]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/md/dm-zoned-target.c
KVM: x86/mmu: Remove unnecessary ‘NULL’ values from sptep
[thirdparty/kernel/stable.git] / drivers / md / dm-zoned-target.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2017 Western Digital Corporation or its affiliates.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-zoned.h"
9
10 #include <linux/module.h>
11
12 #define DM_MSG_PREFIX "zoned"
13
14 #define DMZ_MIN_BIOS 8192
15
16 /*
17 * Zone BIO context.
18 */
19 struct dmz_bioctx {
20 struct dmz_dev *dev;
21 struct dm_zone *zone;
22 struct bio *bio;
23 refcount_t ref;
24 };
25
26 /*
27 * Chunk work descriptor.
28 */
29 struct dm_chunk_work {
30 struct work_struct work;
31 refcount_t refcount;
32 struct dmz_target *target;
33 unsigned int chunk;
34 struct bio_list bio_list;
35 };
36
37 /*
38 * Target descriptor.
39 */
40 struct dmz_target {
41 struct dm_dev **ddev;
42 unsigned int nr_ddevs;
43
44 unsigned int flags;
45
46 /* Zoned block device information */
47 struct dmz_dev *dev;
48
49 /* For metadata handling */
50 struct dmz_metadata *metadata;
51
52 /* For chunk work */
53 struct radix_tree_root chunk_rxtree;
54 struct workqueue_struct *chunk_wq;
55 struct mutex chunk_lock;
56
57 /* For cloned BIOs to zones */
58 struct bio_set bio_set;
59
60 /* For flush */
61 spinlock_t flush_lock;
62 struct bio_list flush_list;
63 struct delayed_work flush_work;
64 struct workqueue_struct *flush_wq;
65 };
66
67 /*
68 * Flush intervals (seconds).
69 */
70 #define DMZ_FLUSH_PERIOD (10 * HZ)
71
72 /*
73 * Target BIO completion.
74 */
75 static inline void dmz_bio_endio(struct bio *bio, blk_status_t status)
76 {
77 struct dmz_bioctx *bioctx =
78 dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
79
80 if (status != BLK_STS_OK && bio->bi_status == BLK_STS_OK)
81 bio->bi_status = status;
82 if (bioctx->dev && bio->bi_status != BLK_STS_OK)
83 bioctx->dev->flags |= DMZ_CHECK_BDEV;
84
85 if (refcount_dec_and_test(&bioctx->ref)) {
86 struct dm_zone *zone = bioctx->zone;
87
88 if (zone) {
89 if (bio->bi_status != BLK_STS_OK &&
90 bio_op(bio) == REQ_OP_WRITE &&
91 dmz_is_seq(zone))
92 set_bit(DMZ_SEQ_WRITE_ERR, &zone->flags);
93 dmz_deactivate_zone(zone);
94 }
95 bio_endio(bio);
96 }
97 }
98
99 /*
100 * Completion callback for an internally cloned target BIO. This terminates the
101 * target BIO when there are no more references to its context.
102 */
103 static void dmz_clone_endio(struct bio *clone)
104 {
105 struct dmz_bioctx *bioctx = clone->bi_private;
106 blk_status_t status = clone->bi_status;
107
108 bio_put(clone);
109 dmz_bio_endio(bioctx->bio, status);
110 }
111
112 /*
113 * Issue a clone of a target BIO. The clone may only partially process the
114 * original target BIO.
115 */
116 static int dmz_submit_bio(struct dmz_target *dmz, struct dm_zone *zone,
117 struct bio *bio, sector_t chunk_block,
118 unsigned int nr_blocks)
119 {
120 struct dmz_bioctx *bioctx =
121 dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
122 struct dmz_dev *dev = zone->dev;
123 struct bio *clone;
124
125 if (dev->flags & DMZ_BDEV_DYING)
126 return -EIO;
127
128 clone = bio_alloc_clone(dev->bdev, bio, GFP_NOIO, &dmz->bio_set);
129 if (!clone)
130 return -ENOMEM;
131
132 bioctx->dev = dev;
133 clone->bi_iter.bi_sector =
134 dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block);
135 clone->bi_iter.bi_size = dmz_blk2sect(nr_blocks) << SECTOR_SHIFT;
136 clone->bi_end_io = dmz_clone_endio;
137 clone->bi_private = bioctx;
138
139 bio_advance(bio, clone->bi_iter.bi_size);
140
141 refcount_inc(&bioctx->ref);
142 submit_bio_noacct(clone);
143
144 if (bio_op(bio) == REQ_OP_WRITE && dmz_is_seq(zone))
145 zone->wp_block += nr_blocks;
146
147 return 0;
148 }
149
150 /*
151 * Zero out pages of discarded blocks accessed by a read BIO.
152 */
153 static void dmz_handle_read_zero(struct dmz_target *dmz, struct bio *bio,
154 sector_t chunk_block, unsigned int nr_blocks)
155 {
156 unsigned int size = nr_blocks << DMZ_BLOCK_SHIFT;
157
158 /* Clear nr_blocks */
159 swap(bio->bi_iter.bi_size, size);
160 zero_fill_bio(bio);
161 swap(bio->bi_iter.bi_size, size);
162
163 bio_advance(bio, size);
164 }
165
166 /*
167 * Process a read BIO.
