]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/md/bcache/super.c
bcache: Fix typo in Kconfig name
[thirdparty/kernel/stable.git] / drivers / md / bcache / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * bcache setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16
17 #include <linux/blkdev.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/workqueue.h>
23 #include <linux/module.h>
24 #include <linux/random.h>
25 #include <linux/reboot.h>
26 #include <linux/sysfs.h>
27
28 unsigned int bch_cutoff_writeback;
29 unsigned int bch_cutoff_writeback_sync;
30
31 static const char bcache_magic[] = {
32 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
33 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
34 };
35
36 static const char invalid_uuid[] = {
37 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
38 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
39 };
40
41 static struct kobject *bcache_kobj;
42 struct mutex bch_register_lock;
43 bool bcache_is_reboot;
44 LIST_HEAD(bch_cache_sets);
45 static LIST_HEAD(uncached_devices);
46
47 static int bcache_major;
48 static DEFINE_IDA(bcache_device_idx);
49 static wait_queue_head_t unregister_wait;
50 struct workqueue_struct *bcache_wq;
51 struct workqueue_struct *bch_journal_wq;
52
53
54 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
55 /* limitation of partitions number on single bcache device */
56 #define BCACHE_MINORS 128
57 /* limitation of bcache devices number on single system */
58 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS)
59
60 /* Superblock */
61
62 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
63 struct cache_sb_disk **res)
64 {
65 const char *err;
66 struct cache_sb_disk *s;
67 struct page *page;
68 unsigned int i;
69
70 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
71 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
72 if (IS_ERR(page))
73 return "IO error";
74 s = page_address(page) + offset_in_page(SB_OFFSET);
75
76 sb->offset = le64_to_cpu(s->offset);
77 sb->version = le64_to_cpu(s->version);
78
79 memcpy(sb->magic, s->magic, 16);
80 memcpy(sb->uuid, s->uuid, 16);
81 memcpy(sb->set_uuid, s->set_uuid, 16);
82 memcpy(sb->label, s->label, SB_LABEL_SIZE);
83
84 sb->flags = le64_to_cpu(s->flags);
85 sb->seq = le64_to_cpu(s->seq);
86 sb->last_mount = le32_to_cpu(s->last_mount);
87 sb->first_bucket = le16_to_cpu(s->first_bucket);
88 sb->keys = le16_to_cpu(s->keys);
89
90 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
91 sb->d[i] = le64_to_cpu(s->d[i]);
92
93 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
94 sb->version, sb->flags, sb->seq, sb->keys);
95
96 err = "Not a bcache superblock (bad offset)";
97 if (sb->offset != SB_SECTOR)
98 goto err;
99
100 err = "Not a bcache superblock (bad magic)";
101 if (memcmp(sb->magic, bcache_magic, 16))
102 goto err;
103
104 err = "Too many journal buckets";
105 if (sb->keys > SB_JOURNAL_BUCKETS)
106 goto err;
107
108 err = "Bad checksum";
109 if (s->csum != csum_set(s))
110 goto err;
111
112 err = "Bad UUID";
113 if (bch_is_zero(sb->uuid, 16))
114 goto err;
115
116 sb->block_size = le16_to_cpu(s->block_size);
117
118 err = "Superblock block size smaller than device block size";
119 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
120 goto err;
121
122 switch (sb->version) {
123 case BCACHE_SB_VERSION_BDEV:
124 sb->data_offset = BDEV_DATA_START_DEFAULT;
125 break;
126 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
127 sb->data_offset = le64_to_cpu(s->data_offset);
128
129 err = "Bad data offset";
130 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
131 goto err;
132
133 break;
134 case BCACHE_SB_VERSION_CDEV:
135 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
136 sb->nbuckets = le64_to_cpu(s->nbuckets);
137 sb->bucket_size = le16_to_cpu(s->bucket_size);
138
139 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
140 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
141
142 err = "Too many buckets";
143 if (sb->nbuckets > LONG_MAX)
144 goto err;
145
146 err = "Not enough buckets";
147 if (sb->nbuckets < 1 << 7)
148 goto err;
149
150 err = "Bad block/bucket size";
151 if (!is_power_of_2(sb->block_size) ||
152 sb->block_size > PAGE_SECTORS ||
153 !is_power_of_2(sb->bucket_size) ||
154 sb->bucket_size < PAGE_SECTORS)
155 goto err;
156
157 err = "Invalid superblock: device too small";
158 if (get_capacity(bdev->bd_disk) <
159 sb->bucket_size * sb->nbuckets)
160 goto err;
161
162 err = "Bad UUID";
163 if (bch_is_zero(sb->set_uuid, 16))
164 goto err;
165
166 err = "Bad cache device number in set";
167 if (!sb->nr_in_set ||
168 sb->nr_in_set <= sb->nr_this_dev ||
169 sb->nr_in_set > MAX_CACHES_PER_SET)
170 goto err;
171
172 err = "Journal buckets not sequential";
173 for (i = 0; i < sb->keys; i++)
174 if (sb->d[i] != sb->first_bucket + i)
175 goto err;
176
177 err = "Too many journal buckets";
178 if (sb->first_bucket + sb->keys > sb->nbuckets)
179 goto err;
180
181 err = "Invalid superblock: first bucket comes before end of super";
182 if (sb->first_bucket * sb->bucket_size < 16)
183 goto err;
184
185 break;
186 default:
187 err = "Unsupported superblock version";
188 goto err;
189 }
190
191 sb->last_mount = (u32)ktime_get_real_seconds();
192 *res = s;
193 return NULL;
194 err:
195 put_page(page);
196 return err;
197 }
198
199 static void write_bdev_super_endio(struct bio *bio)
200 {
201 struct cached_dev *dc = bio->bi_private;
202
203 if (bio->bi_status)
204 bch_count_backing_io_errors(dc, bio);
205
206 closure_put(&dc->sb_write);
207 }
208
209 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
210 struct bio *bio)
211 {
212 unsigned int i;
213
214 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
215 bio->bi_iter.bi_sector = SB_SECTOR;
216 __bio_add_page(bio, virt_to_page(out), SB_SIZE,
217 offset_in_page(out));
218
219 out->offset = cpu_to_le64(sb->offset);
220 out->version = cpu_to_le64(sb->version);
221
222 memcpy(out->uuid, sb->uuid, 16);
223 memcpy(out->set_uuid, sb->set_uuid, 16);
224 memcpy(out->label, sb->label, SB_LABEL_SIZE);
225
226 out->flags = cpu_to_le64(sb->flags);
227 out->seq = cpu_to_le64(sb->seq);
228
229 out->last_mount = cpu_to_le32(sb->last_mount);
230 out->first_bucket = cpu_to_le16(sb->first_bucket);
231 out->keys = cpu_to_le16(sb->keys);
232
233 for (i = 0; i < sb->keys; i++)
234 out->d[i] = cpu_to_le64(sb->d[i]);
235
236 out->csum = csum_set(out);
237
238 pr_debug("ver %llu, flags %llu, seq %llu\n",
239 sb->version, sb->flags, sb->seq);
240
241 submit_bio(bio);
242 }
243
244 static void bch_write_bdev_super_unlock(struct closure *cl)
245 {
246 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
247
248 up(&dc->sb_write_mutex);
249 }
250
251 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
252 {
253 struct closure *cl = &dc->sb_write;
254 struct bio *bio = &dc->sb_bio;
255
256 down(&dc->sb_write_mutex);
257 closure_init(cl, parent);
258
259 bio_init(bio, dc->sb_bv, 1);
260 bio_set_dev(bio, dc->bdev);
261 bio->bi_end_io = write_bdev_super_endio;
262 bio->bi_private = dc;
263
264 closure_get(cl);
265 /* I/O request sent to backing device */
266 __write_super(&dc->sb, dc->sb_disk, bio);
267
268 closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
269 }
270
271 static void write_super_endio(struct bio *bio)
272 {
273 struct cache *ca = bio->bi_private;
274
275 /* is_read = 0 */
276 bch_count_io_errors(ca, bio->bi_status, 0,
277 "writing superblock");
278 closure_put(&ca->set->sb_write);
279 }
280
281 static void bcache_write_super_unlock(struct closure *cl)
282 {
283 struct cache_set *c = container_of(cl, struct cache_set, sb_write);
284
285 up(&c->sb_write_mutex);
286 }
287
288 void bcache_write_super(struct cache_set *c)
289 {
290 struct closure *cl = &c->sb_write;
291 struct cache *ca;
292 unsigned int i;
293
294 down(&c->sb_write_mutex);
295 closure_init(cl, &c->cl);
296
297 c->sb.seq++;
298
299 for_each_cache(ca, c, i) {
300 struct bio *bio = &ca->sb_bio;
301
302 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
303 ca->sb.seq = c->sb.seq;
304 ca->sb.last_mount = c->sb.last_mount;
305
306 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
307
308 bio_init(bio, ca->sb_bv, 1);
309 bio_set_dev(bio, ca->bdev);
310 bio->bi_end_io = write_super_endio;
311 bio->bi_private = ca;
312
313 closure_get(cl);
314 __write_super(&ca->sb, ca->sb_disk, bio);
315 }
316
317 closure_return_with_destructor(cl, bcache_write_super_unlock);
318 }
319
320 /* UUID io */
321
322 static void uuid_endio(struct bio *bio)
323 {
324 struct closure *cl = bio->bi_private;
325 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
326
327 cache_set_err_on(bio->bi_status, c, "accessing uuids");
328 bch_bbio_free(bio, c);
329 closure_put(cl);
330 }
331
332 static void uuid_io_unlock(struct closure *cl)
333 {
334 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
335
336 up(&c->uuid_write_mutex);
337 }
338
339 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
340 struct bkey *k, struct closure *parent)
341 {
342 struct closure *cl = &c->uuid_write;
343 struct uuid_entry *u;
344 unsigned int i;
345 char buf[80];
346
347 BUG_ON(!parent);
348 down(&c->uuid_write_mutex);
349 closure_init(cl, parent);
350
351 for (i = 0; i < KEY_PTRS(k); i++) {
352 struct bio *bio = bch_bbio_alloc(c);
353
354 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
355 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
356
357 bio->bi_end_io = uuid_endio;
358 bio->bi_private = cl;
359 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
360 bch_bio_map(bio, c->uuids);
361
362 bch_submit_bbio(bio, c, k, i);
363
364 if (op != REQ_OP_WRITE)
365 break;
366 }
367
368 bch_extent_to_text(buf, sizeof(buf), k);
369 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
370
371 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
372 if (!bch_is_zero(u->uuid, 16))
373 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
374 u - c->uuids, u->uuid, u->label,
375 u->first_reg, u->last_reg, u->invalidated);
376
377 closure_return_with_destructor(cl, uuid_io_unlock);
378 }
379
380 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
381 {
382 struct bkey *k = &j->uuid_bucket;
383
384 if (__bch_btree_ptr_invalid(c, k))
385 return "bad uuid pointer";
386
387 bkey_copy(&c->uuid_bucket, k);
388 uuid_io(c, REQ_OP_READ, 0, k, cl);
389
390 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
391 struct uuid_entry_v0 *u0 = (void *) c->uuids;
392 struct uuid_entry *u1 = (void *) c->uuids;
393 int i;
394
395 closure_sync(cl);
396
397 /*
398 * Since the new uuid entry is bigger than the old, we have to
399 * convert starting at the highest memory address and work down
400 * in order to do it in place
401 */
402
403 for (i = c->nr_uuids - 1;
404 i >= 0;
405 --i) {
406 memcpy(u1[i].uuid, u0[i].uuid, 16);
407 memcpy(u1[i].label, u0[i].label, 32);
408
409 u1[i].first_reg = u0[i].first_reg;
410 u1[i].last_reg = u0[i].last_reg;
411 u1[i].invalidated = u0[i].invalidated;
412
413 u1[i].flags = 0;
414 u1[i].sectors = 0;
415 }
416 }
417
418 return NULL;
419 }
420
421 static int __uuid_write(struct cache_set *c)
422 {
423 BKEY_PADDED(key) k;
424 struct closure cl;
425 struct cache *ca;
426
427 closure_init_stack(&cl);
428 lockdep_assert_held(&bch_register_lock);
429
430 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
431 return 1;
432
433 SET_KEY_SIZE(&k.key, c->sb.bucket_size);
434 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
435 closure_sync(&cl);
436
437 /* Only one bucket used for uuid write */
438 ca = PTR_CACHE(c, &k.key, 0);
439 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
440
441 bkey_copy(&c->uuid_bucket, &k.key);
442 bkey_put(c, &k.key);
443 return 0;
444 }
445
446 int bch_uuid_write(struct cache_set *c)
447 {
448 int ret = __uuid_write(c);
449
450 if (!ret)
451 bch_journal_meta(c, NULL);
452
453 return ret;
454 }
455
456 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
457 {
458 struct uuid_entry *u;
459
460 for (u = c->uuids;
461 u < c->uuids + c->nr_uuids; u++)
462 if (!memcmp(u->uuid, uuid, 16))
463 return u;
464
465 return NULL;
466 }
467
468 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
469 {
470 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
471
472 return uuid_find(c, zero_uuid);
473 }
474
475 /*
476 * Bucket priorities/gens:
477 *
478 * For each bucket, we store on disk its
479 * 8 bit gen
480 * 16 bit priority
481 *
482 * See alloc.c for an explanation of the gen. The priority is used to implement
483 * lru (and in the future other) cache replacement policies; for most purposes
484 * it's just an opaque integer.
