]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - drivers/md/dm.c
dm: send just one event on resize, not two
[thirdparty/kernel/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33
34 #define DM_MSG_PREFIX "core"
35
36 /*
37 * Cookies are numeric values sent with CHANGE and REMOVE
38 * uevents while resuming, removing or renaming the device.
39 */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42
43 /*
44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45 * dm_io into one list, and reuse bio->bi_private as the list head. Before
46 * ending this fs bio, we will recover its ->bi_private.
47 */
48 #define REQ_DM_POLL_LIST REQ_DRV
49
50 static const char *_name = DM_NAME;
51
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54
55 static DEFINE_IDR(_minor_idr);
56
57 static DEFINE_SPINLOCK(_minor_lock);
58
59 static void do_deferred_remove(struct work_struct *w);
60
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62
63 static struct workqueue_struct *deferred_remove_workqueue;
64
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
67
68 void dm_issue_global_event(void)
69 {
70 atomic_inc(&dm_global_event_nr);
71 wake_up(&dm_global_eventq);
72 }
73
74 DEFINE_STATIC_KEY_FALSE(stats_enabled);
75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
76 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
77
78 /*
79 * One of these is allocated (on-stack) per original bio.
80 */
81 struct clone_info {
82 struct dm_table *map;
83 struct bio *bio;
84 struct dm_io *io;
85 sector_t sector;
86 unsigned sector_count;
87 bool is_abnormal_io:1;
88 bool submit_as_polled:1;
89 };
90
91 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
92 {
93 return container_of(clone, struct dm_target_io, clone);
94 }
95
96 void *dm_per_bio_data(struct bio *bio, size_t data_size)
97 {
98 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
99 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
100 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
101 }
102 EXPORT_SYMBOL_GPL(dm_per_bio_data);
103
104 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
105 {
106 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
107 if (io->magic == DM_IO_MAGIC)
108 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
109 BUG_ON(io->magic != DM_TIO_MAGIC);
110 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
111 }
112 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
113
114 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
115 {
116 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
117 }
118 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
119
120 #define MINOR_ALLOCED ((void *)-1)
121
122 #define DM_NUMA_NODE NUMA_NO_NODE
123 static int dm_numa_node = DM_NUMA_NODE;
124
125 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
126 static int swap_bios = DEFAULT_SWAP_BIOS;
127 static int get_swap_bios(void)
128 {
129 int latch = READ_ONCE(swap_bios);
130 if (unlikely(latch <= 0))
131 latch = DEFAULT_SWAP_BIOS;
132 return latch;
133 }
134
135 struct table_device {
136 struct list_head list;
137 refcount_t count;
138 struct dm_dev dm_dev;
139 };
140
141 /*
142 * Bio-based DM's mempools' reserved IOs set by the user.
143 */
144 #define RESERVED_BIO_BASED_IOS 16
145 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
146
147 static int __dm_get_module_param_int(int *module_param, int min, int max)
148 {
149 int param = READ_ONCE(*module_param);
150 int modified_param = 0;
151 bool modified = true;
152
153 if (param < min)
154 modified_param = min;
155 else if (param > max)
156 modified_param = max;
157 else
158 modified = false;
159
160 if (modified) {
161 (void)cmpxchg(module_param, param, modified_param);
162 param = modified_param;
163 }
164
165 return param;
166 }
167
168 unsigned __dm_get_module_param(unsigned *module_param,
169 unsigned def, unsigned max)
170 {
171 unsigned param = READ_ONCE(*module_param);
172 unsigned modified_param = 0;
173
174 if (!param)
175 modified_param = def;
176 else if (param > max)
177 modified_param = max;
178
179 if (modified_param) {
180 (void)cmpxchg(module_param, param, modified_param);
181 param = modified_param;
182 }
183
184 return param;
185 }
186
187 unsigned dm_get_reserved_bio_based_ios(void)
188 {
189 return __dm_get_module_param(&reserved_bio_based_ios,
190 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
191 }
192 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
193
194 static unsigned dm_get_numa_node(void)
195 {
196 return __dm_get_module_param_int(&dm_numa_node,
197 DM_NUMA_NODE, num_online_nodes() - 1);
198 }
199
200 static int __init local_init(void)
201 {
202 int r;
203
204 r = dm_uevent_init();
205 if (r)
206 return r;
207
208 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
209 if (!deferred_remove_workqueue) {
210 r = -ENOMEM;
211 goto out_uevent_exit;
212 }
213
214 _major = major;
215 r = register_blkdev(_major, _name);
216 if (r < 0)
217 goto out_free_workqueue;
218
219 if (!_major)
220 _major = r;
221
222 return 0;
223
224 out_free_workqueue:
225 destroy_workqueue(deferred_remove_workqueue);
226 out_uevent_exit:
227 dm_uevent_exit();
228
229 return r;
230 }
231
232 static void local_exit(void)
233 {
234 flush_scheduled_work();
235 destroy_workqueue(deferred_remove_workqueue);
236
237 unregister_blkdev(_major, _name);
238 dm_uevent_exit();
239
240 _major = 0;
241
242 DMINFO("cleaned up");
243 }
244
245 static int (*_inits[])(void) __initdata = {
246 local_init,
247 dm_target_init,
248 dm_linear_init,
249 dm_stripe_init,
250 dm_io_init,
251 dm_kcopyd_init,
252 dm_interface_init,
253 dm_statistics_init,
254 };
255
256 static void (*_exits[])(void) = {
257 local_exit,
258 dm_target_exit,
259 dm_linear_exit,
260 dm_stripe_exit,
261 dm_io_exit,
262 dm_kcopyd_exit,
263 dm_interface_exit,
264 dm_statistics_exit,
265 };
266
267 static int __init dm_init(void)
268 {
269 const int count = ARRAY_SIZE(_inits);
270 int r, i;
271
272 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
273 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
274 " Duplicate IMA measurements will not be recorded in the IMA log.");
275 #endif
276
277 for (i = 0; i < count; i++) {
278 r = _inits[i]();
279 if (r)
280 goto bad;
281 }
282
283 return 0;
284 bad:
285 while (i--)
286 _exits[i]();
287
288 return r;
289 }
290
291 static void __exit dm_exit(void)
292 {
293 int i = ARRAY_SIZE(_exits);
294
295 while (i--)
296 _exits[i]();
297
298 /*
299 * Should be empty by this point.
300 */
301 idr_destroy(&_minor_idr);
302 }
303
304 /*
305 * Block device functions
306 */
307 int dm_deleting_md(struct mapped_device *md)
308 {
309 return test_bit(DMF_DELETING, &md->flags);
310 }
311
312 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
313 {
314 struct mapped_device *md;
315
316 spin_lock(&_minor_lock);
317
318 md = bdev->bd_disk->private_data;
319 if (!md)
320 goto out;
321
322 if (test_bit(DMF_FREEING, &md->flags) ||
323 dm_deleting_md(md)) {
324 md = NULL;
325 goto out;
326 }
327
328 dm_get(md);
329 atomic_inc(&md->open_count);
330 out:
331 spin_unlock(&_minor_lock);
332
333 return md ? 0 : -ENXIO;
334 }
335
336 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
337 {
338 struct mapped_device *md;
339
340 spin_lock(&_minor_lock);
341
342 md = disk->private_data;
343 if (WARN_ON(!md))
344 goto out;
345
346 if (atomic_dec_and_test(&md->open_count) &&
347 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
348 queue_work(deferred_remove_workqueue, &deferred_remove_work);
349
350 dm_put(md);
351 out:
352 spin_unlock(&_minor_lock);
353 }
354
355 int dm_open_count(struct mapped_device *md)
356 {
357 return atomic_read(&md->open_count);
358 }
359
360 /*
361 * Guarantees nothing is using the device before it's deleted.
362 */
363 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
364 {
365 int r = 0;
366
367 spin_lock(&_minor_lock);
368
369 if (dm_open_count(md)) {
370 r = -EBUSY;
371 if (mark_deferred)
372 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
373 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
374 r = -EEXIST;
375 else
376 set_bit(DMF_DELETING, &md->flags);
377
378 spin_unlock(&_minor_lock);
379
380 return r;
381 }
382
383 int dm_cancel_deferred_remove(struct mapped_device *md)
384 {
385 int r = 0;
386
387 spin_lock(&_minor_lock);
388
389 if (test_bit(DMF_DELETING, &md->flags))
390 r = -EBUSY;
391 else
392 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
393
394 spin_unlock(&_minor_lock);
395
396 return r;
397 }
398
399 static void do_deferred_remove(struct work_struct *w)
400 {
401 dm_deferred_remove();
402 }
403
404 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
405 {
406 struct mapped_device *md = bdev->bd_disk->private_data;
407
408 return dm_get_geometry(md, geo);
409 }
410
411 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
412 struct block_device **bdev)
413 {
414 struct dm_target *ti;
415 struct dm_table *map;
416 int r;
417
418 retry:
419 r = -ENOTTY;
420 map = dm_get_live_table(md, srcu_idx);
421 if (!map || !dm_table_get_size(map))
422 return r;
423
424 /* We only support devices that have a single target */
425 if (map->num_targets != 1)
426 return r;
427
428 ti = dm_table_get_target(map, 0);
429 if (!ti->type->prepare_ioctl)
430 return r;
431
432 if (dm_suspended_md(md))
433 return -EAGAIN;
434
435 r = ti->type->prepare_ioctl(ti, bdev);
436 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
437 dm_put_live_table(md, *srcu_idx);
438 msleep(10);
439 goto retry;
440 }
441
442 return r;
443 }
444
445 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
446 {
447 dm_put_live_table(md, srcu_idx);
448 }
449
450 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
451 unsigned int cmd, unsigned long arg)
452 {
453 struct mapped_device *md = bdev->bd_disk->private_data;
454 int r, srcu_idx;
455
456 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
457 if (r < 0)
458 goto out;
459
460 if (r > 0) {
461 /*
462 * Target determined this ioctl is being issued against a
463 * subset of the parent bdev; require extra privileges.
464 */
465 if (!capable(CAP_SYS_RAWIO)) {
466 DMDEBUG_LIMIT(
467 "%s: sending ioctl %x to DM device without required privilege.",
468 current->comm, cmd);
469 r = -ENOIOCTLCMD;
470 goto out;
471 }
472 }
473
474 if (!bdev->bd_disk->fops->ioctl)
475 r = -ENOTTY;
476 else
477 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
478 out:
479 dm_unprepare_ioctl(md, srcu_idx);
480 return r;
481 }
482
483 u64 dm_start_time_ns_from_clone(struct bio *bio)
484 {
485 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
486 }
487 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
488
489 static bool bio_is_flush_with_data(struct bio *bio)
490 {
491 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
492 }
493
494 static void dm_io_acct(struct dm_io *io, bool end)
495 {
496 struct dm_stats_aux *stats_aux = &io->stats_aux;
497 unsigned long start_time = io->start_time;
498 struct mapped_device *md = io->md;
499 struct bio *bio = io->orig_bio;
500 unsigned int sectors;
501
502 /*
503 * If REQ_PREFLUSH set, don't account payload, it will be
504 * submitted (and accounted) after this flush completes.
505 */
506 if (bio_is_flush_with_data(bio))
507 sectors = 0;
508 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
509 sectors = bio_sectors(bio);
510 else
511 sectors = io->sectors;
512
513 if (!end)
514 bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
515 start_time);
516 else
517 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
518
519 if (static_branch_unlikely(&stats_enabled) &&
520 unlikely(dm_stats_used(&md->stats))) {
521 sector_t sector;
522
523 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
524 sector = bio->bi_iter.bi_sector;
525 else
526 sector = bio_end_sector(bio) - io->sector_offset;
527
528 dm_stats_account_io(&md->stats, bio_data_dir(bio),
529 sector, sectors,
530 end, start_time, stats_aux);
531 }
532 }
533
534 static void __dm_start_io_acct(struct dm_io *io)
535 {
536 dm_io_acct(io, false);
537 }
538
539 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
540 {
541 /*
542 * Ensure IO accounting is only ever started once.