168 */
169 static int dmz_handle_read(struct dmz_target *dmz, struct dm_zone *zone,
170 struct bio *bio)
171 {
172 struct dmz_metadata *zmd = dmz->metadata;
173 sector_t chunk_block = dmz_chunk_block(zmd, dmz_bio_block(bio));
174 unsigned int nr_blocks = dmz_bio_blocks(bio);
175 sector_t end_block = chunk_block + nr_blocks;
176 struct dm_zone *rzone, *bzone;
177 int ret;
178
179 /* Read into unmapped chunks need only zeroing the BIO buffer */
180 if (!zone) {
181 zero_fill_bio(bio);
182 return 0;
183 }
184
185 DMDEBUG("(%s): READ chunk %llu -> %s zone %u, block %llu, %u blocks",
186 dmz_metadata_label(zmd),
187 (unsigned long long)dmz_bio_chunk(zmd, bio),
188 (dmz_is_rnd(zone) ? "RND" :
189 (dmz_is_cache(zone) ? "CACHE" : "SEQ")),
190 zone->id,
191 (unsigned long long)chunk_block, nr_blocks);
192
193 /* Check block validity to determine the read location */
194 bzone = zone->bzone;
195 while (chunk_block < end_block) {
196 nr_blocks = 0;
197 if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
198 chunk_block < zone->wp_block) {
199 /* Test block validity in the data zone */
200 ret = dmz_block_valid(zmd, zone, chunk_block);
201 if (ret < 0)
202 return ret;
203 if (ret > 0) {
204 /* Read data zone blocks */
205 nr_blocks = ret;
206 rzone = zone;
207 }
208 }
209
210 /*
211 * No valid blocks found in the data zone.
212 * Check the buffer zone, if there is one.
213 */
214 if (!nr_blocks && bzone) {
215 ret = dmz_block_valid(zmd, bzone, chunk_block);
216 if (ret < 0)
217 return ret;
218 if (ret > 0) {
219 /* Read buffer zone blocks */
220 nr_blocks = ret;
221 rzone = bzone;
222 }
223 }
224
225 if (nr_blocks) {
226 /* Valid blocks found: read them */
227 nr_blocks = min_t(unsigned int, nr_blocks,
228 end_block - chunk_block);
229 ret = dmz_submit_bio(dmz, rzone, bio,
230 chunk_block, nr_blocks);
231 if (ret)
232 return ret;
233 chunk_block += nr_blocks;
234 } else {
235 /* No valid block: zeroout the current BIO block */
236 dmz_handle_read_zero(dmz, bio, chunk_block, 1);
237 chunk_block++;
238 }
239 }
240
241 return 0;
242 }
243
244 /*
245 * Write blocks directly in a data zone, at the write pointer.
246 * If a buffer zone is assigned, invalidate the blocks written
247 * in place.
248 */
249 static int dmz_handle_direct_write(struct dmz_target *dmz,
250 struct dm_zone *zone, struct bio *bio,
251 sector_t chunk_block,
252 unsigned int nr_blocks)
253 {
254 struct dmz_metadata *zmd = dmz->metadata;
255 struct dm_zone *bzone = zone->bzone;
256 int ret;
257
258 if (dmz_is_readonly(zone))
259 return -EROFS;
260
261 /* Submit write */
262 ret = dmz_submit_bio(dmz, zone, bio, chunk_block, nr_blocks);
263 if (ret)
264 return ret;
265
266 /*
267 * Validate the blocks in the data zone and invalidate
268 * in the buffer zone, if there is one.
269 */
270 ret = dmz_validate_blocks(zmd, zone, chunk_block, nr_blocks);
271 if (ret == 0 && bzone)
272 ret = dmz_invalidate_blocks(zmd, bzone, chunk_block, nr_blocks);
273
274 return ret;
275 }
276
277 /*
278 * Write blocks in the buffer zone of @zone.
279 * If no buffer zone is assigned yet, get one.
280 * Called with @zone write locked.
281 */
282 static int dmz_handle_buffered_write(struct dmz_target *dmz,
283 struct dm_zone *zone, struct bio *bio,
284 sector_t chunk_block,
285 unsigned int nr_blocks)
286 {
287 struct dmz_metadata *zmd = dmz->metadata;
288 struct dm_zone *bzone;
289 int ret;
290
291 /* Get the buffer zone. One will be allocated if needed */
292 bzone = dmz_get_chunk_buffer(zmd, zone);
293 if (IS_ERR(bzone))
294 return PTR_ERR(bzone);
295
296 if (dmz_is_readonly(bzone))
297 return -EROFS;
298
299 /* Submit write */
300 ret = dmz_submit_bio(dmz, bzone, bio, chunk_block, nr_blocks);
301 if (ret)
302 return ret;
303
304 /*
305 * Validate the blocks in the buffer zone
306 * and invalidate in the data zone.
307 */
308 ret = dmz_validate_blocks(zmd, bzone, chunk_block, nr_blocks);
309 if (ret == 0 && chunk_block < zone->wp_block)
310 ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
311
312 return ret;
313 }
314
315 /*
316 * Process a write BIO.
