]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/md/bcache/writeback.c
df0f4e5a051a0dfd0ba55b89bbbf828951e388c4
[thirdparty/kernel/stable.git] / drivers / md / bcache / writeback.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * background writeback - scan btree for dirty data and write it to the backing
4 * device
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "writeback.h"
14
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/sched/clock.h>
18 #include <trace/events/bcache.h>
19
20 static void update_gc_after_writeback(struct cache_set *c)
21 {
22 if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
23 c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
24 return;
25
26 c->gc_after_writeback |= BCH_DO_AUTO_GC;
27 }
28
29 /* Rate limiting */
30 static uint64_t __calc_target_rate(struct cached_dev *dc)
31 {
32 struct cache_set *c = dc->disk.c;
33
34 /*
35 * This is the size of the cache, minus the amount used for
36 * flash-only devices
37 */
38 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
39 atomic_long_read(&c->flash_dev_dirty_sectors);
40
41 /*
42 * Unfortunately there is no control of global dirty data. If the
43 * user states that they want 10% dirty data in the cache, and has,
44 * e.g., 5 backing volumes of equal size, we try and ensure each
45 * backing volume uses about 2% of the cache for dirty data.
46 */
47 uint32_t bdev_share =
48 div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
49 c->cached_dev_sectors);
50
51 uint64_t cache_dirty_target =
52 div_u64(cache_sectors * dc->writeback_percent, 100);
53
54 /* Ensure each backing dev gets at least one dirty share */
55 if (bdev_share < 1)
56 bdev_share = 1;
57
58 return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
59 }
60
61 static void __update_writeback_rate(struct cached_dev *dc)
62 {
63 /*
64 * PI controller:
65 * Figures out the amount that should be written per second.
66 *
67 * First, the error (number of sectors that are dirty beyond our
68 * target) is calculated. The error is accumulated (numerically
69 * integrated).
70 *
71 * Then, the proportional value and integral value are scaled
72 * based on configured values. These are stored as inverses to
73 * avoid fixed point math and to make configuration easy-- e.g.
74 * the default value of 40 for writeback_rate_p_term_inverse
75 * attempts to write at a rate that would retire all the dirty
76 * blocks in 40 seconds.
77 *
78 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
79 * of the error is accumulated in the integral term per second.
80 * This acts as a slow, long-term average that is not subject to
81 * variations in usage like the p term.
82 */
83 int64_t target = __calc_target_rate(dc);
84 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
85 int64_t error = dirty - target;
86 int64_t proportional_scaled =
87 div_s64(error, dc->writeback_rate_p_term_inverse);
88 int64_t integral_scaled;
89 uint32_t new_rate;
90
91 if ((error < 0 && dc->writeback_rate_integral > 0) ||
92 (error > 0 && time_before64(local_clock(),
93 dc->writeback_rate.next + NSEC_PER_MSEC))) {
94 /*
95 * Only decrease the integral term if it's more than
96 * zero. Only increase the integral term if the device
97 * is keeping up. (Don't wind up the integral
98 * ineffectively in either case).
99 *
100 * It's necessary to scale this by
101 * writeback_rate_update_seconds to keep the integral
102 * term dimensioned properly.
103 */
104 dc->writeback_rate_integral += error *
105 dc->writeback_rate_update_seconds;
106 }
107
108 integral_scaled = div_s64(dc->writeback_rate_integral,
109 dc->writeback_rate_i_term_inverse);
110
111 new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
112 dc->writeback_rate_minimum, NSEC_PER_SEC);
113
114 dc->writeback_rate_proportional = proportional_scaled;
115 dc->writeback_rate_integral_scaled = integral_scaled;
116 dc->writeback_rate_change = new_rate -
117 atomic_long_read(&dc->writeback_rate.rate);
118 atomic_long_set(&dc->writeback_rate.rate, new_rate);
119 dc->writeback_rate_target = target;
120 }
121
122 static bool set_at_max_writeback_rate(struct cache_set *c,
123 struct cached_dev *dc)
124 {
125 /*
126 * Idle_counter is increased everytime when update_writeback_rate() is
127 * called. If all backing devices attached to the same cache set have
128 * identical dc->writeback_rate_update_seconds values, it is about 6
129 * rounds of update_writeback_rate() on each backing device before
130 * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
131 * to each dc->writeback_rate.rate.
