]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/md/dm-kcopyd.c
Merge branch 'net-hns-bugfixes-for-HNS-Driver'
[thirdparty/kernel/stable.git] / drivers / md / dm-kcopyd.c
1 /*
2 * Copyright (C) 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2006 Red Hat GmbH
4 *
5 * This file is released under the GPL.
6 *
7 * Kcopyd provides a simple interface for copying an area of one
8 * block-device to one or more other block-devices, with an asynchronous
9 * completion notification.
10 */
11
12 #include <linux/types.h>
13 #include <linux/atomic.h>
14 #include <linux/blkdev.h>
15 #include <linux/fs.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/workqueue.h>
24 #include <linux/mutex.h>
25 #include <linux/delay.h>
26 #include <linux/device-mapper.h>
27 #include <linux/dm-kcopyd.h>
28
29 #include "dm-core.h"
30
31 #define SUB_JOB_SIZE 128
32 #define SPLIT_COUNT 8
33 #define MIN_JOBS 8
34 #define RESERVE_PAGES (DIV_ROUND_UP(SUB_JOB_SIZE << SECTOR_SHIFT, PAGE_SIZE))
35
36 /*-----------------------------------------------------------------
37 * Each kcopyd client has its own little pool of preallocated
38 * pages for kcopyd io.
39 *---------------------------------------------------------------*/
40 struct dm_kcopyd_client {
41 struct page_list *pages;
42 unsigned nr_reserved_pages;
43 unsigned nr_free_pages;
44
45 struct dm_io_client *io_client;
46
47 wait_queue_head_t destroyq;
48
49 mempool_t job_pool;
50
51 struct workqueue_struct *kcopyd_wq;
52 struct work_struct kcopyd_work;
53
54 struct dm_kcopyd_throttle *throttle;
55
56 atomic_t nr_jobs;
57
58 /*
59 * We maintain four lists of jobs:
60 *
61 * i) jobs waiting for pages
62 * ii) jobs that have pages, and are waiting for the io to be issued.
63 * iii) jobs that don't need to do any IO and just run a callback
64 * iv) jobs that have completed.
65 *
66 * All four of these are protected by job_lock.
67 */
68 spinlock_t job_lock;
69 struct list_head callback_jobs;
70 struct list_head complete_jobs;
71 struct list_head io_jobs;
72 struct list_head pages_jobs;
73 };
74
75 static struct page_list zero_page_list;
76
77 static DEFINE_SPINLOCK(throttle_spinlock);
78
79 /*
80 * IO/IDLE accounting slowly decays after (1 << ACCOUNT_INTERVAL_SHIFT) period.
81 * When total_period >= (1 << ACCOUNT_INTERVAL_SHIFT) the counters are divided
82 * by 2.
83 */
84 #define ACCOUNT_INTERVAL_SHIFT SHIFT_HZ
85
86 /*
87 * Sleep this number of milliseconds.
88 *
89 * The value was decided experimentally.
90 * Smaller values seem to cause an increased copy rate above the limit.
91 * The reason for this is unknown but possibly due to jiffies rounding errors
92 * or read/write cache inside the disk.
93 */
94 #define SLEEP_MSEC 100
95
96 /*
97 * Maximum number of sleep events. There is a theoretical livelock if more
98 * kcopyd clients do work simultaneously which this limit avoids.
99 */
100 #define MAX_SLEEPS 10
101
102 static void io_job_start(struct dm_kcopyd_throttle *t)
103 {
104 unsigned throttle, now, difference;
105 int slept = 0, skew;
106
107 if (unlikely(!t))
108 return;
109
110 try_again:
111 spin_lock_irq(&throttle_spinlock);
112
113 throttle = READ_ONCE(t->throttle);
114
115 if (likely(throttle >= 100))
116 goto skip_limit;
117
118 now = jiffies;
119 difference = now - t->last_jiffies;
120 t->last_jiffies = now;
121 if (t->num_io_jobs)
122 t->io_period += difference;
123 t->total_period += difference;
124
125 /*
126 * Maintain sane values if we got a temporary overflow.