317 */
318 static int dmz_handle_write(struct dmz_target *dmz, struct dm_zone *zone,
319 struct bio *bio)
320 {
321 struct dmz_metadata *zmd = dmz->metadata;
322 sector_t chunk_block = dmz_chunk_block(zmd, dmz_bio_block(bio));
323 unsigned int nr_blocks = dmz_bio_blocks(bio);
324
325 if (!zone)
326 return -ENOSPC;
327
328 DMDEBUG("(%s): WRITE chunk %llu -> %s zone %u, block %llu, %u blocks",
329 dmz_metadata_label(zmd),
330 (unsigned long long)dmz_bio_chunk(zmd, bio),
331 (dmz_is_rnd(zone) ? "RND" :
332 (dmz_is_cache(zone) ? "CACHE" : "SEQ")),
333 zone->id,
334 (unsigned long long)chunk_block, nr_blocks);
335
336 if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
337 chunk_block == zone->wp_block) {
338 /*
339 * zone is a random zone or it is a sequential zone
340 * and the BIO is aligned to the zone write pointer:
341 * direct write the zone.
342 */
343 return dmz_handle_direct_write(dmz, zone, bio,
344 chunk_block, nr_blocks);
345 }
346
347 /*
348 * This is an unaligned write in a sequential zone:
349 * use buffered write.
350 */
351 return dmz_handle_buffered_write(dmz, zone, bio, chunk_block, nr_blocks);
352 }
353
354 /*
355 * Process a discard BIO.
356 */
357 static int dmz_handle_discard(struct dmz_target *dmz, struct dm_zone *zone,
358 struct bio *bio)
359 {
360 struct dmz_metadata *zmd = dmz->metadata;
361 sector_t block = dmz_bio_block(bio);
362 unsigned int nr_blocks = dmz_bio_blocks(bio);
363 sector_t chunk_block = dmz_chunk_block(zmd, block);
364 int ret = 0;
365
366 /* For unmapped chunks, there is nothing to do */
367 if (!zone)
368 return 0;
369
370 if (dmz_is_readonly(zone))
371 return -EROFS;
372
373 DMDEBUG("(%s): DISCARD chunk %llu -> zone %u, block %llu, %u blocks",
374 dmz_metadata_label(dmz->metadata),
375 (unsigned long long)dmz_bio_chunk(zmd, bio),
376 zone->id,
377 (unsigned long long)chunk_block, nr_blocks);
378
379 /*
380 * Invalidate blocks in the data zone and its
381 * buffer zone if one is mapped.
382 */
383 if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
384 chunk_block < zone->wp_block)
385 ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
386 if (ret == 0 && zone->bzone)
387 ret = dmz_invalidate_blocks(zmd, zone->bzone,
388 chunk_block, nr_blocks);
389 return ret;
390 }
391
392 /*
393 * Process a BIO.
394 */
395 static void dmz_handle_bio(struct dmz_target *dmz, struct dm_chunk_work *cw,
396 struct bio *bio)
397 {
398 struct dmz_bioctx *bioctx =
399 dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
400 struct dmz_metadata *zmd = dmz->metadata;
401 struct dm_zone *zone;
402 int ret;
403
404 dmz_lock_metadata(zmd);
405
406 /*
407 * Get the data zone mapping the chunk. There may be no
408 * mapping for read and discard. If a mapping is obtained,
409 + the zone returned will be set to active state.
410 */
411 zone = dmz_get_chunk_mapping(zmd, dmz_bio_chunk(zmd, bio),
412 bio_op(bio));
413 if (IS_ERR(zone)) {
414 ret = PTR_ERR(zone);
415 goto out;
416 }
417
418 /* Process the BIO */
419 if (zone) {
420 dmz_activate_zone(zone);
421 bioctx->zone = zone;
422 dmz_reclaim_bio_acc(zone->dev->reclaim);
423 }
424
425 switch (bio_op(bio)) {
426 case REQ_OP_READ:
427 ret = dmz_handle_read(dmz, zone, bio);
428 break;
429 case REQ_OP_WRITE:
430 ret = dmz_handle_write(dmz, zone, bio);
431 break;
432 case REQ_OP_DISCARD:
433 case REQ_OP_WRITE_ZEROES:
434 ret = dmz_handle_discard(dmz, zone, bio);
435 break;
436 default:
437 DMERR("(%s): Unsupported BIO operation 0x%x",
438 dmz_metadata_label(dmz->metadata), bio_op(bio));
439 ret = -EIO;
440 }
441
442 /*
443 * Release the chunk mapping. This will check that the mapping
444 * is still valid, that is, that the zone used still has valid blocks.
445 */
446 if (zone)
447 dmz_put_chunk_mapping(zmd, zone);
448 out:
449 dmz_bio_endio(bio, errno_to_blk_status(ret));
450
451 dmz_unlock_metadata(zmd);
452 }
453
454 /*
455 * Increment a chunk reference counter.
456 */
457 static inline void dmz_get_chunk_work(struct dm_chunk_work *cw)
458 {
459 refcount_inc(&cw->refcount);
460 }
461
462 /*
463 * Decrement a chunk work reference count and
464 * free it if it becomes 0.