132 * In order to avoid extra locking cost for counting exact dirty cached
133 * devices number, c->attached_dev_nr is used to calculate the idle
134 * throushold. It might be bigger if not all cached device are in write-
135 * back mode, but it still works well with limited extra rounds of
136 * update_writeback_rate().
137 */
138 if (atomic_inc_return(&c->idle_counter) <
139 atomic_read(&c->attached_dev_nr) * 6)
140 return false;
141
142 if (atomic_read(&c->at_max_writeback_rate) != 1)
143 atomic_set(&c->at_max_writeback_rate, 1);
144
145 atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
146
147 /* keep writeback_rate_target as existing value */
148 dc->writeback_rate_proportional = 0;
149 dc->writeback_rate_integral_scaled = 0;
150 dc->writeback_rate_change = 0;
151
152 /*
153 * Check c->idle_counter and c->at_max_writeback_rate agagain in case
154 * new I/O arrives during before set_at_max_writeback_rate() returns.
155 * Then the writeback rate is set to 1, and its new value should be
156 * decided via __update_writeback_rate().
157 */
158 if ((atomic_read(&c->idle_counter) <
159 atomic_read(&c->attached_dev_nr) * 6) ||
160 !atomic_read(&c->at_max_writeback_rate))
161 return false;
162
163 return true;
164 }
165
166 static void update_writeback_rate(struct work_struct *work)
167 {
168 struct cached_dev *dc = container_of(to_delayed_work(work),
169 struct cached_dev,
170 writeback_rate_update);
171 struct cache_set *c = dc->disk.c;
172
173 /*
174 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
175 * cancel_delayed_work_sync().
176 */
177 set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
178 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
179 smp_mb();
180
181 /*
182 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
183 * check it here too.
184 */
185 if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
186 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
187 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
188 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
189 smp_mb();
190 return;
191 }
192
193 if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
194 /*
195 * If the whole cache set is idle, set_at_max_writeback_rate()
196 * will set writeback rate to a max number. Then it is
197 * unncessary to update writeback rate for an idle cache set
198 * in maximum writeback rate number(s).
199 */
200 if (!set_at_max_writeback_rate(c, dc)) {
201 down_read(&dc->writeback_lock);
202 __update_writeback_rate(dc);
203 update_gc_after_writeback(c);
204 up_read(&dc->writeback_lock);
205 }
206 }
207
208
209 /*
210 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
211 * check it here too.
212 */
213 if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
214 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
215 schedule_delayed_work(&dc->writeback_rate_update,
216 dc->writeback_rate_update_seconds * HZ);
217 }
218
219 /*
220 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
221 * cancel_delayed_work_sync().