485 *
486 * The gens and the priorities don't have a whole lot to do with each other, and
487 * it's actually the gens that must be written out at specific times - it's no
488 * big deal if the priorities don't get written, if we lose them we just reuse
489 * buckets in suboptimal order.
490 *
491 * On disk they're stored in a packed array, and in as many buckets are required
492 * to fit them all. The buckets we use to store them form a list; the journal
493 * header points to the first bucket, the first bucket points to the second
494 * bucket, et cetera.
495 *
496 * This code is used by the allocation code; periodically (whenever it runs out
497 * of buckets to allocate from) the allocation code will invalidate some
498 * buckets, but it can't use those buckets until their new gens are safely on
499 * disk.
500 */
501
502 static void prio_endio(struct bio *bio)
503 {
504 struct cache *ca = bio->bi_private;
505
506 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
507 bch_bbio_free(bio, ca->set);
508 closure_put(&ca->prio);
509 }
510
511 static void prio_io(struct cache *ca, uint64_t bucket, int op,
512 unsigned long op_flags)
513 {
514 struct closure *cl = &ca->prio;
515 struct bio *bio = bch_bbio_alloc(ca->set);
516
517 closure_init_stack(cl);
518
519 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
520 bio_set_dev(bio, ca->bdev);
521 bio->bi_iter.bi_size = bucket_bytes(ca);
522
523 bio->bi_end_io = prio_endio;
524 bio->bi_private = ca;
525 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
526 bch_bio_map(bio, ca->disk_buckets);
527
528 closure_bio_submit(ca->set, bio, &ca->prio);
529 closure_sync(cl);
530 }
531
532 int bch_prio_write(struct cache *ca, bool wait)
533 {
534 int i;
535 struct bucket *b;
536 struct closure cl;
537
538 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
539 fifo_used(&ca->free[RESERVE_PRIO]),
540 fifo_used(&ca->free[RESERVE_NONE]),
541 fifo_used(&ca->free_inc));
542
543 /*
544 * Pre-check if there are enough free buckets. In the non-blocking
545 * scenario it's better to fail early rather than starting to allocate
546 * buckets and do a cleanup later in case of failure.
547 */
548 if (!wait) {
549 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
550 fifo_used(&ca->free[RESERVE_NONE]);
551 if (prio_buckets(ca) > avail)
552 return -ENOMEM;
553 }
554
555 closure_init_stack(&cl);
556
557 lockdep_assert_held(&ca->set->bucket_lock);
558
559 ca->disk_buckets->seq++;
560
561 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
562 &ca->meta_sectors_written);
563
564 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
565 long bucket;
566 struct prio_set *p = ca->disk_buckets;
567 struct bucket_disk *d = p->data;
568 struct bucket_disk *end = d + prios_per_bucket(ca);
569
570 for (b = ca->buckets + i * prios_per_bucket(ca);
571 b < ca->buckets + ca->sb.nbuckets && d < end;
572 b++, d++) {
573 d->prio = cpu_to_le16(b->prio);
574 d->gen = b->gen;
575 }
576
577 p->next_bucket = ca->prio_buckets[i + 1];
578 p->magic = pset_magic(&ca->sb);
579 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
580
581 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
582 BUG_ON(bucket == -1);
583
584 mutex_unlock(&ca->set->bucket_lock);
585 prio_io(ca, bucket, REQ_OP_WRITE, 0);
586 mutex_lock(&ca->set->bucket_lock);
587
588 ca->prio_buckets[i] = bucket;
589 atomic_dec_bug(&ca->buckets[bucket].pin);
590 }
591
592 mutex_unlock(&ca->set->bucket_lock);
593
594 bch_journal_meta(ca->set, &cl);
595 closure_sync(&cl);
596
597 mutex_lock(&ca->set->bucket_lock);
598
599 /*
600 * Don't want the old priorities to get garbage collected until after we
601 * finish writing the new ones, and they're journalled
602 */
603 for (i = 0; i < prio_buckets(ca); i++) {
604 if (ca->prio_last_buckets[i])
605 __bch_bucket_free(ca,
606 &ca->buckets[ca->prio_last_buckets[i]]);
607
608 ca->prio_last_buckets[i] = ca->prio_buckets[i];
609 }
610 return 0;
611 }
612
613 static int prio_read(struct cache *ca, uint64_t bucket)
614 {
615 struct prio_set *p = ca->disk_buckets;
616 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
617 struct bucket *b;
618 unsigned int bucket_nr = 0;
619 int ret = -EIO;
620
621 for (b = ca->buckets;
622 b < ca->buckets + ca->sb.nbuckets;
623 b++, d++) {
624 if (d == end) {
625 ca->prio_buckets[bucket_nr] = bucket;
626 ca->prio_last_buckets[bucket_nr] = bucket;
627 bucket_nr++;
628
629 prio_io(ca, bucket, REQ_OP_READ, 0);
630
631 if (p->csum !=
632 bch_crc64(&p->magic, bucket_bytes(ca) - 8)) {
633 pr_warn("bad csum reading priorities\n");
634 goto out;
635 }
636
637 if (p->magic != pset_magic(&ca->sb)) {
638 pr_warn("bad magic reading priorities\n");
639 goto out;
640 }
641
642 bucket = p->next_bucket;
643 d = p->data;
644 }
645
646 b->prio = le16_to_cpu(d->prio);
647 b->gen = b->last_gc = d->gen;
648 }
649
650 ret = 0;
651 out:
652 return ret;
653 }
654
655 /* Bcache device */
656
657 static int open_dev(struct block_device *b, fmode_t mode)
658 {
659 struct bcache_device *d = b->bd_disk->private_data;
660
661 if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
662 return -ENXIO;
663
664 closure_get(&d->cl);
665 return 0;
666 }
667
668 static void release_dev(struct gendisk *b, fmode_t mode)
669 {
670 struct bcache_device *d = b->private_data;
671
672 closure_put(&d->cl);
673 }
674
675 static int ioctl_dev(struct block_device *b, fmode_t mode,
676 unsigned int cmd, unsigned long arg)
677 {
678 struct bcache_device *d = b->bd_disk->private_data;
679
680 return d->ioctl(d, mode, cmd, arg);
681 }
682
683 static const struct block_device_operations bcache_cached_ops = {
684 .submit_bio = cached_dev_submit_bio,
685 .open = open_dev,
686 .release = release_dev,
687 .ioctl = ioctl_dev,
688 .owner = THIS_MODULE,
689 };
690
691 static const struct block_device_operations bcache_flash_ops = {
692 .submit_bio = flash_dev_submit_bio,
693 .open = open_dev,
694 .release = release_dev,
695 .ioctl = ioctl_dev,
696 .owner = THIS_MODULE,
697 };
698
699 void bcache_device_stop(struct bcache_device *d)
700 {
701 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
702 /*
703 * closure_fn set to
704 * - cached device: cached_dev_flush()
705 * - flash dev: flash_dev_flush()
706 */
707 closure_queue(&d->cl);
708 }
709
710 static void bcache_device_unlink(struct bcache_device *d)
711 {
712 lockdep_assert_held(&bch_register_lock);
713
714 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
715 unsigned int i;
716 struct cache *ca;
717
718 sysfs_remove_link(&d->c->kobj, d->name);
719 sysfs_remove_link(&d->kobj, "cache");
720
721 for_each_cache(ca, d->c, i)
722 bd_unlink_disk_holder(ca->bdev, d->disk);
723 }
724 }
725
726 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
727 const char *name)
728 {
729 unsigned int i;
730 struct cache *ca;
731 int ret;
732
733 for_each_cache(ca, d->c, i)
734 bd_link_disk_holder(ca->bdev, d->disk);
735
736 snprintf(d->name, BCACHEDEVNAME_SIZE,
737 "%s%u", name, d->id);
738
739 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
740 if (ret < 0)
741 pr_err("Couldn't create device -> cache set symlink\n");
742
743 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
744 if (ret < 0)
745 pr_err("Couldn't create cache set -> device symlink\n");
746
747 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
748 }
749
750 static void bcache_device_detach(struct bcache_device *d)
751 {
752 lockdep_assert_held(&bch_register_lock);
753
754 atomic_dec(&d->c->attached_dev_nr);
755
756 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
757 struct uuid_entry *u = d->c->uuids + d->id;
758
759 SET_UUID_FLASH_ONLY(u, 0);
760 memcpy(u->uuid, invalid_uuid, 16);
761 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
762 bch_uuid_write(d->c);
763 }
764
765 bcache_device_unlink(d);