543 */
544 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
545 return;
546
547 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
548 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
549 dm_io_set_flag(io, DM_IO_ACCOUNTED);
550 } else {
551 unsigned long flags;
552 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
553 spin_lock_irqsave(&io->lock, flags);
554 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
555 spin_unlock_irqrestore(&io->lock, flags);
556 return;
557 }
558 dm_io_set_flag(io, DM_IO_ACCOUNTED);
559 spin_unlock_irqrestore(&io->lock, flags);
560 }
561
562 __dm_start_io_acct(io);
563 }
564
565 static void dm_end_io_acct(struct dm_io *io)
566 {
567 dm_io_acct(io, true);
568 }
569
570 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
571 {
572 struct dm_io *io;
573 struct dm_target_io *tio;
574 struct bio *clone;
575
576 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
577 tio = clone_to_tio(clone);
578 tio->flags = 0;
579 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
580 tio->io = NULL;
581
582 io = container_of(tio, struct dm_io, tio);
583 io->magic = DM_IO_MAGIC;
584 io->status = BLK_STS_OK;
585
586 /* one ref is for submission, the other is for completion */
587 atomic_set(&io->io_count, 2);
588 this_cpu_inc(*md->pending_io);
589 io->orig_bio = bio;
590 io->md = md;
591 spin_lock_init(&io->lock);
592 io->start_time = jiffies;
593 io->flags = 0;
594
595 if (static_branch_unlikely(&stats_enabled))
596 dm_stats_record_start(&md->stats, &io->stats_aux);
597
598 return io;
599 }
600
601 static void free_io(struct dm_io *io)
602 {
603 bio_put(&io->tio.clone);
604 }
605
606 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
607 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
608 {
609 struct mapped_device *md = ci->io->md;
610 struct dm_target_io *tio;
611 struct bio *clone;
612
613 if (!ci->io->tio.io) {
614 /* the dm_target_io embedded in ci->io is available */
615 tio = &ci->io->tio;
616 /* alloc_io() already initialized embedded clone */
617 clone = &tio->clone;
618 } else {
619 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
620 &md->mempools->bs);
621 if (!clone)
622 return NULL;
623
624 /* REQ_DM_POLL_LIST shouldn't be inherited */
625 clone->bi_opf &= ~REQ_DM_POLL_LIST;
626
627 tio = clone_to_tio(clone);
628 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
629 }
630
631 tio->magic = DM_TIO_MAGIC;
632 tio->io = ci->io;
633 tio->ti = ti;
634 tio->target_bio_nr = target_bio_nr;
635 tio->len_ptr = len;
636 tio->old_sector = 0;
637
638 /* Set default bdev, but target must bio_set_dev() before issuing IO */
639 clone->bi_bdev = md->disk->part0;
640 if (unlikely(ti->needs_bio_set_dev))
641 bio_set_dev(clone, md->disk->part0);
642
643 if (len) {
644 clone->bi_iter.bi_size = to_bytes(*len);
645 if (bio_integrity(clone))
646 bio_integrity_trim(clone);
647 }
648
649 return clone;
650 }
651
652 static void free_tio(struct bio *clone)
653 {
654 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
655 return;
656 bio_put(clone);
657 }
658
659 /*
660 * Add the bio to the list of deferred io.
661 */
662 static void queue_io(struct mapped_device *md, struct bio *bio)
663 {
664 unsigned long flags;
665
666 spin_lock_irqsave(&md->deferred_lock, flags);
667 bio_list_add(&md->deferred, bio);
668 spin_unlock_irqrestore(&md->deferred_lock, flags);
669 queue_work(md->wq, &md->work);
670 }
671
672 /*
673 * Everyone (including functions in this file), should use this
674 * function to access the md->map field, and make sure they call
675 * dm_put_live_table() when finished.
676 */
677 struct dm_table *dm_get_live_table(struct mapped_device *md,
678 int *srcu_idx) __acquires(md->io_barrier)
679 {
680 *srcu_idx = srcu_read_lock(&md->io_barrier);
681
682 return srcu_dereference(md->map, &md->io_barrier);
683 }
684
685 void dm_put_live_table(struct mapped_device *md,
686 int srcu_idx) __releases(md->io_barrier)
687 {
688 srcu_read_unlock(&md->io_barrier, srcu_idx);
689 }
690
691 void dm_sync_table(struct mapped_device *md)
692 {
693 synchronize_srcu(&md->io_barrier);
694 synchronize_rcu_expedited();
695 }
696
697 /*
698 * A fast alternative to dm_get_live_table/dm_put_live_table.
699 * The caller must not block between these two functions.
700 */
701 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
702 {
703 rcu_read_lock();
704 return rcu_dereference(md->map);
705 }
706
707 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
708 {
709 rcu_read_unlock();
710 }
711
712 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
713 int *srcu_idx, blk_opf_t bio_opf)
714 {
715 if (bio_opf & REQ_NOWAIT)
716 return dm_get_live_table_fast(md);
717 else
718 return dm_get_live_table(md, srcu_idx);
719 }
720
721 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
722 blk_opf_t bio_opf)
723 {
724 if (bio_opf & REQ_NOWAIT)
725 dm_put_live_table_fast(md);
726 else
727 dm_put_live_table(md, srcu_idx);
728 }
729
730 static char *_dm_claim_ptr = "I belong to device-mapper";
731
732 /*
733 * Open a table device so we can use it as a map destination.
734 */
735 static struct table_device *open_table_device(struct mapped_device *md,
736 dev_t dev, fmode_t mode)
737 {
738 struct table_device *td;
739 struct block_device *bdev;
740 u64 part_off;
741 int r;
742
743 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
744 if (!td)
745 return ERR_PTR(-ENOMEM);
746 refcount_set(&td->count, 1);
747
748 bdev = blkdev_get_by_dev(dev, mode | FMODE_EXCL, _dm_claim_ptr);
749 if (IS_ERR(bdev)) {
750 r = PTR_ERR(bdev);
751 goto out_free_td;
752 }
753
754 /*
755 * We can be called before the dm disk is added. In that case we can't
756 * register the holder relation here. It will be done once add_disk was
757 * called.
758 */
759 if (md->disk->slave_dir) {
760 r = bd_link_disk_holder(bdev, md->disk);
761 if (r)
762 goto out_blkdev_put;
763 }
764
765 td->dm_dev.mode = mode;
766 td->dm_dev.bdev = bdev;
767 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
768 format_dev_t(td->dm_dev.name, dev);
769 list_add(&td->list, &md->table_devices);
770 return td;
771
772 out_blkdev_put:
773 blkdev_put(bdev, mode | FMODE_EXCL);
774 out_free_td:
775 kfree(td);
776 return ERR_PTR(r);
777 }
778
779 /*
780 * Close a table device that we've been using.
781 */
782 static void close_table_device(struct table_device *td, struct mapped_device *md)
783 {
784 if (md->disk->slave_dir)
785 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
786 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
787 put_dax(td->dm_dev.dax_dev);
788 list_del(&td->list);
789 kfree(td);
790 }
791
792 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
793 fmode_t mode)
794 {
795 struct table_device *td;
796
797 list_for_each_entry(td, l, list)
798 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
799 return td;
800
801 return NULL;
802 }
803
804 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
805 struct dm_dev **result)
806 {
807 struct table_device *td;
808
809 mutex_lock(&md->table_devices_lock);
810 td = find_table_device(&md->table_devices, dev, mode);
811 if (!td) {
812 td = open_table_device(md, dev, mode);
813 if (IS_ERR(td)) {
814 mutex_unlock(&md->table_devices_lock);
815 return PTR_ERR(td);
816 }
817 } else {
818 refcount_inc(&td->count);
819 }
820 mutex_unlock(&md->table_devices_lock);
821
822 *result = &td->dm_dev;
823 return 0;
824 }
825
826 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
827 {
828 struct table_device *td = container_of(d, struct table_device, dm_dev);
829
830 mutex_lock(&md->table_devices_lock);
831 if (refcount_dec_and_test(&td->count))
832 close_table_device(td, md);
833 mutex_unlock(&md->table_devices_lock);
834 }
835
836 /*
837 * Get the geometry associated with a dm device
838 */
839 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
840 {
841 *geo = md->geometry;
842
843 return 0;
844 }
845
846 /*
847 * Set the geometry of a device.
848 */
849 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
850 {
851 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
852
853 if (geo->start > sz) {
854 DMERR("Start sector is beyond the geometry limits.");
855 return -EINVAL;
856 }
857
858 md->geometry = *geo;
859
860 return 0;
861 }
862
863 static int __noflush_suspending(struct mapped_device *md)
864 {
865 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
866 }
867
868 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
869 {
870 struct mapped_device *md = io->md;
871
872 if (first_stage) {
873 struct dm_io *next = md->requeue_list;
874
875 md->requeue_list = io;
876 io->next = next;
877 } else {
878 bio_list_add_head(&md->deferred, io->orig_bio);
879 }
880 }
881
882 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
883 {
884 if (first_stage)
885 queue_work(md->wq, &md->requeue_work);
886 else
887 queue_work(md->wq, &md->work);
888 }
889
890 /*
891 * Return true if the dm_io's original bio is requeued.
892 * io->status is updated with error if requeue disallowed.
893 */
894 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
895 {
896 struct bio *bio = io->orig_bio;
897 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
898 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
899 (bio->bi_opf & REQ_POLLED));
900 struct mapped_device *md = io->md;
901 bool requeued = false;
902
903 if (handle_requeue || handle_polled_eagain) {
904 unsigned long flags;
905
906 if (bio->bi_opf & REQ_POLLED) {
907 /*
908 * Upper layer won't help us poll split bio
909 * (io->orig_bio may only reflect a subset of the
910 * pre-split original) so clear REQ_POLLED.
911 */
912 bio_clear_polled(bio);
913 }
914
915 /*
916 * Target requested pushing back the I/O or
917 * polled IO hit BLK_STS_AGAIN.
918 */
919 spin_lock_irqsave(&md->deferred_lock, flags);
920 if ((__noflush_suspending(md) &&
921 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
922 handle_polled_eagain || first_stage) {
923 dm_requeue_add_io(io, first_stage);
924 requeued = true;
925 } else {
926 /*
927 * noflush suspend was interrupted or this is
928 * a write to a zoned target.
929 */
930 io->status = BLK_STS_IOERR;
931 }
932 spin_unlock_irqrestore(&md->deferred_lock, flags);
933 }
934
935 if (requeued)
936 dm_kick_requeue(md, first_stage);
937
938 return requeued;
939 }
940
941 static void __dm_io_complete(struct dm_io *io, bool first_stage)
942 {
943 struct bio *bio = io->orig_bio;
944 struct mapped_device *md = io->md;
945 blk_status_t io_error;
946 bool requeued;
947
948 requeued = dm_handle_requeue(io, first_stage);
949 if (requeued && first_stage)
950 return;
951
952 io_error = io->status;
953 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
954 dm_end_io_acct(io);
955 else if (!io_error) {
956 /*
957 * Must handle target that DM_MAPIO_SUBMITTED only to
958 * then bio_endio() rather than dm_submit_bio_remap()
959 */
960 __dm_start_io_acct(io);
961 dm_end_io_acct(io);
962 }
963 free_io(io);
964 smp_wmb();
965 this_cpu_dec(*md->pending_io);
966
967 /* nudge anyone waiting on suspend queue */
968 if (unlikely(wq_has_sleeper(&md->wait)))
969 wake_up(&md->wait);
970
971 /* Return early if the original bio was requeued */
972 if (requeued)
973 return;
974
975 if (bio_is_flush_with_data(bio)) {
976 /*
977 * Preflush done for flush with data, reissue
978 * without REQ_PREFLUSH.