127 */
128 if (unlikely(t->io_period > t->total_period))
129 t->io_period = t->total_period;
130
131 if (unlikely(t->total_period >= (1 << ACCOUNT_INTERVAL_SHIFT))) {
132 int shift = fls(t->total_period >> ACCOUNT_INTERVAL_SHIFT);
133 t->total_period >>= shift;
134 t->io_period >>= shift;
135 }
136
137 skew = t->io_period - throttle * t->total_period / 100;
138
139 if (unlikely(skew > 0) && slept < MAX_SLEEPS) {
140 slept++;
141 spin_unlock_irq(&throttle_spinlock);
142 msleep(SLEEP_MSEC);
143 goto try_again;
144 }
145
146 skip_limit:
147 t->num_io_jobs++;
148
149 spin_unlock_irq(&throttle_spinlock);
150 }
151
152 static void io_job_finish(struct dm_kcopyd_throttle *t)
153 {
154 unsigned long flags;
155
156 if (unlikely(!t))
157 return;
158
159 spin_lock_irqsave(&throttle_spinlock, flags);
160
161 t->num_io_jobs--;
162
163 if (likely(READ_ONCE(t->throttle) >= 100))
164 goto skip_limit;
165
166 if (!t->num_io_jobs) {
167 unsigned now, difference;
168
169 now = jiffies;
170 difference = now - t->last_jiffies;
171 t->last_jiffies = now;
172
173 t->io_period += difference;
174 t->total_period += difference;
175
176 /*
177 * Maintain sane values if we got a temporary overflow.
178 */
179 if (unlikely(t->io_period > t->total_period))
180 t->io_period = t->total_period;
181 }
182
183 skip_limit:
184 spin_unlock_irqrestore(&throttle_spinlock, flags);
185 }
186
187
188 static void wake(struct dm_kcopyd_client *kc)
189 {
190 queue_work(kc->kcopyd_wq, &kc->kcopyd_work);
191 }
192
193 /*
194 * Obtain one page for the use of kcopyd.
195 */
196 static struct page_list *alloc_pl(gfp_t gfp)
197 {
198 struct page_list *pl;
199
200 pl = kmalloc(sizeof(*pl), gfp);
201 if (!pl)
202 return NULL;
203
204 pl->page = alloc_page(gfp);
205 if (!pl->page) {
206 kfree(pl);
207 return NULL;
208 }
209
210 return pl;
211 }
212
213 static void free_pl(struct page_list *pl)
214 {
215 __free_page(pl->page);
216 kfree(pl);
217 }
218
219 /*
220 * Add the provided pages to a client's free page list, releasing
221 * back to the system any beyond the reserved_pages limit.
222 */
223 static void kcopyd_put_pages(struct dm_kcopyd_client *kc, struct page_list *pl)
224 {
225 struct page_list *next;
226
227 do {
228 next = pl->next;
229
230 if (kc->nr_free_pages >= kc->nr_reserved_pages)
231 free_pl(pl);
232 else {
233 pl->next = kc->pages;
234 kc->pages = pl;
235 kc->nr_free_pages++;
236 }
237
238 pl = next;
239 } while (pl);
240 }
241
242 static int kcopyd_get_pages(struct dm_kcopyd_client *kc,
243 unsigned int nr, struct page_list **pages)
244 {
245 struct page_list *pl;
246
247 *pages = NULL;
248
249 do {
250 pl = alloc_pl(__GFP_NOWARN | __GFP_NORETRY | __GFP_KSWAPD_RECLAIM);
251 if (unlikely(!pl)) {
252 /* Use reserved pages */
253 pl = kc->pages;
254 if (unlikely(!pl))
255 goto out_of_memory;
256 kc->pages = pl->next;
257 kc->nr_free_pages--;
258 }
259 pl->next = *pages;
260 *pages = pl;
261 } while (--nr);
262
263 return 0;
264
265 out_of_memory:
266 if (*pages)
267 kcopyd_put_pages(kc, *pages);
268 return -ENOMEM;
269 }
270
271 /*
272 * These three functions resize the page pool.
273 */
274 static void drop_pages(struct page_list *pl)
275 {
276 struct page_list *next;
277
278 while (pl) {
279 next = pl->next;
280 free_pl(pl);
281 pl = next;
282 }
283 }
284
285 /*
286 * Allocate and reserve nr_pages for the use of a specific client.