766
767 d->c->devices[d->id] = NULL;
768 closure_put(&d->c->caching);
769 d->c = NULL;
770 }
771
772 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
773 unsigned int id)
774 {
775 d->id = id;
776 d->c = c;
777 c->devices[id] = d;
778
779 if (id >= c->devices_max_used)
780 c->devices_max_used = id + 1;
781
782 closure_get(&c->caching);
783 }
784
785 static inline int first_minor_to_idx(int first_minor)
786 {
787 return (first_minor/BCACHE_MINORS);
788 }
789
790 static inline int idx_to_first_minor(int idx)
791 {
792 return (idx * BCACHE_MINORS);
793 }
794
795 static void bcache_device_free(struct bcache_device *d)
796 {
797 struct gendisk *disk = d->disk;
798
799 lockdep_assert_held(&bch_register_lock);
800
801 if (disk)
802 pr_info("%s stopped\n", disk->disk_name);
803 else
804 pr_err("bcache device (NULL gendisk) stopped\n");
805
806 if (d->c)
807 bcache_device_detach(d);
808
809 if (disk) {
810 bool disk_added = (disk->flags & GENHD_FL_UP) != 0;
811
812 if (disk_added)
813 del_gendisk(disk);
814
815 if (disk->queue)
816 blk_cleanup_queue(disk->queue);
817
818 ida_simple_remove(&bcache_device_idx,
819 first_minor_to_idx(disk->first_minor));
820 if (disk_added)
821 put_disk(disk);
822 }
823
824 bioset_exit(&d->bio_split);
825 kvfree(d->full_dirty_stripes);
826 kvfree(d->stripe_sectors_dirty);
827
828 closure_debug_destroy(&d->cl);
829 }
830
831 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
832 sector_t sectors, struct block_device *cached_bdev,
833 const struct block_device_operations *ops)
834 {
835 struct request_queue *q;
836 const size_t max_stripes = min_t(size_t, INT_MAX,
837 SIZE_MAX / sizeof(atomic_t));
838 size_t n;
839 int idx;
840
841 if (!d->stripe_size)
842 d->stripe_size = 1 << 31;
843
844 d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
845
846 if (!d->nr_stripes || d->nr_stripes > max_stripes) {
847 pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)\n",
848 (unsigned int)d->nr_stripes);
849 return -ENOMEM;
850 }
851
852 n = d->nr_stripes * sizeof(atomic_t);
853 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
854 if (!d->stripe_sectors_dirty)
855 return -ENOMEM;
856
857 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
858 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
859 if (!d->full_dirty_stripes)
860 return -ENOMEM;
861
862 idx = ida_simple_get(&bcache_device_idx, 0,
863 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
864 if (idx < 0)
865 return idx;
866
867 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
868 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
869 goto err;
870
871 d->disk = alloc_disk(BCACHE_MINORS);
872 if (!d->disk)
873 goto err;
874
875 set_capacity(d->disk, sectors);
876 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
877
878 d->disk->major = bcache_major;
879 d->disk->first_minor = idx_to_first_minor(idx);
880 d->disk->fops = ops;
881 d->disk->private_data = d;
882
883 q = blk_alloc_queue(NUMA_NO_NODE);
884 if (!q)
885 return -ENOMEM;
886
887 d->disk->queue = q;
888 q->backing_dev_info->congested_data = d;
889 q->limits.max_hw_sectors = UINT_MAX;
890 q->limits.max_sectors = UINT_MAX;
891 q->limits.max_segment_size = UINT_MAX;
892 q->limits.max_segments = BIO_MAX_PAGES;
893 blk_queue_max_discard_sectors(q, UINT_MAX);
894 q->limits.discard_granularity = 512;
895 q->limits.io_min = block_size;
896 q->limits.logical_block_size = block_size;
897 q->limits.physical_block_size = block_size;
898
899 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
900 /*
901 * This should only happen with BCACHE_SB_VERSION_BDEV.
902 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
903 */
904 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
905 d->disk->disk_name, q->limits.logical_block_size,
906 PAGE_SIZE, bdev_logical_block_size(cached_bdev));
907
908 /* This also adjusts physical block size/min io size if needed */
909 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
910 }
911
912 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
913 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
914 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
915
916 blk_queue_write_cache(q, true, true);
917
918 return 0;
919
920 err:
921 ida_simple_remove(&bcache_device_idx, idx);
922 return -ENOMEM;
923
924 }
925
926 /* Cached device */
927
928 static void calc_cached_dev_sectors(struct cache_set *c)
929 {
930 uint64_t sectors = 0;
931 struct cached_dev *dc;
932
933 list_for_each_entry(dc, &c->cached_devs, list)
934 sectors += bdev_sectors(dc->bdev);
935
936 c->cached_dev_sectors = sectors;
937 }
938
939 #define BACKING_DEV_OFFLINE_TIMEOUT 5
940 static int cached_dev_status_update(void *arg)
941 {
942 struct cached_dev *dc = arg;
943 struct request_queue *q;
944
945 /*
946 * If this delayed worker is stopping outside, directly quit here.
947 * dc->io_disable might be set via sysfs interface, so check it
948 * here too.
949 */
950 while (!kthread_should_stop() && !dc->io_disable) {
951 q = bdev_get_queue(dc->bdev);
952 if (blk_queue_dying(q))
953 dc->offline_seconds++;
954 else
955 dc->offline_seconds = 0;
956
957 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
958 pr_err("%s: device offline for %d seconds\n",
959 dc->backing_dev_name,
960 BACKING_DEV_OFFLINE_TIMEOUT);
961 pr_err("%s: disable I/O request due to backing device offline\n",
962 dc->disk.name);
963 dc->io_disable = true;
964 /* let others know earlier that io_disable is true */
965 smp_mb();
966 bcache_device_stop(&dc->disk);
967 break;
968 }
969 schedule_timeout_interruptible(HZ);
970 }
971
972 wait_for_kthread_stop();
973 return 0;
974 }
975
976
977 int bch_cached_dev_run(struct cached_dev *dc)
978 {
979 struct bcache_device *d = &dc->disk;
980 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
981 char *env[] = {
982 "DRIVER=bcache",
983 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
984 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
985 NULL,
986 };
987
988 if (dc->io_disable) {
989 pr_err("I/O disabled on cached dev %s\n",
990 dc->backing_dev_name);
991 kfree(env[1]);
992 kfree(env[2]);
993 kfree(buf);
994 return -EIO;
995 }
996
997 if (atomic_xchg(&dc->running, 1)) {
998 kfree(env[1]);
999 kfree(env[2]);
1000 kfree(buf);
1001 pr_info("cached dev %s is running already\n",
1002 dc->backing_dev_name);
1003 return -EBUSY;
1004 }
1005
1006 if (!d->c &&
1007 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1008 struct closure cl;
1009
1010 closure_init_stack(&cl);
1011
1012 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1013 bch_write_bdev_super(dc, &cl);
1014 closure_sync(&cl);
1015 }
1016
1017 add_disk(d->disk);
1018 bd_link_disk_holder(dc->bdev, dc->disk.disk);
1019 /*
1020 * won't show up in the uevent file, use udevadm monitor -e instead
1021 * only class / kset properties are persistent
1022 */
1023 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1024 kfree(env[1]);
1025 kfree(env[2]);
1026 kfree(buf);
1027
1028 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1029 sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1030 &d->kobj, "bcache")) {
1031 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1032 return -ENOMEM;
1033 }
1034
1035 dc->status_update_thread = kthread_run(cached_dev_status_update,
1036 dc, "bcache_status_update");
1037 if (IS_ERR(dc->status_update_thread)) {
1038 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1039 }
1040
1041 return 0;
1042 }
1043
1044 /*
1045 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1046 * work dc->writeback_rate_update is running. Wait until the routine
1047 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1048 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1049 * seconds, give up waiting here and continue to cancel it too.