465 */
466 static void dmz_put_chunk_work(struct dm_chunk_work *cw)
467 {
468 if (refcount_dec_and_test(&cw->refcount)) {
469 WARN_ON(!bio_list_empty(&cw->bio_list));
470 radix_tree_delete(&cw->target->chunk_rxtree, cw->chunk);
471 kfree(cw);
472 }
473 }
474
475 /*
476 * Chunk BIO work function.
477 */
478 static void dmz_chunk_work(struct work_struct *work)
479 {
480 struct dm_chunk_work *cw = container_of(work, struct dm_chunk_work, work);
481 struct dmz_target *dmz = cw->target;
482 struct bio *bio;
483
484 mutex_lock(&dmz->chunk_lock);
485
486 /* Process the chunk BIOs */
487 while ((bio = bio_list_pop(&cw->bio_list))) {
488 mutex_unlock(&dmz->chunk_lock);
489 dmz_handle_bio(dmz, cw, bio);
490 mutex_lock(&dmz->chunk_lock);
491 dmz_put_chunk_work(cw);
492 }
493
494 /* Queueing the work incremented the work refcount */
495 dmz_put_chunk_work(cw);
496
497 mutex_unlock(&dmz->chunk_lock);
498 }
499
500 /*
501 * Flush work.
502 */
503 static void dmz_flush_work(struct work_struct *work)
504 {
505 struct dmz_target *dmz = container_of(work, struct dmz_target, flush_work.work);
506 struct bio *bio;
507 int ret;
508
509 /* Flush dirty metadata blocks */
510 ret = dmz_flush_metadata(dmz->metadata);
511 if (ret)
512 DMDEBUG("(%s): Metadata flush failed, rc=%d",
513 dmz_metadata_label(dmz->metadata), ret);
514
515 /* Process queued flush requests */
516 while (1) {
517 spin_lock(&dmz->flush_lock);
518 bio = bio_list_pop(&dmz->flush_list);
519 spin_unlock(&dmz->flush_lock);
520
521 if (!bio)
522 break;
523
524 dmz_bio_endio(bio, errno_to_blk_status(ret));
525 }
526
527 queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
528 }
529
530 /*
531 * Get a chunk work and start it to process a new BIO.
532 * If the BIO chunk has no work yet, create one.
533 */
534 static int dmz_queue_chunk_work(struct dmz_target *dmz, struct bio *bio)
535 {
536 unsigned int chunk = dmz_bio_chunk(dmz->metadata, bio);
537 struct dm_chunk_work *cw;
538 int ret = 0;
539
540 mutex_lock(&dmz->chunk_lock);
541
542 /* Get the BIO chunk work. If one is not active yet, create one */
543 cw = radix_tree_lookup(&dmz->chunk_rxtree, chunk);
544 if (cw) {
545 dmz_get_chunk_work(cw);
546 } else {
547 /* Create a new chunk work */
548 cw = kmalloc(sizeof(struct dm_chunk_work), GFP_NOIO);
549 if (unlikely(!cw)) {
550 ret = -ENOMEM;
551 goto out;
552 }
553
554 INIT_WORK(&cw->work, dmz_chunk_work);
555 refcount_set(&cw->refcount, 1);
556 cw->target = dmz;
557 cw->chunk = chunk;
558 bio_list_init(&cw->bio_list);
559
560 ret = radix_tree_insert(&dmz->chunk_rxtree, chunk, cw);
561 if (unlikely(ret)) {
562 kfree(cw);
563 goto out;
564 }
565 }
566
567 bio_list_add(&cw->bio_list, bio);
568
569 if (queue_work(dmz->chunk_wq, &cw->work))
570 dmz_get_chunk_work(cw);
571 out:
572 mutex_unlock(&dmz->chunk_lock);
573 return ret;
574 }
575
576 /*
577 * Check if the backing device is being removed. If it's on the way out,
578 * start failing I/O. Reclaim and metadata components also call this
579 * function to cleanly abort operation in the event of such failure.
580 */
581 bool dmz_bdev_is_dying(struct dmz_dev *dmz_dev)
582 {
583 if (dmz_dev->flags & DMZ_BDEV_DYING)
584 return true;
585
586 if (dmz_dev->flags & DMZ_CHECK_BDEV)
587 return !dmz_check_bdev(dmz_dev);
588
589 if (blk_queue_dying(bdev_get_queue(dmz_dev->bdev))) {
590 dmz_dev_warn(dmz_dev, "Backing device queue dying");
591 dmz_dev->flags |= DMZ_BDEV_DYING;
592 }
593
594 return dmz_dev->flags & DMZ_BDEV_DYING;
595 }
596
597 /*
598 * Check the backing device availability. This detects such events as
599 * backing device going offline due to errors, media removals, etc.
600 * This check is less efficient than dmz_bdev_is_dying() and should
601 * only be performed as a part of error handling.
602 */
603 bool dmz_check_bdev(struct dmz_dev *dmz_dev)
604 {
605 struct gendisk *disk;
606
607 dmz_dev->flags &= ~DMZ_CHECK_BDEV;
608
609 if (dmz_bdev_is_dying(dmz_dev))
610 return false;
611
612 disk = dmz_dev->bdev->bd_disk;
613 if (disk->fops->check_events &&
614 disk->fops->check_events(disk, 0) & DISK_EVENT_MEDIA_CHANGE) {
615 dmz_dev_warn(dmz_dev, "Backing device offline");
616 dmz_dev->flags |= DMZ_BDEV_DYING;
617 }
618
619 return !(dmz_dev->flags & DMZ_BDEV_DYING);
620 }
621
622 /*
623 * Process a new BIO.
