]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/md/bcache/writeback.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[thirdparty/linux.git] / drivers / md / bcache / writeback.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * background writeback - scan btree for dirty data and write it to the backing
4 * device
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "writeback.h"
14
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/sched/clock.h>
18 #include <trace/events/bcache.h>
19
20 /* Rate limiting */
21
22 static void __update_writeback_rate(struct cached_dev *dc)
23 {
24 struct cache_set *c = dc->disk.c;
25 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
26 bcache_flash_devs_sectors_dirty(c);
27 uint64_t cache_dirty_target =
28 div_u64(cache_sectors * dc->writeback_percent, 100);
29
30 int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
31 c->cached_dev_sectors);
32
33 /* PD controller */
34
35 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
36 int64_t derivative = dirty - dc->disk.sectors_dirty_last;
37 int64_t proportional = dirty - target;
38 int64_t change;
39
40 dc->disk.sectors_dirty_last = dirty;
41
42 /* Scale to sectors per second */
43
44 proportional *= dc->writeback_rate_update_seconds;
45 proportional = div_s64(proportional, dc->writeback_rate_p_term_inverse);
46
47 derivative = div_s64(derivative, dc->writeback_rate_update_seconds);
48
49 derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
50 (dc->writeback_rate_d_term /
51 dc->writeback_rate_update_seconds) ?: 1, 0);
52
53 derivative *= dc->writeback_rate_d_term;
54 derivative = div_s64(derivative, dc->writeback_rate_p_term_inverse);
55
56 change = proportional + derivative;
57
58 /* Don't increase writeback rate if the device isn't keeping up */
59 if (change > 0 &&
60 time_after64(local_clock(),
61 dc->writeback_rate.next + NSEC_PER_MSEC))
62 change = 0;
63
64 dc->writeback_rate.rate =
65 clamp_t(int64_t, (int64_t) dc->writeback_rate.rate + change,
66 1, NSEC_PER_MSEC);
67
68 dc->writeback_rate_proportional = proportional;
69 dc->writeback_rate_derivative = derivative;
70 dc->writeback_rate_change = change;
71 dc->writeback_rate_target = target;
72 }
73
74 static void update_writeback_rate(struct work_struct *work)
75 {
76 struct cached_dev *dc = container_of(to_delayed_work(work),
77 struct cached_dev,
78 writeback_rate_update);
79
80 down_read(&dc->writeback_lock);
81
82 if (atomic_read(&dc->has_dirty) &&
83 dc->writeback_percent)
84 __update_writeback_rate(dc);
85
86 up_read(&dc->writeback_lock);
87
88 schedule_delayed_work(&dc->writeback_rate_update,
89 dc->writeback_rate_update_seconds * HZ);
90 }
91
92 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
93 {
94 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
95 !dc->writeback_percent)
96 return 0;
97
98 return bch_next_delay(&dc->writeback_rate, sectors);
99 }
100
101 struct dirty_io {
102 struct closure cl;
103 struct cached_dev *dc;
104 struct bio bio;
105 };
106
107 static void dirty_init(struct keybuf_key *w)
108 {
109 struct dirty_io *io = w->private;
110 struct bio *bio = &io->bio;
111
112 bio_init(bio, bio->bi_inline_vecs,
113 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
114 if (!io->dc->writeback_percent)
115 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
116
117 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
118 bio->bi_private = w;
119 bch_bio_map(bio, NULL);
120 }
121
122 static void dirty_io_destructor(struct closure *cl)
123 {
124 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
125 kfree(io);
126 }
127
128 static void write_dirty_finish(struct closure *cl)
129 {
130 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
131 struct keybuf_key *w = io->bio.bi_private;
132 struct cached_dev *dc = io->dc;
133
134 bio_free_pages(&io->bio);
135
136 /* This is kind of a dumb way of signalling errors. */
137 if (KEY_DIRTY(&w->key)) {
138 int ret;
139 unsigned i;
140 struct keylist keys;
141
142 bch_keylist_init(&keys);
143
144 bkey_copy(keys.top, &w->key);
145 SET_KEY_DIRTY(keys.top, false);
146 bch_keylist_push(&keys);
147
148 for (i = 0; i < KEY_PTRS(&w->key); i++)
149 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
150
151 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
152
153 if (ret)
154 trace_bcache_writeback_collision(&w->key);
155
156 atomic_long_inc(ret
157 ? &dc->disk.c->writeback_keys_failed
158 : &dc->disk.c->writeback_keys_done);
159 }
160
161 bch_keybuf_del(&dc->writeback_keys, w);
162 up(&dc->in_flight);
163
164 closure_return_with_destructor(cl, dirty_io_destructor);
165 }
166
167 static void dirty_endio(struct bio *bio)
168 {
169 struct keybuf_key *w = bio->bi_private;
170 struct dirty_io *io = w->private;
171
172 if (bio->bi_status)
173 SET_KEY_DIRTY(&w->key, false);
174
175 closure_put(&io->cl);
176 }
177
178 static void write_dirty(struct closure *cl)
179 {
180 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
181 struct keybuf_key *w = io->bio.bi_private;
182
183 dirty_init(w);
184 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
185 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
186 bio_set_dev(&io->bio, io->dc->bdev);
187 io->bio.bi_end_io = dirty_endio;
188
189 closure_bio_submit(&io->bio, cl);
190
191 continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
192 }
193
194 static void read_dirty_endio(struct bio *bio)
195 {
196 struct keybuf_key *w = bio->bi_private;
197 struct dirty_io *io = w->private;
198
199 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
200 bio->bi_status, "reading dirty data from cache");
201
202 dirty_endio(bio);
203 }
204
205 static void read_dirty_submit(struct closure *cl)
206 {
207 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
208
209 closure_bio_submit(&io->bio, cl);
210
211 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
212 }
213
214 static void read_dirty(struct cached_dev *dc)
215 {
216 unsigned delay = 0;
217 struct keybuf_key *w;
218 struct dirty_io *io;
219 struct closure cl;
220
221 closure_init_stack(&cl);
222
223 /*
224 * XXX: if we error, background writeback just spins. Should use some
225 * mempools.