1050 */
1051 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1052 {
1053 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1054
1055 do {
1056 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1057 &dc->disk.flags))
1058 break;
1059 time_out--;
1060 schedule_timeout_interruptible(1);
1061 } while (time_out > 0);
1062
1063 if (time_out == 0)
1064 pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1065
1066 cancel_delayed_work_sync(&dc->writeback_rate_update);
1067 }
1068
1069 static void cached_dev_detach_finish(struct work_struct *w)
1070 {
1071 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1072 struct closure cl;
1073
1074 closure_init_stack(&cl);
1075
1076 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1077 BUG_ON(refcount_read(&dc->count));
1078
1079
1080 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1081 cancel_writeback_rate_update_dwork(dc);
1082
1083 if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1084 kthread_stop(dc->writeback_thread);
1085 dc->writeback_thread = NULL;
1086 }
1087
1088 memset(&dc->sb.set_uuid, 0, 16);
1089 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1090
1091 bch_write_bdev_super(dc, &cl);
1092 closure_sync(&cl);
1093
1094 mutex_lock(&bch_register_lock);
1095
1096 calc_cached_dev_sectors(dc->disk.c);
1097 bcache_device_detach(&dc->disk);
1098 list_move(&dc->list, &uncached_devices);
1099
1100 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1101 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1102
1103 mutex_unlock(&bch_register_lock);
1104
1105 pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1106
1107 /* Drop ref we took in cached_dev_detach() */
1108 closure_put(&dc->disk.cl);
1109 }
1110
1111 void bch_cached_dev_detach(struct cached_dev *dc)
1112 {
1113 lockdep_assert_held(&bch_register_lock);
1114
1115 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1116 return;
1117
1118 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1119 return;
1120
1121 /*
1122 * Block the device from being closed and freed until we're finished
1123 * detaching
1124 */
1125 closure_get(&dc->disk.cl);
1126
1127 bch_writeback_queue(dc);
1128
1129 cached_dev_put(dc);
1130 }
1131
1132 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1133 uint8_t *set_uuid)
1134 {
1135 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1136 struct uuid_entry *u;
1137 struct cached_dev *exist_dc, *t;
1138 int ret = 0;
1139
1140 if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
1141 (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
1142 return -ENOENT;
1143
1144 if (dc->disk.c) {
1145 pr_err("Can't attach %s: already attached\n",
1146 dc->backing_dev_name);
1147 return -EINVAL;
1148 }
1149
1150 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1151 pr_err("Can't attach %s: shutting down\n",
1152 dc->backing_dev_name);
1153 return -EINVAL;
1154 }
1155
1156 if (dc->sb.block_size < c->sb.block_size) {
1157 /* Will die */
1158 pr_err("Couldn't attach %s: block size less than set's block size\n",
1159 dc->backing_dev_name);
1160 return -EINVAL;
1161 }
1162
1163 /* Check whether already attached */
1164 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1165 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1166 pr_err("Tried to attach %s but duplicate UUID already attached\n",
1167 dc->backing_dev_name);
1168
1169 return -EINVAL;
1170 }
1171 }
1172
1173 u = uuid_find(c, dc->sb.uuid);
1174
1175 if (u &&
1176 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1177 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1178 memcpy(u->uuid, invalid_uuid, 16);
1179 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1180 u = NULL;
1181 }
1182
1183 if (!u) {
1184 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1185 pr_err("Couldn't find uuid for %s in set\n",
1186 dc->backing_dev_name);
1187 return -ENOENT;
1188 }
1189
1190 u = uuid_find_empty(c);
1191 if (!u) {
1192 pr_err("Not caching %s, no room for UUID\n",
1193 dc->backing_dev_name);
1194 return -EINVAL;
1195 }
1196 }
1197
1198 /*
1199 * Deadlocks since we're called via sysfs...
1200 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1201 */
1202
1203 if (bch_is_zero(u->uuid, 16)) {
1204 struct closure cl;
1205
1206 closure_init_stack(&cl);
1207
1208 memcpy(u->uuid, dc->sb.uuid, 16);
1209 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1210 u->first_reg = u->last_reg = rtime;
1211 bch_uuid_write(c);
1212
1213 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1214 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1215
1216 bch_write_bdev_super(dc, &cl);
1217 closure_sync(&cl);
1218 } else {
1219 u->last_reg = rtime;
1220 bch_uuid_write(c);
1221 }
1222
1223 bcache_device_attach(&dc->disk, c, u - c->uuids);
1224 list_move(&dc->list, &c->cached_devs);
1225 calc_cached_dev_sectors(c);
1226
1227 /*
1228 * dc->c must be set before dc->count != 0 - paired with the mb in
1229 * cached_dev_get()
1230 */
1231 smp_wmb();
1232 refcount_set(&dc->count, 1);
1233
1234 /* Block writeback thread, but spawn it */
1235 down_write(&dc->writeback_lock);
1236 if (bch_cached_dev_writeback_start(dc)) {
1237 up_write(&dc->writeback_lock);
1238 pr_err("Couldn't start writeback facilities for %s\n",
1239 dc->disk.disk->disk_name);
1240 return -ENOMEM;
1241 }
1242
1243 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1244 atomic_set(&dc->has_dirty, 1);
1245 bch_writeback_queue(dc);
1246 }
1247
1248 bch_sectors_dirty_init(&dc->disk);
1249
1250 ret = bch_cached_dev_run(dc);
1251 if (ret && (ret != -EBUSY)) {
1252 up_write(&dc->writeback_lock);
1253 /*
1254 * bch_register_lock is held, bcache_device_stop() is not
1255 * able to be directly called. The kthread and kworker
1256 * created previously in bch_cached_dev_writeback_start()
1257 * have to be stopped manually here.
1258 */
1259 kthread_stop(dc->writeback_thread);
1260 cancel_writeback_rate_update_dwork(dc);
1261 pr_err("Couldn't run cached device %s\n",
1262 dc->backing_dev_name);
1263 return ret;
1264 }
1265
1266 bcache_device_link(&dc->disk, c, "bdev");
1267 atomic_inc(&c->attached_dev_nr);
1268
1269 /* Allow the writeback thread to proceed */
1270 up_write(&dc->writeback_lock);
1271
1272 pr_info("Caching %s as %s on set %pU\n",
1273 dc->backing_dev_name,
1274 dc->disk.disk->disk_name,
1275 dc->disk.c->sb.set_uuid);
1276 return 0;
1277 }
1278
1279 /* when dc->disk.kobj released */
1280 void bch_cached_dev_release(struct kobject *kobj)
1281 {
1282 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1283 disk.kobj);
1284 kfree(dc);
1285 module_put(THIS_MODULE);
1286 }
1287
1288 static void cached_dev_free(struct closure *cl)
1289 {
1290 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1291
1292 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1293 cancel_writeback_rate_update_dwork(dc);
1294
1295 if (!IS_ERR_OR_NULL(dc->writeback_thread))
1296 kthread_stop(dc->writeback_thread);
1297 if (!IS_ERR_OR_NULL(dc->status_update_thread))
1298 kthread_stop(dc->status_update_thread);
1299
1300 mutex_lock(&bch_register_lock);
1301
1302 if (atomic_read(&dc->running))
1303 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1304 bcache_device_free(&dc->disk);
1305 list_del(&dc->list);
1306
1307 mutex_unlock(&bch_register_lock);
1308
1309 if (dc->sb_disk)
1310 put_page(virt_to_page(dc->sb_disk));
1311
1312 if (!IS_ERR_OR_NULL(dc->bdev))
1313 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1314
1315 wake_up(&unregister_wait);
1316
1317 kobject_put(&dc->disk.kobj);
1318 }
1319
1320 static void cached_dev_flush(struct closure *cl)
1321 {
1322 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1323 struct bcache_device *d = &dc->disk;
1324
1325 mutex_lock(&bch_register_lock);
1326 bcache_device_unlink(d);
1327 mutex_unlock(&bch_register_lock);
1328
1329 bch_cache_accounting_destroy(&dc->accounting);
1330 kobject_del(&d->kobj);
1331
1332 continue_at(cl, cached_dev_free, system_wq);
1333 }
1334
1335 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1336 {
1337 int ret;
1338 struct io *io;
1339 struct request_queue *q = bdev_get_queue(dc->bdev);
1340
1341 __module_get(THIS_MODULE);
1342 INIT_LIST_HEAD(&dc->list);
1343 closure_init(&dc->disk.cl, NULL);
1344 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1345 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1346 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1347 sema_init(&dc->sb_write_mutex, 1);
1348 INIT_LIST_HEAD(&dc->io_lru);
1349 spin_lock_init(&dc->io_lock);
1350 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1351
1352 dc->sequential_cutoff = 4 << 20;
1353
1354 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1355 list_add(&io->lru, &dc->io_lru);
1356 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1357 }
1358
1359 dc->disk.stripe_size = q->limits.io_opt >> 9;
1360
1361 if (dc->disk.stripe_size)
1362 dc->partial_stripes_expensive =
1363 q->limits.raid_partial_stripes_expensive;
1364
1365 ret = bcache_device_init(&dc->disk, block_size,
1366 dc->bdev->bd_part->nr_sects - dc->sb.data_offset,
1367 dc->bdev, &bcache_cached_ops);
1368 if (ret)
1369 return ret;
1370
1371 dc->disk.disk->queue->backing_dev_info->ra_pages =
1372 max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1373 q->backing_dev_info->ra_pages);
1374
1375 atomic_set(&dc->io_errors, 0);
1376 dc->io_disable = false;
1377 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1378 /* default to auto */
1379 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1380
1381 bch_cached_dev_request_init(dc);
1382 bch_cached_dev_writeback_init(dc);
1383 return 0;
1384 }
1385