624 */
625 static int dmz_map(struct dm_target *ti, struct bio *bio)
626 {
627 struct dmz_target *dmz = ti->private;
628 struct dmz_metadata *zmd = dmz->metadata;
629 struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
630 sector_t sector = bio->bi_iter.bi_sector;
631 unsigned int nr_sectors = bio_sectors(bio);
632 sector_t chunk_sector;
633 int ret;
634
635 if (dmz_dev_is_dying(zmd))
636 return DM_MAPIO_KILL;
637
638 DMDEBUG("(%s): BIO op %d sector %llu + %u => chunk %llu, block %llu, %u blocks",
639 dmz_metadata_label(zmd),
640 bio_op(bio), (unsigned long long)sector, nr_sectors,
641 (unsigned long long)dmz_bio_chunk(zmd, bio),
642 (unsigned long long)dmz_chunk_block(zmd, dmz_bio_block(bio)),
643 (unsigned int)dmz_bio_blocks(bio));
644
645 if (!nr_sectors && bio_op(bio) != REQ_OP_WRITE)
646 return DM_MAPIO_REMAPPED;
647
648 /* The BIO should be block aligned */
649 if ((nr_sectors & DMZ_BLOCK_SECTORS_MASK) || (sector & DMZ_BLOCK_SECTORS_MASK))
650 return DM_MAPIO_KILL;
651
652 /* Initialize the BIO context */
653 bioctx->dev = NULL;
654 bioctx->zone = NULL;
655 bioctx->bio = bio;
656 refcount_set(&bioctx->ref, 1);
657
658 /* Set the BIO pending in the flush list */
659 if (!nr_sectors && bio_op(bio) == REQ_OP_WRITE) {
660 spin_lock(&dmz->flush_lock);
661 bio_list_add(&dmz->flush_list, bio);
662 spin_unlock(&dmz->flush_lock);
663 mod_delayed_work(dmz->flush_wq, &dmz->flush_work, 0);
664 return DM_MAPIO_SUBMITTED;
665 }
666
667 /* Split zone BIOs to fit entirely into a zone */
668 chunk_sector = sector & (dmz_zone_nr_sectors(zmd) - 1);
669 if (chunk_sector + nr_sectors > dmz_zone_nr_sectors(zmd))
670 dm_accept_partial_bio(bio, dmz_zone_nr_sectors(zmd) - chunk_sector);
671
672 /* Now ready to handle this BIO */
673 ret = dmz_queue_chunk_work(dmz, bio);
674 if (ret) {
675 DMDEBUG("(%s): BIO op %d, can't process chunk %llu, err %i",
676 dmz_metadata_label(zmd),
677 bio_op(bio), (u64)dmz_bio_chunk(zmd, bio),
678 ret);
679 return DM_MAPIO_REQUEUE;
680 }
681
682 return DM_MAPIO_SUBMITTED;
683 }
684
685 /*
686 * Get zoned device information.
687 */
688 static int dmz_get_zoned_device(struct dm_target *ti, char *path,
689 int idx, int nr_devs)
690 {
691 struct dmz_target *dmz = ti->private;
692 struct dm_dev *ddev;
693 struct dmz_dev *dev;
694 int ret;
695 struct block_device *bdev;
696
697 /* Get the target device */
698 ret = dm_get_device(ti, path, dm_table_get_mode(ti->table), &ddev);
699 if (ret) {
700 ti->error = "Get target device failed";
701 return ret;
702 }
703
704 bdev = ddev->bdev;
705 if (bdev_zoned_model(bdev) == BLK_ZONED_NONE) {
706 if (nr_devs == 1) {
707 ti->error = "Invalid regular device";
708 goto err;
709 }
710 if (idx != 0) {
711 ti->error = "First device must be a regular device";
712 goto err;
713 }
714 if (dmz->ddev[0]) {
715 ti->error = "Too many regular devices";
716 goto err;
717 }
718 dev = &dmz->dev[idx];
719 dev->flags = DMZ_BDEV_REGULAR;
720 } else {
721 if (dmz->ddev[idx]) {
722 ti->error = "Too many zoned devices";
723 goto err;
724 }
725 if (nr_devs > 1 && idx == 0) {
726 ti->error = "First device must be a regular device";
727 goto err;
728 }
729 dev = &dmz->dev[idx];
730 }
731 dev->bdev = bdev;
732 dev->dev_idx = idx;
733
734 dev->capacity = bdev_nr_sectors(bdev);
735 if (ti->begin) {
736 ti->error = "Partial mapping is not supported";
737 goto err;
738 }
739
740 dmz->ddev[idx] = ddev;
741
742 return 0;
743 err:
744 dm_put_device(ti, ddev);
745 return -EINVAL;
746 }
747
748 /*
749 * Cleanup zoned device information.