287 */
288 static int client_reserve_pages(struct dm_kcopyd_client *kc, unsigned nr_pages)
289 {
290 unsigned i;
291 struct page_list *pl = NULL, *next;
292
293 for (i = 0; i < nr_pages; i++) {
294 next = alloc_pl(GFP_KERNEL);
295 if (!next) {
296 if (pl)
297 drop_pages(pl);
298 return -ENOMEM;
299 }
300 next->next = pl;
301 pl = next;
302 }
303
304 kc->nr_reserved_pages += nr_pages;
305 kcopyd_put_pages(kc, pl);
306
307 return 0;
308 }
309
310 static void client_free_pages(struct dm_kcopyd_client *kc)
311 {
312 BUG_ON(kc->nr_free_pages != kc->nr_reserved_pages);
313 drop_pages(kc->pages);
314 kc->pages = NULL;
315 kc->nr_free_pages = kc->nr_reserved_pages = 0;
316 }
317
318 /*-----------------------------------------------------------------
319 * kcopyd_jobs need to be allocated by the *clients* of kcopyd,
320 * for this reason we use a mempool to prevent the client from
321 * ever having to do io (which could cause a deadlock).
322 *---------------------------------------------------------------*/
323 struct kcopyd_job {
324 struct dm_kcopyd_client *kc;
325 struct list_head list;
326 unsigned long flags;
327
328 /*
329 * Error state of the job.
330 */
331 int read_err;
332 unsigned long write_err;
333
334 /*
335 * Either READ or WRITE
336 */
337 int rw;
338 struct dm_io_region source;
339
340 /*
341 * The destinations for the transfer.
342 */
343 unsigned int num_dests;
344 struct dm_io_region dests[DM_KCOPYD_MAX_REGIONS];
345
346 struct page_list *pages;
347
348 /*
349 * Set this to ensure you are notified when the job has
350 * completed. 'context' is for callback to use.
351 */
352 dm_kcopyd_notify_fn fn;
353 void *context;
354
355 /*
356 * These fields are only used if the job has been split
357 * into more manageable parts.
358 */
359 struct mutex lock;
360 atomic_t sub_jobs;
361 sector_t progress;
362 sector_t write_offset;
363
364 struct kcopyd_job *master_job;
365 };
366
367 static struct kmem_cache *_job_cache;
368
369 int __init dm_kcopyd_init(void)
370 {
371 _job_cache = kmem_cache_create("kcopyd_job",
372 sizeof(struct kcopyd_job) * (SPLIT_COUNT + 1),
373 __alignof__(struct kcopyd_job), 0, NULL);
374 if (!_job_cache)
375 return -ENOMEM;
376
377 zero_page_list.next = &zero_page_list;
378 zero_page_list.page = ZERO_PAGE(0);
379
380 return 0;
381 }
382
383 void dm_kcopyd_exit(void)
384 {
385 kmem_cache_destroy(_job_cache);
386 _job_cache = NULL;
387 }
388
389 /*
390 * Functions to push and pop a job onto the head of a given job
391 * list.
392 */
393 static struct kcopyd_job *pop_io_job(struct list_head *jobs,
394 struct dm_kcopyd_client *kc)
395 {
396 struct kcopyd_job *job;
397
398 /*
399 * For I/O jobs, pop any read, any write without sequential write
400 * constraint and sequential writes that are at the right position.