222 */
223 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
224 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
225 smp_mb();
226 }
227
228 static unsigned int writeback_delay(struct cached_dev *dc,
229 unsigned int sectors)
230 {
231 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
232 !dc->writeback_percent)
233 return 0;
234
235 return bch_next_delay(&dc->writeback_rate, sectors);
236 }
237
238 struct dirty_io {
239 struct closure cl;
240 struct cached_dev *dc;
241 uint16_t sequence;
242 struct bio bio;
243 };
244
245 static void dirty_init(struct keybuf_key *w)
246 {
247 struct dirty_io *io = w->private;
248 struct bio *bio = &io->bio;
249
250 bio_init(bio, bio->bi_inline_vecs,
251 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
252 if (!io->dc->writeback_percent)
253 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
254
255 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
256 bio->bi_private = w;
257 bch_bio_map(bio, NULL);
258 }
259
260 static void dirty_io_destructor(struct closure *cl)
261 {
262 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
263
264 kfree(io);
265 }
266
267 static void write_dirty_finish(struct closure *cl)
268 {
269 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
270 struct keybuf_key *w = io->bio.bi_private;
271 struct cached_dev *dc = io->dc;
272
273 bio_free_pages(&io->bio);
274
275 /* This is kind of a dumb way of signalling errors. */
276 if (KEY_DIRTY(&w->key)) {
277 int ret;
278 unsigned int i;
279 struct keylist keys;
280
281 bch_keylist_init(&keys);
282
283 bkey_copy(keys.top, &w->key);
284 SET_KEY_DIRTY(keys.top, false);
285 bch_keylist_push(&keys);
286
287 for (i = 0; i < KEY_PTRS(&w->key); i++)
288 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
289
290 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
291
292 if (ret)
293 trace_bcache_writeback_collision(&w->key);
294
295 atomic_long_inc(ret
296 ? &dc->disk.c->writeback_keys_failed
297 : &dc->disk.c->writeback_keys_done);
298 }
299
300 bch_keybuf_del(&dc->writeback_keys, w);
301 up(&dc->in_flight);
302
303 closure_return_with_destructor(cl, dirty_io_destructor);
304 }
305
306 static void dirty_endio(struct bio *bio)
307 {
308 struct keybuf_key *w = bio->bi_private;
309 struct dirty_io *io = w->private;
310
311 if (bio->bi_status) {
312 SET_KEY_DIRTY(&w->key, false);
313 bch_count_backing_io_errors(io->dc, bio);
314 }
315
316 closure_put(&io->cl);
317 }
318
319 static void write_dirty(struct closure *cl)
320 {
321 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
322 struct keybuf_key *w = io->bio.bi_private;
323 struct cached_dev *dc = io->dc;
324
325 uint16_t next_sequence;
326
327 if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
328 /* Not our turn to write; wait for a write to complete */
329 closure_wait(&dc->writeback_ordering_wait, cl);
330
331 if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
332 /*
333 * Edge case-- it happened in indeterminate order
334 * relative to when we were added to wait list..
335 */
336 closure_wake_up(&dc->writeback_ordering_wait);
337 }
338
339 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
340 return;
341 }
342
343 next_sequence = io->sequence + 1;
344
345 /*
346 * IO errors are signalled using the dirty bit on the key.
347 * If we failed to read, we should not attempt to write to the
348 * backing device. Instead, immediately go to write_dirty_finish
349 * to clean up.
350 */
351 if (KEY_DIRTY(&w->key)) {
352 dirty_init(w);
353 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
354 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
355 bio_set_dev(&io->bio, io->dc->bdev);
356 io->bio.bi_end_io = dirty_endio;
357
358 /* I/O request sent to backing device */
359 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
360 }
361
362 atomic_set(&dc->writeback_sequence_next, next_sequence);
363 closure_wake_up(&dc->writeback_ordering_wait);
364
365 continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
366 }
367
368 static void read_dirty_endio(struct bio *bio)
369 {
370 struct keybuf_key *w = bio->bi_private;
371 struct dirty_io *io = w->private;
372
373 /* is_read = 1 */
374 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
375 bio->bi_status, 1,
376 "reading dirty data from cache");
377
378 dirty_endio(bio);
379 }
380
381 static void read_dirty_submit(struct closure *cl)
382 {
383 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
384
385 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
386
387 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
388 }
389
390 static void read_dirty(struct cached_dev *dc)
391 {
392 unsigned int delay = 0;
393 struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
394 size_t size;
395 int nk, i;
396 struct dirty_io *io;
397 struct closure cl;
398 uint16_t sequence = 0;
399
400 BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
401 atomic_set(&dc->writeback_sequence_next, sequence);
402 closure_init_stack(&cl);
403
404 /*
405 * XXX: if we error, background writeback just spins. Should use some
406 * mempools.
407 */
408
409 next = bch_keybuf_next(&dc->writeback_keys);
410
411 while (!kthread_should_stop() &&
412 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
413 next) {
414 size = 0;
415 nk = 0;
416
417 do {
418 BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
419
420 /*
421 * Don't combine too many operations, even if they
422 * are all small.
