]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/md/dm.c
thermal: stm32: Fix stm_thermal_read_factory_settings
[thirdparty/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28
29 #define DM_MSG_PREFIX "core"
30
31 /*
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
34 */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37
38 static const char *_name = DM_NAME;
39
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42
43 static DEFINE_IDR(_minor_idr);
44
45 static DEFINE_SPINLOCK(_minor_lock);
46
47 static void do_deferred_remove(struct work_struct *w);
48
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50
51 static struct workqueue_struct *deferred_remove_workqueue;
52
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55
56 void dm_issue_global_event(void)
57 {
58 atomic_inc(&dm_global_event_nr);
59 wake_up(&dm_global_eventq);
60 }
61
62 /*
63 * One of these is allocated (on-stack) per original bio.
64 */
65 struct clone_info {
66 struct dm_table *map;
67 struct bio *bio;
68 struct dm_io *io;
69 sector_t sector;
70 unsigned sector_count;
71 };
72
73 /*
74 * One of these is allocated per clone bio.
75 */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 unsigned magic;
79 struct dm_io *io;
80 struct dm_target *ti;
81 unsigned target_bio_nr;
82 unsigned *len_ptr;
83 bool inside_dm_io;
84 struct bio clone;
85 };
86
87 /*
88 * One of these is allocated per original bio.
89 * It contains the first clone used for that original.
90 */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 unsigned magic;
94 struct mapped_device *md;
95 blk_status_t status;
96 atomic_t io_count;
97 struct bio *orig_bio;
98 unsigned long start_time;
99 spinlock_t endio_lock;
100 struct dm_stats_aux stats_aux;
101 /* last member of dm_target_io is 'struct bio' */
102 struct dm_target_io tio;
103 };
104
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 if (!tio->inside_dm_io)
109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 if (io->magic == DM_IO_MAGIC)
118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 BUG_ON(io->magic != DM_TIO_MAGIC);
120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129
130 #define MINOR_ALLOCED ((void *)-1)
131
132 /*
133 * Bits for the md->flags field.
134 */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146
147 /*
148 * For mempools pre-allocation at the table loading time.
149 */
150 struct dm_md_mempools {
151 struct bio_set bs;
152 struct bio_set io_bs;
153 };
154
155 struct table_device {
156 struct list_head list;
157 refcount_t count;
158 struct dm_dev dm_dev;
159 };
160
161 static struct kmem_cache *_rq_tio_cache;
162 static struct kmem_cache *_rq_cache;
163
164 /*
165 * Bio-based DM's mempools' reserved IOs set by the user.
166 */
167 #define RESERVED_BIO_BASED_IOS 16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
169
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
171 {
172 int param = READ_ONCE(*module_param);
173 int modified_param = 0;
174 bool modified = true;
175
176 if (param < min)
177 modified_param = min;
178 else if (param > max)
179 modified_param = max;
180 else
181 modified = false;
182
183 if (modified) {
184 (void)cmpxchg(module_param, param, modified_param);
185 param = modified_param;
186 }
187
188 return param;
189 }
190
191 unsigned __dm_get_module_param(unsigned *module_param,
192 unsigned def, unsigned max)
193 {
194 unsigned param = READ_ONCE(*module_param);
195 unsigned modified_param = 0;
196
197 if (!param)
198 modified_param = def;
199 else if (param > max)
200 modified_param = max;
201
202 if (modified_param) {
203 (void)cmpxchg(module_param, param, modified_param);
204 param = modified_param;
205 }
206
207 return param;
208 }
209
210 unsigned dm_get_reserved_bio_based_ios(void)