979 */
980 bio->bi_opf &= ~REQ_PREFLUSH;
981 queue_io(md, bio);
982 } else {
983 /* done with normal IO or empty flush */
984 if (io_error)
985 bio->bi_status = io_error;
986 bio_endio(bio);
987 }
988 }
989
990 static void dm_wq_requeue_work(struct work_struct *work)
991 {
992 struct mapped_device *md = container_of(work, struct mapped_device,
993 requeue_work);
994 unsigned long flags;
995 struct dm_io *io;
996
997 /* reuse deferred lock to simplify dm_handle_requeue */
998 spin_lock_irqsave(&md->deferred_lock, flags);
999 io = md->requeue_list;
1000 md->requeue_list = NULL;
1001 spin_unlock_irqrestore(&md->deferred_lock, flags);
1002
1003 while (io) {
1004 struct dm_io *next = io->next;
1005
1006 dm_io_rewind(io, &md->disk->bio_split);
1007
1008 io->next = NULL;
1009 __dm_io_complete(io, false);
1010 io = next;
1011 }
1012 }
1013
1014 /*
1015 * Two staged requeue:
1016 *
1017 * 1) io->orig_bio points to the real original bio, and the part mapped to
1018 * this io must be requeued, instead of other parts of the original bio.
1019 *
1020 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1021 */
1022 static void dm_io_complete(struct dm_io *io)
1023 {
1024 bool first_requeue;
1025
1026 /*
1027 * Only dm_io that has been split needs two stage requeue, otherwise
1028 * we may run into long bio clone chain during suspend and OOM could
1029 * be triggered.
1030 *
1031 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1032 * also aren't handled via the first stage requeue.
1033 */
1034 if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1035 first_requeue = true;
1036 else
1037 first_requeue = false;
1038
1039 __dm_io_complete(io, first_requeue);
1040 }
1041
1042 /*
1043 * Decrements the number of outstanding ios that a bio has been
1044 * cloned into, completing the original io if necc.
1045 */
1046 static inline void __dm_io_dec_pending(struct dm_io *io)
1047 {
1048 if (atomic_dec_and_test(&io->io_count))
1049 dm_io_complete(io);
1050 }
1051
1052 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1053 {
1054 unsigned long flags;
1055
1056 /* Push-back supersedes any I/O errors */
1057 spin_lock_irqsave(&io->lock, flags);
1058 if (!(io->status == BLK_STS_DM_REQUEUE &&
1059 __noflush_suspending(io->md))) {
1060 io->status = error;
1061 }
1062 spin_unlock_irqrestore(&io->lock, flags);
1063 }
1064
1065 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1066 {
1067 if (unlikely(error))
1068 dm_io_set_error(io, error);
1069
1070 __dm_io_dec_pending(io);
1071 }
1072
1073 void disable_discard(struct mapped_device *md)
1074 {
1075 struct queue_limits *limits = dm_get_queue_limits(md);
1076
1077 /* device doesn't really support DISCARD, disable it */
1078 limits->max_discard_sectors = 0;
1079 }
1080
1081 void disable_write_zeroes(struct mapped_device *md)
1082 {
1083 struct queue_limits *limits = dm_get_queue_limits(md);
1084
1085 /* device doesn't really support WRITE ZEROES, disable it */
1086 limits->max_write_zeroes_sectors = 0;
1087 }
1088
1089 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1090 {
1091 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1092 }
1093
1094 static void clone_endio(struct bio *bio)
1095 {
1096 blk_status_t error = bio->bi_status;
1097 struct dm_target_io *tio = clone_to_tio(bio);
1098 struct dm_target *ti = tio->ti;
1099 dm_endio_fn endio = ti->type->end_io;
1100 struct dm_io *io = tio->io;
1101 struct mapped_device *md = io->md;
1102
1103 if (unlikely(error == BLK_STS_TARGET)) {
1104 if (bio_op(bio) == REQ_OP_DISCARD &&
1105 !bdev_max_discard_sectors(bio->bi_bdev))
1106 disable_discard(md);
1107 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1108 !bdev_write_zeroes_sectors(bio->bi_bdev))
1109 disable_write_zeroes(md);
1110 }
1111
1112 if (static_branch_unlikely(&zoned_enabled) &&
1113 unlikely(bdev_is_zoned(bio->bi_bdev)))
1114 dm_zone_endio(io, bio);
1115
1116 if (endio) {
1117 int r = endio(ti, bio, &error);
1118 switch (r) {
1119 case DM_ENDIO_REQUEUE:
1120 if (static_branch_unlikely(&zoned_enabled)) {
1121 /*
1122 * Requeuing writes to a sequential zone of a zoned
1123 * target will break the sequential write pattern:
1124 * fail such IO.
1125 */
1126 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1127 error = BLK_STS_IOERR;
1128 else
1129 error = BLK_STS_DM_REQUEUE;
1130 } else
1131 error = BLK_STS_DM_REQUEUE;
1132 fallthrough;
1133 case DM_ENDIO_DONE:
1134 break;
1135 case DM_ENDIO_INCOMPLETE:
1136 /* The target will handle the io */
1137 return;
1138 default:
1139 DMCRIT("unimplemented target endio return value: %d", r);
1140 BUG();
1141 }
1142 }
1143
1144 if (static_branch_unlikely(&swap_bios_enabled) &&
1145 unlikely(swap_bios_limit(ti, bio)))
1146 up(&md->swap_bios_semaphore);
1147
1148 free_tio(bio);
1149 dm_io_dec_pending(io, error);
1150 }
1151
1152 /*
1153 * Return maximum size of I/O possible at the supplied sector up to the current
1154 * target boundary.
1155 */
1156 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1157 sector_t target_offset)
1158 {
1159 return ti->len - target_offset;
1160 }
1161
1162 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1163 {
1164 sector_t target_offset = dm_target_offset(ti, sector);
1165 sector_t len = max_io_len_target_boundary(ti, target_offset);
1166
1167 /*
1168 * Does the target need to split IO even further?
1169 * - varied (per target) IO splitting is a tenet of DM; this
1170 * explains why stacked chunk_sectors based splitting via
1171 * bio_split_to_limits() isn't possible here.
1172 */
1173 if (!ti->max_io_len)
1174 return len;
1175 return min_t(sector_t, len,
1176 min(queue_max_sectors(ti->table->md->queue),
1177 blk_chunk_sectors_left(target_offset, ti->max_io_len)));
1178 }
1179
1180 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1181 {
1182 if (len > UINT_MAX) {
1183 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1184 (unsigned long long)len, UINT_MAX);
1185 ti->error = "Maximum size of target IO is too large";
1186 return -EINVAL;
1187 }
1188
1189 ti->max_io_len = (uint32_t) len;
1190
1191 return 0;
1192 }
1193 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1194
1195 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1196 sector_t sector, int *srcu_idx)
1197 __acquires(md->io_barrier)
1198 {
1199 struct dm_table *map;
1200 struct dm_target *ti;
1201
1202 map = dm_get_live_table(md, srcu_idx);
1203 if (!map)
1204 return NULL;
1205
1206 ti = dm_table_find_target(map, sector);
1207 if (!ti)
1208 return NULL;
1209
1210 return ti;
1211 }
1212
1213 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1214 long nr_pages, enum dax_access_mode mode, void **kaddr,
1215 pfn_t *pfn)
1216 {
1217 struct mapped_device *md = dax_get_private(dax_dev);
1218 sector_t sector = pgoff * PAGE_SECTORS;
1219 struct dm_target *ti;
1220 long len, ret = -EIO;
1221 int srcu_idx;
1222
1223 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1224
1225 if (!ti)
1226 goto out;
1227 if (!ti->type->direct_access)
1228 goto out;
1229 len = max_io_len(ti, sector) / PAGE_SECTORS;
1230 if (len < 1)
1231 goto out;
1232 nr_pages = min(len, nr_pages);
1233 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1234
1235 out:
1236 dm_put_live_table(md, srcu_idx);
1237
1238 return ret;
1239 }
1240
1241 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1242 size_t nr_pages)
1243 {
1244 struct mapped_device *md = dax_get_private(dax_dev);
1245 sector_t sector = pgoff * PAGE_SECTORS;
1246 struct dm_target *ti;
1247 int ret = -EIO;
1248 int srcu_idx;
1249
1250 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1251
1252 if (!ti)
1253 goto out;
1254 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1255 /*
1256 * ->zero_page_range() is mandatory dax operation. If we are
1257 * here, something is wrong.
1258 */
1259 goto out;
1260 }
1261 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1262 out:
1263 dm_put_live_table(md, srcu_idx);
1264
1265 return ret;
1266 }
1267
1268 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1269 void *addr, size_t bytes, struct iov_iter *i)
1270 {
1271 struct mapped_device *md = dax_get_private(dax_dev);
1272 sector_t sector = pgoff * PAGE_SECTORS;
1273 struct dm_target *ti;
1274 int srcu_idx;
1275 long ret = 0;
1276
1277 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1278 if (!ti || !ti->type->dax_recovery_write)
1279 goto out;
1280
1281 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1282 out:
1283 dm_put_live_table(md, srcu_idx);
1284 return ret;
1285 }
1286
1287 /*
1288 * A target may call dm_accept_partial_bio only from the map routine. It is
1289 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1290 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1291 * __send_duplicate_bios().
1292 *
1293 * dm_accept_partial_bio informs the dm that the target only wants to process
1294 * additional n_sectors sectors of the bio and the rest of the data should be
1295 * sent in a next bio.
1296 *
1297 * A diagram that explains the arithmetics:
1298 * +--------------------+---------------+-------+
1299 * | 1 | 2 | 3 |
1300 * +--------------------+---------------+-------+
1301 *
1302 * <-------------- *tio->len_ptr --------------->
1303 * <----- bio_sectors ----->
1304 * <-- n_sectors -->
1305 *
1306 * Region 1 was already iterated over with bio_advance or similar function.
1307 * (it may be empty if the target doesn't use bio_advance)
1308 * Region 2 is the remaining bio size that the target wants to process.
1309 * (it may be empty if region 1 is non-empty, although there is no reason
1310 * to make it empty)
1311 * The target requires that region 3 is to be sent in the next bio.
1312 *
1313 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1314 * the partially processed part (the sum of regions 1+2) must be the same for all
1315 * copies of the bio.
1316 */
1317 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1318 {
1319 struct dm_target_io *tio = clone_to_tio(bio);
1320 struct dm_io *io = tio->io;
1321 unsigned bio_sectors = bio_sectors(bio);
1322
1323 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1324 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1325 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1326 BUG_ON(bio_sectors > *tio->len_ptr);
1327 BUG_ON(n_sectors > bio_sectors);
1328
1329 *tio->len_ptr -= bio_sectors - n_sectors;
1330 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1331
1332 /*
1333 * __split_and_process_bio() may have already saved mapped part
1334 * for accounting but it is being reduced so update accordingly.
1335 */
1336 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1337 io->sectors = n_sectors;
1338 io->sector_offset = bio_sectors(io->orig_bio);
1339 }
1340 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1341
1342 /*
1343 * @clone: clone bio that DM core passed to target's .map function
1344 * @tgt_clone: clone of @clone bio that target needs submitted
1345 *
1346 * Targets should use this interface to submit bios they take
1347 * ownership of when returning DM_MAPIO_SUBMITTED.