423 */
424 if (nk >= MAX_WRITEBACKS_IN_PASS)
425 break;
426
427 /*
428 * If the current operation is very large, don't
429 * further combine operations.
430 */
431 if (size >= MAX_WRITESIZE_IN_PASS)
432 break;
433
434 /*
435 * Operations are only eligible to be combined
436 * if they are contiguous.
437 *
438 * TODO: add a heuristic willing to fire a
439 * certain amount of non-contiguous IO per pass,
440 * so that we can benefit from backing device
441 * command queueing.
442 */
443 if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
444 &START_KEY(&next->key)))
445 break;
446
447 size += KEY_SIZE(&next->key);
448 keys[nk++] = next;
449 } while ((next = bch_keybuf_next(&dc->writeback_keys)));
450
451 /* Now we have gathered a set of 1..5 keys to write back. */
452 for (i = 0; i < nk; i++) {
453 w = keys[i];
454
455 io = kzalloc(sizeof(struct dirty_io) +
456 sizeof(struct bio_vec) *
457 DIV_ROUND_UP(KEY_SIZE(&w->key),
458 PAGE_SECTORS),
459 GFP_KERNEL);
460 if (!io)
461 goto err;
462
463 w->private = io;
464 io->dc = dc;
465 io->sequence = sequence++;
466
467 dirty_init(w);
468 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
469 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
470 bio_set_dev(&io->bio,
471 PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
472 io->bio.bi_end_io = read_dirty_endio;
473
474 if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
475 goto err_free;
476
477 trace_bcache_writeback(&w->key);
478
479 down(&dc->in_flight);
480
481 /*
482 * We've acquired a semaphore for the maximum
483 * simultaneous number of writebacks; from here
484 * everything happens asynchronously.
485 */
486 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
487 }
488
489 delay = writeback_delay(dc, size);
490
491 while (!kthread_should_stop() &&
492 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
493 delay) {
494 schedule_timeout_interruptible(delay);
495 delay = writeback_delay(dc, 0);
496 }
497 }
498
499 if (0) {
500 err_free:
501 kfree(w->private);
502 err:
503 bch_keybuf_del(&dc->writeback_keys, w);
504 }
505
506 /*
507 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
508 * freed) before refilling again
509 */
510 closure_sync(&cl);
511 }
512
513 /* Scan for dirty data */
514
515 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
516 uint64_t offset, int nr_sectors)
517 {
518 struct bcache_device *d = c->devices[inode];
519 unsigned int stripe_offset, stripe, sectors_dirty;
520
521 if (!d)
522 return;
523
524 if (UUID_FLASH_ONLY(&c->uuids[inode]))
525 atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
526
527 stripe = offset_to_stripe(d, offset);
528 stripe_offset = offset & (d->stripe_size - 1);
529
530 while (nr_sectors) {
531 int s = min_t(unsigned int, abs(nr_sectors),
532 d->stripe_size - stripe_offset);
533
534 if (nr_sectors < 0)
535 s = -s;
536
537 if (stripe >= d->nr_stripes)
538 return;
539
540 sectors_dirty = atomic_add_return(s,
541 d->stripe_sectors_dirty + stripe);
542 if (sectors_dirty == d->stripe_size)
543 set_bit(stripe, d->full_dirty_stripes);
544 else
545 clear_bit(stripe, d->full_dirty_stripes);
546
547 nr_sectors -= s;
548 stripe_offset = 0;
549 stripe++;
550 }
551 }
552
553 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
554 {
555 struct cached_dev *dc = container_of(buf,
556 struct cached_dev,
557 writeback_keys);
558
559 BUG_ON(KEY_INODE(k) != dc->disk.id);
560
561 return KEY_DIRTY(k);
562 }
563
564 static void refill_full_stripes(struct cached_dev *dc)
565 {
566 struct keybuf *buf = &dc->writeback_keys;
567 unsigned int start_stripe, stripe, next_stripe;
568 bool wrapped = false;
569
570 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
571
572 if (stripe >= dc->disk.nr_stripes)
573 stripe = 0;
574
575 start_stripe = stripe;
576
577 while (1) {
578 stripe = find_next_bit(dc->disk.full_dirty_stripes,
579 dc->disk.nr_stripes, stripe);
580
581 if (stripe == dc->disk.nr_stripes)
582 goto next;
583