401 */
402 list_for_each_entry(job, jobs, list) {
403 if (job->rw == READ || !test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
404 list_del(&job->list);
405 return job;
406 }
407
408 if (job->write_offset == job->master_job->write_offset) {
409 job->master_job->write_offset += job->source.count;
410 list_del(&job->list);
411 return job;
412 }
413 }
414
415 return NULL;
416 }
417
418 static struct kcopyd_job *pop(struct list_head *jobs,
419 struct dm_kcopyd_client *kc)
420 {
421 struct kcopyd_job *job = NULL;
422 unsigned long flags;
423
424 spin_lock_irqsave(&kc->job_lock, flags);
425
426 if (!list_empty(jobs)) {
427 if (jobs == &kc->io_jobs)
428 job = pop_io_job(jobs, kc);
429 else {
430 job = list_entry(jobs->next, struct kcopyd_job, list);
431 list_del(&job->list);
432 }
433 }
434 spin_unlock_irqrestore(&kc->job_lock, flags);
435
436 return job;
437 }
438
439 static void push(struct list_head *jobs, struct kcopyd_job *job)
440 {
441 unsigned long flags;
442 struct dm_kcopyd_client *kc = job->kc;
443
444 spin_lock_irqsave(&kc->job_lock, flags);
445 list_add_tail(&job->list, jobs);
446 spin_unlock_irqrestore(&kc->job_lock, flags);
447 }
448
449
450 static void push_head(struct list_head *jobs, struct kcopyd_job *job)
451 {
452 unsigned long flags;
453 struct dm_kcopyd_client *kc = job->kc;
454
455 spin_lock_irqsave(&kc->job_lock, flags);
456 list_add(&job->list, jobs);
457 spin_unlock_irqrestore(&kc->job_lock, flags);
458 }
459
460 /*
461 * These three functions process 1 item from the corresponding
462 * job list.
463 *
464 * They return:
465 * < 0: error
466 * 0: success
467 * > 0: can't process yet.
468 */
469 static int run_complete_job(struct kcopyd_job *job)
470 {
471 void *context = job->context;
472 int read_err = job->read_err;
473 unsigned long write_err = job->write_err;
474 dm_kcopyd_notify_fn fn = job->fn;
475 struct dm_kcopyd_client *kc = job->kc;
476
477 if (job->pages && job->pages != &zero_page_list)
478 kcopyd_put_pages(kc, job->pages);
479 /*
480 * If this is the master job, the sub jobs have already
481 * completed so we can free everything.
482 */
483 if (job->master_job == job) {
484 mutex_destroy(&job->lock);
485 mempool_free(job, &kc->job_pool);
486 }
487 fn(read_err, write_err, context);
488
489 if (atomic_dec_and_test(&kc->nr_jobs))
490 wake_up(&kc->destroyq);
491
492 cond_resched();
493
494 return 0;
495 }
496
497 static void complete_io(unsigned long error, void *context)
498 {
499 struct kcopyd_job *job = (struct kcopyd_job *) context;
500 struct dm_kcopyd_client *kc = job->kc;
501
502 io_job_finish(kc->throttle);
503
504 if (error) {
505 if (op_is_write(job->rw))
506 job->write_err |= error;
507 else
508 job->read_err = 1;
509
510 if (!test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
511 push(&kc->complete_jobs, job);
512 wake(kc);
513 return;
514 }
515 }
516
517 if (op_is_write(job->rw))
518 push(&kc->complete_jobs, job);
519
520 else {
521 job->rw = WRITE;
522 push(&kc->io_jobs, job);
523 }
524
525 wake(kc);
526 }
527
528 /*
529 * Request io on as many buffer heads as we can currently get for
530 * a particular job.
531 */
532 static int run_io_job(struct kcopyd_job *job)
533 {
534 int r;
535 struct dm_io_request io_req = {
536 .bi_op = job->rw,
537 .bi_op_flags = 0,
538 .mem.type = DM_IO_PAGE_LIST,
539 .mem.ptr.pl = job->pages,
540 .mem.offset = 0,
541 .notify.fn = complete_io,
542 .notify.context = job,
543 .client = job->kc->io_client,
544 };
545
546 /*
547 * If we need to write sequentially and some reads or writes failed,
548 * no point in continuing.
549 */
550 if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
551 job->master_job->write_err)
552 return -EIO;
553
554 io_job_start(job->kc->throttle);
555
556 if (job->rw == READ)
557 r = dm_io(&io_req, 1, &job->source, NULL);
558 else
559 r = dm_io(&io_req, job->num_dests, job->dests, NULL);
560
561 return r;
562 }
563
564 static int run_pages_job(struct kcopyd_job *job)
565 {
566 int r;
567 unsigned nr_pages = dm_div_up(job->dests[0].count, PAGE_SIZE >> 9);
568
569 r = kcopyd_get_pages(job->kc, nr_pages, &job->pages);
570 if (!r) {
571 /* this job is ready for io */
572 push(&job->kc->io_jobs, job);
573 return 0;
574 }
575
576 if (r == -ENOMEM)
577 /* can't complete now */
578 return 1;
579
580 return r;
581 }
582
583 /*
584 * Run through a list for as long as possible. Returns the count
585 * of successful jobs.