1348 *
1349 * Target should also enable ti->accounts_remapped_io
1350 */
1351 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1352 {
1353 struct dm_target_io *tio = clone_to_tio(clone);
1354 struct dm_io *io = tio->io;
1355
1356 /* establish bio that will get submitted */
1357 if (!tgt_clone)
1358 tgt_clone = clone;
1359
1360 /*
1361 * Account io->origin_bio to DM dev on behalf of target
1362 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1363 */
1364 dm_start_io_acct(io, clone);
1365
1366 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1367 tio->old_sector);
1368 submit_bio_noacct(tgt_clone);
1369 }
1370 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1371
1372 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1373 {
1374 mutex_lock(&md->swap_bios_lock);
1375 while (latch < md->swap_bios) {
1376 cond_resched();
1377 down(&md->swap_bios_semaphore);
1378 md->swap_bios--;
1379 }
1380 while (latch > md->swap_bios) {
1381 cond_resched();
1382 up(&md->swap_bios_semaphore);
1383 md->swap_bios++;
1384 }
1385 mutex_unlock(&md->swap_bios_lock);
1386 }
1387
1388 static void __map_bio(struct bio *clone)
1389 {
1390 struct dm_target_io *tio = clone_to_tio(clone);
1391 struct dm_target *ti = tio->ti;
1392 struct dm_io *io = tio->io;
1393 struct mapped_device *md = io->md;
1394 int r;
1395
1396 clone->bi_end_io = clone_endio;
1397
1398 /*
1399 * Map the clone.
1400 */
1401 tio->old_sector = clone->bi_iter.bi_sector;
1402
1403 if (static_branch_unlikely(&swap_bios_enabled) &&
1404 unlikely(swap_bios_limit(ti, clone))) {
1405 int latch = get_swap_bios();
1406 if (unlikely(latch != md->swap_bios))
1407 __set_swap_bios_limit(md, latch);
1408 down(&md->swap_bios_semaphore);
1409 }
1410
1411 if (static_branch_unlikely(&zoned_enabled)) {
1412 /*
1413 * Check if the IO needs a special mapping due to zone append
1414 * emulation on zoned target. In this case, dm_zone_map_bio()
1415 * calls the target map operation.
1416 */
1417 if (unlikely(dm_emulate_zone_append(md)))
1418 r = dm_zone_map_bio(tio);
1419 else
1420 r = ti->type->map(ti, clone);
1421 } else
1422 r = ti->type->map(ti, clone);
1423
1424 switch (r) {
1425 case DM_MAPIO_SUBMITTED:
1426 /* target has assumed ownership of this io */
1427 if (!ti->accounts_remapped_io)
1428 dm_start_io_acct(io, clone);
1429 break;
1430 case DM_MAPIO_REMAPPED:
1431 dm_submit_bio_remap(clone, NULL);
1432 break;
1433 case DM_MAPIO_KILL:
1434 case DM_MAPIO_REQUEUE:
1435 if (static_branch_unlikely(&swap_bios_enabled) &&
1436 unlikely(swap_bios_limit(ti, clone)))
1437 up(&md->swap_bios_semaphore);
1438 free_tio(clone);
1439 if (r == DM_MAPIO_KILL)
1440 dm_io_dec_pending(io, BLK_STS_IOERR);
1441 else
1442 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1443 break;
1444 default:
1445 DMCRIT("unimplemented target map return value: %d", r);
1446 BUG();
1447 }
1448 }
1449
1450 static void setup_split_accounting(struct clone_info *ci, unsigned len)
1451 {
1452 struct dm_io *io = ci->io;
1453
1454 if (ci->sector_count > len) {
1455 /*
1456 * Split needed, save the mapped part for accounting.
1457 * NOTE: dm_accept_partial_bio() will update accordingly.
1458 */
1459 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1460 io->sectors = len;
1461 io->sector_offset = bio_sectors(ci->bio);
1462 }
1463 }
1464
1465 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1466 struct dm_target *ti, unsigned num_bios)
1467 {
1468 struct bio *bio;
1469 int try;
1470
1471 for (try = 0; try < 2; try++) {
1472 int bio_nr;
1473
1474 if (try)
1475 mutex_lock(&ci->io->md->table_devices_lock);
1476 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1477 bio = alloc_tio(ci, ti, bio_nr, NULL,
1478 try ? GFP_NOIO : GFP_NOWAIT);
1479 if (!bio)
1480 break;
1481
1482 bio_list_add(blist, bio);
1483 }
1484 if (try)
1485 mutex_unlock(&ci->io->md->table_devices_lock);
1486 if (bio_nr == num_bios)
1487 return;
1488
1489 while ((bio = bio_list_pop(blist)))
1490 free_tio(bio);
1491 }
1492 }
1493
1494 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1495 unsigned int num_bios, unsigned *len)
1496 {
1497 struct bio_list blist = BIO_EMPTY_LIST;
1498 struct bio *clone;
1499 unsigned int ret = 0;
1500
1501 switch (num_bios) {
1502 case 0:
1503 break;
1504 case 1:
1505 if (len)
1506 setup_split_accounting(ci, *len);
1507 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1508 __map_bio(clone);
1509 ret = 1;
1510 break;
1511 default:
1512 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1513 alloc_multiple_bios(&blist, ci, ti, num_bios);
1514 while ((clone = bio_list_pop(&blist))) {
1515 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1516 __map_bio(clone);
1517 ret += 1;
1518 }
1519 break;
1520 }
1521
1522 return ret;
1523 }
1524
1525 static void __send_empty_flush(struct clone_info *ci)
1526 {
1527 struct dm_table *t = ci->map;
1528 struct bio flush_bio;
1529
1530 /*
1531 * Use an on-stack bio for this, it's safe since we don't
1532 * need to reference it after submit. It's just used as
1533 * the basis for the clone(s).
1534 */
1535 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1536 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1537
1538 ci->bio = &flush_bio;
1539 ci->sector_count = 0;
1540 ci->io->tio.clone.bi_iter.bi_size = 0;
1541
1542 for (unsigned int i = 0; i < t->num_targets; i++) {
1543 unsigned int bios;
1544 struct dm_target *ti = dm_table_get_target(t, i);
1545
1546 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1547 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1548 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1549 }
1550
1551 /*
1552 * alloc_io() takes one extra reference for submission, so the
1553 * reference won't reach 0 without the following subtraction
1554 */
1555 atomic_sub(1, &ci->io->io_count);
1556
1557 bio_uninit(ci->bio);
1558 }
1559
1560 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1561 unsigned num_bios)
1562 {
1563 unsigned len;
1564 unsigned int bios;
1565
1566 len = min_t(sector_t, ci->sector_count,
1567 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1568
1569 atomic_add(num_bios, &ci->io->io_count);
1570 bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1571 /*
1572 * alloc_io() takes one extra reference for submission, so the
1573 * reference won't reach 0 without the following (+1) subtraction
1574 */
1575 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1576
1577 ci->sector += len;
1578 ci->sector_count -= len;
1579 }
1580
1581 static bool is_abnormal_io(struct bio *bio)
1582 {
1583 enum req_op op = bio_op(bio);
1584
1585 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1586 switch (op) {
1587 case REQ_OP_DISCARD:
1588 case REQ_OP_SECURE_ERASE:
1589 case REQ_OP_WRITE_ZEROES:
1590 return true;
1591 default:
1592 break;
1593 }
1594 }
1595
1596 return false;
1597 }
1598
1599 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1600 struct dm_target *ti)
1601 {
1602 unsigned num_bios = 0;
1603
1604 switch (bio_op(ci->bio)) {
1605 case REQ_OP_DISCARD:
1606 num_bios = ti->num_discard_bios;
1607 break;
1608 case REQ_OP_SECURE_ERASE:
1609 num_bios = ti->num_secure_erase_bios;
1610 break;
1611 case REQ_OP_WRITE_ZEROES:
1612 num_bios = ti->num_write_zeroes_bios;
1613 break;
1614 default:
1615 break;
1616 }
1617
1618 /*
1619 * Even though the device advertised support for this type of
1620 * request, that does not mean every target supports it, and
1621 * reconfiguration might also have changed that since the
1622 * check was performed.
1623 */
1624 if (unlikely(!num_bios))
1625 return BLK_STS_NOTSUPP;
1626
1627 __send_changing_extent_only(ci, ti, num_bios);
1628 return BLK_STS_OK;
1629 }
1630
1631 /*
1632 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1633 * associated with this bio, and this bio's bi_private needs to be
1634 * stored in dm_io->data before the reuse.
1635 *
1636 * bio->bi_private is owned by fs or upper layer, so block layer won't
1637 * touch it after splitting. Meantime it won't be changed by anyone after
1638 * bio is submitted. So this reuse is safe.
1639 */
1640 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1641 {
1642 return (struct dm_io **)&bio->bi_private;
1643 }
1644
1645 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1646 {
1647 struct dm_io **head = dm_poll_list_head(bio);
1648
1649 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1650 bio->bi_opf |= REQ_DM_POLL_LIST;
1651 /*
1652 * Save .bi_private into dm_io, so that we can reuse
1653 * .bi_private as dm_io list head for storing dm_io list
1654 */
1655 io->data = bio->bi_private;
1656
1657 /* tell block layer to poll for completion */
1658 bio->bi_cookie = ~BLK_QC_T_NONE;
1659
1660 io->next = NULL;
1661 } else {
1662 /*
1663 * bio recursed due to split, reuse original poll list,
1664 * and save bio->bi_private too.
1665 */
1666 io->data = (*head)->data;
1667 io->next = *head;
1668 }
1669
1670 *head = io;
1671 }
1672
1673 /*
1674 * Select the correct strategy for processing a non-flush bio.
1675 */
1676 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1677 {
1678 struct bio *clone;
1679 struct dm_target *ti;
1680 unsigned len;
1681
1682 ti = dm_table_find_target(ci->map, ci->sector);
1683 if (unlikely(!ti))
1684 return BLK_STS_IOERR;
1685
1686 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1687 unlikely(!dm_target_supports_nowait(ti->type)))
1688 return BLK_STS_NOTSUPP;
1689
1690 if (unlikely(ci->is_abnormal_io))
1691 return __process_abnormal_io(ci, ti);
1692
1693 /*
1694 * Only support bio polling for normal IO, and the target io is
1695 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1696 */
1697 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1698
1699 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1700 setup_split_accounting(ci, len);
1701 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1702 __map_bio(clone);
1703
1704 ci->sector += len;
1705 ci->sector_count -= len;
1706
1707 return BLK_STS_OK;
1708 }
1709
1710 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1711 struct dm_table *map, struct bio *bio, bool is_abnormal)
1712 {
1713 ci->map = map;
1714 ci->io = alloc_io(md, bio);
1715 ci->bio = bio;
1716 ci->is_abnormal_io = is_abnormal;
1717 ci->submit_as_polled = false;
1718 ci->sector = bio->bi_iter.bi_sector;
1719 ci->sector_count = bio_sectors(bio);
1720
1721 /* Shouldn't happen but sector_count was being set to 0 so... */
1722 if (static_branch_unlikely(&zoned_enabled) &&
1723 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1724 ci->sector_count = 0;
1725 }
1726
1727 /*
1728 * Entry point to split a bio into clones and submit them to the targets.
1729 */
1730 static void dm_split_and_process_bio(struct mapped_device *md,
1731 struct dm_table *map, struct bio *bio)
1732 {
1733 struct clone_info ci;
1734 struct dm_io *io;
1735 blk_status_t error = BLK_STS_OK;
1736 bool is_abnormal;
1737
1738 is_abnormal = is_abnormal_io(bio);
1739 if (unlikely(is_abnormal)) {
1740 /*
1741 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1742 * otherwise associated queue_limits won't be imposed.