584 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
585 dc->disk.nr_stripes, stripe);
586
587 buf->last_scanned = KEY(dc->disk.id,
588 stripe * dc->disk.stripe_size, 0);
589
590 bch_refill_keybuf(dc->disk.c, buf,
591 &KEY(dc->disk.id,
592 next_stripe * dc->disk.stripe_size, 0),
593 dirty_pred);
594
595 if (array_freelist_empty(&buf->freelist))
596 return;
597
598 stripe = next_stripe;
599 next:
600 if (wrapped && stripe > start_stripe)
601 return;
602
603 if (stripe == dc->disk.nr_stripes) {
604 stripe = 0;
605 wrapped = true;
606 }
607 }
608 }
609
610 /*
611 * Returns true if we scanned the entire disk
612 */
613 static bool refill_dirty(struct cached_dev *dc)
614 {
615 struct keybuf *buf = &dc->writeback_keys;
616 struct bkey start = KEY(dc->disk.id, 0, 0);
617 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
618 struct bkey start_pos;
619
620 /*
621 * make sure keybuf pos is inside the range for this disk - at bringup
622 * we might not be attached yet so this disk's inode nr isn't
623 * initialized then
624 */
625 if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
626 bkey_cmp(&buf->last_scanned, &end) > 0)
627 buf->last_scanned = start;
628
629 if (dc->partial_stripes_expensive) {
630 refill_full_stripes(dc);
631 if (array_freelist_empty(&buf->freelist))
632 return false;
633 }
634
635 start_pos = buf->last_scanned;
636 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
637
638 if (bkey_cmp(&buf->last_scanned, &end) < 0)
639 return false;
640
641 /*
642 * If we get to the end start scanning again from the beginning, and
643 * only scan up to where we initially started scanning from:
644 */
645 buf->last_scanned = start;
646 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
647
648 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
649 }
650
651 static int bch_writeback_thread(void *arg)
652 {
653 struct cached_dev *dc = arg;
654 struct cache_set *c = dc->disk.c;
655 bool searched_full_index;
656
657 bch_ratelimit_reset(&dc->writeback_rate);
658
659 while (!kthread_should_stop() &&
660 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
661 down_write(&dc->writeback_lock);
662 set_current_state(TASK_INTERRUPTIBLE);
663 /*
664 * If the bache device is detaching, skip here and continue
665 * to perform writeback. Otherwise, if no dirty data on cache,
666 * or there is dirty data on cache but writeback is disabled,
667 * the writeback thread should sleep here and wait for others
668 * to wake up it.
669 */
670 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
671 (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
672 up_write(&dc->writeback_lock);
673
674 if (kthread_should_stop() ||
675 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
676 set_current_state(TASK_RUNNING);
677 break;
678 }
679
680 schedule();
681 continue;
682 }
683 set_current_state(TASK_RUNNING);
684
685 searched_full_index = refill_dirty(dc);
686
687 if (searched_full_index &&
688 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
689 atomic_set(&dc->has_dirty, 0);
690 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
691 bch_write_bdev_super(dc, NULL);
692 /*
693 * If bcache device is detaching via sysfs interface,
694 * writeback thread should stop after there is no dirty
695 * data on cache. BCACHE_DEV_DETACHING flag is set in
696 * bch_cached_dev_detach().
697 */
698 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
699 up_write(&dc->writeback_lock);
700 break;
701 }
702
703 /*
704 * When dirty data rate is high (e.g. 50%+), there might
705 * be heavy buckets fragmentation after writeback
706 * finished, which hurts following write performance.
707 * If users really care about write performance they
708 * may set BCH_ENABLE_AUTO_GC via sysfs, then when
709 * BCH_DO_AUTO_GC is set, garbage collection thread
710 * will be wake up here. After moving gc, the shrunk
711 * btree and discarded free buckets SSD space may be
712 * helpful for following write requests.