211 {
212 return __dm_get_module_param(&reserved_bio_based_ios,
213 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
214 }
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
216
217 static unsigned dm_get_numa_node(void)
218 {
219 return __dm_get_module_param_int(&dm_numa_node,
220 DM_NUMA_NODE, num_online_nodes() - 1);
221 }
222
223 static int __init local_init(void)
224 {
225 int r = -ENOMEM;
226
227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 if (!_rq_tio_cache)
229 return r;
230
231 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 __alignof__(struct request), 0, NULL);
233 if (!_rq_cache)
234 goto out_free_rq_tio_cache;
235
236 r = dm_uevent_init();
237 if (r)
238 goto out_free_rq_cache;
239
240 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 if (!deferred_remove_workqueue) {
242 r = -ENOMEM;
243 goto out_uevent_exit;
244 }
245
246 _major = major;
247 r = register_blkdev(_major, _name);
248 if (r < 0)
249 goto out_free_workqueue;
250
251 if (!_major)
252 _major = r;
253
254 return 0;
255
256 out_free_workqueue:
257 destroy_workqueue(deferred_remove_workqueue);
258 out_uevent_exit:
259 dm_uevent_exit();
260 out_free_rq_cache:
261 kmem_cache_destroy(_rq_cache);
262 out_free_rq_tio_cache:
263 kmem_cache_destroy(_rq_tio_cache);
264
265 return r;
266 }
267
268 static void local_exit(void)
269 {
270 flush_scheduled_work();
271 destroy_workqueue(deferred_remove_workqueue);
272
273 kmem_cache_destroy(_rq_cache);
274 kmem_cache_destroy(_rq_tio_cache);
275 unregister_blkdev(_major, _name);
276 dm_uevent_exit();
277
278 _major = 0;
279
280 DMINFO("cleaned up");
281 }
282
283 static int (*_inits[])(void) __initdata = {
284 local_init,
285 dm_target_init,
286 dm_linear_init,
287 dm_stripe_init,
288 dm_io_init,
289 dm_kcopyd_init,
290 dm_interface_init,
291 dm_statistics_init,
292 };
293
294 static void (*_exits[])(void) = {
295 local_exit,
296 dm_target_exit,
297 dm_linear_exit,
298 dm_stripe_exit,
299 dm_io_exit,
300 dm_kcopyd_exit,
301 dm_interface_exit,
302 dm_statistics_exit,
303 };
304
305 static int __init dm_init(void)
306 {
307 const int count = ARRAY_SIZE(_inits);
308
309 int r, i;
310
311 for (i = 0; i < count; i++) {
312 r = _inits[i]();
313 if (r)
314 goto bad;
315 }
316
317 return 0;
318
319 bad:
320 while (i--)
321 _exits[i]();
322
323 return r;
324 }
325
326 static void __exit dm_exit(void)
327 {
328 int i = ARRAY_SIZE(_exits);
329
330 while (i--)
331 _exits[i]();
332
333 /*
334 * Should be empty by this point.
335 */
336 idr_destroy(&_minor_idr);
337 }
338
339 /*
340 * Block device functions
341 */
342 int dm_deleting_md(struct mapped_device *md)
343 {
344 return test_bit(DMF_DELETING, &md->flags);
345 }
346
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
348 {
349 struct mapped_device *md;
350
351 spin_lock(&_minor_lock);
352
353 md = bdev->bd_disk->private_data;
354 if (!md)
355 goto out;
356
357 if (test_bit(DMF_FREEING, &md->flags) ||
358 dm_deleting_md(md)) {
359 md = NULL;
360 goto out;
361 }
362
363 dm_get(md);
364 atomic_inc(&md->open_count);
365 out:
366 spin_unlock(&_minor_lock);
367
368 return md ? 0 : -ENXIO;
369 }
370
371 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
372 {
373 struct mapped_device *md;
374
375 spin_lock(&_minor_lock);
376
377 md = disk->private_data;
378 if (WARN_ON(!md))
379 goto out;
380
381 if (atomic_dec_and_test(&md->open_count) &&
382 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 queue_work(deferred_remove_workqueue, &deferred_remove_work);
384
385 dm_put(md);
386 out:
387 spin_unlock(&_minor_lock);
388 }
389
390 int dm_open_count(struct mapped_device *md)
391 {
392 return atomic_read(&md->open_count);
393 }
394
395 /*
396 * Guarantees nothing is using the device before it's deleted.
