * construction, the LPI tables are out of this kernel's
2227 * memory map.
2228 */
2229 if (is_kdump_kernel())
2230 return true;
2231
2232 addr_end = addr + size - 1;
2233
2234 for_each_reserved_mem_range(i, &start, &end) {
2235 if (addr >= start && addr_end <= end)
2236 return true;
2237 }
2238
2239 /* Not found, not a good sign... */
2240 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2241 &addr, &addr_end);
2242 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2243 return false;
2244 }
2245
2246 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2247 {
2248 if (efi_enabled(EFI_CONFIG_TABLES))
2249 return efi_mem_reserve_persistent(addr, size);
2250
2251 return 0;
2252 }
2253
2254 static int __init its_setup_lpi_prop_table(void)
2255 {
2256 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2257 u64 val;
2258
2259 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2260 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2261
2262 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2263 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2264 LPI_PROPBASE_SZ,
2265 MEMREMAP_WB);
2266 gic_reset_prop_table(gic_rdists->prop_table_va);
2267 } else {
2268 struct page *page;
2269
2270 lpi_id_bits = min_t(u32,
2271 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2272 ITS_MAX_LPI_NRBITS);
2273 page = its_allocate_prop_table(GFP_NOWAIT);
2274 if (!page) {
2275 pr_err("Failed to allocate PROPBASE\n");
2276 return -ENOMEM;
2277 }
2278
2279 gic_rdists->prop_table_pa = page_to_phys(page);
2280 gic_rdists->prop_table_va = page_address(page);
2281 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2282 LPI_PROPBASE_SZ));
2283 }
2284
2285 pr_info("GICv3: using LPI property table @%pa\n",
2286 &gic_rdists->prop_table_pa);
2287
2288 return its_lpi_init(lpi_id_bits);
2289 }
2290
2291 static const char *its_base_type_string[] = {
2292 [GITS_BASER_TYPE_DEVICE] = "Devices",
2293 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
2294 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
2295 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
2296 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
2297 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
2298 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
2299 };
2300
2301 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2302 {
2303 u32 idx = baser - its->tables;
2304
2305 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2306 }
2307
2308 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2309 u64 val)
2310 {
2311 u32 idx = baser - its->tables;
2312
2313 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2314 baser->val = its_read_baser(its, baser);
2315 }
2316
2317 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2318 u64 cache, u64 shr, u32 order, bool indirect)
2319 {
2320 u64 val = its_read_baser(its, baser);
2321 u64 esz = GITS_BASER_ENTRY_SIZE(val);
2322 u64 type = GITS_BASER_TYPE(val);
2323 u64 baser_phys, tmp;
2324 u32 alloc_pages, psz;
2325 struct page *page;
2326 void *base;
2327
2328 psz = baser->psz;
2329 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2330 if (alloc_pages > GITS_BASER_PAGES_MAX) {
2331 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2332 &its->phys_base, its_base_type_string[type],
2333 alloc_pages, GITS_BASER_PAGES_MAX);
2334 alloc_pages = GITS_BASER_PAGES_MAX;
2335 order = get_order(GITS_BASER_PAGES_MAX * psz);
2336 }
2337
2338 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2339 if (!page)
2340 return -ENOMEM;
2341
2342 base = (void *)page_address(page);
2343 baser_phys = virt_to_phys(base);
2344
2345 /* Check if the physical address of the memory is above 48bits */
2346 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2347
2348 /* 52bit PA is supported only when PageSize=64K */
2349 if (psz != SZ_64K) {
2350 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2351 free_pages((unsigned long)base, order);
2352 return -ENXIO;
2353 }
2354
2355 /* Convert 52bit PA to 48bit field */
2356 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2357 }
2358
2359 retry_baser:
2360 val = (baser_phys |
2361 (type << GITS_BASER_TYPE_SHIFT) |
2362 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
2363 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
2364 cache |
2365 shr |
2366 GITS_BASER_VALID);
2367
2368 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
2369
2370 switch (psz) {
2371 case SZ_4K:
2372 val |= GITS_BASER_PAGE_SIZE_4K;
2373 break;
2374 case SZ_16K:
2375 val |= GITS_BASER_PAGE_SIZE_16K;
2376 break;
2377 case SZ_64K:
2378 val |= GITS_BASER_PAGE_SIZE_64K;
2379 break;
2380 }
2381
2382 if (!shr)
2383 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2384
2385 its_write_baser(its, baser, val);
2386 tmp = baser->val;
2387
2388 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2389 /*
2390 * Shareability didn't stick. Just use
2391 * whatever the read reported, which is likely
2392 * to be the only thing this redistributor
2393 * supports. If that's zero, make it
2394 * non-cacheable as well.
2395 */
2396 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2397 if (!shr)
2398 cache = GITS_BASER_nC;
2399
2400 goto retry_baser;
2401 }
2402
2403 if (val != tmp) {
2404 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2405 &its->phys_base, its_base_type_string[type],
2406 val, tmp);
2407 free_pages((unsigned long)base, order);
2408 return -ENXIO;
2409 }
2410
2411 baser->order = order;
2412 baser->base = base;
2413 baser->psz = psz;
2414 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2415
2416 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2417 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2418 its_base_type_string[type],
2419 (unsigned long)virt_to_phys(base),
2420 indirect ? "indirect" : "flat", (int)esz,
2421 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2422
2423 return 0;
2424 }
2425
2426 static bool its_parse_indirect_baser(struct its_node *its,
2427 struct its_baser *baser,
2428 u32 *order, u32 ids)
2429 {
2430 u64 tmp = its_read_baser(its, baser);
2431 u64 type = GITS_BASER_TYPE(tmp);
2432 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2433 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2434 u32 new_order = *order;
2435 u32 psz = baser->psz;
2436 bool indirect = false;
2437
2438 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2439 if ((esz << ids) > (psz * 2)) {
2440 /*
2441 * Find out whether hw supports a single or two-level table by
2442 * table by reading bit at offset '62' after writing '1' to it.
2443 */
2444 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2445 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2446
2447 if (indirect) {
2448 /*
2449 * The size of the lvl2 table is equal to ITS page size
2450 * which is 'psz'. For computing lvl1 table size,
2451 * subtract ID bits that sparse lvl2 table from 'ids'
2452 * which is reported by ITS hardware times lvl1 table
2453 * entry size.
2454 */
2455 ids -= ilog2(psz / (int)esz);
2456 esz = GITS_LVL1_ENTRY_SIZE;
2457 }
2458 }
2459
2460 /*
2461 * Allocate as many entries as required to fit the
2462 * range of device IDs that the ITS can grok... The ID
2463 * space being incredibly sparse, this results in a
2464 * massive waste of memory if two-level device table
2465 * feature is not supported by hardware.
2466 */
2467 new_order = max_t(u32, get_order(esz << ids), new_order);
2468 if (new_order > MAX_ORDER) {
2469 new_order = MAX_ORDER;
2470 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2471 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2472 &its->phys_base, its_base_type_string[type],
2473 device_ids(its), ids);
2474 }
2475
2476 *order = new_order;
2477
2478 return indirect;
2479 }
2480
2481 static u32 compute_common_aff(u64 val)
2482 {
2483 u32 aff, clpiaff;
2484
2485 aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2486 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2487
2488 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2489 }
2490
2491 static u32 compute_its_aff(struct its_node *its)
2492 {
2493 u64 val;
2494 u32 svpet;
2495
2496 /*
2497 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2498 * the resulting affinity. We then use that to see if this match
2499 * our own affinity.
2500 */
2501 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2502 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2503 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2504 return compute_common_aff(val);
2505 }
2506
2507 static struct its_node *find_sibling_its(struct its_node *cur_its)
2508 {
2509 struct its_node *its;
2510 u32 aff;
2511
2512 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2513 return NULL;
2514
2515 aff = compute_its_aff(cur_its);
2516
2517 list_for_each_entry(its, &its_nodes, entry) {
2518 u64 baser;
2519
2520 if (!is_v4_1(its) || its == cur_its)
2521 continue;
2522
2523 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2524 continue;
2525
2526 if (aff != compute_its_aff(its))
2527 continue;
2528
2529 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2530 baser = its->tables[2].val;
2531 if (!(baser & GITS_BASER_VALID))
2532 continue;
2533
2534 return its;
2535 }
2536
2537 return NULL;
2538 }
2539
2540 static void its_free_tables(struct its_node *its)
2541 {
2542 int i;
2543
2544 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2545 if (its->tables[i].base) {
2546 free_pages((unsigned long)its->tables[i].base,
2547 its->tables[i].order);
2548 its->tables[i].base = NULL;
2549 }
2550 }
2551 }
2552
2553 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2554 {
2555 u64 psz = SZ_64K;
2556
2557 while (psz) {
2558 u64 val, gpsz;
2559
2560 val = its_read_baser(its, baser);
2561 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2562
2563 switch (psz) {
2564 case SZ_64K:
2565 gpsz = GITS_BASER_PAGE_SIZE_64K;
2566 break;
2567 case SZ_16K:
2568 gpsz = GITS_BASER_PAGE_SIZE_16K;
2569 break;
2570 case SZ_4K:
2571 default:
2572 gpsz = GITS_BASER_PAGE_SIZE_4K;
2573 break;
2574 }
2575
2576 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2577
2578 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2579 its_write_baser(its, baser, val);
2580
2581 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2582 break;
2583
2584 switch (psz) {
2585 case SZ_64K:
2586 psz = SZ_16K;
2587 break;
2588 case SZ_16K:
2589 psz = SZ_4K;
2590 break;
2591 case SZ_4K:
2592 default:
2593 return -1;
2594 }
2595 }
2596
2597 baser->psz = psz;
2598 return 0;
2599 }
2600
2601 static int its_alloc_tables(struct its_node *its)
2602 {
2603 u64 shr = GITS_BASER_InnerShareable;
2604 u64 cache = GITS_BASER_RaWaWb;
2605 int err, i;
2606
2607 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2608 /* erratum 24313: ignore memory access type */
2609 cache = GITS_BASER_nCnB;
2610
2611 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2612 cache = GITS_BASER_nC;
2613 shr = 0;
2614 }
2615
2616 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2617 struct its_baser *baser = its->tables + i;
2618 u64 val = its_read_baser(its, baser);
2619 u64 type = GITS_BASER_TYPE(val);
2620 bool indirect = false;
2621 u32 order;
2622
2623 if (type == GITS_BASER_TYPE_NONE)
2624 continue;
2625
2626 if (its_probe_baser_psz(its, baser)) {
2627 its_free_tables(its);
2628 return -ENXIO;
2629 }
2630
2631 order = get_order(baser->psz);
2632
2633 switch (type) {
2634 case GITS_BASER_TYPE_DEVICE:
2635 indirect = its_parse_indirect_baser(its, baser, &order,
2636 device_ids(its));
2637 break;
2638
2639 case GITS_BASER_TYPE_VCPU:
2640 if (is_v4_1(its)) {
2641 struct its_node *sibling;
2642
2643 WARN_ON(i != 2);
2644 if ((sibling = find_sibling_its(its))) {
2645 *baser = sibling->tables[2];
2646 its_write_baser(its, baser, baser->val);
2647 continue;
2648 }
2649 }
2650
2651 indirect = its_parse_indirect_baser(its, baser, &order,
2652 ITS_MAX_VPEID_BITS);
2653 break;
2654 }
2655
2656 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2657 if (err < 0) {
2658 its_free_tables(its);
2659 return err;
2660 }
2661
2662 /* Update settings which will be used for next BASERn */
2663 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2664 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2665 }
2666
2667 return 0;
2668 }
2669
2670 static u64 inherit_vpe_l1_table_from_its(void)
2671 {
2672 struct its_node *its;
2673 u64 val;
2674 u32 aff;
2675
2676 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2677 aff = compute_common_aff(val);
2678
2679 list_for_each_entry(its, &its_nodes, entry) {
2680 u64 baser, addr;
2681
2682 if (!is_v4_1(its))
2683 continue;
2684
2685 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2686 continue;
2687
2688 if (aff != compute_its_aff(its))
2689 continue;
2690
2691 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2692 baser = its->tables[2].val;
2693 if (!(baser & GITS_BASER_VALID))
2694 continue;
2695
2696 /* We have a winner! */
2697 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2698
2699 val = GICR_VPROPBASER_4_1_VALID;
2700 if (baser & GITS_BASER_INDIRECT)
2701 val |= GICR_VPROPBASER_4_1_INDIRECT;
2702 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2703 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2704 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2705 case GIC_PAGE_SIZE_64K:
2706 addr = GITS_BASER_ADDR_48_to_52(baser);
2707 break;
2708 default:
2709 addr = baser & GENMASK_ULL(47, 12);
2710 break;
2711 }
2712 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2713 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2714 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2715 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2716 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2717 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2718
2719 return val;
2720 }
2721
2722 return 0;
2723 }
2724
2725 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2726 {
2727 u32 aff;
2728 u64 val;
2729 int cpu;
2730
2731 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2732 aff = compute_common_aff(val);
2733
2734 for_each_possible_cpu(cpu) {
2735 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2736
2737 if (!base || cpu == smp_processor_id())
2738 continue;
2739
2740 val = gic_read_typer(base + GICR_TYPER);
2741 if (aff != compute_common_aff(val))
2742 continue;
2743
2744 /*
2745 * At this point, we have a victim. This particular CPU
2746 * has already booted, and has an affinity that matches
2747 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2748 * Make sure we don't write the Z bit in that case.