586 */
587 static int process_jobs(struct list_head *jobs, struct dm_kcopyd_client *kc,
588 int (*fn) (struct kcopyd_job *))
589 {
590 struct kcopyd_job *job;
591 int r, count = 0;
592
593 while ((job = pop(jobs, kc))) {
594
595 r = fn(job);
596
597 if (r < 0) {
598 /* error this rogue job */
599 if (op_is_write(job->rw))
600 job->write_err = (unsigned long) -1L;
601 else
602 job->read_err = 1;
603 push(&kc->complete_jobs, job);
604 break;
605 }
606
607 if (r > 0) {
608 /*
609 * We couldn't service this job ATM, so
610 * push this job back onto the list.
611 */
612 push_head(jobs, job);
613 break;
614 }
615
616 count++;
617 }
618
619 return count;
620 }
621
622 /*
623 * kcopyd does this every time it's woken up.
624 */
625 static void do_work(struct work_struct *work)
626 {
627 struct dm_kcopyd_client *kc = container_of(work,
628 struct dm_kcopyd_client, kcopyd_work);
629 struct blk_plug plug;
630 unsigned long flags;
631
632 /*
633 * The order that these are called is *very* important.
634 * complete jobs can free some pages for pages jobs.
635 * Pages jobs when successful will jump onto the io jobs
636 * list. io jobs call wake when they complete and it all
637 * starts again.
638 */
639 spin_lock_irqsave(&kc->job_lock, flags);
640 list_splice_tail_init(&kc->callback_jobs, &kc->complete_jobs);
641 spin_unlock_irqrestore(&kc->job_lock, flags);
642
643 blk_start_plug(&plug);
644 process_jobs(&kc->complete_jobs, kc, run_complete_job);
645 process_jobs(&kc->pages_jobs, kc, run_pages_job);
646 process_jobs(&kc->io_jobs, kc, run_io_job);
647 blk_finish_plug(&plug);
648 }
649
650 /*
651 * If we are copying a small region we just dispatch a single job
652 * to do the copy, otherwise the io has to be split up into many
653 * jobs.
654 */
655 static void dispatch_job(struct kcopyd_job *job)
656 {
657 struct dm_kcopyd_client *kc = job->kc;
658 atomic_inc(&kc->nr_jobs);
659 if (unlikely(!job->source.count))
660 push(&kc->callback_jobs, job);
661 else if (job->pages == &zero_page_list)
662 push(&kc->io_jobs, job);
663 else
664 push(&kc->pages_jobs, job);
665 wake(kc);
666 }
667
668 static void segment_complete(int read_err, unsigned long write_err,
669 void *context)
670 {
671 /* FIXME: tidy this function */
672 sector_t progress = 0;
673 sector_t count = 0;
674 struct kcopyd_job *sub_job = (struct kcopyd_job *) context;
675 struct kcopyd_job *job = sub_job->master_job;
676 struct dm_kcopyd_client *kc = job->kc;
677
678 mutex_lock(&job->lock);
679
680 /* update the error */
681 if (read_err)
682 job->read_err = 1;
683
684 if (write_err)
685 job->write_err |= write_err;
686
687 /*
688 * Only dispatch more work if there hasn't been an error.
689 */
690 if ((!job->read_err && !job->write_err) ||
691 test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
692 /* get the next chunk of work */
693 progress = job->progress;
694 count = job->source.count - progress;
695 if (count) {
696 if (count > SUB_JOB_SIZE)
697 count = SUB_JOB_SIZE;
698
699 job->progress += count;
700 }
701 }
702 mutex_unlock(&job->lock);
703
704 if (count) {
705 int i;
706
707 *sub_job = *job;
708 sub_job->write_offset = progress;
709 sub_job->source.sector += progress;
710 sub_job->source.count = count;
711
712 for (i = 0; i < job->num_dests; i++) {
713 sub_job->dests[i].sector += progress;
714 sub_job->dests[i].count = count;
715 }
716
717 sub_job->fn = segment_complete;
718 sub_job->context = sub_job;
719 dispatch_job(sub_job);
720
721 } else if (atomic_dec_and_test(&job->sub_jobs)) {
722
723 /*
724 * Queue the completion callback to the kcopyd thread.