226 */
227
228 while (!kthread_should_stop()) {
229
230 w = bch_keybuf_next(&dc->writeback_keys);
231 if (!w)
232 break;
233
234 BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
235
236 if (KEY_START(&w->key) != dc->last_read ||
237 jiffies_to_msecs(delay) > 50)
238 while (!kthread_should_stop() && delay)
239 delay = schedule_timeout_interruptible(delay);
240
241 dc->last_read = KEY_OFFSET(&w->key);
242
243 io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
244 * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
245 GFP_KERNEL);
246 if (!io)
247 goto err;
248
249 w->private = io;
250 io->dc = dc;
251
252 dirty_init(w);
253 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
254 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
255 bio_set_dev(&io->bio, PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
256 io->bio.bi_end_io = read_dirty_endio;
257
258 if (bio_alloc_pages(&io->bio, GFP_KERNEL))
259 goto err_free;
260
261 trace_bcache_writeback(&w->key);
262
263 down(&dc->in_flight);
264 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
265
266 delay = writeback_delay(dc, KEY_SIZE(&w->key));
267 }
268
269 if (0) {
270 err_free:
271 kfree(w->private);
272 err:
273 bch_keybuf_del(&dc->writeback_keys, w);
274 }
275
276 /*
277 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
278 * freed) before refilling again
279 */
280 closure_sync(&cl);
281 }
282
283 /* Scan for dirty data */
284
285 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
286 uint64_t offset, int nr_sectors)
287 {
288 struct bcache_device *d = c->devices[inode];
289 unsigned stripe_offset, stripe, sectors_dirty;
290
291 if (!d)
292 return;
293
294 stripe = offset_to_stripe(d, offset);
295 stripe_offset = offset & (d->stripe_size - 1);
296
297 while (nr_sectors) {
298 int s = min_t(unsigned, abs(nr_sectors),
299 d->stripe_size - stripe_offset);
300
301 if (nr_sectors < 0)
302 s = -s;
303
304 if (stripe >= d->nr_stripes)
305 return;
306
307 sectors_dirty = atomic_add_return(s,
308 d->stripe_sectors_dirty + stripe);
309 if (sectors_dirty == d->stripe_size)
310 set_bit(stripe, d->full_dirty_stripes);
311 else
312 clear_bit(stripe, d->full_dirty_stripes);
313
314 nr_sectors -= s;
315 stripe_offset = 0;
316 stripe++;
317 }
318 }
319
320 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
321 {
322 struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);
323
324 BUG_ON(KEY_INODE(k) != dc->disk.id);
325
326 return KEY_DIRTY(k);
327 }
328
329 static void refill_full_stripes(struct cached_dev *dc)
330 {
331 struct keybuf *buf = &dc->writeback_keys;
332 unsigned start_stripe, stripe, next_stripe;
333 bool wrapped = false;
334
335 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
336
337 if (stripe >= dc->disk.nr_stripes)
338 stripe = 0;
339
340 start_stripe = stripe;
341
342 while (1) {
343 stripe = find_next_bit(dc->disk.full_dirty_stripes,
344 dc->disk.nr_stripes, stripe);
345
346 if (stripe == dc->disk.nr_stripes)
347 goto next;
348
349 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
350 dc->disk.nr_stripes, stripe);
351
352 buf->last_scanned = KEY(dc->disk.id,
353 stripe * dc->disk.stripe_size, 0);
354
355 bch_refill_keybuf(dc->disk.c, buf,
356 &KEY(dc->disk.id,
357 next_stripe * dc->disk.stripe_size, 0),
358 dirty_pred);
359
360 if (array_freelist_empty(&buf->freelist))
361 return;
362
363 stripe = next_stripe;
364 next:
365 if (wrapped && stripe > start_stripe)
366 return;
367
368 if (stripe == dc->disk.nr_stripes) {
369 stripe = 0;
370 wrapped = true;
371 }
372 }
373 }
374
375 /*
376 * Returns true if we scanned the entire disk
377 */
378 static bool refill_dirty(struct cached_dev *dc)
379 {
380 struct keybuf *buf = &dc->writeback_keys;
381 struct bkey start = KEY(dc->disk.id, 0, 0);
382 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
383 struct bkey start_pos;
384
385 /*
386 * make sure keybuf pos is inside the range for this disk - at bringup