2749 */
2750 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2751 val &= ~GICR_VPROPBASER_4_1_Z;
2752
2753 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2754 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2755
2756 return val;
2757 }
2758
2759 return 0;
2760 }
2761
2762 static bool allocate_vpe_l2_table(int cpu, u32 id)
2763 {
2764 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2765 unsigned int psz, esz, idx, npg, gpsz;
2766 u64 val;
2767 struct page *page;
2768 __le64 *table;
2769
2770 if (!gic_rdists->has_rvpeid)
2771 return true;
2772
2773 /* Skip non-present CPUs */
2774 if (!base)
2775 return true;
2776
2777 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2778
2779 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2780 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2781 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2782
2783 switch (gpsz) {
2784 default:
2785 WARN_ON(1);
2786 fallthrough;
2787 case GIC_PAGE_SIZE_4K:
2788 psz = SZ_4K;
2789 break;
2790 case GIC_PAGE_SIZE_16K:
2791 psz = SZ_16K;
2792 break;
2793 case GIC_PAGE_SIZE_64K:
2794 psz = SZ_64K;
2795 break;
2796 }
2797
2798 /* Don't allow vpe_id that exceeds single, flat table limit */
2799 if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2800 return (id < (npg * psz / (esz * SZ_8)));
2801
2802 /* Compute 1st level table index & check if that exceeds table limit */
2803 idx = id >> ilog2(psz / (esz * SZ_8));
2804 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2805 return false;
2806
2807 table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2808
2809 /* Allocate memory for 2nd level table */
2810 if (!table[idx]) {
2811 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2812 if (!page)
2813 return false;
2814
2815 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2816 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2817 gic_flush_dcache_to_poc(page_address(page), psz);
2818
2819 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2820
2821 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2822 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2823 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2824
2825 /* Ensure updated table contents are visible to RD hardware */
2826 dsb(sy);
2827 }
2828
2829 return true;
2830 }
2831
2832 static int allocate_vpe_l1_table(void)
2833 {
2834 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2835 u64 val, gpsz, npg, pa;
2836 unsigned int psz = SZ_64K;
2837 unsigned int np, epp, esz;
2838 struct page *page;
2839
2840 if (!gic_rdists->has_rvpeid)
2841 return 0;
2842
2843 /*
2844 * if VPENDBASER.Valid is set, disable any previously programmed
2845 * VPE by setting PendingLast while clearing Valid. This has the
2846 * effect of making sure no doorbell will be generated and we can
2847 * then safely clear VPROPBASER.Valid.
2848 */
2849 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2850 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2851 vlpi_base + GICR_VPENDBASER);
2852
2853 /*
2854 * If we can inherit the configuration from another RD, let's do
2855 * so. Otherwise, we have to go through the allocation process. We
2856 * assume that all RDs have the exact same requirements, as
2857 * nothing will work otherwise.
2858 */
2859 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2860 if (val & GICR_VPROPBASER_4_1_VALID)
2861 goto out;
2862
2863 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2864 if (!gic_data_rdist()->vpe_table_mask)
2865 return -ENOMEM;
2866
2867 val = inherit_vpe_l1_table_from_its();
2868 if (val & GICR_VPROPBASER_4_1_VALID)
2869 goto out;
2870
2871 /* First probe the page size */
2872 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2873 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2874 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2875 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2876 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2877
2878 switch (gpsz) {
2879 default:
2880 gpsz = GIC_PAGE_SIZE_4K;
2881 fallthrough;
2882 case GIC_PAGE_SIZE_4K:
2883 psz = SZ_4K;
2884 break;
2885 case GIC_PAGE_SIZE_16K:
2886 psz = SZ_16K;
2887 break;
2888 case GIC_PAGE_SIZE_64K:
2889 psz = SZ_64K;
2890 break;
2891 }
2892
2893 /*
2894 * Start populating the register from scratch, including RO fields
2895 * (which we want to print in debug cases...)
2896 */
2897 val = 0;
2898 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2899 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2900
2901 /* How many entries per GIC page? */
2902 esz++;
2903 epp = psz / (esz * SZ_8);
2904
2905 /*
2906 * If we need more than just a single L1 page, flag the table
2907 * as indirect and compute the number of required L1 pages.
2908 */
2909 if (epp < ITS_MAX_VPEID) {
2910 int nl2;
2911
2912 val |= GICR_VPROPBASER_4_1_INDIRECT;
2913
2914 /* Number of L2 pages required to cover the VPEID space */
2915 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2916
2917 /* Number of L1 pages to point to the L2 pages */
2918 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2919 } else {
2920 npg = 1;
2921 }
2922
2923 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2924
2925 /* Right, that's the number of CPU pages we need for L1 */
2926 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2927
2928 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2929 np, npg, psz, epp, esz);
2930 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2931 if (!page)
2932 return -ENOMEM;
2933
2934 gic_data_rdist()->vpe_l1_base = page_address(page);
2935 pa = virt_to_phys(page_address(page));
2936 WARN_ON(!IS_ALIGNED(pa, psz));
2937
2938 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2939 val |= GICR_VPROPBASER_RaWb;
2940 val |= GICR_VPROPBASER_InnerShareable;
2941 val |= GICR_VPROPBASER_4_1_Z;
2942 val |= GICR_VPROPBASER_4_1_VALID;
2943
2944 out:
2945 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2946 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2947
2948 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2949 smp_processor_id(), val,
2950 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2951
2952 return 0;
2953 }
2954
2955 static int its_alloc_collections(struct its_node *its)
2956 {
2957 int i;
2958
2959 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2960 GFP_KERNEL);
2961 if (!its->collections)
2962 return -ENOMEM;
2963
2964 for (i = 0; i < nr_cpu_ids; i++)
2965 its->collections[i].target_address = ~0ULL;
2966
2967 return 0;
2968 }
2969
2970 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2971 {
2972 struct page *pend_page;
2973
2974 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2975 get_order(LPI_PENDBASE_SZ));
2976 if (!pend_page)
2977 return NULL;
2978
2979 /* Make sure the GIC will observe the zero-ed page */
2980 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2981
2982 return pend_page;
2983 }
2984
2985 static void its_free_pending_table(struct page *pt)
2986 {
2987 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2988 }
2989
2990 /*
2991 * Booting with kdump and LPIs enabled is generally fine. Any other
2992 * case is wrong in the absence of firmware/EFI support.
2993 */
2994 static bool enabled_lpis_allowed(void)
2995 {
2996 phys_addr_t addr;
2997 u64 val;
2998
2999 /* Check whether the property table is in a reserved region */
3000 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3001 addr = val & GENMASK_ULL(51, 12);
3002
3003 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3004 }
3005
3006 static int __init allocate_lpi_tables(void)
3007 {
3008 u64 val;
3009 int err, cpu;
3010
3011 /*
3012 * If LPIs are enabled while we run this from the boot CPU,
3013 * flag the RD tables as pre-allocated if the stars do align.
3014 */
3015 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3016 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3017 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3018 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3019 pr_info("GICv3: Using preallocated redistributor tables\n");
3020 }
3021
3022 err = its_setup_lpi_prop_table();
3023 if (err)
3024 return err;
3025
3026 /*
3027 * We allocate all the pending tables anyway, as we may have a
3028 * mix of RDs that have had LPIs enabled, and some that
3029 * don't. We'll free the unused ones as each CPU comes online.
3030 */
3031 for_each_possible_cpu(cpu) {
3032 struct page *pend_page;
3033
3034 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3035 if (!pend_page) {
3036 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3037 return -ENOMEM;
3038 }
3039
3040 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3041 }
3042
3043 return 0;
3044 }
3045
3046 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3047 {
3048 u32 count = 1000000; /* 1s! */
3049 bool clean;
3050 u64 val;
3051
3052 do {
3053 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3054 clean = !(val & GICR_VPENDBASER_Dirty);
3055 if (!clean) {
3056 count--;
3057 cpu_relax();
3058 udelay(1);
3059 }
3060 } while (!clean && count);
3061
3062 if (unlikely(!clean))
3063 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3064
3065 return val;
3066 }
3067
3068 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3069 {
3070 u64 val;
3071
3072 /* Make sure we wait until the RD is done with the initial scan */
3073 val = read_vpend_dirty_clear(vlpi_base);
3074 val &= ~GICR_VPENDBASER_Valid;
3075 val &= ~clr;
3076 val |= set;
3077 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3078
3079 val = read_vpend_dirty_clear(vlpi_base);
3080 if (unlikely(val & GICR_VPENDBASER_Dirty))
3081 val |= GICR_VPENDBASER_PendingLast;
3082
3083 return val;
3084 }
3085
3086 static void its_cpu_init_lpis(void)
3087 {
3088 void __iomem *rbase = gic_data_rdist_rd_base();
3089 struct page *pend_page;
3090 phys_addr_t paddr;
3091 u64 val, tmp;
3092
3093 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3094 return;
3095
3096 val = readl_relaxed(rbase + GICR_CTLR);
3097 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3098 (val & GICR_CTLR_ENABLE_LPIS)) {
3099 /*
3100 * Check that we get the same property table on all
3101 * RDs. If we don't, this is hopeless.
3102 */
3103 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3104 paddr &= GENMASK_ULL(51, 12);
3105 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3106 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3107
3108 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3109 paddr &= GENMASK_ULL(51, 16);
3110
3111 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3112 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3113
3114 goto out;
3115 }
3116
3117 pend_page = gic_data_rdist()->pend_page;
3118 paddr = page_to_phys(pend_page);
3119
3120 /* set PROPBASE */
3121 val = (gic_rdists->prop_table_pa |
3122 GICR_PROPBASER_InnerShareable |
3123 GICR_PROPBASER_RaWaWb |
3124 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3125
3126 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3127 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3128
3129 if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3130 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3131
3132 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3133 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3134 /*
3135 * The HW reports non-shareable, we must
3136 * remove the cacheability attributes as
3137 * well.
3138 */
3139 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3140 GICR_PROPBASER_CACHEABILITY_MASK);
3141 val |= GICR_PROPBASER_nC;
3142 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3143 }
3144 pr_info_once("GIC: using cache flushing for LPI property table\n");
3145 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3146 }
3147
3148 /* set PENDBASE */
3149 val = (page_to_phys(pend_page) |
3150 GICR_PENDBASER_InnerShareable |
3151 GICR_PENDBASER_RaWaWb);
3152
3153 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3154 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3155
3156 if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3157 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3158
3159 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3160 /*
3161 * The HW reports non-shareable, we must remove the
3162 * cacheability attributes as well.