397 */
398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
399 {
400 int r = 0;
401
402 spin_lock(&_minor_lock);
403
404 if (dm_open_count(md)) {
405 r = -EBUSY;
406 if (mark_deferred)
407 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
409 r = -EEXIST;
410 else
411 set_bit(DMF_DELETING, &md->flags);
412
413 spin_unlock(&_minor_lock);
414
415 return r;
416 }
417
418 int dm_cancel_deferred_remove(struct mapped_device *md)
419 {
420 int r = 0;
421
422 spin_lock(&_minor_lock);
423
424 if (test_bit(DMF_DELETING, &md->flags))
425 r = -EBUSY;
426 else
427 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
428
429 spin_unlock(&_minor_lock);
430
431 return r;
432 }
433
434 static void do_deferred_remove(struct work_struct *w)
435 {
436 dm_deferred_remove();
437 }
438
439 sector_t dm_get_size(struct mapped_device *md)
440 {
441 return get_capacity(md->disk);
442 }
443
444 struct request_queue *dm_get_md_queue(struct mapped_device *md)
445 {
446 return md->queue;
447 }
448
449 struct dm_stats *dm_get_stats(struct mapped_device *md)
450 {
451 return &md->stats;
452 }
453
454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
455 {
456 struct mapped_device *md = bdev->bd_disk->private_data;
457
458 return dm_get_geometry(md, geo);
459 }
460
461 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
462 struct blk_zone *zones, unsigned int *nr_zones,
463 gfp_t gfp_mask)
464 {
465 #ifdef CONFIG_BLK_DEV_ZONED
466 struct mapped_device *md = disk->private_data;
467 struct dm_target *tgt;
468 struct dm_table *map;
469 int srcu_idx, ret;
470
471 if (dm_suspended_md(md))
472 return -EAGAIN;
473
474 map = dm_get_live_table(md, &srcu_idx);
475 if (!map)
476 return -EIO;
477
478 tgt = dm_table_find_target(map, sector);
479 if (!dm_target_is_valid(tgt)) {
480 ret = -EIO;
481 goto out;
482 }
483
484 /*
485 * If we are executing this, we already know that the block device
486 * is a zoned device and so each target should have support for that
487 * type of drive. A missing report_zones method means that the target
488 * driver has a problem.
489 */
490 if (WARN_ON(!tgt->type->report_zones)) {
491 ret = -EIO;
492 goto out;
493 }
494
495 /*
496 * blkdev_report_zones() will loop and call this again to cover all the
497 * zones of the target, eventually moving on to the next target.
498 * So there is no need to loop here trying to fill the entire array
499 * of zones.
500 */
501 ret = tgt->type->report_zones(tgt, sector, zones,
502 nr_zones, gfp_mask);
503
504 out:
505 dm_put_live_table(md, srcu_idx);
506 return ret;
507 #else
508 return -ENOTSUPP;
509 #endif
510 }
511
512 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
513 struct block_device **bdev)
514 __acquires(md->io_barrier)
515 {
516 struct dm_target *tgt;
517 struct dm_table *map;
518 int r;
519
520 retry:
521 r = -ENOTTY;
522 map = dm_get_live_table(md, srcu_idx);
523 if (!map || !dm_table_get_size(map))
524 return r;
525
526 /* We only support devices that have a single target */
527 if (dm_table_get_num_targets(map) != 1)
528 return r;
529
530 tgt = dm_table_get_target(map, 0);
531 if (!tgt->type->prepare_ioctl)
532 return r;
533
534 if (dm_suspended_md(md))
535 return -EAGAIN;
536
537 r = tgt->type->prepare_ioctl(tgt, bdev);
538 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
539 dm_put_live_table(md, *srcu_idx);
540 msleep(10);
541 goto retry;
542 }
543
544 return r;
545 }
546
547 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
548 __releases(md->io_barrier)
549 {
550 dm_put_live_table(md, srcu_idx);
551 }
552
553 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
554 unsigned int cmd, unsigned long arg)
555 {
556 struct mapped_device *md = bdev->bd_disk->private_data;
557 int r, srcu_idx;
558
559 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
560 if (r < 0)
561 goto out;
562
563 if (r > 0) {
564 /*
565 * Target determined this ioctl is being issued against a
566 * subset of the parent bdev; require extra privileges.