750 */
751 static void dmz_put_zoned_device(struct dm_target *ti)
752 {
753 struct dmz_target *dmz = ti->private;
754 int i;
755
756 for (i = 0; i < dmz->nr_ddevs; i++) {
757 if (dmz->ddev[i]) {
758 dm_put_device(ti, dmz->ddev[i]);
759 dmz->ddev[i] = NULL;
760 }
761 }
762 }
763
764 static int dmz_fixup_devices(struct dm_target *ti)
765 {
766 struct dmz_target *dmz = ti->private;
767 struct dmz_dev *reg_dev = NULL;
768 sector_t zone_nr_sectors = 0;
769 int i;
770
771 /*
772 * When we have more than on devices, the first one must be a
773 * regular block device and the others zoned block devices.
774 */
775 if (dmz->nr_ddevs > 1) {
776 reg_dev = &dmz->dev[0];
777 if (!(reg_dev->flags & DMZ_BDEV_REGULAR)) {
778 ti->error = "Primary disk is not a regular device";
779 return -EINVAL;
780 }
781 for (i = 1; i < dmz->nr_ddevs; i++) {
782 struct dmz_dev *zoned_dev = &dmz->dev[i];
783 struct block_device *bdev = zoned_dev->bdev;
784
785 if (zoned_dev->flags & DMZ_BDEV_REGULAR) {
786 ti->error = "Secondary disk is not a zoned device";
787 return -EINVAL;
788 }
789 if (zone_nr_sectors &&
790 zone_nr_sectors != bdev_zone_sectors(bdev)) {
791 ti->error = "Zone nr sectors mismatch";
792 return -EINVAL;
793 }
794 zone_nr_sectors = bdev_zone_sectors(bdev);
795 zoned_dev->zone_nr_sectors = zone_nr_sectors;
796 zoned_dev->nr_zones = bdev_nr_zones(bdev);
797 }
798 } else {
799 struct dmz_dev *zoned_dev = &dmz->dev[0];
800 struct block_device *bdev = zoned_dev->bdev;
801
802 if (zoned_dev->flags & DMZ_BDEV_REGULAR) {
803 ti->error = "Disk is not a zoned device";
804 return -EINVAL;
805 }
806 zoned_dev->zone_nr_sectors = bdev_zone_sectors(bdev);
807 zoned_dev->nr_zones = bdev_nr_zones(bdev);
808 }
809
810 if (reg_dev) {
811 sector_t zone_offset;
812
813 reg_dev->zone_nr_sectors = zone_nr_sectors;
814 reg_dev->nr_zones =
815 DIV_ROUND_UP_SECTOR_T(reg_dev->capacity,
816 reg_dev->zone_nr_sectors);
817 reg_dev->zone_offset = 0;
818 zone_offset = reg_dev->nr_zones;
819 for (i = 1; i < dmz->nr_ddevs; i++) {
820 dmz->dev[i].zone_offset = zone_offset;
821 zone_offset += dmz->dev[i].nr_zones;
822 }
823 }
824 return 0;
825 }
826
827 /*
828 * Setup target.
829 */
830 static int dmz_ctr(struct dm_target *ti, unsigned int argc, char **argv)
831 {
832 struct dmz_target *dmz;
833 int ret, i;
834
835 /* Check arguments */
836 if (argc < 1) {
837 ti->error = "Invalid argument count";
838 return -EINVAL;
839 }
840
841 /* Allocate and initialize the target descriptor */
842 dmz = kzalloc(sizeof(struct dmz_target), GFP_KERNEL);
843 if (!dmz) {
844 ti->error = "Unable to allocate the zoned target descriptor";
845 return -ENOMEM;
846 }
847 dmz->dev = kcalloc(argc, sizeof(struct dmz_dev), GFP_KERNEL);
848 if (!dmz->dev) {
849 ti->error = "Unable to allocate the zoned device descriptors";
850 kfree(dmz);
851 return -ENOMEM;
852 }
853 dmz->ddev = kcalloc(argc, sizeof(struct dm_dev *), GFP_KERNEL);
854 if (!dmz->ddev) {
855 ti->error = "Unable to allocate the dm device descriptors";
856 ret = -ENOMEM;
857 goto err;
858 }
859 dmz->nr_ddevs = argc;
860
861 ti->private = dmz;
862
863 /* Get the target zoned block device */
864 for (i = 0; i < argc; i++) {
865 ret = dmz_get_zoned_device(ti, argv[i], i, argc);
866 if (ret)
867 goto err_dev;
868 }
869 ret = dmz_fixup_devices(ti);
870 if (ret)
871 goto err_dev;
872
873 /* Initialize metadata */
874 ret = dmz_ctr_metadata(dmz->dev, argc, &dmz->metadata,
875 dm_table_device_name(ti->table));
876 if (ret) {
877 ti->error = "Metadata initialization failed";
878 goto err_dev;
879 }
880
881 /* Set target (no write same support) */
882 ti->max_io_len = dmz_zone_nr_sectors(dmz->metadata);
883 ti->num_flush_bios = 1;
884 ti->num_discard_bios = 1;
885 ti->num_write_zeroes_bios = 1;
886 ti->per_io_data_size = sizeof(struct dmz_bioctx);
887 ti->flush_supported = true;
888 ti->discards_supported = true;
889