3163 */
3164 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3165 GICR_PENDBASER_CACHEABILITY_MASK);
3166 val |= GICR_PENDBASER_nC;
3167 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3168 }
3169
3170 /* Enable LPIs */
3171 val = readl_relaxed(rbase + GICR_CTLR);
3172 val |= GICR_CTLR_ENABLE_LPIS;
3173 writel_relaxed(val, rbase + GICR_CTLR);
3174
3175 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3176 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3177
3178 /*
3179 * It's possible for CPU to receive VLPIs before it is
3180 * scheduled as a vPE, especially for the first CPU, and the
3181 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3182 * as out of range and dropped by GIC.
3183 * So we initialize IDbits to known value to avoid VLPI drop.
3184 */
3185 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3186 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3187 smp_processor_id(), val);
3188 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3189
3190 /*
3191 * Also clear Valid bit of GICR_VPENDBASER, in case some
3192 * ancient programming gets left in and has possibility of
3193 * corrupting memory.
3194 */
3195 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3196 }
3197
3198 if (allocate_vpe_l1_table()) {
3199 /*
3200 * If the allocation has failed, we're in massive trouble.
3201 * Disable direct injection, and pray that no VM was
3202 * already running...
3203 */
3204 gic_rdists->has_rvpeid = false;
3205 gic_rdists->has_vlpis = false;
3206 }
3207
3208 /* Make sure the GIC has seen the above */
3209 dsb(sy);
3210 out:
3211 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3212 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3213 smp_processor_id(),
3214 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3215 "reserved" : "allocated",
3216 &paddr);
3217 }
3218
3219 static void its_cpu_init_collection(struct its_node *its)
3220 {
3221 int cpu = smp_processor_id();
3222 u64 target;
3223
3224 /* avoid cross node collections and its mapping */
3225 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3226 struct device_node *cpu_node;
3227
3228 cpu_node = of_get_cpu_node(cpu, NULL);
3229 if (its->numa_node != NUMA_NO_NODE &&
3230 its->numa_node != of_node_to_nid(cpu_node))
3231 return;
3232 }
3233
3234 /*
3235 * We now have to bind each collection to its target
3236 * redistributor.
3237 */
3238 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3239 /*
3240 * This ITS wants the physical address of the
3241 * redistributor.
3242 */
3243 target = gic_data_rdist()->phys_base;
3244 } else {
3245 /* This ITS wants a linear CPU number. */
3246 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3247 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3248 }
3249
3250 /* Perform collection mapping */
3251 its->collections[cpu].target_address = target;
3252 its->collections[cpu].col_id = cpu;
3253
3254 its_send_mapc(its, &its->collections[cpu], 1);
3255 its_send_invall(its, &its->collections[cpu]);
3256 }
3257
3258 static void its_cpu_init_collections(void)
3259 {
3260 struct its_node *its;
3261
3262 raw_spin_lock(&its_lock);
3263
3264 list_for_each_entry(its, &its_nodes, entry)
3265 its_cpu_init_collection(its);
3266
3267 raw_spin_unlock(&its_lock);
3268 }
3269
3270 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3271 {
3272 struct its_device *its_dev = NULL, *tmp;
3273 unsigned long flags;
3274
3275 raw_spin_lock_irqsave(&its->lock, flags);
3276
3277 list_for_each_entry(tmp, &its->its_device_list, entry) {
3278 if (tmp->device_id == dev_id) {
3279 its_dev = tmp;
3280 break;
3281 }
3282 }
3283
3284 raw_spin_unlock_irqrestore(&its->lock, flags);
3285
3286 return its_dev;
3287 }
3288
3289 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3290 {
3291 int i;
3292
3293 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3294 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3295 return &its->tables[i];
3296 }
3297
3298 return NULL;
3299 }
3300
3301 static bool its_alloc_table_entry(struct its_node *its,
3302 struct its_baser *baser, u32 id)
3303 {
3304 struct page *page;
3305 u32 esz, idx;
3306 __le64 *table;
3307
3308 /* Don't allow device id that exceeds single, flat table limit */
3309 esz = GITS_BASER_ENTRY_SIZE(baser->val);
3310 if (!(baser->val & GITS_BASER_INDIRECT))
3311 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3312
3313 /* Compute 1st level table index & check if that exceeds table limit */
3314 idx = id >> ilog2(baser->psz / esz);
3315 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3316 return false;
3317
3318 table = baser->base;
3319
3320 /* Allocate memory for 2nd level table */
3321 if (!table[idx]) {
3322 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3323 get_order(baser->psz));
3324 if (!page)
3325 return false;
3326
3327 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3328 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3329 gic_flush_dcache_to_poc(page_address(page), baser->psz);
3330
3331 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3332
3333 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3334 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3335 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3336
3337 /* Ensure updated table contents are visible to ITS hardware */
3338 dsb(sy);
3339 }
3340
3341 return true;
3342 }
3343
3344 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3345 {
3346 struct its_baser *baser;
3347
3348 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3349
3350 /* Don't allow device id that exceeds ITS hardware limit */
3351 if (!baser)
3352 return (ilog2(dev_id) < device_ids(its));
3353
3354 return its_alloc_table_entry(its, baser, dev_id);
3355 }
3356
3357 static bool its_alloc_vpe_table(u32 vpe_id)
3358 {
3359 struct its_node *its;
3360 int cpu;
3361
3362 /*
3363 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3364 * could try and only do it on ITSs corresponding to devices
3365 * that have interrupts targeted at this VPE, but the
3366 * complexity becomes crazy (and you have tons of memory
3367 * anyway, right?).
3368 */
3369 list_for_each_entry(its, &its_nodes, entry) {
3370 struct its_baser *baser;
3371
3372 if (!is_v4(its))
3373 continue;
3374
3375 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3376 if (!baser)
3377 return false;
3378
3379 if (!its_alloc_table_entry(its, baser, vpe_id))
3380 return false;
3381 }
3382
3383 /* Non v4.1? No need to iterate RDs and go back early. */
3384 if (!gic_rdists->has_rvpeid)
3385 return true;
3386
3387 /*
3388 * Make sure the L2 tables are allocated for all copies of
3389 * the L1 table on *all* v4.1 RDs.
3390 */
3391 for_each_possible_cpu(cpu) {
3392 if (!allocate_vpe_l2_table(cpu, vpe_id))
3393 return false;
3394 }
3395
3396 return true;
3397 }
3398
3399 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3400 int nvecs, bool alloc_lpis)
3401 {
3402 struct its_device *dev;
3403 unsigned long *lpi_map = NULL;
3404 unsigned long flags;
3405 u16 *col_map = NULL;
3406 void *itt;
3407 int lpi_base;
3408 int nr_lpis;
3409 int nr_ites;
3410 int sz;
3411
3412 if (!its_alloc_device_table(its, dev_id))
3413 return NULL;
3414
3415 if (WARN_ON(!is_power_of_2(nvecs)))
3416 nvecs = roundup_pow_of_two(nvecs);
3417
3418 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3419 /*
3420 * Even if the device wants a single LPI, the ITT must be
3421 * sized as a power of two (and you need at least one bit...).
3422 */
3423 nr_ites = max(2, nvecs);
3424 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3425 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3426 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3427 if (alloc_lpis) {
3428 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3429 if (lpi_map)
3430 col_map = kcalloc(nr_lpis, sizeof(*col_map),
3431 GFP_KERNEL);
3432 } else {
3433 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3434 nr_lpis = 0;
3435 lpi_base = 0;
3436 }
3437
3438 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3439 kfree(dev);
3440 kfree(itt);
3441 bitmap_free(lpi_map);
3442 kfree(col_map);
3443 return NULL;
3444 }
3445
3446 gic_flush_dcache_to_poc(itt, sz);
3447
3448 dev->its = its;
3449 dev->itt = itt;
3450 dev->nr_ites = nr_ites;
3451 dev->event_map.lpi_map = lpi_map;
3452 dev->event_map.col_map = col_map;
3453 dev->event_map.lpi_base = lpi_base;
3454 dev->event_map.nr_lpis = nr_lpis;
3455 raw_spin_lock_init(&dev->event_map.vlpi_lock);
3456 dev->device_id = dev_id;
3457 INIT_LIST_HEAD(&dev->entry);
3458
3459 raw_spin_lock_irqsave(&its->lock, flags);
3460 list_add(&dev->entry, &its->its_device_list);
3461 raw_spin_unlock_irqrestore(&its->lock, flags);
3462
3463 /* Map device to its ITT */
3464 its_send_mapd(dev, 1);
3465
3466 return dev;
3467 }
3468
3469 static void its_free_device(struct its_device *its_dev)
3470 {
3471 unsigned long flags;
3472
3473 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3474 list_del(&its_dev->entry);
3475 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3476 kfree(its_dev->event_map.col_map);
3477 kfree(its_dev->itt);
3478 kfree(its_dev);
3479 }
3480
3481 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3482 {
3483 int idx;
3484
3485 /* Find a free LPI region in lpi_map and allocate them. */
3486 idx = bitmap_find_free_region(dev->event_map.lpi_map,
3487 dev->event_map.nr_lpis,
3488 get_count_order(nvecs));
3489 if (idx < 0)
3490 return -ENOSPC;
3491
3492 *hwirq = dev->event_map.lpi_base + idx;
3493
3494 return 0;
3495 }
3496
3497 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3498 int nvec, msi_alloc_info_t *info)
3499 {
3500 struct its_node *its;
3501 struct its_device *its_dev;
3502 struct msi_domain_info *msi_info;
3503 u32 dev_id;
3504 int err = 0;
3505
3506 /*
3507 * We ignore "dev" entirely, and rely on the dev_id that has
3508 * been passed via the scratchpad. This limits this domain's
3509 * usefulness to upper layers that definitely know that they
3510 * are built on top of the ITS.
3511 */
3512 dev_id = info->scratchpad[0].ul;
3513
3514 msi_info = msi_get_domain_info(domain);
3515 its = msi_info->data;
3516
3517 if (!gic_rdists->has_direct_lpi &&
3518 vpe_proxy.dev &&
3519 vpe_proxy.dev->its == its &&
3520 dev_id == vpe_proxy.dev->device_id) {
3521 /* Bad luck. Get yourself a better implementation */
3522 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3523 dev_id);
3524 return -EINVAL;
3525 }
3526
3527 mutex_lock(&its->dev_alloc_lock);
3528 its_dev = its_find_device(its, dev_id);
3529 if (its_dev) {
3530 /*
3531 * We already have seen this ID, probably through
3532 * another alias (PCI bridge of some sort). No need to
3533 * create the device.