1743 */
1744 bio = bio_split_to_limits(bio);
1745 if (!bio)
1746 return;
1747 }
1748
1749 init_clone_info(&ci, md, map, bio, is_abnormal);
1750 io = ci.io;
1751
1752 if (bio->bi_opf & REQ_PREFLUSH) {
1753 __send_empty_flush(&ci);
1754 /* dm_io_complete submits any data associated with flush */
1755 goto out;
1756 }
1757
1758 error = __split_and_process_bio(&ci);
1759 if (error || !ci.sector_count)
1760 goto out;
1761 /*
1762 * Remainder must be passed to submit_bio_noacct() so it gets handled
1763 * *after* bios already submitted have been completely processed.
1764 */
1765 bio_trim(bio, io->sectors, ci.sector_count);
1766 trace_block_split(bio, bio->bi_iter.bi_sector);
1767 bio_inc_remaining(bio);
1768 submit_bio_noacct(bio);
1769 out:
1770 /*
1771 * Drop the extra reference count for non-POLLED bio, and hold one
1772 * reference for POLLED bio, which will be released in dm_poll_bio
1773 *
1774 * Add every dm_io instance into the dm_io list head which is stored
1775 * in bio->bi_private, so that dm_poll_bio can poll them all.
1776 */
1777 if (error || !ci.submit_as_polled) {
1778 /*
1779 * In case of submission failure, the extra reference for
1780 * submitting io isn't consumed yet
1781 */
1782 if (error)
1783 atomic_dec(&io->io_count);
1784 dm_io_dec_pending(io, error);
1785 } else
1786 dm_queue_poll_io(bio, io);
1787 }
1788
1789 static void dm_submit_bio(struct bio *bio)
1790 {
1791 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1792 int srcu_idx;
1793 struct dm_table *map;
1794 blk_opf_t bio_opf = bio->bi_opf;
1795
1796 map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1797
1798 /* If suspended, or map not yet available, queue this IO for later */
1799 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1800 unlikely(!map)) {
1801 if (bio->bi_opf & REQ_NOWAIT)
1802 bio_wouldblock_error(bio);
1803 else if (bio->bi_opf & REQ_RAHEAD)
1804 bio_io_error(bio);
1805 else
1806 queue_io(md, bio);
1807 goto out;
1808 }
1809
1810 dm_split_and_process_bio(md, map, bio);
1811 out:
1812 dm_put_live_table_bio(md, srcu_idx, bio_opf);
1813 }
1814
1815 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1816 unsigned int flags)
1817 {
1818 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1819
1820 /* don't poll if the mapped io is done */
1821 if (atomic_read(&io->io_count) > 1)
1822 bio_poll(&io->tio.clone, iob, flags);
1823
1824 /* bio_poll holds the last reference */
1825 return atomic_read(&io->io_count) == 1;
1826 }
1827
1828 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1829 unsigned int flags)
1830 {
1831 struct dm_io **head = dm_poll_list_head(bio);
1832 struct dm_io *list = *head;
1833 struct dm_io *tmp = NULL;
1834 struct dm_io *curr, *next;
1835
1836 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1837 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1838 return 0;
1839
1840 WARN_ON_ONCE(!list);
1841
1842 /*
1843 * Restore .bi_private before possibly completing dm_io.
1844 *
1845 * bio_poll() is only possible once @bio has been completely
1846 * submitted via submit_bio_noacct()'s depth-first submission.
1847 * So there is no dm_queue_poll_io() race associated with
1848 * clearing REQ_DM_POLL_LIST here.
1849 */
1850 bio->bi_opf &= ~REQ_DM_POLL_LIST;
1851 bio->bi_private = list->data;
1852
1853 for (curr = list, next = curr->next; curr; curr = next, next =
1854 curr ? curr->next : NULL) {
1855 if (dm_poll_dm_io(curr, iob, flags)) {
1856 /*
1857 * clone_endio() has already occurred, so no
1858 * error handling is needed here.
1859 */
1860 __dm_io_dec_pending(curr);
1861 } else {
1862 curr->next = tmp;
1863 tmp = curr;
1864 }
1865 }
1866
1867 /* Not done? */
1868 if (tmp) {
1869 bio->bi_opf |= REQ_DM_POLL_LIST;
1870 /* Reset bio->bi_private to dm_io list head */
1871 *head = tmp;
1872 return 0;
1873 }
1874 return 1;
1875 }
1876
1877 /*-----------------------------------------------------------------
1878 * An IDR is used to keep track of allocated minor numbers.
1879 *---------------------------------------------------------------*/
1880 static void free_minor(int minor)
1881 {
1882 spin_lock(&_minor_lock);
1883 idr_remove(&_minor_idr, minor);
1884 spin_unlock(&_minor_lock);
1885 }
1886
1887 /*
1888 * See if the device with a specific minor # is free.
1889 */
1890 static int specific_minor(int minor)
1891 {
1892 int r;
1893
1894 if (minor >= (1 << MINORBITS))
1895 return -EINVAL;
1896
1897 idr_preload(GFP_KERNEL);
1898 spin_lock(&_minor_lock);
1899
1900 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1901
1902 spin_unlock(&_minor_lock);
1903 idr_preload_end();
1904 if (r < 0)
1905 return r == -ENOSPC ? -EBUSY : r;
1906 return 0;
1907 }
1908
1909 static int next_free_minor(int *minor)
1910 {
1911 int r;
1912
1913 idr_preload(GFP_KERNEL);
1914 spin_lock(&_minor_lock);
1915
1916 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1917
1918 spin_unlock(&_minor_lock);
1919 idr_preload_end();
1920 if (r < 0)
1921 return r;
1922 *minor = r;
1923 return 0;
1924 }
1925
1926 static const struct block_device_operations dm_blk_dops;
1927 static const struct block_device_operations dm_rq_blk_dops;
1928 static const struct dax_operations dm_dax_ops;
1929
1930 static void dm_wq_work(struct work_struct *work);
1931
1932 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1933 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1934 {
1935 dm_destroy_crypto_profile(q->crypto_profile);
1936 }
1937
1938 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1939
1940 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1941 {
1942 }
1943 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1944
1945 static void cleanup_mapped_device(struct mapped_device *md)
1946 {
1947 if (md->wq)
1948 destroy_workqueue(md->wq);
1949 dm_free_md_mempools(md->mempools);
1950
1951 if (md->dax_dev) {
1952 dax_remove_host(md->disk);
1953 kill_dax(md->dax_dev);
1954 put_dax(md->dax_dev);
1955 md->dax_dev = NULL;
1956 }
1957
1958 dm_cleanup_zoned_dev(md);
1959 if (md->disk) {
1960 spin_lock(&_minor_lock);
1961 md->disk->private_data = NULL;
1962 spin_unlock(&_minor_lock);
1963 if (dm_get_md_type(md) != DM_TYPE_NONE) {
1964 struct table_device *td;
1965
1966 dm_sysfs_exit(md);
1967 list_for_each_entry(td, &md->table_devices, list) {
1968 bd_unlink_disk_holder(td->dm_dev.bdev,
1969 md->disk);
1970 }
1971
1972 /*
1973 * Hold lock to make sure del_gendisk() won't concurrent
1974 * with open/close_table_device().
1975 */
1976 mutex_lock(&md->table_devices_lock);
1977 del_gendisk(md->disk);
1978 mutex_unlock(&md->table_devices_lock);
1979 }
1980 dm_queue_destroy_crypto_profile(md->queue);
1981 put_disk(md->disk);
1982 }
1983
1984 if (md->pending_io) {
1985 free_percpu(md->pending_io);
1986 md->pending_io = NULL;
1987 }
1988
1989 cleanup_srcu_struct(&md->io_barrier);
1990
1991 mutex_destroy(&md->suspend_lock);
1992 mutex_destroy(&md->type_lock);
1993 mutex_destroy(&md->table_devices_lock);
1994 mutex_destroy(&md->swap_bios_lock);
1995
1996 dm_mq_cleanup_mapped_device(md);
1997 }
1998
1999 /*
2000 * Allocate and initialise a blank device with a given minor.
2001 */
2002 static struct mapped_device *alloc_dev(int minor)
2003 {
2004 int r, numa_node_id = dm_get_numa_node();
2005 struct mapped_device *md;
2006 void *old_md;
2007
2008 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2009 if (!md) {
2010 DMERR("unable to allocate device, out of memory.");
2011 return NULL;
2012 }
2013
2014 if (!try_module_get(THIS_MODULE))
2015 goto bad_module_get;
2016
2017 /* get a minor number for the dev */
2018 if (minor == DM_ANY_MINOR)
2019 r = next_free_minor(&minor);
2020 else
2021 r = specific_minor(minor);
2022 if (r < 0)
2023 goto bad_minor;
2024
2025 r = init_srcu_struct(&md->io_barrier);
2026 if (r < 0)
2027 goto bad_io_barrier;
2028
2029 md->numa_node_id = numa_node_id;
2030 md->init_tio_pdu = false;
2031 md->type = DM_TYPE_NONE;
2032 mutex_init(&md->suspend_lock);
2033 mutex_init(&md->type_lock);
2034 mutex_init(&md->table_devices_lock);
2035 spin_lock_init(&md->deferred_lock);
2036 atomic_set(&md->holders, 1);
2037 atomic_set(&md->open_count, 0);
2038 atomic_set(&md->event_nr, 0);
2039 atomic_set(&md->uevent_seq, 0);
2040 INIT_LIST_HEAD(&md->uevent_list);
2041 INIT_LIST_HEAD(&md->table_devices);
2042 spin_lock_init(&md->uevent_lock);
2043
2044 /*
2045 * default to bio-based until DM table is loaded and md->type
2046 * established. If request-based table is loaded: blk-mq will
2047 * override accordingly.
2048 */
2049 md->disk = blk_alloc_disk(md->numa_node_id);
2050 if (!md->disk)
2051 goto bad;
2052 md->queue = md->disk->queue;
2053
2054 init_waitqueue_head(&md->wait);
2055 INIT_WORK(&md->work, dm_wq_work);
2056 INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2057 init_waitqueue_head(&md->eventq);
2058 init_completion(&md->kobj_holder.completion);
2059
2060 md->requeue_list = NULL;
2061 md->swap_bios = get_swap_bios();
2062 sema_init(&md->swap_bios_semaphore, md->swap_bios);
2063 mutex_init(&md->swap_bios_lock);
2064
2065 md->disk->major = _major;
2066 md->disk->first_minor = minor;
2067 md->disk->minors = 1;
2068 md->disk->flags |= GENHD_FL_NO_PART;
2069 md->disk->fops = &dm_blk_dops;
2070 md->disk->private_data = md;
2071 sprintf(md->disk->disk_name, "dm-%d", minor);
2072
2073 if (IS_ENABLED(CONFIG_FS_DAX)) {
2074 md->dax_dev = alloc_dax(md, &dm_dax_ops);
2075 if (IS_ERR(md->dax_dev)) {
2076 md->dax_dev = NULL;
2077 goto bad;
2078 }
2079 set_dax_nocache(md->dax_dev);
2080 set_dax_nomc(md->dax_dev);
2081 if (dax_add_host(md->dax_dev, md->disk))
2082 goto bad;
2083 }
2084
2085 format_dev_t(md->name, MKDEV(_major, minor));
2086
2087 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2088 if (!md->wq)
2089 goto bad;
2090
2091 md->pending_io = alloc_percpu(unsigned long);
2092 if (!md->pending_io)
2093 goto bad;
2094
2095 dm_stats_init(&md->stats);
2096
2097 /* Populate the mapping, nobody knows we exist yet */
2098 spin_lock(&_minor_lock);
2099 old_md = idr_replace(&_minor_idr, md, minor);
2100 spin_unlock(&_minor_lock);
2101
2102 BUG_ON(old_md != MINOR_ALLOCED);
2103
2104 return md;
2105
2106 bad:
2107 cleanup_mapped_device(md);
2108 bad_io_barrier:
2109 free_minor(minor);
2110 bad_minor:
2111 module_put(THIS_MODULE);
2112 bad_module_get:
2113 kvfree(md);
2114 return NULL;
2115 }
2116
2117 static void unlock_fs(struct mapped_device *md);
2118
2119 static void free_dev(struct mapped_device *md)
2120 {
2121 int minor = MINOR(disk_devt(md->disk));
2122
2123 unlock_fs(md);
2124
2125 cleanup_mapped_device(md);
2126
2127 WARN_ON_ONCE(!list_empty(&md->table_devices));
2128 dm_stats_cleanup(&md->stats);
2129 free_minor(minor);
2130
2131 module_put(THIS_MODULE);
2132 kvfree(md);
2133 }
2134
2135 /*
2136 * Bind a table to the device.