725 *
726 * Some callers assume that all the completions are called
727 * from a single thread and don't race with each other.
728 *
729 * We must not call the callback directly here because this
730 * code may not be executing in the thread.
731 */
732 push(&kc->complete_jobs, job);
733 wake(kc);
734 }
735 }
736
737 /*
738 * Create some sub jobs to share the work between them.
739 */
740 static void split_job(struct kcopyd_job *master_job)
741 {
742 int i;
743
744 atomic_inc(&master_job->kc->nr_jobs);
745
746 atomic_set(&master_job->sub_jobs, SPLIT_COUNT);
747 for (i = 0; i < SPLIT_COUNT; i++) {
748 master_job[i + 1].master_job = master_job;
749 segment_complete(0, 0u, &master_job[i + 1]);
750 }
751 }
752
753 void dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
754 unsigned int num_dests, struct dm_io_region *dests,
755 unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
756 {
757 struct kcopyd_job *job;
758 int i;
759
760 /*
761 * Allocate an array of jobs consisting of one master job
762 * followed by SPLIT_COUNT sub jobs.
763 */
764 job = mempool_alloc(&kc->job_pool, GFP_NOIO);
765 mutex_init(&job->lock);
766
767 /*
768 * set up for the read.
769 */
770 job->kc = kc;
771 job->flags = flags;
772 job->read_err = 0;
773 job->write_err = 0;
774
775 job->num_dests = num_dests;
776 memcpy(&job->dests, dests, sizeof(*dests) * num_dests);
777
778 /*
779 * If one of the destination is a host-managed zoned block device,
780 * we need to write sequentially. If one of the destination is a
781 * host-aware device, then leave it to the caller to choose what to do.
782 */
783 if (!test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
784 for (i = 0; i < job->num_dests; i++) {
785 if (bdev_zoned_model(dests[i].bdev) == BLK_ZONED_HM) {
786 set_bit(DM_KCOPYD_WRITE_SEQ, &job->flags);
787 break;
788 }
789 }
790 }
791
792 /*
793 * If we need to write sequentially, errors cannot be ignored.
794 */
795 if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
796 test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags))
797 clear_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags);
798
799 if (from) {
800 job->source = *from;
801 job->pages = NULL;
802 job->rw = READ;
803 } else {
804 memset(&job->source, 0, sizeof job->source);
805 job->source.count = job->dests[0].count;
806 job->pages = &zero_page_list;
807
808 /*
809 * Use WRITE ZEROES to optimize zeroing if all dests support it.
810 */
811 job->rw = REQ_OP_WRITE_ZEROES;
812 for (i = 0; i < job->num_dests; i++)
813 if (!bdev_write_zeroes_sectors(job->dests[i].bdev)) {
814 job->rw = WRITE;
815 break;
816 }
817 }
818
819 job->fn = fn;
820 job->context = context;
821 job->master_job = job;
822 job->write_offset = 0;
823
824 if (job->source.count <= SUB_JOB_SIZE)
825 dispatch_job(job);
826 else {
827 job->progress = 0;
828 split_job(job);
829 }
830 }
831 EXPORT_SYMBOL(dm_kcopyd_copy);
832
833 void dm_kcopyd_zero(struct dm_kcopyd_client *kc,
834 unsigned num_dests, struct dm_io_region *dests,
835 unsigned flags, dm_kcopyd_notify_fn fn, void *context)
836 {
837 dm_kcopyd_copy(kc, NULL, num_dests, dests, flags, fn, context);
838 }
839 EXPORT_SYMBOL(dm_kcopyd_zero);
840
841 void *dm_kcopyd_prepare_callback(struct dm_kcopyd_client *kc,
842 dm_kcopyd_notify_fn fn, void *context)
843 {
844 struct kcopyd_job *job;
845
846 job = mempool_alloc(&kc->job_pool, GFP_NOIO);
847
848 memset(job, 0, sizeof(struct kcopyd_job));
849 job->kc = kc;
850 job->fn = fn;
851 job->context = context;
852 job->master_job = job;
853
854 atomic_inc(&kc->nr_jobs);
855
856 return job;
857 }
858 EXPORT_SYMBOL(dm_kcopyd_prepare_callback);
859
860 void dm_kcopyd_do_callback(void *j, int read_err, unsigned long write_err)
861 {
862 struct kcopyd_job *job = j;
863 struct dm_kcopyd_client *kc = job->kc;
864
865 job->read_err = read_err;
866 job->write_err = write_err;
867
868 push(&kc->callback_jobs, job);
869 wake(kc);
870 }
871 EXPORT_SYMBOL(dm_kcopyd_do_callback);
872
873 /*
874 * Cancels a kcopyd job, eg. someone might be deactivating a
875 * mirror.