890 /* The exposed capacity is the number of chunks that can be mapped */
891 ti->len = (sector_t)dmz_nr_chunks(dmz->metadata) <<
892 dmz_zone_nr_sectors_shift(dmz->metadata);
893
894 /* Zone BIO */
895 ret = bioset_init(&dmz->bio_set, DMZ_MIN_BIOS, 0, 0);
896 if (ret) {
897 ti->error = "Create BIO set failed";
898 goto err_meta;
899 }
900
901 /* Chunk BIO work */
902 mutex_init(&dmz->chunk_lock);
903 INIT_RADIX_TREE(&dmz->chunk_rxtree, GFP_NOIO);
904 dmz->chunk_wq = alloc_workqueue("dmz_cwq_%s",
905 WQ_MEM_RECLAIM | WQ_UNBOUND, 0,
906 dmz_metadata_label(dmz->metadata));
907 if (!dmz->chunk_wq) {
908 ti->error = "Create chunk workqueue failed";
909 ret = -ENOMEM;
910 goto err_bio;
911 }
912
913 /* Flush work */
914 spin_lock_init(&dmz->flush_lock);
915 bio_list_init(&dmz->flush_list);
916 INIT_DELAYED_WORK(&dmz->flush_work, dmz_flush_work);
917 dmz->flush_wq = alloc_ordered_workqueue("dmz_fwq_%s", WQ_MEM_RECLAIM,
918 dmz_metadata_label(dmz->metadata));
919 if (!dmz->flush_wq) {
920 ti->error = "Create flush workqueue failed";
921 ret = -ENOMEM;
922 goto err_cwq;
923 }
924 mod_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
925
926 /* Initialize reclaim */
927 for (i = 0; i < dmz->nr_ddevs; i++) {
928 ret = dmz_ctr_reclaim(dmz->metadata, &dmz->dev[i].reclaim, i);
929 if (ret) {
930 ti->error = "Zone reclaim initialization failed";
931 goto err_fwq;
932 }
933 }
934
935 DMINFO("(%s): Target device: %llu 512-byte logical sectors (%llu blocks)",
936 dmz_metadata_label(dmz->metadata),
937 (unsigned long long)ti->len,
938 (unsigned long long)dmz_sect2blk(ti->len));
939
940 return 0;
941 err_fwq:
942 destroy_workqueue(dmz->flush_wq);
943 err_cwq:
944 destroy_workqueue(dmz->chunk_wq);
945 err_bio:
946 mutex_destroy(&dmz->chunk_lock);
947 bioset_exit(&dmz->bio_set);
948 err_meta:
949 dmz_dtr_metadata(dmz->metadata);
950 err_dev:
951 dmz_put_zoned_device(ti);
952 err:
953 kfree(dmz->dev);
954 kfree(dmz);
955
956 return ret;
957 }
958
959 /*
960 * Cleanup target.
961 */
962 static void dmz_dtr(struct dm_target *ti)
963 {
964 struct dmz_target *dmz = ti->private;
965 int i;
966
967 destroy_workqueue(dmz->chunk_wq);
968
969 for (i = 0; i < dmz->nr_ddevs; i++)
970 dmz_dtr_reclaim(dmz->dev[i].reclaim);
971
972 cancel_delayed_work_sync(&dmz->flush_work);
973 destroy_workqueue(dmz->flush_wq);
974
975 (void) dmz_flush_metadata(dmz->metadata);
976
977 dmz_dtr_metadata(dmz->metadata);
978
979 bioset_exit(&dmz->bio_set);
980
981 dmz_put_zoned_device(ti);
982
983 mutex_destroy(&dmz->chunk_lock);
984
985 kfree(dmz->dev);
986 kfree(dmz);
987 }
988
989 /*
990 * Setup target request queue limits.
991 */
992 static void dmz_io_hints(struct dm_target *ti, struct queue_limits *limits)
993 {
994 struct dmz_target *dmz = ti->private;
995 unsigned int chunk_sectors = dmz_zone_nr_sectors(dmz->metadata);
996
997 limits->logical_block_size = DMZ_BLOCK_SIZE;
998 limits->physical_block_size = DMZ_BLOCK_SIZE;
999
1000 blk_limits_io_min(limits, DMZ_BLOCK_SIZE);
1001 blk_limits_io_opt(limits, DMZ_BLOCK_SIZE);
1002
1003 limits->discard_alignment = 0;
1004 limits->discard_granularity = DMZ_BLOCK_SIZE;
1005 limits->max_discard_sectors = chunk_sectors;
1006 limits->max_hw_discard_sectors = chunk_sectors;
1007 limits->max_write_zeroes_sectors = chunk_sectors;
1008
1009 /* FS hint to try to align to the device zone size */
1010 limits->chunk_sectors = chunk_sectors;
1011 limits->max_sectors = chunk_sectors;
1012
1013 /* We are exposing a drive-managed zoned block device */
1014 limits->zoned = BLK_ZONED_NONE;
1015 }
1016
1017 /*
1018 * Pass on ioctl to the backend device.
1019 */
1020 static int dmz_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
1021 {
1022 struct dmz_target *dmz = ti->private;
1023 struct dmz_dev *dev = &dmz->dev[0];
1024
1025 if (!dmz_check_bdev(dev))
1026 return -EIO;
1027
1028 *bdev = dev->bdev;
1029
1030 return 0;
1031 }
1032
1033 /*
1034 * Stop works on suspend.