567 */
568 if (!capable(CAP_SYS_RAWIO)) {
569 DMWARN_LIMIT(
570 "%s: sending ioctl %x to DM device without required privilege.",
571 current->comm, cmd);
572 r = -ENOIOCTLCMD;
573 goto out;
574 }
575 }
576
577 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
578 out:
579 dm_unprepare_ioctl(md, srcu_idx);
580 return r;
581 }
582
583 static void start_io_acct(struct dm_io *io);
584
585 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
586 {
587 struct dm_io *io;
588 struct dm_target_io *tio;
589 struct bio *clone;
590
591 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
592 if (!clone)
593 return NULL;
594
595 tio = container_of(clone, struct dm_target_io, clone);
596 tio->inside_dm_io = true;
597 tio->io = NULL;
598
599 io = container_of(tio, struct dm_io, tio);
600 io->magic = DM_IO_MAGIC;
601 io->status = 0;
602 atomic_set(&io->io_count, 1);
603 io->orig_bio = bio;
604 io->md = md;
605 spin_lock_init(&io->endio_lock);
606
607 start_io_acct(io);
608
609 return io;
610 }
611
612 static void free_io(struct mapped_device *md, struct dm_io *io)
613 {
614 bio_put(&io->tio.clone);
615 }
616
617 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
618 unsigned target_bio_nr, gfp_t gfp_mask)
619 {
620 struct dm_target_io *tio;
621
622 if (!ci->io->tio.io) {
623 /* the dm_target_io embedded in ci->io is available */
624 tio = &ci->io->tio;
625 } else {
626 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
627 if (!clone)
628 return NULL;
629
630 tio = container_of(clone, struct dm_target_io, clone);
631 tio->inside_dm_io = false;
632 }
633
634 tio->magic = DM_TIO_MAGIC;
635 tio->io = ci->io;
636 tio->ti = ti;
637 tio->target_bio_nr = target_bio_nr;
638
639 return tio;
640 }
641
642 static void free_tio(struct dm_target_io *tio)
643 {
644 if (tio->inside_dm_io)
645 return;
646 bio_put(&tio->clone);
647 }
648
649 int md_in_flight(struct mapped_device *md)
650 {
651 return atomic_read(&md->pending[READ]) +
652 atomic_read(&md->pending[WRITE]);
653 }
654
655 static void start_io_acct(struct dm_io *io)
656 {
657 struct mapped_device *md = io->md;
658 struct bio *bio = io->orig_bio;
659 int rw = bio_data_dir(bio);
660
661 io->start_time = jiffies;
662
663 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
664 &dm_disk(md)->part0);
665
666 atomic_set(&dm_disk(md)->part0.in_flight[rw],
667 atomic_inc_return(&md->pending[rw]));
668
669 if (unlikely(dm_stats_used(&md->stats)))
670 dm_stats_account_io(&md->stats, bio_data_dir(bio),
671 bio->bi_iter.bi_sector, bio_sectors(bio),
672 false, 0, &io->stats_aux);
673 }
674
675 static void end_io_acct(struct dm_io *io)
676 {
677 struct mapped_device *md = io->md;
678 struct bio *bio = io->orig_bio;
679 unsigned long duration = jiffies - io->start_time;
680 int pending;
681 int rw = bio_data_dir(bio);
682
683 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
684 io->start_time);
685
686 if (unlikely(dm_stats_used(&md->stats)))
687 dm_stats_account_io(&md->stats, bio_data_dir(bio),
688 bio->bi_iter.bi_sector, bio_sectors(bio),
689 true, duration, &io->stats_aux);
690
691 /*
692 * After this is decremented the bio must not be touched if it is
693 * a flush.