1386 /* Cached device - bcache superblock */
1387
1388 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1389 struct block_device *bdev,
1390 struct cached_dev *dc)
1391 {
1392 const char *err = "cannot allocate memory";
1393 struct cache_set *c;
1394 int ret = -ENOMEM;
1395
1396 bdevname(bdev, dc->backing_dev_name);
1397 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1398 dc->bdev = bdev;
1399 dc->bdev->bd_holder = dc;
1400 dc->sb_disk = sb_disk;
1401
1402 if (cached_dev_init(dc, sb->block_size << 9))
1403 goto err;
1404
1405 err = "error creating kobject";
1406 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1407 "bcache"))
1408 goto err;
1409 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1410 goto err;
1411
1412 pr_info("registered backing device %s\n", dc->backing_dev_name);
1413
1414 list_add(&dc->list, &uncached_devices);
1415 /* attach to a matched cache set if it exists */
1416 list_for_each_entry(c, &bch_cache_sets, list)
1417 bch_cached_dev_attach(dc, c, NULL);
1418
1419 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1420 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1421 err = "failed to run cached device";
1422 ret = bch_cached_dev_run(dc);
1423 if (ret)
1424 goto err;
1425 }
1426
1427 return 0;
1428 err:
1429 pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1430 bcache_device_stop(&dc->disk);
1431 return ret;
1432 }
1433
1434 /* Flash only volumes */
1435
1436 /* When d->kobj released */
1437 void bch_flash_dev_release(struct kobject *kobj)
1438 {
1439 struct bcache_device *d = container_of(kobj, struct bcache_device,
1440 kobj);
1441 kfree(d);
1442 }
1443
1444 static void flash_dev_free(struct closure *cl)
1445 {
1446 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1447
1448 mutex_lock(&bch_register_lock);
1449 atomic_long_sub(bcache_dev_sectors_dirty(d),
1450 &d->c->flash_dev_dirty_sectors);
1451 bcache_device_free(d);
1452 mutex_unlock(&bch_register_lock);
1453 kobject_put(&d->kobj);
1454 }
1455
1456 static void flash_dev_flush(struct closure *cl)
1457 {
1458 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1459
1460 mutex_lock(&bch_register_lock);
1461 bcache_device_unlink(d);
1462 mutex_unlock(&bch_register_lock);
1463 kobject_del(&d->kobj);
1464 continue_at(cl, flash_dev_free, system_wq);
1465 }
1466
1467 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1468 {
1469 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1470 GFP_KERNEL);
1471 if (!d)
1472 return -ENOMEM;
1473
1474 closure_init(&d->cl, NULL);
1475 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1476
1477 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1478
1479 if (bcache_device_init(d, block_bytes(c), u->sectors,
1480 NULL, &bcache_flash_ops))
1481 goto err;
1482
1483 bcache_device_attach(d, c, u - c->uuids);
1484 bch_sectors_dirty_init(d);
1485 bch_flash_dev_request_init(d);
1486 add_disk(d->disk);
1487
1488 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1489 goto err;
1490
1491 bcache_device_link(d, c, "volume");
1492
1493 return 0;
1494 err:
1495 kobject_put(&d->kobj);
1496 return -ENOMEM;
1497 }
1498
1499 static int flash_devs_run(struct cache_set *c)
1500 {
1501 int ret = 0;
1502 struct uuid_entry *u;
1503
1504 for (u = c->uuids;
1505 u < c->uuids + c->nr_uuids && !ret;
1506 u++)
1507 if (UUID_FLASH_ONLY(u))
1508 ret = flash_dev_run(c, u);
1509
1510 return ret;
1511 }
1512
1513 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1514 {
1515 struct uuid_entry *u;
1516
1517 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1518 return -EINTR;
1519
1520 if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1521 return -EPERM;
1522
1523 u = uuid_find_empty(c);
1524 if (!u) {
1525 pr_err("Can't create volume, no room for UUID\n");
1526 return -EINVAL;
1527 }
1528
1529 get_random_bytes(u->uuid, 16);
1530 memset(u->label, 0, 32);
1531 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1532
1533 SET_UUID_FLASH_ONLY(u, 1);
1534 u->sectors = size >> 9;
1535
1536 bch_uuid_write(c);
1537
1538 return flash_dev_run(c, u);
1539 }
1540
1541 bool bch_cached_dev_error(struct cached_dev *dc)
1542 {
1543 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1544 return false;
1545
1546 dc->io_disable = true;
1547 /* make others know io_disable is true earlier */
1548 smp_mb();
1549
1550 pr_err("stop %s: too many IO errors on backing device %s\n",
1551 dc->disk.disk->disk_name, dc->backing_dev_name);
1552
1553 bcache_device_stop(&dc->disk);
1554 return true;
1555 }
1556
1557 /* Cache set */
1558
1559 __printf(2, 3)
1560 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1561 {
1562 struct va_format vaf;
1563 va_list args;
1564
1565 if (c->on_error != ON_ERROR_PANIC &&
1566 test_bit(CACHE_SET_STOPPING, &c->flags))
1567 return false;
1568
1569 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1570 pr_info("CACHE_SET_IO_DISABLE already set\n");
1571
1572 /*
1573 * XXX: we can be called from atomic context
1574 * acquire_console_sem();
1575 */
1576
1577 va_start(args, fmt);
1578
1579 vaf.fmt = fmt;
1580 vaf.va = &args;
1581
1582 pr_err("error on %pU: %pV, disabling caching\n",
1583 c->sb.set_uuid, &vaf);
1584
1585 va_end(args);
1586
1587 if (c->on_error == ON_ERROR_PANIC)
1588 panic("panic forced after error\n");
1589
1590 bch_cache_set_unregister(c);
1591 return true;
1592 }
1593
1594 /* When c->kobj released */
1595 void bch_cache_set_release(struct kobject *kobj)
1596 {
1597 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1598
1599 kfree(c);
1600 module_put(THIS_MODULE);
1601 }
1602
1603 static void cache_set_free(struct closure *cl)
1604 {
1605 struct cache_set *c = container_of(cl, struct cache_set, cl);
1606 struct cache *ca;
1607 unsigned int i;
1608
1609 debugfs_remove(c->debug);
1610
1611 bch_open_buckets_free(c);
1612 bch_btree_cache_free(c);
1613 bch_journal_free(c);
1614
1615 mutex_lock(&bch_register_lock);
1616 for_each_cache(ca, c, i)
1617 if (ca) {
1618 ca->set = NULL;
1619 c->cache[ca->sb.nr_this_dev] = NULL;
1620 kobject_put(&ca->kobj);
1621 }
1622
1623 bch_bset_sort_state_free(&c->sort);
1624 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1625
1626 if (c->moving_gc_wq)
1627 destroy_workqueue(c->moving_gc_wq);
1628 bioset_exit(&c->bio_split);
1629 mempool_exit(&c->fill_iter);
1630 mempool_exit(&c->bio_meta);
1631 mempool_exit(&c->search);
1632 kfree(c->devices);
1633
1634 list_del(&c->list);
1635 mutex_unlock(&bch_register_lock);
1636
1637 pr_info("Cache set %pU unregistered\n", c->sb.set_uuid);
1638 wake_up(&unregister_wait);
1639
1640 closure_debug_destroy(&c->cl);
1641 kobject_put(&c->kobj);
1642 }
1643
1644 static void cache_set_flush(struct closure *cl)
1645 {
1646 struct cache_set *c = container_of(cl, struct cache_set, caching);
1647 struct cache *ca;
1648 struct btree *b;
1649 unsigned int i;
1650
1651 bch_cache_accounting_destroy(&c->accounting);
1652
1653 kobject_put(&c->internal);
1654 kobject_del(&c->kobj);
1655
1656 if (!IS_ERR_OR_NULL(c->gc_thread))
1657 kthread_stop(c->gc_thread);
1658
1659 if (!IS_ERR_OR_NULL(c->root))
1660 list_add(&c->root->list, &c->btree_cache);
1661
1662 /*
1663 * Avoid flushing cached nodes if cache set is retiring
1664 * due to too many I/O errors detected.
1665 */
1666 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1667 list_for_each_entry(b, &c->btree_cache, list) {
1668 mutex_lock(&b->write_lock);
1669 if (btree_node_dirty(b))
1670 __bch_btree_node_write(b, NULL);
1671 mutex_unlock(&b->write_lock);
1672 }
1673
1674 for_each_cache(ca, c, i)
1675 if (ca->alloc_thread)
1676 kthread_stop(ca->alloc_thread);
1677
1678 if (c->journal.cur) {
1679 cancel_delayed_work_sync(&c->journal.work);
1680 /* flush last journal entry if needed */
1681 c->journal.work.work.func(&c->journal.work.work);
1682 }
1683
1684 closure_return(cl);
1685 }
1686
1687 /*
1688 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1689 * cache set is unregistering due to too many I/O errors. In this condition,
1690 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1691 * value and whether the broken cache has dirty data:
1692 *
1693 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device
1694 * BCH_CACHED_STOP_AUTO 0 NO
1695 * BCH_CACHED_STOP_AUTO 1 YES
1696 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES
1697 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES
1698 *
1699 * The expected behavior is, if stop_when_cache_set_failed is configured to
1700 * "auto" via sysfs interface, the bcache device will not be stopped if the
1701 * backing device is clean on the broken cache device.
1702 */
1703 static void conditional_stop_bcache_device(struct cache_set *c,
1704 struct bcache_device *d,
1705 struct cached_dev *dc)
1706 {
1707 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1708 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1709 d->disk->disk_name, c->sb.set_uuid);
1710 bcache_device_stop(d);
1711 } else if (atomic_read(&dc->has_dirty)) {
1712 /*
1713 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1714 * and dc->has_dirty == 1
1715 */
1716 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1717 d->disk->disk_name);
1718 /*
1719 * There might be a small time gap that cache set is
1720 * released but bcache device is not. Inside this time
1721 * gap, regular I/O requests will directly go into
1722 * backing device as no cache set attached to. This
1723 * behavior may also introduce potential inconsistence
1724 * data in writeback mode while cache is dirty.
1725 * Therefore before calling bcache_device_stop() due
1726 * to a broken cache device, dc->io_disable should be
1727 * explicitly set to true.