1035 */
1036 static void dmz_suspend(struct dm_target *ti)
1037 {
1038 struct dmz_target *dmz = ti->private;
1039 int i;
1040
1041 flush_workqueue(dmz->chunk_wq);
1042 for (i = 0; i < dmz->nr_ddevs; i++)
1043 dmz_suspend_reclaim(dmz->dev[i].reclaim);
1044 cancel_delayed_work_sync(&dmz->flush_work);
1045 }
1046
1047 /*
1048 * Restart works on resume or if suspend failed.
1049 */
1050 static void dmz_resume(struct dm_target *ti)
1051 {
1052 struct dmz_target *dmz = ti->private;
1053 int i;
1054
1055 queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
1056 for (i = 0; i < dmz->nr_ddevs; i++)
1057 dmz_resume_reclaim(dmz->dev[i].reclaim);
1058 }
1059
1060 static int dmz_iterate_devices(struct dm_target *ti,
1061 iterate_devices_callout_fn fn, void *data)
1062 {
1063 struct dmz_target *dmz = ti->private;
1064 unsigned int zone_nr_sectors = dmz_zone_nr_sectors(dmz->metadata);
1065 sector_t capacity;
1066 int i, r;
1067
1068 for (i = 0; i < dmz->nr_ddevs; i++) {
1069 capacity = dmz->dev[i].capacity & ~(zone_nr_sectors - 1);
1070 r = fn(ti, dmz->ddev[i], 0, capacity, data);
1071 if (r)
1072 break;
1073 }
1074 return r;
1075 }
1076
1077 static void dmz_status(struct dm_target *ti, status_type_t type,
1078 unsigned int status_flags, char *result,
1079 unsigned int maxlen)
1080 {
1081 struct dmz_target *dmz = ti->private;
1082 ssize_t sz = 0;
1083 char buf[BDEVNAME_SIZE];
1084 struct dmz_dev *dev;
1085 int i;
1086
1087 switch (type) {
1088 case STATUSTYPE_INFO:
1089 DMEMIT("%u zones %u/%u cache",
1090 dmz_nr_zones(dmz->metadata),
1091 dmz_nr_unmap_cache_zones(dmz->metadata),
1092 dmz_nr_cache_zones(dmz->metadata));
1093 for (i = 0; i < dmz->nr_ddevs; i++) {
1094 /*
1095 * For a multi-device setup the first device
1096 * contains only cache zones.
1097 */
1098 if ((i == 0) &&
1099 (dmz_nr_cache_zones(dmz->metadata) > 0))
1100 continue;
1101 DMEMIT(" %u/%u random %u/%u sequential",
1102 dmz_nr_unmap_rnd_zones(dmz->metadata, i),
1103 dmz_nr_rnd_zones(dmz->metadata, i),
1104 dmz_nr_unmap_seq_zones(dmz->metadata, i),
1105 dmz_nr_seq_zones(dmz->metadata, i));
1106 }
1107 break;
1108 case STATUSTYPE_TABLE:
1109 dev = &dmz->dev[0];
1110 format_dev_t(buf, dev->bdev->bd_dev);
1111 DMEMIT("%s", buf);
1112 for (i = 1; i < dmz->nr_ddevs; i++) {
1113 dev = &dmz->dev[i];
1114 format_dev_t(buf, dev->bdev->bd_dev);
1115 DMEMIT(" %s", buf);
1116 }
1117 break;
1118 case STATUSTYPE_IMA:
1119 *result = '\0';
1120 break;
1121 }
1122 }
1123
1124 static int dmz_message(struct dm_target *ti, unsigned int argc, char **argv,
1125 char *result, unsigned int maxlen)
1126 {
1127 struct dmz_target *dmz = ti->private;
1128 int r = -EINVAL;
1129
1130 if (!strcasecmp(argv[0], "reclaim")) {
1131 int i;
1132
1133 for (i = 0; i < dmz->nr_ddevs; i++)
1134 dmz_schedule_reclaim(dmz->dev[i].reclaim);
1135 r = 0;
1136 } else
1137 DMERR("unrecognized message %s", argv[0]);
1138 return r;
1139 }
1140
1141 static struct target_type zoned_target = {
1142 .name = "zoned",
1143 .version = {2, 0, 0},
1144 .features = DM_TARGET_SINGLETON | DM_TARGET_MIXED_ZONED_MODEL,
1145 .module = THIS_MODULE,
1146 .ctr = dmz_ctr,
1147 .dtr = dmz_dtr,
1148 .map = dmz_map,
1149 .io_hints = dmz_io_hints,
1150 .prepare_ioctl = dmz_prepare_ioctl,
1151 .postsuspend = dmz_suspend,
1152 .resume = dmz_resume,
1153 .iterate_devices = dmz_iterate_devices,
1154 .status = dmz_status,
1155 .message = dmz_message,
1156 };
1157 module_dm(zoned);
1158
1159 MODULE_DESCRIPTION(DM_NAME " target for zoned block devices");
1160 MODULE_AUTHOR("Damien Le Moal <damien.lemoal@wdc.com>");
1161 MODULE_LICENSE("GPL");