2137 */
2138 static void event_callback(void *context)
2139 {
2140 unsigned long flags;
2141 LIST_HEAD(uevents);
2142 struct mapped_device *md = (struct mapped_device *) context;
2143
2144 spin_lock_irqsave(&md->uevent_lock, flags);
2145 list_splice_init(&md->uevent_list, &uevents);
2146 spin_unlock_irqrestore(&md->uevent_lock, flags);
2147
2148 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2149
2150 atomic_inc(&md->event_nr);
2151 wake_up(&md->eventq);
2152 dm_issue_global_event();
2153 }
2154
2155 /*
2156 * Returns old map, which caller must destroy.
2157 */
2158 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2159 struct queue_limits *limits)
2160 {
2161 struct dm_table *old_map;
2162 sector_t size;
2163 int ret;
2164
2165 lockdep_assert_held(&md->suspend_lock);
2166
2167 size = dm_table_get_size(t);
2168
2169 /*
2170 * Wipe any geometry if the size of the table changed.
2171 */
2172 if (size != dm_get_size(md))
2173 memset(&md->geometry, 0, sizeof(md->geometry));
2174
2175 set_capacity(md->disk, size);
2176
2177 dm_table_event_callback(t, event_callback, md);
2178
2179 if (dm_table_request_based(t)) {
2180 /*
2181 * Leverage the fact that request-based DM targets are
2182 * immutable singletons - used to optimize dm_mq_queue_rq.
2183 */
2184 md->immutable_target = dm_table_get_immutable_target(t);
2185
2186 /*
2187 * There is no need to reload with request-based dm because the
2188 * size of front_pad doesn't change.
2189 *
2190 * Note for future: If you are to reload bioset, prep-ed
2191 * requests in the queue may refer to bio from the old bioset,
2192 * so you must walk through the queue to unprep.
2193 */
2194 if (!md->mempools) {
2195 md->mempools = t->mempools;
2196 t->mempools = NULL;
2197 }
2198 } else {
2199 /*
2200 * The md may already have mempools that need changing.
2201 * If so, reload bioset because front_pad may have changed
2202 * because a different table was loaded.
2203 */
2204 dm_free_md_mempools(md->mempools);
2205 md->mempools = t->mempools;
2206 t->mempools = NULL;
2207 }
2208
2209 ret = dm_table_set_restrictions(t, md->queue, limits);
2210 if (ret) {
2211 old_map = ERR_PTR(ret);
2212 goto out;
2213 }
2214
2215 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2216 rcu_assign_pointer(md->map, (void *)t);
2217 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2218
2219 if (old_map)
2220 dm_sync_table(md);
2221 out:
2222 return old_map;
2223 }
2224
2225 /*
2226 * Returns unbound table for the caller to free.
2227 */
2228 static struct dm_table *__unbind(struct mapped_device *md)
2229 {
2230 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2231
2232 if (!map)
2233 return NULL;
2234
2235 dm_table_event_callback(map, NULL, NULL);
2236 RCU_INIT_POINTER(md->map, NULL);
2237 dm_sync_table(md);
2238
2239 return map;
2240 }
2241
2242 /*
2243 * Constructor for a new device.
2244 */
2245 int dm_create(int minor, struct mapped_device **result)
2246 {
2247 struct mapped_device *md;
2248
2249 md = alloc_dev(minor);
2250 if (!md)
2251 return -ENXIO;
2252
2253 dm_ima_reset_data(md);
2254
2255 *result = md;
2256 return 0;
2257 }
2258
2259 /*
2260 * Functions to manage md->type.
2261 * All are required to hold md->type_lock.
2262 */
2263 void dm_lock_md_type(struct mapped_device *md)
2264 {
2265 mutex_lock(&md->type_lock);
2266 }
2267
2268 void dm_unlock_md_type(struct mapped_device *md)
2269 {
2270 mutex_unlock(&md->type_lock);
2271 }
2272
2273 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2274 {
2275 BUG_ON(!mutex_is_locked(&md->type_lock));
2276 md->type = type;
2277 }
2278
2279 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2280 {
2281 return md->type;
2282 }
2283
2284 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2285 {
2286 return md->immutable_target_type;
2287 }
2288
2289 /*
2290 * The queue_limits are only valid as long as you have a reference
2291 * count on 'md'.
2292 */
2293 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2294 {
2295 BUG_ON(!atomic_read(&md->holders));
2296 return &md->queue->limits;
2297 }
2298 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2299
2300 /*
2301 * Setup the DM device's queue based on md's type
2302 */
2303 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2304 {
2305 enum dm_queue_mode type = dm_table_get_type(t);
2306 struct queue_limits limits;
2307 struct table_device *td;
2308 int r;
2309
2310 switch (type) {
2311 case DM_TYPE_REQUEST_BASED:
2312 md->disk->fops = &dm_rq_blk_dops;
2313 r = dm_mq_init_request_queue(md, t);
2314 if (r) {
2315 DMERR("Cannot initialize queue for request-based dm mapped device");
2316 return r;
2317 }
2318 break;
2319 case DM_TYPE_BIO_BASED:
2320 case DM_TYPE_DAX_BIO_BASED:
2321 break;
2322 case DM_TYPE_NONE:
2323 WARN_ON_ONCE(true);
2324 break;
2325 }
2326
2327 r = dm_calculate_queue_limits(t, &limits);
2328 if (r) {
2329 DMERR("Cannot calculate initial queue limits");
2330 return r;
2331 }
2332 r = dm_table_set_restrictions(t, md->queue, &limits);
2333 if (r)
2334 return r;
2335
2336 /*
2337 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2338 * with open_table_device() and close_table_device().
2339 */
2340 mutex_lock(&md->table_devices_lock);
2341 r = add_disk(md->disk);
2342 mutex_unlock(&md->table_devices_lock);
2343 if (r)
2344 return r;
2345
2346 /*
2347 * Register the holder relationship for devices added before the disk
2348 * was live.
2349 */
2350 list_for_each_entry(td, &md->table_devices, list) {
2351 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2352 if (r)
2353 goto out_undo_holders;
2354 }
2355
2356 r = dm_sysfs_init(md);
2357 if (r)
2358 goto out_undo_holders;
2359
2360 md->type = type;
2361 return 0;
2362
2363 out_undo_holders:
2364 list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2365 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2366 mutex_lock(&md->table_devices_lock);
2367 del_gendisk(md->disk);
2368 mutex_unlock(&md->table_devices_lock);
2369 return r;
2370 }
2371
2372 struct mapped_device *dm_get_md(dev_t dev)
2373 {
2374 struct mapped_device *md;
2375 unsigned minor = MINOR(dev);
2376
2377 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2378 return NULL;
2379
2380 spin_lock(&_minor_lock);
2381
2382 md = idr_find(&_minor_idr, minor);
2383 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2384 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2385 md = NULL;
2386 goto out;
2387 }
2388 dm_get(md);
2389 out:
2390 spin_unlock(&_minor_lock);
2391
2392 return md;
2393 }
2394 EXPORT_SYMBOL_GPL(dm_get_md);
2395
2396 void *dm_get_mdptr(struct mapped_device *md)
2397 {
2398 return md->interface_ptr;
2399 }
2400
2401 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2402 {
2403 md->interface_ptr = ptr;
2404 }
2405
2406 void dm_get(struct mapped_device *md)
2407 {
2408 atomic_inc(&md->holders);
2409 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2410 }
2411
2412 int dm_hold(struct mapped_device *md)
2413 {
2414 spin_lock(&_minor_lock);
2415 if (test_bit(DMF_FREEING, &md->flags)) {
2416 spin_unlock(&_minor_lock);
2417 return -EBUSY;
2418 }
2419 dm_get(md);
2420 spin_unlock(&_minor_lock);
2421 return 0;
2422 }
2423 EXPORT_SYMBOL_GPL(dm_hold);
2424
2425 const char *dm_device_name(struct mapped_device *md)
2426 {
2427 return md->name;
2428 }
2429 EXPORT_SYMBOL_GPL(dm_device_name);
2430
2431 static void __dm_destroy(struct mapped_device *md, bool wait)
2432 {
2433 struct dm_table *map;
2434 int srcu_idx;
2435
2436 might_sleep();
2437
2438 spin_lock(&_minor_lock);
2439 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2440 set_bit(DMF_FREEING, &md->flags);
2441 spin_unlock(&_minor_lock);
2442
2443 blk_mark_disk_dead(md->disk);
2444
2445 /*
2446 * Take suspend_lock so that presuspend and postsuspend methods
2447 * do not race with internal suspend.
2448 */
2449 mutex_lock(&md->suspend_lock);
2450 map = dm_get_live_table(md, &srcu_idx);
2451 if (!dm_suspended_md(md)) {
2452 dm_table_presuspend_targets(map);
2453 set_bit(DMF_SUSPENDED, &md->flags);
2454 set_bit(DMF_POST_SUSPENDING, &md->flags);
2455 dm_table_postsuspend_targets(map);
2456 }
2457 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2458 dm_put_live_table(md, srcu_idx);
2459 mutex_unlock(&md->suspend_lock);
2460
2461 /*
2462 * Rare, but there may be I/O requests still going to complete,
2463 * for example. Wait for all references to disappear.
2464 * No one should increment the reference count of the mapped_device,
2465 * after the mapped_device state becomes DMF_FREEING.