1728 */
1729 dc->io_disable = true;
1730 /* make others know io_disable is true earlier */
1731 smp_mb();
1732 bcache_device_stop(d);
1733 } else {
1734 /*
1735 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1736 * and dc->has_dirty == 0
1737 */
1738 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1739 d->disk->disk_name);
1740 }
1741 }
1742
1743 static void __cache_set_unregister(struct closure *cl)
1744 {
1745 struct cache_set *c = container_of(cl, struct cache_set, caching);
1746 struct cached_dev *dc;
1747 struct bcache_device *d;
1748 size_t i;
1749
1750 mutex_lock(&bch_register_lock);
1751
1752 for (i = 0; i < c->devices_max_used; i++) {
1753 d = c->devices[i];
1754 if (!d)
1755 continue;
1756
1757 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1758 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1759 dc = container_of(d, struct cached_dev, disk);
1760 bch_cached_dev_detach(dc);
1761 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1762 conditional_stop_bcache_device(c, d, dc);
1763 } else {
1764 bcache_device_stop(d);
1765 }
1766 }
1767
1768 mutex_unlock(&bch_register_lock);
1769
1770 continue_at(cl, cache_set_flush, system_wq);
1771 }
1772
1773 void bch_cache_set_stop(struct cache_set *c)
1774 {
1775 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1776 /* closure_fn set to __cache_set_unregister() */
1777 closure_queue(&c->caching);
1778 }
1779
1780 void bch_cache_set_unregister(struct cache_set *c)
1781 {
1782 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1783 bch_cache_set_stop(c);
1784 }
1785
1786 #define alloc_bucket_pages(gfp, c) \
1787 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1788
1789 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1790 {
1791 int iter_size;
1792 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1793
1794 if (!c)
1795 return NULL;
1796
1797 __module_get(THIS_MODULE);
1798 closure_init(&c->cl, NULL);
1799 set_closure_fn(&c->cl, cache_set_free, system_wq);
1800
1801 closure_init(&c->caching, &c->cl);
1802 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1803
1804 /* Maybe create continue_at_noreturn() and use it here? */
1805 closure_set_stopped(&c->cl);
1806 closure_put(&c->cl);
1807
1808 kobject_init(&c->kobj, &bch_cache_set_ktype);
1809 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1810
1811 bch_cache_accounting_init(&c->accounting, &c->cl);
1812
1813 memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1814 c->sb.block_size = sb->block_size;
1815 c->sb.bucket_size = sb->bucket_size;
1816 c->sb.nr_in_set = sb->nr_in_set;
1817 c->sb.last_mount = sb->last_mount;
1818 c->bucket_bits = ilog2(sb->bucket_size);
1819 c->block_bits = ilog2(sb->block_size);
1820 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry);
1821 c->devices_max_used = 0;
1822 atomic_set(&c->attached_dev_nr, 0);
1823 c->btree_pages = bucket_pages(c);
1824 if (c->btree_pages > BTREE_MAX_PAGES)
1825 c->btree_pages = max_t(int, c->btree_pages / 4,
1826 BTREE_MAX_PAGES);
1827
1828 sema_init(&c->sb_write_mutex, 1);
1829 mutex_init(&c->bucket_lock);
1830 init_waitqueue_head(&c->btree_cache_wait);
1831 spin_lock_init(&c->btree_cannibalize_lock);
1832 init_waitqueue_head(&c->bucket_wait);
1833 init_waitqueue_head(&c->gc_wait);
1834 sema_init(&c->uuid_write_mutex, 1);
1835
1836 spin_lock_init(&c->btree_gc_time.lock);
1837 spin_lock_init(&c->btree_split_time.lock);
1838 spin_lock_init(&c->btree_read_time.lock);
1839
1840 bch_moving_init_cache_set(c);
1841
1842 INIT_LIST_HEAD(&c->list);
1843 INIT_LIST_HEAD(&c->cached_devs);
1844 INIT_LIST_HEAD(&c->btree_cache);
1845 INIT_LIST_HEAD(&c->btree_cache_freeable);
1846 INIT_LIST_HEAD(&c->btree_cache_freed);
1847 INIT_LIST_HEAD(&c->data_buckets);
1848
1849 iter_size = (sb->bucket_size / sb->block_size + 1) *
1850 sizeof(struct btree_iter_set);
1851
1852 if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) ||
1853 mempool_init_slab_pool(&c->search, 32, bch_search_cache) ||
1854 mempool_init_kmalloc_pool(&c->bio_meta, 2,
1855 sizeof(struct bbio) + sizeof(struct bio_vec) *
1856 bucket_pages(c)) ||
1857 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
1858 bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1859 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) ||
1860 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1861 !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1862 WQ_MEM_RECLAIM, 0)) ||
1863 bch_journal_alloc(c) ||
1864 bch_btree_cache_alloc(c) ||
1865 bch_open_buckets_alloc(c) ||
1866 bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1867 goto err;
1868
1869 c->congested_read_threshold_us = 2000;
1870 c->congested_write_threshold_us = 20000;
1871 c->error_limit = DEFAULT_IO_ERROR_LIMIT;
1872 c->idle_max_writeback_rate_enabled = 1;
1873 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1874
1875 return c;
1876 err:
1877 bch_cache_set_unregister(c);
1878 return NULL;
1879 }
1880
1881 static int run_cache_set(struct cache_set *c)
1882 {
1883 const char *err = "cannot allocate memory";
1884 struct cached_dev *dc, *t;
1885 struct cache *ca;
1886 struct closure cl;
1887 unsigned int i;
1888 LIST_HEAD(journal);
1889 struct journal_replay *l;
1890
1891 closure_init_stack(&cl);
1892
1893 for_each_cache(ca, c, i)
1894 c->nbuckets += ca->sb.nbuckets;
1895 set_gc_sectors(c);
1896
1897 if (CACHE_SYNC(&c->sb)) {
1898 struct bkey *k;
1899 struct jset *j;
1900
1901 err = "cannot allocate memory for journal";
1902 if (bch_journal_read(c, &journal))
1903 goto err;
1904
1905 pr_debug("btree_journal_read() done\n");
1906
1907 err = "no journal entries found";
1908 if (list_empty(&journal))
1909 goto err;
1910
1911 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1912
1913 err = "IO error reading priorities";
1914 for_each_cache(ca, c, i) {
1915 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
1916 goto err;
1917 }
1918
1919 /*
1920 * If prio_read() fails it'll call cache_set_error and we'll
1921 * tear everything down right away, but if we perhaps checked
1922 * sooner we could avoid journal replay.
1923 */
1924
1925 k = &j->btree_root;
1926
1927 err = "bad btree root";
1928 if (__bch_btree_ptr_invalid(c, k))
1929 goto err;
1930
1931 err = "error reading btree root";
1932 c->root = bch_btree_node_get(c, NULL, k,
1933 j->btree_level,
1934 true, NULL);
1935 if (IS_ERR_OR_NULL(c->root))
1936 goto err;
1937
1938 list_del_init(&c->root->list);
1939 rw_unlock(true, c->root);
1940
1941 err = uuid_read(c, j, &cl);
1942 if (err)
1943 goto err;
1944
1945 err = "error in recovery";
1946 if (bch_btree_check(c))
1947 goto err;
1948
1949 bch_journal_mark(c, &journal);
1950 bch_initial_gc_finish(c);
1951 pr_debug("btree_check() done\n");
1952
1953 /*
1954 * bcache_journal_next() can't happen sooner, or
1955 * btree_gc_finish() will give spurious errors about last_gc >
1956 * gc_gen - this is a hack but oh well.
1957 */
1958 bch_journal_next(&c->journal);
1959
1960 err = "error starting allocator thread";
1961 for_each_cache(ca, c, i)
1962 if (bch_cache_allocator_start(ca))
1963 goto err;
1964
1965 /*
1966 * First place it's safe to allocate: btree_check() and
1967 * btree_gc_finish() have to run before we have buckets to
1968 * allocate, and bch_bucket_alloc_set() might cause a journal
1969 * entry to be written so bcache_journal_next() has to be called
1970 * first.
1971 *
1972 * If the uuids were in the old format we have to rewrite them
1973 * before the next journal entry is written:
1974 */
1975 if (j->version < BCACHE_JSET_VERSION_UUID)
1976 __uuid_write(c);
1977
1978 err = "bcache: replay journal failed";
1979 if (bch_journal_replay(c, &journal))
1980 goto err;
1981 } else {
1982 pr_notice("invalidating existing data\n");
1983
1984 for_each_cache(ca, c, i) {
1985 unsigned int j;
1986
1987 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1988 2, SB_JOURNAL_BUCKETS);
1989
1990 for (j = 0; j < ca->sb.keys; j++)
1991 ca->sb.d[j] = ca->sb.first_bucket + j;
1992 }
1993
1994 bch_initial_gc_finish(c);
1995
1996 err = "error starting allocator thread";
1997 for_each_cache(ca, c, i)
1998 if (bch_cache_allocator_start(ca))
1999 goto err;
2000
2001 mutex_lock(&c->bucket_lock);
2002 for_each_cache(ca, c, i)
2003 bch_prio_write(ca, true);
2004 mutex_unlock(&c->bucket_lock);
2005
2006 err = "cannot allocate new UUID bucket";
2007 if (__uuid_write(c))
2008 goto err;
2009
2010 err = "cannot allocate new btree root";
2011 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2012 if (IS_ERR_OR_NULL(c->root))
2013 goto err;
2014
2015 mutex_lock(&c->root->write_lock);
2016 bkey_copy_key(&c->root->key, &MAX_KEY);
2017 bch_btree_node_write(c->root, &cl);
2018 mutex_unlock(&c->root->write_lock);
2019
2020 bch_btree_set_root(c->root);
2021 rw_unlock(true, c->root);
2022
2023 /*
2024 * We don't want to write the first journal entry until
2025 * everything is set up - fortunately journal entries won't be
2026 * written until the SET_CACHE_SYNC() here:
2027 */
2028 SET_CACHE_SYNC(&c->sb, true);
2029
2030 bch_journal_next(&c->journal);
2031 bch_journal_meta(c, &cl);
2032 }
2033
2034 err = "error starting gc thread";
2035 if (bch_gc_thread_start(c))
2036 goto err;
2037
2038 closure_sync(&cl);
2039 c->sb.last_mount = (u32)ktime_get_real_seconds();
2040 bcache_write_super(c);
2041
2042 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2043 bch_cached_dev_attach(dc, c, NULL);
2044
2045 flash_devs_run(c);
2046
2047 set_bit(CACHE_SET_RUNNING, &c->flags);
2048 return 0;
2049 err:
2050 while (!list_empty(&journal)) {
2051 l = list_first_entry(&journal, struct journal_replay, list);
2052 list_del(&l->list);
2053 kfree(l);
2054 }
2055
2056 closure_sync(&cl);
2057
2058 bch_cache_set_error(c, "%s", err);
2059
2060 return -EIO;
2061 }
2062
2063 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
2064 {
2065 return ca->sb.block_size == c->sb.block_size &&
2066 ca->sb.bucket_size == c->sb.bucket_size &&
2067 ca->sb.nr_in_set == c->sb.nr_in_set;
2068 }
2069
2070 static const char *register_cache_set(struct cache *ca)
2071 {
2072 char buf[12];
2073 const char *err = "cannot allocate memory";
2074 struct cache_set *c;
2075
2076 list_for_each_entry(c, &bch_cache_sets, list)
2077 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
2078 if (c->cache[ca->sb.nr_this_dev])
2079 return "duplicate cache set member";
2080
2081 if (!can_attach_cache(ca, c))
2082 return "cache sb does not match set";
2083
2084 if (!CACHE_SYNC(&ca->sb))
2085 SET_CACHE_SYNC(&c->sb, false);
2086