876 */
877 #if 0
878 int kcopyd_cancel(struct kcopyd_job *job, int block)
879 {
880 /* FIXME: finish */
881 return -1;
882 }
883 #endif /* 0 */
884
885 /*-----------------------------------------------------------------
886 * Client setup
887 *---------------------------------------------------------------*/
888 struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle *throttle)
889 {
890 int r;
891 struct dm_kcopyd_client *kc;
892
893 kc = kzalloc(sizeof(*kc), GFP_KERNEL);
894 if (!kc)
895 return ERR_PTR(-ENOMEM);
896
897 spin_lock_init(&kc->job_lock);
898 INIT_LIST_HEAD(&kc->callback_jobs);
899 INIT_LIST_HEAD(&kc->complete_jobs);
900 INIT_LIST_HEAD(&kc->io_jobs);
901 INIT_LIST_HEAD(&kc->pages_jobs);
902 kc->throttle = throttle;
903
904 r = mempool_init_slab_pool(&kc->job_pool, MIN_JOBS, _job_cache);
905 if (r)
906 goto bad_slab;
907
908 INIT_WORK(&kc->kcopyd_work, do_work);
909 kc->kcopyd_wq = alloc_workqueue("kcopyd", WQ_MEM_RECLAIM, 0);
910 if (!kc->kcopyd_wq) {
911 r = -ENOMEM;
912 goto bad_workqueue;
913 }
914
915 kc->pages = NULL;
916 kc->nr_reserved_pages = kc->nr_free_pages = 0;
917 r = client_reserve_pages(kc, RESERVE_PAGES);
918 if (r)
919 goto bad_client_pages;
920
921 kc->io_client = dm_io_client_create();
922 if (IS_ERR(kc->io_client)) {
923 r = PTR_ERR(kc->io_client);
924 goto bad_io_client;
925 }
926
927 init_waitqueue_head(&kc->destroyq);
928 atomic_set(&kc->nr_jobs, 0);
929
930 return kc;
931
932 bad_io_client:
933 client_free_pages(kc);
934 bad_client_pages:
935 destroy_workqueue(kc->kcopyd_wq);
936 bad_workqueue:
937 mempool_exit(&kc->job_pool);
938 bad_slab:
939 kfree(kc);
940
941 return ERR_PTR(r);
942 }
943 EXPORT_SYMBOL(dm_kcopyd_client_create);
944
945 void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc)
946 {
947 /* Wait for completion of all jobs submitted by this client. */
948 wait_event(kc->destroyq, !atomic_read(&kc->nr_jobs));
949
950 BUG_ON(!list_empty(&kc->callback_jobs));
951 BUG_ON(!list_empty(&kc->complete_jobs));
952 BUG_ON(!list_empty(&kc->io_jobs));
953 BUG_ON(!list_empty(&kc->pages_jobs));
954 destroy_workqueue(kc->kcopyd_wq);
955 dm_io_client_destroy(kc->io_client);
956 client_free_pages(kc);
957 mempool_exit(&kc->job_pool);
958 kfree(kc);
959 }
960 EXPORT_SYMBOL(dm_kcopyd_client_destroy);