3534 */
3535 its_dev->shared = true;
3536 pr_debug("Reusing ITT for devID %x\n", dev_id);
3537 goto out;
3538 }
3539
3540 its_dev = its_create_device(its, dev_id, nvec, true);
3541 if (!its_dev) {
3542 err = -ENOMEM;
3543 goto out;
3544 }
3545
3546 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3547 its_dev->shared = true;
3548
3549 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3550 out:
3551 mutex_unlock(&its->dev_alloc_lock);
3552 info->scratchpad[0].ptr = its_dev;
3553 return err;
3554 }
3555
3556 static struct msi_domain_ops its_msi_domain_ops = {
3557 .msi_prepare = its_msi_prepare,
3558 };
3559
3560 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3561 unsigned int virq,
3562 irq_hw_number_t hwirq)
3563 {
3564 struct irq_fwspec fwspec;
3565
3566 if (irq_domain_get_of_node(domain->parent)) {
3567 fwspec.fwnode = domain->parent->fwnode;
3568 fwspec.param_count = 3;
3569 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3570 fwspec.param[1] = hwirq;
3571 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3572 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3573 fwspec.fwnode = domain->parent->fwnode;
3574 fwspec.param_count = 2;
3575 fwspec.param[0] = hwirq;
3576 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3577 } else {
3578 return -EINVAL;
3579 }
3580
3581 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3582 }
3583
3584 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3585 unsigned int nr_irqs, void *args)
3586 {
3587 msi_alloc_info_t *info = args;
3588 struct its_device *its_dev = info->scratchpad[0].ptr;
3589 struct its_node *its = its_dev->its;
3590 struct irq_data *irqd;
3591 irq_hw_number_t hwirq;
3592 int err;
3593 int i;
3594
3595 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3596 if (err)
3597 return err;
3598
3599 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3600 if (err)
3601 return err;
3602
3603 for (i = 0; i < nr_irqs; i++) {
3604 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3605 if (err)
3606 return err;
3607
3608 irq_domain_set_hwirq_and_chip(domain, virq + i,
3609 hwirq + i, &its_irq_chip, its_dev);
3610 irqd = irq_get_irq_data(virq + i);
3611 irqd_set_single_target(irqd);
3612 irqd_set_affinity_on_activate(irqd);
3613 irqd_set_resend_when_in_progress(irqd);
3614 pr_debug("ID:%d pID:%d vID:%d\n",
3615 (int)(hwirq + i - its_dev->event_map.lpi_base),
3616 (int)(hwirq + i), virq + i);
3617 }
3618
3619 return 0;
3620 }
3621
3622 static int its_irq_domain_activate(struct irq_domain *domain,
3623 struct irq_data *d, bool reserve)
3624 {
3625 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3626 u32 event = its_get_event_id(d);
3627 int cpu;
3628
3629 cpu = its_select_cpu(d, cpu_online_mask);
3630 if (cpu < 0 || cpu >= nr_cpu_ids)
3631 return -EINVAL;
3632
3633 its_inc_lpi_count(d, cpu);
3634 its_dev->event_map.col_map[event] = cpu;
3635 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3636
3637 /* Map the GIC IRQ and event to the device */
3638 its_send_mapti(its_dev, d->hwirq, event);
3639 return 0;
3640 }
3641
3642 static void its_irq_domain_deactivate(struct irq_domain *domain,
3643 struct irq_data *d)
3644 {
3645 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3646 u32 event = its_get_event_id(d);
3647
3648 its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3649 /* Stop the delivery of interrupts */
3650 its_send_discard(its_dev, event);
3651 }
3652
3653 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3654 unsigned int nr_irqs)
3655 {
3656 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3657 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3658 struct its_node *its = its_dev->its;
3659 int i;
3660
3661 bitmap_release_region(its_dev->event_map.lpi_map,
3662 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3663 get_count_order(nr_irqs));
3664
3665 for (i = 0; i < nr_irqs; i++) {
3666 struct irq_data *data = irq_domain_get_irq_data(domain,
3667 virq + i);
3668 /* Nuke the entry in the domain */
3669 irq_domain_reset_irq_data(data);
3670 }
3671
3672 mutex_lock(&its->dev_alloc_lock);
3673
3674 /*
3675 * If all interrupts have been freed, start mopping the
3676 * floor. This is conditioned on the device not being shared.
3677 */
3678 if (!its_dev->shared &&
3679 bitmap_empty(its_dev->event_map.lpi_map,
3680 its_dev->event_map.nr_lpis)) {
3681 its_lpi_free(its_dev->event_map.lpi_map,
3682 its_dev->event_map.lpi_base,
3683 its_dev->event_map.nr_lpis);
3684
3685 /* Unmap device/itt */
3686 its_send_mapd(its_dev, 0);
3687 its_free_device(its_dev);
3688 }
3689
3690 mutex_unlock(&its->dev_alloc_lock);
3691
3692 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3693 }
3694
3695 static const struct irq_domain_ops its_domain_ops = {
3696 .alloc = its_irq_domain_alloc,
3697 .free = its_irq_domain_free,
3698 .activate = its_irq_domain_activate,
3699 .deactivate = its_irq_domain_deactivate,
3700 };
3701
3702 /*
3703 * This is insane.
3704 *
3705 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3706 * likely), the only way to perform an invalidate is to use a fake
3707 * device to issue an INV command, implying that the LPI has first
3708 * been mapped to some event on that device. Since this is not exactly
3709 * cheap, we try to keep that mapping around as long as possible, and
3710 * only issue an UNMAP if we're short on available slots.
3711 *
3712 * Broken by design(tm).
3713 *
3714 * GICv4.1, on the other hand, mandates that we're able to invalidate
3715 * by writing to a MMIO register. It doesn't implement the whole of
3716 * DirectLPI, but that's good enough. And most of the time, we don't
3717 * even have to invalidate anything, as the redistributor can be told
3718 * whether to generate a doorbell or not (we thus leave it enabled,
3719 * always).
3720 */
3721 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3722 {
3723 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3724 if (gic_rdists->has_rvpeid)
3725 return;
3726
3727 /* Already unmapped? */
3728 if (vpe->vpe_proxy_event == -1)
3729 return;
3730
3731 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3732 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3733
3734 /*
3735 * We don't track empty slots at all, so let's move the
3736 * next_victim pointer if we can quickly reuse that slot
3737 * instead of nuking an existing entry. Not clear that this is
3738 * always a win though, and this might just generate a ripple
3739 * effect... Let's just hope VPEs don't migrate too often.
3740 */
3741 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3742 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3743
3744 vpe->vpe_proxy_event = -1;
3745 }
3746
3747 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3748 {
3749 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3750 if (gic_rdists->has_rvpeid)
3751 return;
3752
3753 if (!gic_rdists->has_direct_lpi) {
3754 unsigned long flags;
3755
3756 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3757 its_vpe_db_proxy_unmap_locked(vpe);
3758 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3759 }
3760 }
3761
3762 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3763 {
3764 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3765 if (gic_rdists->has_rvpeid)
3766 return;
3767
3768 /* Already mapped? */
3769 if (vpe->vpe_proxy_event != -1)
3770 return;
3771
3772 /* This slot was already allocated. Kick the other VPE out. */
3773 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3774 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3775
3776 /* Map the new VPE instead */
3777 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3778 vpe->vpe_proxy_event = vpe_proxy.next_victim;
3779 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3780
3781 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3782 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3783 }
3784
3785 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3786 {
3787 unsigned long flags;
3788 struct its_collection *target_col;
3789
3790 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3791 if (gic_rdists->has_rvpeid)
3792 return;
3793
3794 if (gic_rdists->has_direct_lpi) {
3795 void __iomem *rdbase;
3796
3797 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3798 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3799 wait_for_syncr(rdbase);
3800
3801 return;
3802 }
3803
3804 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3805
3806 its_vpe_db_proxy_map_locked(vpe);
3807
3808 target_col = &vpe_proxy.dev->its->collections[to];
3809 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3810 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3811
3812 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3813 }
3814
3815 static int its_vpe_set_affinity(struct irq_data *d,
3816 const struct cpumask *mask_val,
3817 bool force)
3818 {
3819 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3820 int from, cpu = cpumask_first(mask_val);
3821 unsigned long flags;
3822
3823 /*
3824 * Changing affinity is mega expensive, so let's be as lazy as
3825 * we can and only do it if we really have to. Also, if mapped
3826 * into the proxy device, we need to move the doorbell
3827 * interrupt to its new location.
3828 *
3829 * Another thing is that changing the affinity of a vPE affects
3830 * *other interrupts* such as all the vLPIs that are routed to
3831 * this vPE. This means that the irq_desc lock is not enough to
3832 * protect us, and that we must ensure nobody samples vpe->col_idx
3833 * during the update, hence the lock below which must also be
3834 * taken on any vLPI handling path that evaluates vpe->col_idx.
3835 */
3836 from = vpe_to_cpuid_lock(vpe, &flags);
3837 if (from == cpu)
3838 goto out;
3839
3840 vpe->col_idx = cpu;
3841
3842 /*
3843 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3844 * is sharing its VPE table with the current one.
3845 */
3846 if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3847 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3848 goto out;
3849
3850 its_send_vmovp(vpe);
3851 its_vpe_db_proxy_move(vpe, from, cpu);
3852
3853 out:
3854 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3855 vpe_to_cpuid_unlock(vpe, flags);
3856
3857 return IRQ_SET_MASK_OK_DONE;
3858 }
3859
3860 static void its_wait_vpt_parse_complete(void)
3861 {
3862 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3863 u64 val;
3864
3865 if (!gic_rdists->has_vpend_valid_dirty)
3866 return;
3867
3868 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3869 val,
3870 !(val & GICR_VPENDBASER_Dirty),
3871 1, 500));
3872 }
3873
3874 static void its_vpe_schedule(struct its_vpe *vpe)
3875 {
3876 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3877 u64 val;
3878
3879 /* Schedule the VPE */
3880 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3881 GENMASK_ULL(51, 12);
3882 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3883 val |= GICR_VPROPBASER_RaWb;
3884 val |= GICR_VPROPBASER_InnerShareable;
3885 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3886
3887 val = virt_to_phys(page_address(vpe->vpt_page)) &
3888 GENMASK_ULL(51, 16);
3889 val |= GICR_VPENDBASER_RaWaWb;
3890 val |= GICR_VPENDBASER_InnerShareable;
3891 /*
3892 * There is no good way of finding out if the pending table is
3893 * empty as we can race against the doorbell interrupt very
3894 * easily. So in the end, vpe->pending_last is only an
3895 * indication that the vcpu has something pending, not one
3896 * that the pending table is empty. A good implementation
3897 * would be able to read its coarse map pretty quickly anyway,
3898 * making this a tolerable issue.
3899 */
3900 val |= GICR_VPENDBASER_PendingLast;
3901 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3902 val |= GICR_VPENDBASER_Valid;
3903 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3904 }
3905
3906 static void its_vpe_deschedule(struct its_vpe *vpe)
3907 {
3908 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3909 u64 val;
3910
3911 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3912
3913 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3914 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3915 }
3916
3917 static void its_vpe_invall(struct its_vpe *vpe)
3918 {
3919 struct its_node *its;
3920
3921 list_for_each_entry(its, &its_nodes, entry) {
3922 if (!is_v4(its))
3923 continue;
3924
3925 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3926 continue;
3927
3928 /*
3929 * Sending a VINVALL to a single ITS is enough, as all
3930 * we need is to reach the redistributors.
3931 */
3932 its_send_vinvall(its, vpe);
3933 return;
3934 }
3935 }
3936
3937 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3938 {
3939 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3940 struct its_cmd_info *info = vcpu_info;
3941
3942 switch (info->cmd_type) {
3943 case SCHEDULE_VPE:
3944 its_vpe_schedule(vpe);
3945 return 0;
3946
3947 case DESCHEDULE_VPE:
3948 its_vpe_deschedule(vpe);
3949 return 0;
3950
3951 case COMMIT_VPE:
3952 its_wait_vpt_parse_complete();
3953 return 0;
3954
3955 case INVALL_VPE:
3956 its_vpe_invall(vpe);
3957 return 0;
3958
3959 default:
3960 return -EINVAL;
3961 }
3962 }
3963
3964 static void its_vpe_send_cmd(struct its_vpe *vpe,
3965 void (*cmd)(struct its_device *, u32))
3966 {
3967 unsigned long flags;
3968
3969 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3970
3971 its_vpe_db_proxy_map_locked(vpe);
3972 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3973
3974 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3975 }
3976
3977 static void its_vpe_send_inv(struct irq_data *d)
3978 {
3979 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3980
3981 if (gic_rdists->has_direct_lpi)
3982 __direct_lpi_inv(d, d->parent_data->hwirq);
3983 else
3984 its_vpe_send_cmd(vpe, its_send_inv);
3985 }
3986
3987 static void its_vpe_mask_irq(struct irq_data *d)
3988 {
3989 /*
3990 * We need to unmask the LPI, which is described by the parent
3991 * irq_data. Instead of calling into the parent (which won't
3992 * exactly do the right thing, let's simply use the
3993 * parent_data pointer. Yes, I'm naughty.