2087 goto found;
2088 }
2089
2090 c = bch_cache_set_alloc(&ca->sb);
2091 if (!c)
2092 return err;
2093
2094 err = "error creating kobject";
2095 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
2096 kobject_add(&c->internal, &c->kobj, "internal"))
2097 goto err;
2098
2099 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2100 goto err;
2101
2102 bch_debug_init_cache_set(c);
2103
2104 list_add(&c->list, &bch_cache_sets);
2105 found:
2106 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2107 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2108 sysfs_create_link(&c->kobj, &ca->kobj, buf))
2109 goto err;
2110
2111 if (ca->sb.seq > c->sb.seq) {
2112 c->sb.version = ca->sb.version;
2113 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
2114 c->sb.flags = ca->sb.flags;
2115 c->sb.seq = ca->sb.seq;
2116 pr_debug("set version = %llu\n", c->sb.version);
2117 }
2118
2119 kobject_get(&ca->kobj);
2120 ca->set = c;
2121 ca->set->cache[ca->sb.nr_this_dev] = ca;
2122 c->cache_by_alloc[c->caches_loaded++] = ca;
2123
2124 if (c->caches_loaded == c->sb.nr_in_set) {
2125 err = "failed to run cache set";
2126 if (run_cache_set(c) < 0)
2127 goto err;
2128 }
2129
2130 return NULL;
2131 err:
2132 bch_cache_set_unregister(c);
2133 return err;
2134 }
2135
2136 /* Cache device */
2137
2138 /* When ca->kobj released */
2139 void bch_cache_release(struct kobject *kobj)
2140 {
2141 struct cache *ca = container_of(kobj, struct cache, kobj);
2142 unsigned int i;
2143
2144 if (ca->set) {
2145 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
2146 ca->set->cache[ca->sb.nr_this_dev] = NULL;
2147 }
2148
2149 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
2150 kfree(ca->prio_buckets);
2151 vfree(ca->buckets);
2152
2153 free_heap(&ca->heap);
2154 free_fifo(&ca->free_inc);
2155
2156 for (i = 0; i < RESERVE_NR; i++)
2157 free_fifo(&ca->free[i]);
2158
2159 if (ca->sb_disk)
2160 put_page(virt_to_page(ca->sb_disk));
2161
2162 if (!IS_ERR_OR_NULL(ca->bdev))
2163 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2164
2165 kfree(ca);
2166 module_put(THIS_MODULE);
2167 }
2168
2169 static int cache_alloc(struct cache *ca)
2170 {
2171 size_t free;
2172 size_t btree_buckets;
2173 struct bucket *b;
2174 int ret = -ENOMEM;
2175 const char *err = NULL;
2176
2177 __module_get(THIS_MODULE);
2178 kobject_init(&ca->kobj, &bch_cache_ktype);
2179
2180 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2181
2182 /*
2183 * when ca->sb.njournal_buckets is not zero, journal exists,
2184 * and in bch_journal_replay(), tree node may split,
2185 * so bucket of RESERVE_BTREE type is needed,
2186 * the worst situation is all journal buckets are valid journal,
2187 * and all the keys need to replay,
2188 * so the number of RESERVE_BTREE type buckets should be as much
2189 * as journal buckets
2190 */
2191 btree_buckets = ca->sb.njournal_buckets ?: 8;
2192 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2193 if (!free) {
2194 ret = -EPERM;
2195 err = "ca->sb.nbuckets is too small";
2196 goto err_free;
2197 }
2198
2199 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2200 GFP_KERNEL)) {
2201 err = "ca->free[RESERVE_BTREE] alloc failed";
2202 goto err_btree_alloc;
2203 }
2204
2205 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2206 GFP_KERNEL)) {
2207 err = "ca->free[RESERVE_PRIO] alloc failed";
2208 goto err_prio_alloc;
2209 }
2210
2211 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2212 err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2213 goto err_movinggc_alloc;
2214 }
2215
2216 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2217 err = "ca->free[RESERVE_NONE] alloc failed";
2218 goto err_none_alloc;
2219 }
2220
2221 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2222 err = "ca->free_inc alloc failed";
2223 goto err_free_inc_alloc;
2224 }
2225
2226 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2227 err = "ca->heap alloc failed";
2228 goto err_heap_alloc;
2229 }
2230
2231 ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2232 ca->sb.nbuckets));
2233 if (!ca->buckets) {
2234 err = "ca->buckets alloc failed";
2235 goto err_buckets_alloc;
2236 }
2237
2238 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2239 prio_buckets(ca), 2),
2240 GFP_KERNEL);
2241 if (!ca->prio_buckets) {
2242 err = "ca->prio_buckets alloc failed";
2243 goto err_prio_buckets_alloc;
2244 }
2245
2246 ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca);
2247 if (!ca->disk_buckets) {
2248 err = "ca->disk_buckets alloc failed";
2249 goto err_disk_buckets_alloc;
2250 }
2251
2252 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2253
2254 for_each_bucket(b, ca)
2255 atomic_set(&b->pin, 0);
2256 return 0;
2257
2258 err_disk_buckets_alloc:
2259 kfree(ca->prio_buckets);
2260 err_prio_buckets_alloc:
2261 vfree(ca->buckets);
2262 err_buckets_alloc:
2263 free_heap(&ca->heap);
2264 err_heap_alloc:
2265 free_fifo(&ca->free_inc);
2266 err_free_inc_alloc:
2267 free_fifo(&ca->free[RESERVE_NONE]);
2268 err_none_alloc:
2269 free_fifo(&ca->free[RESERVE_MOVINGGC]);
2270 err_movinggc_alloc:
2271 free_fifo(&ca->free[RESERVE_PRIO]);
2272 err_prio_alloc:
2273 free_fifo(&ca->free[RESERVE_BTREE]);
2274 err_btree_alloc:
2275 err_free:
2276 module_put(THIS_MODULE);
2277 if (err)
2278 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2279 return ret;
2280 }
2281
2282 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2283 struct block_device *bdev, struct cache *ca)
2284 {
2285 const char *err = NULL; /* must be set for any error case */
2286 int ret = 0;
2287
2288 bdevname(bdev, ca->cache_dev_name);
2289 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2290 ca->bdev = bdev;
2291 ca->bdev->bd_holder = ca;
2292 ca->sb_disk = sb_disk;
2293
2294 if (blk_queue_discard(bdev_get_queue(bdev)))
2295 ca->discard = CACHE_DISCARD(&ca->sb);
2296
2297 ret = cache_alloc(ca);
2298 if (ret != 0) {
2299 /*
2300 * If we failed here, it means ca->kobj is not initialized yet,
2301 * kobject_put() won't be called and there is no chance to
2302 * call blkdev_put() to bdev in bch_cache_release(). So we
2303 * explicitly call blkdev_put() here.
2304 */
2305 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2306 if (ret == -ENOMEM)
2307 err = "cache_alloc(): -ENOMEM";
2308 else if (ret == -EPERM)
2309 err = "cache_alloc(): cache device is too small";
2310 else
2311 err = "cache_alloc(): unknown error";
2312 goto err;
2313 }
2314
2315 if (kobject_add(&ca->kobj,
2316 &part_to_dev(bdev->bd_part)->kobj,
2317 "bcache")) {
2318 err = "error calling kobject_add";
2319 ret = -ENOMEM;
2320 goto out;
2321 }
2322
2323 mutex_lock(&bch_register_lock);
2324 err = register_cache_set(ca);
2325 mutex_unlock(&bch_register_lock);
2326
2327 if (err) {
2328 ret = -ENODEV;
2329 goto out;
2330 }
2331
2332 pr_info("registered cache device %s\n", ca->cache_dev_name);
2333
2334 out:
2335 kobject_put(&ca->kobj);
2336
2337 err:
2338 if (err)
2339 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2340
2341 return ret;
2342 }
2343
2344 /* Global interfaces/init */
2345
2346 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2347 const char *buffer, size_t size);
2348 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2349 struct kobj_attribute *attr,
2350 const char *buffer, size_t size);
2351
2352 kobj_attribute_write(register, register_bcache);
2353 kobj_attribute_write(register_quiet, register_bcache);
2354 kobj_attribute_write(register_async, register_bcache);
2355 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup);
2356
2357 static bool bch_is_open_backing(struct block_device *bdev)
2358 {
2359 struct cache_set *c, *tc;
2360 struct cached_dev *dc, *t;
2361
2362 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2363 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2364 if (dc->bdev == bdev)
2365 return true;
2366 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2367 if (dc->bdev == bdev)
2368 return true;
2369 return false;
2370 }
2371
2372 static bool bch_is_open_cache(struct block_device *bdev)
2373 {
2374 struct cache_set *c, *tc;
2375 struct cache *ca;
2376 unsigned int i;
2377
2378 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2379 for_each_cache(ca, c, i)
2380 if (ca->bdev == bdev)
2381 return true;
2382 return false;
2383 }
2384
2385 static bool bch_is_open(struct block_device *bdev)
2386 {
2387 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2388 }
2389
2390 struct async_reg_args {
2391 struct delayed_work reg_work;
2392 char *path;
2393 struct cache_sb *sb;
2394 struct cache_sb_disk *sb_disk;
2395 struct block_device *bdev;
2396 };
2397
2398 static void register_bdev_worker(struct work_struct *work)
2399 {
2400 int fail = false;
2401 struct async_reg_args *args =
2402 container_of(work, struct async_reg_args, reg_work.work);
2403 struct cached_dev *dc;
2404
2405 dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2406 if (!dc) {
2407 fail = true;
2408 put_page(virt_to_page(args->sb_disk));
2409 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2410 goto out;
2411 }
2412
2413 mutex_lock(&bch_register_lock);
2414 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2415 fail = true;
2416 mutex_unlock(&bch_register_lock);
2417
2418 out:
2419 if (fail)
2420 pr_info("error %s: fail to register backing device\n",
2421 args->path);
2422 kfree(args->sb);
2423 kfree(args->path);
2424 kfree(args);
2425 module_put(THIS_MODULE);
2426 }
2427
2428 static void register_cache_worker(struct work_struct *work)
2429 {
2430 int fail = false;
2431 struct async_reg_args *args =
2432 container_of(work, struct async_reg_args, reg_work.work);
2433 struct cache *ca;
2434
2435 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2436 if (!ca) {
2437 fail = true;
2438 put_page(virt_to_page(args->sb_disk));
2439 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2440 goto out;
2441 }
2442
2443 /* blkdev_put() will be called in bch_cache_release() */
2444 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2445 fail = true;
2446
2447 out:
2448 if (fail)
2449 pr_info("error %s: fail to register cache device\n",
2450 args->path);
2451 kfree(args->sb);
2452 kfree(args->path);
2453 kfree(args);
2454 module_put(THIS_MODULE);
2455 }
2456
2457 static void register_device_aync(struct async_reg_args *args)
2458 {
2459 if (SB_IS_BDEV(args->sb))
2460 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2461 else
2462 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2463
2464 /* 10 jiffies is enough for a delay */