2466 */
2467 if (wait)
2468 while (atomic_read(&md->holders))
2469 msleep(1);
2470 else if (atomic_read(&md->holders))
2471 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2472 dm_device_name(md), atomic_read(&md->holders));
2473
2474 dm_table_destroy(__unbind(md));
2475 free_dev(md);
2476 }
2477
2478 void dm_destroy(struct mapped_device *md)
2479 {
2480 __dm_destroy(md, true);
2481 }
2482
2483 void dm_destroy_immediate(struct mapped_device *md)
2484 {
2485 __dm_destroy(md, false);
2486 }
2487
2488 void dm_put(struct mapped_device *md)
2489 {
2490 atomic_dec(&md->holders);
2491 }
2492 EXPORT_SYMBOL_GPL(dm_put);
2493
2494 static bool dm_in_flight_bios(struct mapped_device *md)
2495 {
2496 int cpu;
2497 unsigned long sum = 0;
2498
2499 for_each_possible_cpu(cpu)
2500 sum += *per_cpu_ptr(md->pending_io, cpu);
2501
2502 return sum != 0;
2503 }
2504
2505 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2506 {
2507 int r = 0;
2508 DEFINE_WAIT(wait);
2509
2510 while (true) {
2511 prepare_to_wait(&md->wait, &wait, task_state);
2512
2513 if (!dm_in_flight_bios(md))
2514 break;
2515
2516 if (signal_pending_state(task_state, current)) {
2517 r = -EINTR;
2518 break;
2519 }
2520
2521 io_schedule();
2522 }
2523 finish_wait(&md->wait, &wait);
2524
2525 smp_rmb();
2526
2527 return r;
2528 }
2529
2530 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2531 {
2532 int r = 0;
2533
2534 if (!queue_is_mq(md->queue))
2535 return dm_wait_for_bios_completion(md, task_state);
2536
2537 while (true) {
2538 if (!blk_mq_queue_inflight(md->queue))
2539 break;
2540
2541 if (signal_pending_state(task_state, current)) {
2542 r = -EINTR;
2543 break;
2544 }
2545
2546 msleep(5);
2547 }
2548
2549 return r;
2550 }
2551
2552 /*
2553 * Process the deferred bios
2554 */
2555 static void dm_wq_work(struct work_struct *work)
2556 {
2557 struct mapped_device *md = container_of(work, struct mapped_device, work);
2558 struct bio *bio;
2559
2560 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2561 spin_lock_irq(&md->deferred_lock);
2562 bio = bio_list_pop(&md->deferred);
2563 spin_unlock_irq(&md->deferred_lock);
2564
2565 if (!bio)
2566 break;
2567
2568 submit_bio_noacct(bio);
2569 }
2570 }
2571
2572 static void dm_queue_flush(struct mapped_device *md)
2573 {
2574 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2575 smp_mb__after_atomic();
2576 queue_work(md->wq, &md->work);
2577 }
2578
2579 /*
2580 * Swap in a new table, returning the old one for the caller to destroy.
2581 */
2582 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2583 {
2584 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2585 struct queue_limits limits;
2586 int r;
2587
2588 mutex_lock(&md->suspend_lock);
2589
2590 /* device must be suspended */
2591 if (!dm_suspended_md(md))
2592 goto out;
2593
2594 /*
2595 * If the new table has no data devices, retain the existing limits.
2596 * This helps multipath with queue_if_no_path if all paths disappear,
2597 * then new I/O is queued based on these limits, and then some paths
2598 * reappear.
2599 */
2600 if (dm_table_has_no_data_devices(table)) {
2601 live_map = dm_get_live_table_fast(md);
2602 if (live_map)
2603 limits = md->queue->limits;
2604 dm_put_live_table_fast(md);
2605 }
2606
2607 if (!live_map) {
2608 r = dm_calculate_queue_limits(table, &limits);
2609 if (r) {
2610 map = ERR_PTR(r);
2611 goto out;
2612 }
2613 }
2614
2615 map = __bind(md, table, &limits);
2616 dm_issue_global_event();
2617
2618 out:
2619 mutex_unlock(&md->suspend_lock);
2620 return map;
2621 }
2622
2623 /*
2624 * Functions to lock and unlock any filesystem running on the
2625 * device.
2626 */
2627 static int lock_fs(struct mapped_device *md)
2628 {
2629 int r;
2630
2631 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2632
2633 r = freeze_bdev(md->disk->part0);
2634 if (!r)
2635 set_bit(DMF_FROZEN, &md->flags);
2636 return r;
2637 }
2638
2639 static void unlock_fs(struct mapped_device *md)
2640 {
2641 if (!test_bit(DMF_FROZEN, &md->flags))
2642 return;
2643 thaw_bdev(md->disk->part0);
2644 clear_bit(DMF_FROZEN, &md->flags);
2645 }
2646
2647 /*
2648 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2649 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2650 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2651 *
2652 * If __dm_suspend returns 0, the device is completely quiescent
2653 * now. There is no request-processing activity. All new requests
2654 * are being added to md->deferred list.
2655 */
2656 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2657 unsigned suspend_flags, unsigned int task_state,
2658 int dmf_suspended_flag)
2659 {
2660 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2661 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2662 int r;
2663
2664 lockdep_assert_held(&md->suspend_lock);
2665
2666 /*
2667 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2668 * This flag is cleared before dm_suspend returns.
2669 */
2670 if (noflush)
2671 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2672 else
2673 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2674
2675 /*
2676 * This gets reverted if there's an error later and the targets
2677 * provide the .presuspend_undo hook.
2678 */
2679 dm_table_presuspend_targets(map);
2680
2681 /*
2682 * Flush I/O to the device.
2683 * Any I/O submitted after lock_fs() may not be flushed.
2684 * noflush takes precedence over do_lockfs.
2685 * (lock_fs() flushes I/Os and waits for them to complete.)
2686 */
2687 if (!noflush && do_lockfs) {
2688 r = lock_fs(md);
2689 if (r) {
2690 dm_table_presuspend_undo_targets(map);
2691 return r;
2692 }
2693 }
2694
2695 /*
2696 * Here we must make sure that no processes are submitting requests
2697 * to target drivers i.e. no one may be executing
2698 * dm_split_and_process_bio from dm_submit_bio.
2699 *
2700 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2701 * we take the write lock. To prevent any process from reentering
2702 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2703 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2704 * flush_workqueue(md->wq).
2705 */
2706 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2707 if (map)
2708 synchronize_srcu(&md->io_barrier);
2709
2710 /*
2711 * Stop md->queue before flushing md->wq in case request-based
2712 * dm defers requests to md->wq from md->queue.
2713 */
2714 if (dm_request_based(md))
2715 dm_stop_queue(md->queue);
2716
2717 flush_workqueue(md->wq);
2718
2719 /*
2720 * At this point no more requests are entering target request routines.
2721 * We call dm_wait_for_completion to wait for all existing requests
2722 * to finish.
2723 */
2724 r = dm_wait_for_completion(md, task_state);
2725 if (!r)
2726 set_bit(dmf_suspended_flag, &md->flags);
2727
2728 if (noflush)
2729 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2730 if (map)
2731 synchronize_srcu(&md->io_barrier);
2732
2733 /* were we interrupted ? */
2734 if (r < 0) {
2735 dm_queue_flush(md);
2736
2737 if (dm_request_based(md))
2738 dm_start_queue(md->queue);
2739
2740 unlock_fs(md);
2741 dm_table_presuspend_undo_targets(map);
2742 /* pushback list is already flushed, so skip flush */
2743 }
2744
2745 return r;
2746 }
2747
2748 /*
2749 * We need to be able to change a mapping table under a mounted
2750 * filesystem. For example we might want to move some data in
2751 * the background. Before the table can be swapped with
2752 * dm_bind_table, dm_suspend must be called to flush any in
2753 * flight bios and ensure that any further io gets deferred.
2754 */
2755 /*
2756 * Suspend mechanism in request-based dm.
2757 *
2758 * 1. Flush all I/Os by lock_fs() if needed.
2759 * 2. Stop dispatching any I/O by stopping the request_queue.
2760 * 3. Wait for all in-flight I/Os to be completed or requeued.
2761 *
2762 * To abort suspend, start the request_queue.
2763 */
2764 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2765 {
2766 struct dm_table *map = NULL;
2767 int r = 0;
2768
2769 retry:
2770 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2771
2772 if (dm_suspended_md(md)) {
2773 r = -EINVAL;
2774 goto out_unlock;
2775 }
2776
2777 if (dm_suspended_internally_md(md)) {
2778 /* already internally suspended, wait for internal resume */
2779 mutex_unlock(&md->suspend_lock);
2780 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2781 if (r)
2782 return r;
2783 goto retry;
2784 }
2785
2786 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2787
2788 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2789 if (r)
2790 goto out_unlock;
2791
2792 set_bit(DMF_POST_SUSPENDING, &md->flags);
2793 dm_table_postsuspend_targets(map);
2794 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2795
2796 out_unlock:
2797 mutex_unlock(&md->suspend_lock);
2798 return r;
2799 }
2800
2801 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2802 {
2803 if (map) {
2804 int r = dm_table_resume_targets(map);
2805 if (r)
2806 return r;
2807 }
2808
2809 dm_queue_flush(md);
2810
2811 /*
2812 * Flushing deferred I/Os must be done after targets are resumed
2813 * so that mapping of targets can work correctly.
2814 * Request-based dm is queueing the deferred I/Os in its request_queue.
2815 */
2816 if (dm_request_based(md))
2817 dm_start_queue(md->queue);
2818
2819 unlock_fs(md);
2820
2821 return 0;
2822 }
2823
2824 int dm_resume(struct mapped_device *md)
2825 {
2826 int r;
2827 struct dm_table *map = NULL;
2828
2829 retry:
2830 r = -EINVAL;
2831 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2832
2833 if (!dm_suspended_md(md))
2834 goto out;
2835
2836 if (dm_suspended_internally_md(md)) {
2837 /* already internally suspended, wait for internal resume */
2838 mutex_unlock(&md->suspend_lock);
2839 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2840 if (r)
2841 return r;
2842 goto retry;
2843 }
2844
2845 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2846 if (!map || !dm_table_get_size(map))
2847 goto out;
2848
2849 r = __dm_resume(md, map);
2850 if (r)
2851 goto out;
2852
2853 clear_bit(DMF_SUSPENDED, &md->flags);
2854 out:
2855 mutex_unlock(&md->suspend_lock);
2856
2857 return r;
2858 }
2859
2860 /*
2861 * Internal suspend/resume works like userspace-driven suspend. It waits
2862 * until all bios finish and prevents issuing new bios to the target drivers.
2863 * It may be used only from the kernel.
2864 */
2865
2866 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2867 {
2868 struct dm_table *map = NULL;
2869
2870 lockdep_assert_held(&md->suspend_lock);
2871
2872 if (md->internal_suspend_count++)
2873 return; /* nested internal suspend */
2874
2875 if (dm_suspended_md(md)) {
2876 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2877 return; /* nest suspend */
2878 }
2879
2880 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2881
2882 /*
2883 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2884 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2885 * would require changing .presuspend to return an error -- avoid this
2886 * until there is a need for more elaborate variants of internal suspend.
2887 */
2888 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2889 DMF_SUSPENDED_INTERNALLY);
2890
2891 set_bit(DMF_POST_SUSPENDING, &md->flags);
2892 dm_table_postsuspend_targets(map);
2893 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2894 }
2895
2896 static void __dm_internal_resume(struct mapped_device *md)
2897 {
2898 BUG_ON(!md->internal_suspend_count);
2899
2900 if (--md->internal_suspend_count)
2901 return; /* resume from nested internal suspend */
2902
2903 if (dm_suspended_md(md))
2904 goto done; /* resume from nested suspend */
2905
2906 /*
2907 * NOTE: existing callers don't need to call dm_table_resume_targets
2908 * (which may fail -- so best to avoid it for now by passing NULL map)
2909 */
2910 (void) __dm_resume(md, NULL);
2911
2912 done:
2913 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2914 smp_mb__after_atomic();
2915 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2916 }
2917
2918 void dm_internal_suspend_noflush(struct mapped_device *md)
2919 {
2920 mutex_lock(&md->suspend_lock);
2921 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2922 mutex_unlock(&md->suspend_lock);
2923 }
2924 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2925
2926 void dm_internal_resume(struct mapped_device *md)
2927 {
2928 mutex_lock(&md->suspend_lock);
2929 __dm_internal_resume(md);
2930 mutex_unlock(&md->suspend_lock);
2931 }
2932 EXPORT_SYMBOL_GPL(dm_internal_resume);
2933
2934 /*
2935 * Fast variants of internal suspend/resume hold md->suspend_lock,
2936 * which prevents interaction with userspace-driven suspend.