3994 */
3995 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3996 its_vpe_send_inv(d);
3997 }
3998
3999 static void its_vpe_unmask_irq(struct irq_data *d)
4000 {
4001 /* Same hack as above... */
4002 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4003 its_vpe_send_inv(d);
4004 }
4005
4006 static int its_vpe_set_irqchip_state(struct irq_data *d,
4007 enum irqchip_irq_state which,
4008 bool state)
4009 {
4010 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4011
4012 if (which != IRQCHIP_STATE_PENDING)
4013 return -EINVAL;
4014
4015 if (gic_rdists->has_direct_lpi) {
4016 void __iomem *rdbase;
4017
4018 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4019 if (state) {
4020 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4021 } else {
4022 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4023 wait_for_syncr(rdbase);
4024 }
4025 } else {
4026 if (state)
4027 its_vpe_send_cmd(vpe, its_send_int);
4028 else
4029 its_vpe_send_cmd(vpe, its_send_clear);
4030 }
4031
4032 return 0;
4033 }
4034
4035 static int its_vpe_retrigger(struct irq_data *d)
4036 {
4037 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4038 }
4039
4040 static struct irq_chip its_vpe_irq_chip = {
4041 .name = "GICv4-vpe",
4042 .irq_mask = its_vpe_mask_irq,
4043 .irq_unmask = its_vpe_unmask_irq,
4044 .irq_eoi = irq_chip_eoi_parent,
4045 .irq_set_affinity = its_vpe_set_affinity,
4046 .irq_retrigger = its_vpe_retrigger,
4047 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
4048 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
4049 };
4050
4051 static struct its_node *find_4_1_its(void)
4052 {
4053 static struct its_node *its = NULL;
4054
4055 if (!its) {
4056 list_for_each_entry(its, &its_nodes, entry) {
4057 if (is_v4_1(its))
4058 return its;
4059 }
4060
4061 /* Oops? */
4062 its = NULL;
4063 }
4064
4065 return its;
4066 }
4067
4068 static void its_vpe_4_1_send_inv(struct irq_data *d)
4069 {
4070 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4071 struct its_node *its;
4072
4073 /*
4074 * GICv4.1 wants doorbells to be invalidated using the
4075 * INVDB command in order to be broadcast to all RDs. Send
4076 * it to the first valid ITS, and let the HW do its magic.
4077 */
4078 its = find_4_1_its();
4079 if (its)
4080 its_send_invdb(its, vpe);
4081 }
4082
4083 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4084 {
4085 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4086 its_vpe_4_1_send_inv(d);
4087 }
4088
4089 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4090 {
4091 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4092 its_vpe_4_1_send_inv(d);
4093 }
4094
4095 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4096 struct its_cmd_info *info)
4097 {
4098 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4099 u64 val = 0;
4100
4101 /* Schedule the VPE */
4102 val |= GICR_VPENDBASER_Valid;
4103 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4104 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4105 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4106
4107 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4108 }
4109
4110 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4111 struct its_cmd_info *info)
4112 {
4113 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4114 u64 val;
4115
4116 if (info->req_db) {
4117 unsigned long flags;
4118
4119 /*
4120 * vPE is going to block: make the vPE non-resident with
4121 * PendingLast clear and DB set. The GIC guarantees that if
4122 * we read-back PendingLast clear, then a doorbell will be
4123 * delivered when an interrupt comes.
4124 *
4125 * Note the locking to deal with the concurrent update of
4126 * pending_last from the doorbell interrupt handler that can
4127 * run concurrently.
4128 */
4129 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4130 val = its_clear_vpend_valid(vlpi_base,
4131 GICR_VPENDBASER_PendingLast,
4132 GICR_VPENDBASER_4_1_DB);
4133 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4134 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4135 } else {
4136 /*
4137 * We're not blocking, so just make the vPE non-resident
4138 * with PendingLast set, indicating that we'll be back.
4139 */
4140 val = its_clear_vpend_valid(vlpi_base,
4141 0,
4142 GICR_VPENDBASER_PendingLast);
4143 vpe->pending_last = true;
4144 }
4145 }
4146
4147 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4148 {
4149 void __iomem *rdbase;
4150 unsigned long flags;
4151 u64 val;
4152 int cpu;
4153
4154 val = GICR_INVALLR_V;
4155 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4156
4157 /* Target the redistributor this vPE is currently known on */
4158 cpu = vpe_to_cpuid_lock(vpe, &flags);
4159 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4160 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4161 gic_write_lpir(val, rdbase + GICR_INVALLR);
4162
4163 wait_for_syncr(rdbase);
4164 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4165 vpe_to_cpuid_unlock(vpe, flags);
4166 }
4167
4168 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4169 {
4170 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4171 struct its_cmd_info *info = vcpu_info;
4172
4173 switch (info->cmd_type) {
4174 case SCHEDULE_VPE:
4175 its_vpe_4_1_schedule(vpe, info);
4176 return 0;
4177
4178 case DESCHEDULE_VPE:
4179 its_vpe_4_1_deschedule(vpe, info);
4180 return 0;
4181
4182 case COMMIT_VPE:
4183 its_wait_vpt_parse_complete();
4184 return 0;
4185
4186 case INVALL_VPE:
4187 its_vpe_4_1_invall(vpe);
4188 return 0;
4189
4190 default:
4191 return -EINVAL;
4192 }
4193 }
4194
4195 static struct irq_chip its_vpe_4_1_irq_chip = {
4196 .name = "GICv4.1-vpe",
4197 .irq_mask = its_vpe_4_1_mask_irq,
4198 .irq_unmask = its_vpe_4_1_unmask_irq,
4199 .irq_eoi = irq_chip_eoi_parent,
4200 .irq_set_affinity = its_vpe_set_affinity,
4201 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
4202 };
4203
4204 static void its_configure_sgi(struct irq_data *d, bool clear)
4205 {
4206 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4207 struct its_cmd_desc desc;
4208
4209 desc.its_vsgi_cmd.vpe = vpe;
4210 desc.its_vsgi_cmd.sgi = d->hwirq;
4211 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4212 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4213 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4214 desc.its_vsgi_cmd.clear = clear;
4215
4216 /*
4217 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4218 * destination VPE is mapped there. Since we map them eagerly at
4219 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4220 */
4221 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4222 }
4223
4224 static void its_sgi_mask_irq(struct irq_data *d)
4225 {
4226 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4227
4228 vpe->sgi_config[d->hwirq].enabled = false;
4229 its_configure_sgi(d, false);
4230 }
4231
4232 static void its_sgi_unmask_irq(struct irq_data *d)
4233 {
4234 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4235
4236 vpe->sgi_config[d->hwirq].enabled = true;
4237 its_configure_sgi(d, false);
4238 }
4239
4240 static int its_sgi_set_affinity(struct irq_data *d,
4241 const struct cpumask *mask_val,
4242 bool force)
4243 {
4244 /*
4245 * There is no notion of affinity for virtual SGIs, at least
4246 * not on the host (since they can only be targeting a vPE).
4247 * Tell the kernel we've done whatever it asked for.
4248 */
4249 irq_data_update_effective_affinity(d, mask_val);
4250 return IRQ_SET_MASK_OK;
4251 }
4252
4253 static int its_sgi_set_irqchip_state(struct irq_data *d,
4254 enum irqchip_irq_state which,
4255 bool state)
4256 {
4257 if (which != IRQCHIP_STATE_PENDING)
4258 return -EINVAL;
4259
4260 if (state) {
4261 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4262 struct its_node *its = find_4_1_its();
4263 u64 val;
4264
4265 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4266 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4267 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4268 } else {
4269 its_configure_sgi(d, true);
4270 }
4271
4272 return 0;
4273 }
4274
4275 static int its_sgi_get_irqchip_state(struct irq_data *d,
4276 enum irqchip_irq_state which, bool *val)
4277 {
4278 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4279 void __iomem *base;
4280 unsigned long flags;
4281 u32 count = 1000000; /* 1s! */
4282 u32 status;
4283 int cpu;
4284
4285 if (which != IRQCHIP_STATE_PENDING)
4286 return -EINVAL;
4287
4288 /*
4289 * Locking galore! We can race against two different events:
4290 *
4291 * - Concurrent vPE affinity change: we must make sure it cannot
4292 * happen, or we'll talk to the wrong redistributor. This is
4293 * identical to what happens with vLPIs.
4294 *
4295 * - Concurrent VSGIPENDR access: As it involves accessing two
4296 * MMIO registers, this must be made atomic one way or another.
4297 */
4298 cpu = vpe_to_cpuid_lock(vpe, &flags);
4299 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4300 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4301 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4302 do {
4303 status = readl_relaxed(base + GICR_VSGIPENDR);
4304 if (!(status & GICR_VSGIPENDR_BUSY))
4305 goto out;
4306
4307 count--;
4308 if (!count) {
4309 pr_err_ratelimited("Unable to get SGI status\n");
4310 goto out;
4311 }
4312 cpu_relax();
4313 udelay(1);
4314 } while (count);
4315
4316 out:
4317 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4318 vpe_to_cpuid_unlock(vpe, flags);
4319
4320 if (!count)
4321 return -ENXIO;
4322
4323 *val = !!(status & (1 << d->hwirq));
4324
4325 return 0;
4326 }
4327
4328 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4329 {
4330 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4331 struct its_cmd_info *info = vcpu_info;
4332
4333 switch (info->cmd_type) {
4334 case PROP_UPDATE_VSGI:
4335 vpe->sgi_config[d->hwirq].priority = info->priority;
4336 vpe->sgi_config[d->hwirq].group = info->group;
4337 its_configure_sgi(d, false);
4338 return 0;
4339
4340 default:
4341 return -EINVAL;
4342 }
4343 }
4344
4345 static struct irq_chip its_sgi_irq_chip = {
4346 .name = "GICv4.1-sgi",
4347 .irq_mask = its_sgi_mask_irq,
4348 .irq_unmask = its_sgi_unmask_irq,
4349 .irq_set_affinity = its_sgi_set_affinity,
4350 .irq_set_irqchip_state = its_sgi_set_irqchip_state,
4351 .irq_get_irqchip_state = its_sgi_get_irqchip_state,
4352 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
4353 };
4354
4355 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4356 unsigned int virq, unsigned int nr_irqs,
4357 void *args)
4358 {
4359 struct its_vpe *vpe = args;
4360 int i;
4361
4362 /* Yes, we do want 16 SGIs */
4363 WARN_ON(nr_irqs != 16);
4364
4365 for (i = 0; i < 16; i++) {
4366 vpe->sgi_config[i].priority = 0;
4367 vpe->sgi_config[i].enabled = false;
4368 vpe->sgi_config[i].group = false;
4369
4370 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4371 &its_sgi_irq_chip, vpe);
4372 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4373 }
4374
4375 return 0;
4376 }
4377
4378 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4379 unsigned int virq,
4380 unsigned int nr_irqs)
4381 {
4382 /* Nothing to do */
4383 }
4384
4385 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4386 struct irq_data *d, bool reserve)
4387 {
4388 /* Write out the initial SGI configuration */
4389 its_configure_sgi(d, false);
4390 return 0;
4391 }
4392
4393 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4394 struct irq_data *d)
4395 {
4396 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4397
4398 /*
4399 * The VSGI command is awkward:
4400 *
4401 * - To change the configuration, CLEAR must be set to false,
4402 * leaving the pending bit unchanged.
4403 * - To clear the pending bit, CLEAR must be set to true, leaving
4404 * the configuration unchanged.
4405 *
4406 * You just can't do both at once, hence the two commands below.