713 */
714 if (c->gc_after_writeback ==
715 (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
716 c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
717 force_wake_up_gc(c);
718 }
719 }
720
721 up_write(&dc->writeback_lock);
722
723 read_dirty(dc);
724
725 if (searched_full_index) {
726 unsigned int delay = dc->writeback_delay * HZ;
727
728 while (delay &&
729 !kthread_should_stop() &&
730 !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
731 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
732 delay = schedule_timeout_interruptible(delay);
733
734 bch_ratelimit_reset(&dc->writeback_rate);
735 }
736 }
737
738 if (dc->writeback_write_wq) {
739 flush_workqueue(dc->writeback_write_wq);
740 destroy_workqueue(dc->writeback_write_wq);
741 }
742 cached_dev_put(dc);
743 wait_for_kthread_stop();
744
745 return 0;
746 }
747
748 /* Init */
749 #define INIT_KEYS_EACH_TIME 500000
750 #define INIT_KEYS_SLEEP_MS 100
751
752 struct sectors_dirty_init {
753 struct btree_op op;
754 unsigned int inode;
755 size_t count;
756 struct bkey start;
757 };
758
759 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
760 struct bkey *k)
761 {
762 struct sectors_dirty_init *op = container_of(_op,
763 struct sectors_dirty_init, op);
764 if (KEY_INODE(k) > op->inode)
765 return MAP_DONE;
766
767 if (KEY_DIRTY(k))
768 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
769 KEY_START(k), KEY_SIZE(k));
770
771 op->count++;
772 if (atomic_read(&b->c->search_inflight) &&
773 !(op->count % INIT_KEYS_EACH_TIME)) {
774 bkey_copy_key(&op->start, k);
775 return -EAGAIN;
776 }
777
778 return MAP_CONTINUE;
779 }
780
781 void bch_sectors_dirty_init(struct bcache_device *d)
782 {
783 struct sectors_dirty_init op;
784 int ret;
785
786 bch_btree_op_init(&op.op, -1);
787 op.inode = d->id;
788 op.count = 0;
789 op.start = KEY(op.inode, 0, 0);
790
791 do {
792 ret = bch_btree_map_keys(&op.op, d->c, &op.start,
793 sectors_dirty_init_fn, 0);
794 if (ret == -EAGAIN)
795 schedule_timeout_interruptible(
796 msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
797 else if (ret < 0) {
798 pr_warn("sectors dirty init failed, ret=%d!", ret);
799 break;
800 }
801 } while (ret == -EAGAIN);
802 }
803
804 void bch_cached_dev_writeback_init(struct cached_dev *dc)
805 {
806 sema_init(&dc->in_flight, 64);
807 init_rwsem(&dc->writeback_lock);
808 bch_keybuf_init(&dc->writeback_keys);
809
810 dc->writeback_metadata = true;
811 dc->writeback_running = false;
812 dc->writeback_percent = 10;
813 dc->writeback_delay = 30;
814 atomic_long_set(&dc->writeback_rate.rate, 1024);
815 dc->writeback_rate_minimum = 8;
816
817 dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
818 dc->writeback_rate_p_term_inverse = 40;
819 dc->writeback_rate_i_term_inverse = 10000;
820
821 WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
822 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
823 }
824
825 int bch_cached_dev_writeback_start(struct cached_dev *dc)
826 {
827 dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
828 WQ_MEM_RECLAIM, 0);
829 if (!dc->writeback_write_wq)
830 return -ENOMEM;
831
832 cached_dev_get(dc);
833 dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
834 "bcache_writeback");
835 if (IS_ERR(dc->writeback_thread)) {
836 cached_dev_put(dc);
837 return PTR_ERR(dc->writeback_thread);
838 }
839 dc->writeback_running = true;
840
841 WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
842 schedule_delayed_work(&dc->writeback_rate_update,
843 dc->writeback_rate_update_seconds * HZ);
844
845 bch_writeback_queue(dc);
846
847 return 0;
848 }