2937 */
2938
2939 void dm_internal_suspend_fast(struct mapped_device *md)
2940 {
2941 mutex_lock(&md->suspend_lock);
2942 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2943 return;
2944
2945 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2946 synchronize_srcu(&md->io_barrier);
2947 flush_workqueue(md->wq);
2948 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2949 }
2950 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2951
2952 void dm_internal_resume_fast(struct mapped_device *md)
2953 {
2954 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2955 goto done;
2956
2957 dm_queue_flush(md);
2958
2959 done:
2960 mutex_unlock(&md->suspend_lock);
2961 }
2962 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2963
2964 /*-----------------------------------------------------------------
2965 * Event notification.
2966 *---------------------------------------------------------------*/
2967 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2968 unsigned cookie, bool need_resize_uevent)
2969 {
2970 int r;
2971 unsigned noio_flag;
2972 char udev_cookie[DM_COOKIE_LENGTH];
2973 char *envp[3] = { NULL, NULL, NULL };
2974 char **envpp = envp;
2975 if (cookie) {
2976 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2977 DM_COOKIE_ENV_VAR_NAME, cookie);
2978 *envpp++ = udev_cookie;
2979 }
2980 if (need_resize_uevent) {
2981 *envpp++ = "RESIZE=1";
2982 }
2983
2984 noio_flag = memalloc_noio_save();
2985
2986 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
2987
2988 memalloc_noio_restore(noio_flag);
2989
2990 return r;
2991 }
2992
2993 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2994 {
2995 return atomic_add_return(1, &md->uevent_seq);
2996 }
2997
2998 uint32_t dm_get_event_nr(struct mapped_device *md)
2999 {
3000 return atomic_read(&md->event_nr);
3001 }
3002
3003 int dm_wait_event(struct mapped_device *md, int event_nr)
3004 {
3005 return wait_event_interruptible(md->eventq,
3006 (event_nr != atomic_read(&md->event_nr)));
3007 }
3008
3009 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3010 {
3011 unsigned long flags;
3012
3013 spin_lock_irqsave(&md->uevent_lock, flags);
3014 list_add(elist, &md->uevent_list);
3015 spin_unlock_irqrestore(&md->uevent_lock, flags);
3016 }
3017
3018 /*
3019 * The gendisk is only valid as long as you have a reference
3020 * count on 'md'.
3021 */
3022 struct gendisk *dm_disk(struct mapped_device *md)
3023 {
3024 return md->disk;
3025 }
3026 EXPORT_SYMBOL_GPL(dm_disk);
3027
3028 struct kobject *dm_kobject(struct mapped_device *md)
3029 {
3030 return &md->kobj_holder.kobj;
3031 }
3032
3033 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3034 {
3035 struct mapped_device *md;
3036
3037 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3038
3039 spin_lock(&_minor_lock);
3040 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3041 md = NULL;
3042 goto out;
3043 }
3044 dm_get(md);
3045 out:
3046 spin_unlock(&_minor_lock);
3047
3048 return md;
3049 }
3050
3051 int dm_suspended_md(struct mapped_device *md)
3052 {
3053 return test_bit(DMF_SUSPENDED, &md->flags);
3054 }
3055
3056 static int dm_post_suspending_md(struct mapped_device *md)
3057 {
3058 return test_bit(DMF_POST_SUSPENDING, &md->flags);
3059 }
3060
3061 int dm_suspended_internally_md(struct mapped_device *md)
3062 {
3063 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3064 }
3065
3066 int dm_test_deferred_remove_flag(struct mapped_device *md)
3067 {
3068 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3069 }
3070
3071 int dm_suspended(struct dm_target *ti)
3072 {
3073 return dm_suspended_md(ti->table->md);
3074 }
3075 EXPORT_SYMBOL_GPL(dm_suspended);
3076
3077 int dm_post_suspending(struct dm_target *ti)
3078 {
3079 return dm_post_suspending_md(ti->table->md);
3080 }
3081 EXPORT_SYMBOL_GPL(dm_post_suspending);
3082
3083 int dm_noflush_suspending(struct dm_target *ti)
3084 {
3085 return __noflush_suspending(ti->table->md);
3086 }
3087 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3088
3089 void dm_free_md_mempools(struct dm_md_mempools *pools)
3090 {
3091 if (!pools)
3092 return;
3093
3094 bioset_exit(&pools->bs);
3095 bioset_exit(&pools->io_bs);
3096
3097 kfree(pools);
3098 }
3099
3100 struct dm_pr {
3101 u64 old_key;
3102 u64 new_key;
3103 u32 flags;
3104 bool abort;
3105 bool fail_early;
3106 int ret;
3107 enum pr_type type;
3108 };
3109
3110 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3111 struct dm_pr *pr)
3112 {
3113 struct mapped_device *md = bdev->bd_disk->private_data;
3114 struct dm_table *table;
3115 struct dm_target *ti;
3116 int ret = -ENOTTY, srcu_idx;
3117
3118 table = dm_get_live_table(md, &srcu_idx);
3119 if (!table || !dm_table_get_size(table))
3120 goto out;
3121
3122 /* We only support devices that have a single target */
3123 if (table->num_targets != 1)
3124 goto out;
3125 ti = dm_table_get_target(table, 0);
3126
3127 if (dm_suspended_md(md)) {
3128 ret = -EAGAIN;
3129 goto out;
3130 }
3131
3132 ret = -EINVAL;
3133 if (!ti->type->iterate_devices)
3134 goto out;
3135
3136 ti->type->iterate_devices(ti, fn, pr);
3137 ret = 0;
3138 out:
3139 dm_put_live_table(md, srcu_idx);
3140 return ret;
3141 }
3142
3143 /*
3144 * For register / unregister we need to manually call out to every path.
3145 */
3146 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3147 sector_t start, sector_t len, void *data)
3148 {
3149 struct dm_pr *pr = data;
3150 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3151 int ret;
3152
3153 if (!ops || !ops->pr_register) {
3154 pr->ret = -EOPNOTSUPP;
3155 return -1;
3156 }
3157
3158 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3159 if (!ret)
3160 return 0;
3161
3162 if (!pr->ret)
3163 pr->ret = ret;
3164
3165 if (pr->fail_early)
3166 return -1;
3167
3168 return 0;
3169 }
3170
3171 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3172 u32 flags)
3173 {
3174 struct dm_pr pr = {
3175 .old_key = old_key,
3176 .new_key = new_key,
3177 .flags = flags,
3178 .fail_early = true,
3179 .ret = 0,
3180 };
3181 int ret;
3182
3183 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3184 if (ret) {
3185 /* Didn't even get to register a path */
3186 return ret;
3187 }
3188
3189 if (!pr.ret)
3190 return 0;
3191 ret = pr.ret;
3192
3193 if (!new_key)
3194 return ret;
3195
3196 /* unregister all paths if we failed to register any path */
3197 pr.old_key = new_key;
3198 pr.new_key = 0;
3199 pr.flags = 0;
3200 pr.fail_early = false;
3201 (void) dm_call_pr(bdev, __dm_pr_register, &pr);
3202 return ret;
3203 }
3204
3205
3206 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3207 sector_t start, sector_t len, void *data)
3208 {
3209 struct dm_pr *pr = data;
3210 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3211
3212 if (!ops || !ops->pr_reserve) {
3213 pr->ret = -EOPNOTSUPP;
3214 return -1;
3215 }
3216
3217 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3218 if (!pr->ret)
3219 return -1;
3220
3221 return 0;
3222 }
3223
3224 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3225 u32 flags)
3226 {
3227 struct dm_pr pr = {
3228 .old_key = key,
3229 .flags = flags,
3230 .type = type,
3231 .fail_early = false,
3232 .ret = 0,
3233 };
3234 int ret;
3235
3236 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3237 if (ret)
3238 return ret;
3239
3240 return pr.ret;
3241 }
3242
3243 /*
3244 * If there is a non-All Registrants type of reservation, the release must be
3245 * sent down the holding path. For the cases where there is no reservation or
3246 * the path is not the holder the device will also return success, so we must
3247 * try each path to make sure we got the correct path.
3248 */
3249 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3250 sector_t start, sector_t len, void *data)
3251 {
3252 struct dm_pr *pr = data;
3253 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3254
3255 if (!ops || !ops->pr_release) {
3256 pr->ret = -EOPNOTSUPP;
3257 return -1;
3258 }
3259
3260 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3261 if (pr->ret)
3262 return -1;
3263
3264 return 0;
3265 }
3266
3267 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3268 {
3269 struct dm_pr pr = {
3270 .old_key = key,
3271 .type = type,
3272 .fail_early = false,
3273 };
3274 int ret;
3275
3276 ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3277 if (ret)
3278 return ret;
3279
3280 return pr.ret;
3281 }
3282
3283 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3284 sector_t start, sector_t len, void *data)
3285 {
3286 struct dm_pr *pr = data;
3287 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3288
3289 if (!ops || !ops->pr_preempt) {
3290 pr->ret = -EOPNOTSUPP;
3291 return -1;
3292 }
3293
3294 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3295 pr->abort);
3296 if (!pr->ret)
3297 return -1;
3298
3299 return 0;
3300 }
3301
3302 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3303 enum pr_type type, bool abort)
3304 {
3305 struct dm_pr pr = {
3306 .new_key = new_key,
3307 .old_key = old_key,
3308 .type = type,
3309 .fail_early = false,
3310 };
3311 int ret;
3312
3313 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3314 if (ret)
3315 return ret;
3316
3317 return pr.ret;
3318 }
3319
3320 static int dm_pr_clear(struct block_device *bdev, u64 key)
3321 {
3322 struct mapped_device *md = bdev->bd_disk->private_data;
3323 const struct pr_ops *ops;
3324 int r, srcu_idx;
3325
3326 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3327 if (r < 0)
3328 goto out;
3329
3330 ops = bdev->bd_disk->fops->pr_ops;
3331 if (ops && ops->pr_clear)
3332 r = ops->pr_clear(bdev, key);
3333 else
3334 r = -EOPNOTSUPP;
3335 out:
3336 dm_unprepare_ioctl(md, srcu_idx);
3337 return r;
3338 }
3339
3340 static const struct pr_ops dm_pr_ops = {
3341 .pr_register = dm_pr_register,
3342 .pr_reserve = dm_pr_reserve,
3343 .pr_release = dm_pr_release,
3344 .pr_preempt = dm_pr_preempt,
3345 .pr_clear = dm_pr_clear,
3346 };
3347
3348 static const struct block_device_operations dm_blk_dops = {
3349 .submit_bio = dm_submit_bio,
3350 .poll_bio = dm_poll_bio,
3351 .open = dm_blk_open,
3352 .release = dm_blk_close,
3353 .ioctl = dm_blk_ioctl,
3354 .getgeo = dm_blk_getgeo,
3355 .report_zones = dm_blk_report_zones,
3356 .pr_ops = &dm_pr_ops,
3357 .owner = THIS_MODULE
3358 };
3359
3360 static const struct block_device_operations dm_rq_blk_dops = {
3361 .open = dm_blk_open,
3362 .release = dm_blk_close,
3363 .ioctl = dm_blk_ioctl,
3364 .getgeo = dm_blk_getgeo,
3365 .pr_ops = &dm_pr_ops,
3366 .owner = THIS_MODULE
3367 };
3368
3369 static const struct dax_operations dm_dax_ops = {
3370 .direct_access = dm_dax_direct_access,
3371 .zero_page_range = dm_dax_zero_page_range,
3372 .recovery_write = dm_dax_recovery_write,
3373 };
3374
3375 /*
3376 * module hooks
3377 */
3378 module_init(dm_init);
3379 module_exit(dm_exit);
3380
3381 module_param(major, uint, 0);
3382 MODULE_PARM_DESC(major, "The major number of the device mapper");
3383
3384 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3385 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3386
3387 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3388 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3389
3390 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3391 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3392
3393 MODULE_DESCRIPTION(DM_NAME " driver");
3394 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3395 MODULE_LICENSE("GPL");