2465 queue_delayed_work(system_wq, &args->reg_work, 10);
2466 }
2467
2468 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2469 const char *buffer, size_t size)
2470 {
2471 const char *err;
2472 char *path = NULL;
2473 struct cache_sb *sb;
2474 struct cache_sb_disk *sb_disk;
2475 struct block_device *bdev;
2476 ssize_t ret;
2477
2478 ret = -EBUSY;
2479 err = "failed to reference bcache module";
2480 if (!try_module_get(THIS_MODULE))
2481 goto out;
2482
2483 /* For latest state of bcache_is_reboot */
2484 smp_mb();
2485 err = "bcache is in reboot";
2486 if (bcache_is_reboot)
2487 goto out_module_put;
2488
2489 ret = -ENOMEM;
2490 err = "cannot allocate memory";
2491 path = kstrndup(buffer, size, GFP_KERNEL);
2492 if (!path)
2493 goto out_module_put;
2494
2495 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2496 if (!sb)
2497 goto out_free_path;
2498
2499 ret = -EINVAL;
2500 err = "failed to open device";
2501 bdev = blkdev_get_by_path(strim(path),
2502 FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2503 sb);
2504 if (IS_ERR(bdev)) {
2505 if (bdev == ERR_PTR(-EBUSY)) {
2506 bdev = lookup_bdev(strim(path));
2507 mutex_lock(&bch_register_lock);
2508 if (!IS_ERR(bdev) && bch_is_open(bdev))
2509 err = "device already registered";
2510 else
2511 err = "device busy";
2512 mutex_unlock(&bch_register_lock);
2513 if (!IS_ERR(bdev))
2514 bdput(bdev);
2515 if (attr == &ksysfs_register_quiet)
2516 goto done;
2517 }
2518 goto out_free_sb;
2519 }
2520
2521 err = "failed to set blocksize";
2522 if (set_blocksize(bdev, 4096))
2523 goto out_blkdev_put;
2524
2525 err = read_super(sb, bdev, &sb_disk);
2526 if (err)
2527 goto out_blkdev_put;
2528
2529 err = "failed to register device";
2530 if (attr == &ksysfs_register_async) {
2531 /* register in asynchronous way */
2532 struct async_reg_args *args =
2533 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2534
2535 if (!args) {
2536 ret = -ENOMEM;
2537 err = "cannot allocate memory";
2538 goto out_put_sb_page;
2539 }
2540
2541 args->path = path;
2542 args->sb = sb;
2543 args->sb_disk = sb_disk;
2544 args->bdev = bdev;
2545 register_device_aync(args);
2546 /* No wait and returns to user space */
2547 goto async_done;
2548 }
2549
2550 if (SB_IS_BDEV(sb)) {
2551 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2552
2553 if (!dc)
2554 goto out_put_sb_page;
2555
2556 mutex_lock(&bch_register_lock);
2557 ret = register_bdev(sb, sb_disk, bdev, dc);
2558 mutex_unlock(&bch_register_lock);
2559 /* blkdev_put() will be called in cached_dev_free() */
2560 if (ret < 0)
2561 goto out_free_sb;
2562 } else {
2563 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2564
2565 if (!ca)
2566 goto out_put_sb_page;
2567
2568 /* blkdev_put() will be called in bch_cache_release() */
2569 if (register_cache(sb, sb_disk, bdev, ca) != 0)
2570 goto out_free_sb;
2571 }
2572
2573 done:
2574 kfree(sb);
2575 kfree(path);
2576 module_put(THIS_MODULE);
2577 async_done:
2578 return size;
2579
2580 out_put_sb_page:
2581 put_page(virt_to_page(sb_disk));
2582 out_blkdev_put:
2583 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2584 out_free_sb:
2585 kfree(sb);
2586 out_free_path:
2587 kfree(path);
2588 path = NULL;
2589 out_module_put:
2590 module_put(THIS_MODULE);
2591 out:
2592 pr_info("error %s: %s\n", path?path:"", err);
2593 return ret;
2594 }
2595
2596
2597 struct pdev {
2598 struct list_head list;
2599 struct cached_dev *dc;
2600 };
2601
2602 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2603 struct kobj_attribute *attr,
2604 const char *buffer,
2605 size_t size)
2606 {
2607 LIST_HEAD(pending_devs);
2608 ssize_t ret = size;
2609 struct cached_dev *dc, *tdc;
2610 struct pdev *pdev, *tpdev;
2611 struct cache_set *c, *tc;
2612
2613 mutex_lock(&bch_register_lock);
2614 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2615 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2616 if (!pdev)
2617 break;
2618 pdev->dc = dc;
2619 list_add(&pdev->list, &pending_devs);
2620 }
2621
2622 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2623 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2624 char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2625 char *set_uuid = c->sb.uuid;
2626
2627 if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2628 list_del(&pdev->list);
2629 kfree(pdev);
2630 break;
2631 }
2632 }
2633 }
2634 mutex_unlock(&bch_register_lock);
2635
2636 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2637 pr_info("delete pdev %p\n", pdev);
2638 list_del(&pdev->list);
2639 bcache_device_stop(&pdev->dc->disk);
2640 kfree(pdev);
2641 }
2642
2643 return ret;
2644 }
2645
2646 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2647 {
2648 if (bcache_is_reboot)
2649 return NOTIFY_DONE;
2650
2651 if (code == SYS_DOWN ||
2652 code == SYS_HALT ||
2653 code == SYS_POWER_OFF) {
2654 DEFINE_WAIT(wait);
2655 unsigned long start = jiffies;
2656 bool stopped = false;
2657
2658 struct cache_set *c, *tc;
2659 struct cached_dev *dc, *tdc;
2660
2661 mutex_lock(&bch_register_lock);
2662
2663 if (bcache_is_reboot)
2664 goto out;
2665
2666 /* New registration is rejected since now */
2667 bcache_is_reboot = true;
2668 /*
2669 * Make registering caller (if there is) on other CPU
2670 * core know bcache_is_reboot set to true earlier
2671 */
2672 smp_mb();
2673
2674 if (list_empty(&bch_cache_sets) &&
2675 list_empty(&uncached_devices))
2676 goto out;
2677
2678 mutex_unlock(&bch_register_lock);
2679
2680 pr_info("Stopping all devices:\n");
2681
2682 /*
2683 * The reason bch_register_lock is not held to call
2684 * bch_cache_set_stop() and bcache_device_stop() is to
2685 * avoid potential deadlock during reboot, because cache
2686 * set or bcache device stopping process will acqurie
2687 * bch_register_lock too.
2688 *
2689 * We are safe here because bcache_is_reboot sets to
2690 * true already, register_bcache() will reject new
2691 * registration now. bcache_is_reboot also makes sure
2692 * bcache_reboot() won't be re-entered on by other thread,
2693 * so there is no race in following list iteration by
2694 * list_for_each_entry_safe().
2695 */
2696 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2697 bch_cache_set_stop(c);
2698
2699 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2700 bcache_device_stop(&dc->disk);
2701
2702
2703 /*
2704 * Give an early chance for other kthreads and
2705 * kworkers to stop themselves
2706 */
2707 schedule();
2708
2709 /* What's a condition variable? */
2710 while (1) {
2711 long timeout = start + 10 * HZ - jiffies;
2712
2713 mutex_lock(&bch_register_lock);
2714 stopped = list_empty(&bch_cache_sets) &&
2715 list_empty(&uncached_devices);
2716
2717 if (timeout < 0 || stopped)
2718 break;
2719
2720 prepare_to_wait(&unregister_wait, &wait,
2721 TASK_UNINTERRUPTIBLE);
2722
2723 mutex_unlock(&bch_register_lock);
2724 schedule_timeout(timeout);
2725 }
2726
2727 finish_wait(&unregister_wait, &wait);
2728
2729 if (stopped)
2730 pr_info("All devices stopped\n");
2731 else
2732 pr_notice("Timeout waiting for devices to be closed\n");
2733 out:
2734 mutex_unlock(&bch_register_lock);
2735 }
2736
2737 return NOTIFY_DONE;
2738 }
2739
2740 static struct notifier_block reboot = {
2741 .notifier_call = bcache_reboot,
2742 .priority = INT_MAX, /* before any real devices */
2743 };
2744
2745 static void bcache_exit(void)
2746 {
2747 bch_debug_exit();
2748 bch_request_exit();
2749 if (bcache_kobj)
2750 kobject_put(bcache_kobj);
2751 if (bcache_wq)
2752 destroy_workqueue(bcache_wq);
2753 if (bch_journal_wq)
2754 destroy_workqueue(bch_journal_wq);
2755
2756 if (bcache_major)
2757 unregister_blkdev(bcache_major, "bcache");
2758 unregister_reboot_notifier(&reboot);
2759 mutex_destroy(&bch_register_lock);
2760 }
2761
2762 /* Check and fixup module parameters */
2763 static void check_module_parameters(void)
2764 {
2765 if (bch_cutoff_writeback_sync == 0)
2766 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2767 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2768 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2769 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2770 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2771 }
2772
2773 if (bch_cutoff_writeback == 0)
2774 bch_cutoff_writeback = CUTOFF_WRITEBACK;
2775 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2776 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2777 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2778 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2779 }
2780
2781 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2782 pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2783 bch_cutoff_writeback, bch_cutoff_writeback_sync);
2784 bch_cutoff_writeback = bch_cutoff_writeback_sync;
2785 }
2786 }
2787
2788 static int __init bcache_init(void)
2789 {
2790 static const struct attribute *files[] = {
2791 &ksysfs_register.attr,
2792 &ksysfs_register_quiet.attr,
2793 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2794 &ksysfs_register_async.attr,
2795 #endif
2796 &ksysfs_pendings_cleanup.attr,
2797 NULL
2798 };
2799
2800 check_module_parameters();
2801
2802 mutex_init(&bch_register_lock);
2803 init_waitqueue_head(&unregister_wait);
2804 register_reboot_notifier(&reboot);
2805
2806 bcache_major = register_blkdev(0, "bcache");
2807 if (bcache_major < 0) {
2808 unregister_reboot_notifier(&reboot);
2809 mutex_destroy(&bch_register_lock);
2810 return bcache_major;
2811 }
2812
2813 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2814 if (!bcache_wq)
2815 goto err;
2816
2817 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2818 if (!bch_journal_wq)
2819 goto err;
2820
2821 bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2822 if (!bcache_kobj)
2823 goto err;
2824
2825 if (bch_request_init() ||
2826 sysfs_create_files(bcache_kobj, files))
2827 goto err;
2828
2829 bch_debug_init();
2830 closure_debug_init();
2831
2832 bcache_is_reboot = false;
2833
2834 return 0;
2835 err:
2836 bcache_exit();
2837 return -ENOMEM;
2838 }
2839
2840 /*
2841 * Module hooks
2842 */
2843 module_exit(bcache_exit);
2844 module_init(bcache_init);
2845
2846 module_param(bch_cutoff_writeback, uint, 0);
2847 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2848
2849 module_param(bch_cutoff_writeback_sync, uint, 0);
2850 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2851
2852 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2853 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2854 MODULE_LICENSE("GPL");