4407 */
4408 vpe->sgi_config[d->hwirq].enabled = false;
4409 its_configure_sgi(d, false);
4410 its_configure_sgi(d, true);
4411 }
4412
4413 static const struct irq_domain_ops its_sgi_domain_ops = {
4414 .alloc = its_sgi_irq_domain_alloc,
4415 .free = its_sgi_irq_domain_free,
4416 .activate = its_sgi_irq_domain_activate,
4417 .deactivate = its_sgi_irq_domain_deactivate,
4418 };
4419
4420 static int its_vpe_id_alloc(void)
4421 {
4422 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4423 }
4424
4425 static void its_vpe_id_free(u16 id)
4426 {
4427 ida_simple_remove(&its_vpeid_ida, id);
4428 }
4429
4430 static int its_vpe_init(struct its_vpe *vpe)
4431 {
4432 struct page *vpt_page;
4433 int vpe_id;
4434
4435 /* Allocate vpe_id */
4436 vpe_id = its_vpe_id_alloc();
4437 if (vpe_id < 0)
4438 return vpe_id;
4439
4440 /* Allocate VPT */
4441 vpt_page = its_allocate_pending_table(GFP_KERNEL);
4442 if (!vpt_page) {
4443 its_vpe_id_free(vpe_id);
4444 return -ENOMEM;
4445 }
4446
4447 if (!its_alloc_vpe_table(vpe_id)) {
4448 its_vpe_id_free(vpe_id);
4449 its_free_pending_table(vpt_page);
4450 return -ENOMEM;
4451 }
4452
4453 raw_spin_lock_init(&vpe->vpe_lock);
4454 vpe->vpe_id = vpe_id;
4455 vpe->vpt_page = vpt_page;
4456 if (gic_rdists->has_rvpeid)
4457 atomic_set(&vpe->vmapp_count, 0);
4458 else
4459 vpe->vpe_proxy_event = -1;
4460
4461 return 0;
4462 }
4463
4464 static void its_vpe_teardown(struct its_vpe *vpe)
4465 {
4466 its_vpe_db_proxy_unmap(vpe);
4467 its_vpe_id_free(vpe->vpe_id);
4468 its_free_pending_table(vpe->vpt_page);
4469 }
4470
4471 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4472 unsigned int virq,
4473 unsigned int nr_irqs)
4474 {
4475 struct its_vm *vm = domain->host_data;
4476 int i;
4477
4478 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4479
4480 for (i = 0; i < nr_irqs; i++) {
4481 struct irq_data *data = irq_domain_get_irq_data(domain,
4482 virq + i);
4483 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4484
4485 BUG_ON(vm != vpe->its_vm);
4486
4487 clear_bit(data->hwirq, vm->db_bitmap);
4488 its_vpe_teardown(vpe);
4489 irq_domain_reset_irq_data(data);
4490 }
4491
4492 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4493 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4494 its_free_prop_table(vm->vprop_page);
4495 }
4496 }
4497
4498 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4499 unsigned int nr_irqs, void *args)
4500 {
4501 struct irq_chip *irqchip = &its_vpe_irq_chip;
4502 struct its_vm *vm = args;
4503 unsigned long *bitmap;
4504 struct page *vprop_page;
4505 int base, nr_ids, i, err = 0;
4506
4507 BUG_ON(!vm);
4508
4509 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4510 if (!bitmap)
4511 return -ENOMEM;
4512
4513 if (nr_ids < nr_irqs) {
4514 its_lpi_free(bitmap, base, nr_ids);
4515 return -ENOMEM;
4516 }
4517
4518 vprop_page = its_allocate_prop_table(GFP_KERNEL);
4519 if (!vprop_page) {
4520 its_lpi_free(bitmap, base, nr_ids);
4521 return -ENOMEM;
4522 }
4523
4524 vm->db_bitmap = bitmap;
4525 vm->db_lpi_base = base;
4526 vm->nr_db_lpis = nr_ids;
4527 vm->vprop_page = vprop_page;
4528
4529 if (gic_rdists->has_rvpeid)
4530 irqchip = &its_vpe_4_1_irq_chip;
4531
4532 for (i = 0; i < nr_irqs; i++) {
4533 vm->vpes[i]->vpe_db_lpi = base + i;
4534 err = its_vpe_init(vm->vpes[i]);
4535 if (err)
4536 break;
4537 err = its_irq_gic_domain_alloc(domain, virq + i,
4538 vm->vpes[i]->vpe_db_lpi);
4539 if (err)
4540 break;
4541 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4542 irqchip, vm->vpes[i]);
4543 set_bit(i, bitmap);
4544 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4545 }
4546
4547 if (err) {
4548 if (i > 0)
4549 its_vpe_irq_domain_free(domain, virq, i);
4550
4551 its_lpi_free(bitmap, base, nr_ids);
4552 its_free_prop_table(vprop_page);
4553 }
4554
4555 return err;
4556 }
4557
4558 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4559 struct irq_data *d, bool reserve)
4560 {
4561 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4562 struct its_node *its;
4563
4564 /*
4565 * If we use the list map, we issue VMAPP on demand... Unless
4566 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4567 * so that VSGIs can work.
4568 */
4569 if (!gic_requires_eager_mapping())
4570 return 0;
4571
4572 /* Map the VPE to the first possible CPU */
4573 vpe->col_idx = cpumask_first(cpu_online_mask);
4574
4575 list_for_each_entry(its, &its_nodes, entry) {
4576 if (!is_v4(its))
4577 continue;
4578
4579 its_send_vmapp(its, vpe, true);
4580 its_send_vinvall(its, vpe);
4581 }
4582
4583 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4584
4585 return 0;
4586 }
4587
4588 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4589 struct irq_data *d)
4590 {
4591 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4592 struct its_node *its;
4593
4594 /*
4595 * If we use the list map on GICv4.0, we unmap the VPE once no
4596 * VLPIs are associated with the VM.
4597 */
4598 if (!gic_requires_eager_mapping())
4599 return;
4600
4601 list_for_each_entry(its, &its_nodes, entry) {
4602 if (!is_v4(its))
4603 continue;
4604
4605 its_send_vmapp(its, vpe, false);
4606 }
4607
4608 /*
4609 * There may be a direct read to the VPT after unmapping the
4610 * vPE, to guarantee the validity of this, we make the VPT
4611 * memory coherent with the CPU caches here.
4612 */
4613 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4614 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4615 LPI_PENDBASE_SZ);
4616 }
4617
4618 static const struct irq_domain_ops its_vpe_domain_ops = {
4619 .alloc = its_vpe_irq_domain_alloc,
4620 .free = its_vpe_irq_domain_free,
4621 .activate = its_vpe_irq_domain_activate,
4622 .deactivate = its_vpe_irq_domain_deactivate,
4623 };
4624
4625 static int its_force_quiescent(void __iomem *base)
4626 {
4627 u32 count = 1000000; /* 1s */
4628 u32 val;
4629
4630 val = readl_relaxed(base + GITS_CTLR);
4631 /*
4632 * GIC architecture specification requires the ITS to be both
4633 * disabled and quiescent for writes to GITS_BASER<n> or
4634 * GITS_CBASER to not have UNPREDICTABLE results.
4635 */
4636 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4637 return 0;
4638
4639 /* Disable the generation of all interrupts to this ITS */
4640 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4641 writel_relaxed(val, base + GITS_CTLR);
4642
4643 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4644 while (1) {
4645 val = readl_relaxed(base + GITS_CTLR);
4646 if (val & GITS_CTLR_QUIESCENT)
4647 return 0;
4648
4649 count--;
4650 if (!count)
4651 return -EBUSY;
4652
4653 cpu_relax();
4654 udelay(1);
4655 }
4656 }
4657
4658 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4659 {
4660 struct its_node *its = data;
4661
4662 /* erratum 22375: only alloc 8MB table size (20 bits) */
4663 its->typer &= ~GITS_TYPER_DEVBITS;
4664 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4665 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4666
4667 return true;
4668 }
4669
4670 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4671 {
4672 struct its_node *its = data;
4673
4674 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4675
4676 return true;
4677 }
4678
4679 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4680 {
4681 struct its_node *its = data;
4682
4683 /* On QDF2400, the size of the ITE is 16Bytes */
4684 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4685 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4686
4687 return true;
4688 }
4689
4690 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4691 {
4692 struct its_node *its = its_dev->its;
4693
4694 /*
4695 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4696 * which maps 32-bit writes targeted at a separate window of
4697 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4698 * with device ID taken from bits [device_id_bits + 1:2] of
4699 * the window offset.
4700 */
4701 return its->pre_its_base + (its_dev->device_id << 2);
4702 }
4703
4704 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4705 {
4706 struct its_node *its = data;
4707 u32 pre_its_window[2];
4708 u32 ids;
4709
4710 if (!fwnode_property_read_u32_array(its->fwnode_handle,
4711 "socionext,synquacer-pre-its",
4712 pre_its_window,
4713 ARRAY_SIZE(pre_its_window))) {
4714
4715 its->pre_its_base = pre_its_window[0];
4716 its->get_msi_base = its_irq_get_msi_base_pre_its;
4717
4718 ids = ilog2(pre_its_window[1]) - 2;
4719 if (device_ids(its) > ids) {
4720 its->typer &= ~GITS_TYPER_DEVBITS;
4721 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4722 }
4723
4724 /* the pre-ITS breaks isolation, so disable MSI remapping */
4725 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4726 return true;
4727 }
4728 return false;
4729 }
4730
4731 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4732 {
4733 struct its_node *its = data;
4734
4735 /*
4736 * Hip07 insists on using the wrong address for the VLPI
4737 * page. Trick it into doing the right thing...
4738 */
4739 its->vlpi_redist_offset = SZ_128K;
4740 return true;
4741 }
4742
4743 static bool __maybe_unused its_enable_rk3588001(void *data)
4744 {
4745 struct its_node *its = data;
4746
4747 if (!of_machine_is_compatible("rockchip,rk3588") &&
4748 !of_machine_is_compatible("rockchip,rk3588s"))
4749 return false;
4750
4751 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4752 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4753
4754 return true;
4755 }
4756
4757 static bool its_set_non_coherent(void *data)
4758 {
4759 struct its_node *its = data;
4760
4761 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4762 return true;
4763 }
4764
4765 static const struct gic_quirk its_quirks[] = {
4766 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4767 {
4768 .desc = "ITS: Cavium errata 22375, 24313",
4769 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4770 .mask = 0xffff0fff,
4771 .init = its_enable_quirk_cavium_22375,
4772 },
4773 #endif
4774 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4775 {
4776 .desc = "ITS: Cavium erratum 23144",
4777 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4778 .mask = 0xffff0fff,
4779 .init = its_enable_quirk_cavium_23144,
4780 },
4781 #endif
4782 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4783 {
4784 .desc = "ITS: QDF2400 erratum 0065",
4785 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
4786 .mask = 0xffffffff,
4787 .init = its_enable_quirk_qdf2400_e0065,
4788 },
4789 #endif
4790 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4791 {
4792 /*
4793 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4794 * implementation, but with a 'pre-ITS' added that requires
4795 * special handling in software.
4796 */
4797 .desc = "ITS: Socionext Synquacer pre-ITS",
4798 .iidr = 0x0001143b,
4799 .mask = 0xffffffff,
4800 .init = its_enable_quirk_socionext_synquacer,
4801 },
4802 #endif
4803 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4804 {
4805 .desc = "ITS: Hip07 erratum 161600802",
4806 .iidr = 0x00000004,
4807 .mask = 0xffffffff,
4808 .init = its_enable_quirk_hip07_161600802,
4809 },
4810 #endif
4811 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4812 {
4813 .desc = "ITS: Rockchip erratum RK3588001",
4814 .iidr = 0x0201743b,
4815 .mask = 0xffffffff,
4816 .init = its_enable_rk3588001,
4817 },
4818 #endif
4819 {
4820 .desc = "ITS: non-coherent attribute",
4821 .property = "dma-noncoherent",
4822 .init = its_set_non_coherent,
4823 },
4824 {
4825 }
4826 };
4827
4828 static void its_enable_quirks(struct its_node *its)
4829 {
4830 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4831
4832 gic_enable_quirks(iidr, its_quirks, its);
4833
4834 if (is_of_node(its->fwnode_handle))
4835 gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4836 its_quirks, its);
4837 }
4838
4839 static int its_save_disable(void)
4840 {
4841 struct its_node *its;
4842 int err = 0;
4843
4844 raw_spin_lock(&its_lock);
4845 list_for_each_entry(its, &its_nodes, entry) {
4846 void __iomem *base;
4847
4848 base = its->base;
4849 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4850 err = its_force_quiescent(base);
4851 if (err) {
4852 pr_err("ITS@%pa: failed to quiesce: %d\n",
4853 &its->phys_base, err);
4854 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4855 goto err;
4856 }
4857
4858 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4859 }
4860
4861 err:
4862 if (err) {
4863 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4864 void __iomem *base;
4865
4866 base = its->base;
4867 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4868 }
4869 }
4870 raw_spin_unlock(&its_lock);
4871
4872 return err;
4873 }
4874
4875 static void its_restore_enable(void)
4876 {
4877 struct its_node *its;
4878 int ret;
4879
4880 raw_spin_lock(&its_lock);
4881 list_for_each_entry(its, &its_nodes, entry) {
4882 void __iomem *base;
4883 int i;
4884
4885 base = its->base;
4886
4887 /*
4888 * Make sure that the ITS is disabled. If it fails to quiesce,
4889 * don't restore it since writing to CBASER or BASER<n>
4890 * registers is undefined according to the GIC v3 ITS
4891 * Specification.