387 * we might not be attached yet so this disk's inode nr isn't
388 * initialized then
389 */
390 if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
391 bkey_cmp(&buf->last_scanned, &end) > 0)
392 buf->last_scanned = start;
393
394 if (dc->partial_stripes_expensive) {
395 refill_full_stripes(dc);
396 if (array_freelist_empty(&buf->freelist))
397 return false;
398 }
399
400 start_pos = buf->last_scanned;
401 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
402
403 if (bkey_cmp(&buf->last_scanned, &end) < 0)
404 return false;
405
406 /*
407 * If we get to the end start scanning again from the beginning, and
408 * only scan up to where we initially started scanning from:
409 */
410 buf->last_scanned = start;
411 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
412
413 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
414 }
415
416 static int bch_writeback_thread(void *arg)
417 {
418 struct cached_dev *dc = arg;
419 bool searched_full_index;
420
421 while (!kthread_should_stop()) {
422 down_write(&dc->writeback_lock);
423 if (!atomic_read(&dc->has_dirty) ||
424 (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
425 !dc->writeback_running)) {
426 up_write(&dc->writeback_lock);
427 set_current_state(TASK_INTERRUPTIBLE);
428
429 if (kthread_should_stop())
430 return 0;
431
432 schedule();
433 continue;
434 }
435
436 searched_full_index = refill_dirty(dc);
437
438 if (searched_full_index &&
439 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
440 atomic_set(&dc->has_dirty, 0);
441 cached_dev_put(dc);
442 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
443 bch_write_bdev_super(dc, NULL);
444 }
445
446 up_write(&dc->writeback_lock);
447
448 bch_ratelimit_reset(&dc->writeback_rate);
449 read_dirty(dc);
450
451 if (searched_full_index) {
452 unsigned delay = dc->writeback_delay * HZ;
453
454 while (delay &&
455 !kthread_should_stop() &&
456 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
457 delay = schedule_timeout_interruptible(delay);
458 }
459 }
460
461 return 0;
462 }
463
464 /* Init */
465
466 struct sectors_dirty_init {
467 struct btree_op op;
468 unsigned inode;
469 };
470
471 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
472 struct bkey *k)
473 {
474 struct sectors_dirty_init *op = container_of(_op,
475 struct sectors_dirty_init, op);
476 if (KEY_INODE(k) > op->inode)
477 return MAP_DONE;
478
479 if (KEY_DIRTY(k))
480 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
481 KEY_START(k), KEY_SIZE(k));
482
483 return MAP_CONTINUE;
484 }
485
486 void bch_sectors_dirty_init(struct bcache_device *d)
487 {
488 struct sectors_dirty_init op;
489
490 bch_btree_op_init(&op.op, -1);
491 op.inode = d->id;
492
493 bch_btree_map_keys(&op.op, d->c, &KEY(op.inode, 0, 0),
494 sectors_dirty_init_fn, 0);
495
496 d->sectors_dirty_last = bcache_dev_sectors_dirty(d);
497 }
498
499 void bch_cached_dev_writeback_init(struct cached_dev *dc)
500 {
501 sema_init(&dc->in_flight, 64);
502 init_rwsem(&dc->writeback_lock);
503 bch_keybuf_init(&dc->writeback_keys);
504
505 dc->writeback_metadata = true;
506 dc->writeback_running = true;
507 dc->writeback_percent = 10;
508 dc->writeback_delay = 30;
509 dc->writeback_rate.rate = 1024;
510
511 dc->writeback_rate_update_seconds = 5;
512 dc->writeback_rate_d_term = 30;
513 dc->writeback_rate_p_term_inverse = 6000;
514
515 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
516 }
517
518 int bch_cached_dev_writeback_start(struct cached_dev *dc)
519 {
520 dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
521 WQ_MEM_RECLAIM, 0);
522 if (!dc->writeback_write_wq)
523 return -ENOMEM;
524
525 dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
526 "bcache_writeback");
527 if (IS_ERR(dc->writeback_thread))
528 return PTR_ERR(dc->writeback_thread);
529
530 schedule_delayed_work(&dc->writeback_rate_update,
531 dc->writeback_rate_update_seconds * HZ);
532
533 bch_writeback_queue(dc);
534
535 return 0;
536 }