4892 *
4893 * Firmware resuming with the ITS enabled is terminally broken.
4894 */
4895 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4896 ret = its_force_quiescent(base);
4897 if (ret) {
4898 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4899 &its->phys_base, ret);
4900 continue;
4901 }
4902
4903 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4904
4905 /*
4906 * Writing CBASER resets CREADR to 0, so make CWRITER and
4907 * cmd_write line up with it.
4908 */
4909 its->cmd_write = its->cmd_base;
4910 gits_write_cwriter(0, base + GITS_CWRITER);
4911
4912 /* Restore GITS_BASER from the value cache. */
4913 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4914 struct its_baser *baser = &its->tables[i];
4915
4916 if (!(baser->val & GITS_BASER_VALID))
4917 continue;
4918
4919 its_write_baser(its, baser, baser->val);
4920 }
4921 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4922
4923 /*
4924 * Reinit the collection if it's stored in the ITS. This is
4925 * indicated by the col_id being less than the HCC field.
4926 * CID < HCC as specified in the GIC v3 Documentation.
4927 */
4928 if (its->collections[smp_processor_id()].col_id <
4929 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4930 its_cpu_init_collection(its);
4931 }
4932 raw_spin_unlock(&its_lock);
4933 }
4934
4935 static struct syscore_ops its_syscore_ops = {
4936 .suspend = its_save_disable,
4937 .resume = its_restore_enable,
4938 };
4939
4940 static void __init __iomem *its_map_one(struct resource *res, int *err)
4941 {
4942 void __iomem *its_base;
4943 u32 val;
4944
4945 its_base = ioremap(res->start, SZ_64K);
4946 if (!its_base) {
4947 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4948 *err = -ENOMEM;
4949 return NULL;
4950 }
4951
4952 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4953 if (val != 0x30 && val != 0x40) {
4954 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4955 *err = -ENODEV;
4956 goto out_unmap;
4957 }
4958
4959 *err = its_force_quiescent(its_base);
4960 if (*err) {
4961 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4962 goto out_unmap;
4963 }
4964
4965 return its_base;
4966
4967 out_unmap:
4968 iounmap(its_base);
4969 return NULL;
4970 }
4971
4972 static int its_init_domain(struct its_node *its)
4973 {
4974 struct irq_domain *inner_domain;
4975 struct msi_domain_info *info;
4976
4977 info = kzalloc(sizeof(*info), GFP_KERNEL);
4978 if (!info)
4979 return -ENOMEM;
4980
4981 info->ops = &its_msi_domain_ops;
4982 info->data = its;
4983
4984 inner_domain = irq_domain_create_hierarchy(its_parent,
4985 its->msi_domain_flags, 0,
4986 its->fwnode_handle, &its_domain_ops,
4987 info);
4988 if (!inner_domain) {
4989 kfree(info);
4990 return -ENOMEM;
4991 }
4992
4993 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4994
4995 return 0;
4996 }
4997
4998 static int its_init_vpe_domain(void)
4999 {
5000 struct its_node *its;
5001 u32 devid;
5002 int entries;
5003
5004 if (gic_rdists->has_direct_lpi) {
5005 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5006 return 0;
5007 }
5008
5009 /* Any ITS will do, even if not v4 */
5010 its = list_first_entry(&its_nodes, struct its_node, entry);
5011
5012 entries = roundup_pow_of_two(nr_cpu_ids);
5013 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5014 GFP_KERNEL);
5015 if (!vpe_proxy.vpes)
5016 return -ENOMEM;
5017
5018 /* Use the last possible DevID */
5019 devid = GENMASK(device_ids(its) - 1, 0);
5020 vpe_proxy.dev = its_create_device(its, devid, entries, false);
5021 if (!vpe_proxy.dev) {
5022 kfree(vpe_proxy.vpes);
5023 pr_err("ITS: Can't allocate GICv4 proxy device\n");
5024 return -ENOMEM;
5025 }
5026
5027 BUG_ON(entries > vpe_proxy.dev->nr_ites);
5028
5029 raw_spin_lock_init(&vpe_proxy.lock);
5030 vpe_proxy.next_victim = 0;
5031 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5032 devid, vpe_proxy.dev->nr_ites);
5033
5034 return 0;
5035 }
5036
5037 static int __init its_compute_its_list_map(struct its_node *its)
5038 {
5039 int its_number;
5040 u32 ctlr;
5041
5042 /*
5043 * This is assumed to be done early enough that we're
5044 * guaranteed to be single-threaded, hence no
5045 * locking. Should this change, we should address
5046 * this.
5047 */
5048 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5049 if (its_number >= GICv4_ITS_LIST_MAX) {
5050 pr_err("ITS@%pa: No ITSList entry available!\n",
5051 &its->phys_base);
5052 return -EINVAL;
5053 }
5054
5055 ctlr = readl_relaxed(its->base + GITS_CTLR);
5056 ctlr &= ~GITS_CTLR_ITS_NUMBER;
5057 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5058 writel_relaxed(ctlr, its->base + GITS_CTLR);
5059 ctlr = readl_relaxed(its->base + GITS_CTLR);
5060 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5061 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5062 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5063 }
5064
5065 if (test_and_set_bit(its_number, &its_list_map)) {
5066 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5067 &its->phys_base, its_number);
5068 return -EINVAL;
5069 }
5070
5071 return its_number;
5072 }
5073
5074 static int __init its_probe_one(struct its_node *its)
5075 {
5076 u64 baser, tmp;
5077 struct page *page;
5078 u32 ctlr;
5079 int err;
5080
5081 if (is_v4(its)) {
5082 if (!(its->typer & GITS_TYPER_VMOVP)) {
5083 err = its_compute_its_list_map(its);
5084 if (err < 0)
5085 goto out;
5086
5087 its->list_nr = err;
5088
5089 pr_info("ITS@%pa: Using ITS number %d\n",
5090 &its->phys_base, err);
5091 } else {
5092 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5093 }
5094
5095 if (is_v4_1(its)) {
5096 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5097
5098 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5099 if (!its->sgir_base) {
5100 err = -ENOMEM;
5101 goto out;
5102 }
5103
5104 its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5105
5106 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5107 &its->phys_base, its->mpidr, svpet);
5108 }
5109 }
5110
5111 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5112 get_order(ITS_CMD_QUEUE_SZ));
5113 if (!page) {
5114 err = -ENOMEM;
5115 goto out_unmap_sgir;
5116 }
5117 its->cmd_base = (void *)page_address(page);
5118 its->cmd_write = its->cmd_base;
5119
5120 err = its_alloc_tables(its);
5121 if (err)
5122 goto out_free_cmd;
5123
5124 err = its_alloc_collections(its);
5125 if (err)
5126 goto out_free_tables;
5127
5128 baser = (virt_to_phys(its->cmd_base) |
5129 GITS_CBASER_RaWaWb |
5130 GITS_CBASER_InnerShareable |
5131 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5132 GITS_CBASER_VALID);
5133
5134 gits_write_cbaser(baser, its->base + GITS_CBASER);
5135 tmp = gits_read_cbaser(its->base + GITS_CBASER);
5136
5137 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5138 tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5139
5140 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5141 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5142 /*
5143 * The HW reports non-shareable, we must
5144 * remove the cacheability attributes as
5145 * well.
5146 */
5147 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5148 GITS_CBASER_CACHEABILITY_MASK);
5149 baser |= GITS_CBASER_nC;
5150 gits_write_cbaser(baser, its->base + GITS_CBASER);
5151 }
5152 pr_info("ITS: using cache flushing for cmd queue\n");
5153 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5154 }
5155
5156 gits_write_cwriter(0, its->base + GITS_CWRITER);
5157 ctlr = readl_relaxed(its->base + GITS_CTLR);
5158 ctlr |= GITS_CTLR_ENABLE;
5159 if (is_v4(its))
5160 ctlr |= GITS_CTLR_ImDe;
5161 writel_relaxed(ctlr, its->base + GITS_CTLR);
5162
5163 err = its_init_domain(its);
5164 if (err)
5165 goto out_free_tables;
5166
5167 raw_spin_lock(&its_lock);
5168 list_add(&its->entry, &its_nodes);
5169 raw_spin_unlock(&its_lock);
5170
5171 return 0;
5172
5173 out_free_tables:
5174 its_free_tables(its);
5175 out_free_cmd:
5176 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5177 out_unmap_sgir:
5178 if (its->sgir_base)
5179 iounmap(its->sgir_base);
5180 out:
5181 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5182 return err;
5183 }
5184
5185 static bool gic_rdists_supports_plpis(void)
5186 {
5187 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5188 }
5189
5190 static int redist_disable_lpis(void)
5191 {
5192 void __iomem *rbase = gic_data_rdist_rd_base();
5193 u64 timeout = USEC_PER_SEC;
5194 u64 val;
5195
5196 if (!gic_rdists_supports_plpis()) {
5197 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5198 return -ENXIO;
5199 }
5200
5201 val = readl_relaxed(rbase + GICR_CTLR);
5202 if (!(val & GICR_CTLR_ENABLE_LPIS))
5203 return 0;
5204
5205 /*
5206 * If coming via a CPU hotplug event, we don't need to disable
5207 * LPIs before trying to re-enable them. They are already
5208 * configured and all is well in the world.
5209 *
5210 * If running with preallocated tables, there is nothing to do.
5211 */
5212 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5213 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5214 return 0;
5215
5216 /*
5217 * From that point on, we only try to do some damage control.
5218 */
5219 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5220 smp_processor_id());
5221 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5222
5223 /* Disable LPIs */
5224 val &= ~GICR_CTLR_ENABLE_LPIS;
5225 writel_relaxed(val, rbase + GICR_CTLR);
5226
5227 /* Make sure any change to GICR_CTLR is observable by the GIC */
5228 dsb(sy);
5229
5230 /*
5231 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5232 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5233 * Error out if we time out waiting for RWP to clear.
5234 */
5235 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5236 if (!timeout) {
5237 pr_err("CPU%d: Timeout while disabling LPIs\n",
5238 smp_processor_id());
5239 return -ETIMEDOUT;
5240 }
5241 udelay(1);
5242 timeout--;
5243 }
5244
5245 /*
5246 * After it has been written to 1, it is IMPLEMENTATION
5247 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5248 * cleared to 0. Error out if clearing the bit failed.
5249 */
5250 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5251 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5252 return -EBUSY;
5253 }
5254
5255 return 0;
5256 }
5257
5258 int its_cpu_init(void)
5259 {
5260 if (!list_empty(&its_nodes)) {
5261 int ret;
5262
5263 ret = redist_disable_lpis();
5264 if (ret)
5265 return ret;
5266
5267 its_cpu_init_lpis();
5268 its_cpu_init_collections();
5269 }
5270
5271 return 0;
5272 }
5273
5274 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5275 {
5276 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5277 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5278 }
5279
5280 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5281 rdist_memreserve_cpuhp_cleanup_workfn);
5282
5283 static int its_cpu_memreserve_lpi(unsigned int cpu)
5284 {
5285 struct page *pend_page;
5286 int ret = 0;
5287
5288 /* This gets to run exactly once per CPU */
5289 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5290 return 0;
5291
5292 pend_page = gic_data_rdist()->pend_page;
5293 if (WARN_ON(!pend_page)) {
5294 ret = -ENOMEM;
5295 goto out;
5296 }
5297 /*
5298 * If the pending table was pre-programmed, free the memory we
5299 * preemptively allocated. Otherwise, reserve that memory for
5300 * later kexecs.
5301 */
5302 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5303 its_free_pending_table(pend_page);
5304 gic_data_rdist()->pend_page = NULL;
5305 } else {
5306 phys_addr_t paddr = page_to_phys(pend_page);
5307 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5308 }
5309
5310 out:
5311 /* Last CPU being brought up gets to issue the cleanup */
5312 if (!IS_ENABLED(CONFIG_SMP) ||
5313 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5314 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5315
5316 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5317 return ret;
5318 }
5319
5320 /* Mark all the BASER registers as invalid before they get reprogrammed */
5321 static int __init its_reset_one(struct resource *res)
5322 {
5323 void __iomem *its_base;
5324 int err, i;
5325
5326 its_base = its_map_one(res, &err);
5327 if (!its_base)
5328 return err;
5329
5330 for (i = 0; i < GITS_BASER_NR_REGS; i++)
5331 gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5332
5333 iounmap(its_base);
5334 return 0;
5335 }
5336
5337 static const struct of_device_id its_device_id[] = {
5338 { .compatible = "arm,gic-v3-its", },
5339 {},
5340 };
5341
5342 static struct its_node __init *its_node_init(struct resource *res,
5343 struct fwnode_handle *handle, int numa_node)
5344 {
5345 void __iomem *its_base;
5346 struct its_node *its;
5347 int err;
5348
5349 its_base = its_map_one(res, &err);
5350 if (!its_base)
5351 return NULL;
5352
5353 pr_info("ITS %pR\n", res);
5354
5355 its = kzalloc(sizeof(*its), GFP_KERNEL);
5356 if (!its)
5357 goto out_unmap;
5358
5359 raw_spin_lock_init(&its->lock);
5360 mutex_init(&its->dev_alloc_lock);
5361 INIT_LIST_HEAD(&its->entry);
5362 INIT_LIST_HEAD(&its->its_device_list);
5363
5364 its->typer = gic_read_typer(its_base + GITS_TYPER);
5365 its->base = its_base;
5366 its->phys_base = res->start;
5367 its->get_msi_base = its_irq_get_msi_base;
5368 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5369
5370 its->numa_node = numa_node;
5371 its->fwnode_handle = handle;
5372
5373 return its;
5374
5375 out_unmap:
5376 iounmap(its_base);
5377 return NULL;
5378 }
5379
5380 static void its_node_destroy(struct its_node *its)
5381 {
5382 iounmap(its->base);
5383 kfree(its);
5384 }
5385
5386 static int __init its_of_probe(struct device_node *node)
5387 {
5388 struct device_node *np;
5389 struct resource res;
5390 int err;
5391
5392 /*
5393 * Make sure *all* the ITS are reset before we probe any, as
5394 * they may be sharing memory. If any of the ITS fails to
5395 * reset, don't even try to go any further, as this could
5396 * result in something even worse.
5397 */
5398 for (np = of_find_matching_node(node, its_device_id); np;
5399 np = of_find_matching_node(np, its_device_id)) {
5400 if (!of_device_is_available(np) ||
5401 !of_property_read_bool(np, "msi-controller") ||
5402 of_address_to_resource(np, 0, &res))
5403 continue;
5404
5405 err = its_reset_one(&res);
5406 if (err)
5407 return err;
5408 }
5409
5410 for (np = of_find_matching_node(node, its_device_id); np;
5411 np = of_find_matching_node(np, its_device_id)) {
5412 struct its_node *its;
5413
5414 if (!of_device_is_available(np))
5415 continue;
5416 if (!of_property_read_bool(np, "msi-controller")) {
5417 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5418 np);
5419 continue;
5420 }
5421
5422 if (of_address_to_resource(np, 0, &res)) {
5423 pr_warn("%pOF: no regs?\n", np);
5424 continue;
5425 }
5426
5427
5428 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5429 if (!its)
5430 return -ENOMEM;
5431
5432 its_enable_quirks(its);
5433 err = its_probe_one(its);
5434 if (err) {
5435 its_node_destroy(its);
5436 return err;
5437 }
5438 }
5439 return 0;
5440 }
5441
5442 #ifdef CONFIG_ACPI
5443
5444 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5445
5446 #ifdef CONFIG_ACPI_NUMA
5447 struct its_srat_map {
5448 /* numa node id */
5449 u32 numa_node;
5450 /* GIC ITS ID */
5451 u32 its_id;
5452 };
5453
5454 static struct its_srat_map *its_srat_maps __initdata;
5455 static int its_in_srat __initdata;
5456
5457 static int __init acpi_get_its_numa_node(u32 its_id)
5458 {
5459 int i;
5460
5461 for (i = 0; i < its_in_srat; i++) {
5462 if (its_id == its_srat_maps[i].its_id)
5463 return its_srat_maps[i].numa_node;
5464 }
5465 return NUMA_NO_NODE;
5466 }
5467
5468 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5469 const unsigned long end)
5470 {
5471 return 0;
5472 }
5473
5474 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5475 const unsigned long end)
5476 {
5477 int node;
5478 struct acpi_srat_gic_its_affinity *its_affinity;
5479
5480 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5481 if (!its_affinity)
5482 return -EINVAL;
5483
5484 if (its_affinity->header.length < sizeof(*its_affinity)) {
5485 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5486 its_affinity->header.length);
5487 return -EINVAL;
5488 }
5489
5490 /*
5491 * Note that in theory a new proximity node could be created by this
5492 * entry as it is an SRAT resource allocation structure.
5493 * We do not currently support doing so.
5494 */
5495 node = pxm_to_node(its_affinity->proximity_domain);
5496
5497 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5498 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5499 return 0;
5500 }
5501
5502 its_srat_maps[its_in_srat].numa_node = node;
5503 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5504 its_in_srat++;
5505 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5506 its_affinity->proximity_domain, its_affinity->its_id, node);
5507
5508 return 0;
5509 }
5510
5511 static void __init acpi_table_parse_srat_its(void)
5512 {
5513 int count;
5514
5515 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5516 sizeof(struct acpi_table_srat),
5517 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5518 gic_acpi_match_srat_its, 0);
5519 if (count <= 0)
5520 return;
5521
5522 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5523 GFP_KERNEL);
5524 if (!its_srat_maps)
5525 return;
5526
5527 acpi_table_parse_entries(ACPI_SIG_SRAT,
5528 sizeof(struct acpi_table_srat),
5529 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5530 gic_acpi_parse_srat_its, 0);
5531 }
5532
5533 /* free the its_srat_maps after ITS probing */
5534 static void __init acpi_its_srat_maps_free(void)
5535 {
5536 kfree(its_srat_maps);
5537 }
5538 #else
5539 static void __init acpi_table_parse_srat_its(void) { }
5540 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5541 static void __init acpi_its_srat_maps_free(void) { }
5542 #endif
5543
5544 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5545 const unsigned long end)
5546 {
5547 struct acpi_madt_generic_translator *its_entry;
5548 struct fwnode_handle *dom_handle;
5549 struct its_node *its;
5550 struct resource res;
5551 int err;
5552
5553 its_entry = (struct acpi_madt_generic_translator *)header;
5554 memset(&res, 0, sizeof(res));
5555 res.start = its_entry->base_address;
5556 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5557 res.flags = IORESOURCE_MEM;
5558
5559 dom_handle = irq_domain_alloc_fwnode(&res.start);
5560 if (!dom_handle) {
5561 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5562 &res.start);
5563 return -ENOMEM;
5564 }
5565
5566 err = iort_register_domain_token(its_entry->translation_id, res.start,
5567 dom_handle);
5568 if (err) {
5569 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5570 &res.start, its_entry->translation_id);
5571 goto dom_err;
5572 }
5573
5574 its = its_node_init(&res, dom_handle,
5575 acpi_get_its_numa_node(its_entry->translation_id));
5576 if (!its) {
5577 err = -ENOMEM;
5578 goto node_err;
5579 }
5580
5581 err = its_probe_one(its);
5582 if (!err)
5583 return 0;
5584
5585 node_err:
5586 iort_deregister_domain_token(its_entry->translation_id);
5587 dom_err:
5588 irq_domain_free_fwnode(dom_handle);
5589 return err;
5590 }
5591
5592 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5593 const unsigned long end)
5594 {
5595 struct acpi_madt_generic_translator *its_entry;
5596 struct resource res;
5597
5598 its_entry = (struct acpi_madt_generic_translator *)header;
5599 res = (struct resource) {
5600 .start = its_entry->base_address,
5601 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5602 .flags = IORESOURCE_MEM,
5603 };
5604
5605 return its_reset_one(&res);
5606 }
5607
5608 static void __init its_acpi_probe(void)
5609 {
5610 acpi_table_parse_srat_its();
5611 /*
5612 * Make sure *all* the ITS are reset before we probe any, as
5613 * they may be sharing memory. If any of the ITS fails to
5614 * reset, don't even try to go any further, as this could
5615 * result in something even worse.
5616 */
5617 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5618 its_acpi_reset, 0) > 0)
5619 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5620 gic_acpi_parse_madt_its, 0);
5621 acpi_its_srat_maps_free();
5622 }
5623 #else
5624 static void __init its_acpi_probe(void) { }
5625 #endif
5626
5627 int __init its_lpi_memreserve_init(void)
5628 {
5629 int state;
5630
5631 if (!efi_enabled(EFI_CONFIG_TABLES))
5632 return 0;
5633
5634 if (list_empty(&its_nodes))
5635 return 0;
5636
5637 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5638 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5639 "irqchip/arm/gicv3/memreserve:online",
5640 its_cpu_memreserve_lpi,
5641 NULL);
5642 if (state < 0)
5643 return state;
5644
5645 gic_rdists->cpuhp_memreserve_state = state;
5646
5647 return 0;
5648 }
5649
5650 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5651 struct irq_domain *parent_domain)
5652 {
5653 struct device_node *of_node;
5654 struct its_node *its;
5655 bool has_v4 = false;
5656 bool has_v4_1 = false;
5657 int err;
5658
5659 gic_rdists = rdists;
5660
5661 its_parent = parent_domain;
5662 of_node = to_of_node(handle);
5663 if (of_node)
5664 its_of_probe(of_node);
5665 else
5666 its_acpi_probe();
5667
5668 if (list_empty(&its_nodes)) {
5669 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5670 return -ENXIO;
5671 }
5672
5673 err = allocate_lpi_tables();
5674 if (err)
5675 return err;
5676
5677 list_for_each_entry(its, &its_nodes, entry) {
5678 has_v4 |= is_v4(its);
5679 has_v4_1 |= is_v4_1(its);
5680 }
5681
5682 /* Don't bother with inconsistent systems */
5683 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5684 rdists->has_rvpeid = false;
5685
5686 if (has_v4 & rdists->has_vlpis) {
5687 const struct irq_domain_ops *sgi_ops;
5688
5689 if (has_v4_1)
5690 sgi_ops = &its_sgi_domain_ops;
5691 else
5692 sgi_ops = NULL;
5693
5694 if (its_init_vpe_domain() ||
5695 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5696 rdists->has_vlpis = false;
5697 pr_err("ITS: Disabling GICv4 support\n");
5698 }
5699 }
5700
5701 register_syscore_ops(&its_syscore_ops);
5702
5703 return 0;
5704 }