694 */
695 pending = atomic_dec_return(&md->pending[rw]);
696 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
697 pending += atomic_read(&md->pending[rw^0x1]);
698
699 /* nudge anyone waiting on suspend queue */
700 if (!pending)
701 wake_up(&md->wait);
702 }
703
704 /*
705 * Add the bio to the list of deferred io.
706 */
707 static void queue_io(struct mapped_device *md, struct bio *bio)
708 {
709 unsigned long flags;
710
711 spin_lock_irqsave(&md->deferred_lock, flags);
712 bio_list_add(&md->deferred, bio);
713 spin_unlock_irqrestore(&md->deferred_lock, flags);
714 queue_work(md->wq, &md->work);
715 }
716
717 /*
718 * Everyone (including functions in this file), should use this
719 * function to access the md->map field, and make sure they call
720 * dm_put_live_table() when finished.
721 */
722 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
723 {
724 *srcu_idx = srcu_read_lock(&md->io_barrier);
725
726 return srcu_dereference(md->map, &md->io_barrier);
727 }
728
729 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
730 {
731 srcu_read_unlock(&md->io_barrier, srcu_idx);
732 }
733
734 void dm_sync_table(struct mapped_device *md)
735 {
736 synchronize_srcu(&md->io_barrier);
737 synchronize_rcu_expedited();
738 }
739
740 /*
741 * A fast alternative to dm_get_live_table/dm_put_live_table.
742 * The caller must not block between these two functions.
743 */
744 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
745 {
746 rcu_read_lock();
747 return rcu_dereference(md->map);
748 }
749
750 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
751 {
752 rcu_read_unlock();
753 }
754
755 static char *_dm_claim_ptr = "I belong to device-mapper";
756
757 /*
758 * Open a table device so we can use it as a map destination.
759 */
760 static int open_table_device(struct table_device *td, dev_t dev,
761 struct mapped_device *md)
762 {
763 struct block_device *bdev;
764
765 int r;
766
767 BUG_ON(td->dm_dev.bdev);
768
769 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
770 if (IS_ERR(bdev))
771 return PTR_ERR(bdev);
772
773 r = bd_link_disk_holder(bdev, dm_disk(md));
774 if (r) {
775 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
776 return r;
777 }
778
779 td->dm_dev.bdev = bdev;
780 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
781 return 0;
782 }
783
784 /*
785 * Close a table device that we've been using.
786 */
787 static void close_table_device(struct table_device *td, struct mapped_device *md)
788 {
789 if (!td->dm_dev.bdev)
790 return;
791
792 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
793 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
794 put_dax(td->dm_dev.dax_dev);
795 td->dm_dev.bdev = NULL;
796 td->dm_dev.dax_dev = NULL;
797 }
798
799 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
800 fmode_t mode) {
801 struct table_device *td;
802
803 list_for_each_entry(td, l, list)
804 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
805 return td;
806
807 return NULL;
808 }
809
810 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
811 struct dm_dev **result) {
812 int r;
813 struct table_device *td;
814
815 mutex_lock(&md->table_devices_lock);
816 td = find_table_device(&md->table_devices, dev, mode);
817 if (!td) {
818 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
819 if (!td) {
820 mutex_unlock(&md->table_devices_lock);
821 return -ENOMEM;
822 }
823
824 td->dm_dev.mode = mode;
825 td->dm_dev.bdev = NULL;
826
827 if ((r = open_table_device(td, dev, md))) {
828 mutex_unlock(&md->table_devices_lock);
829 kfree(td);
830 return r;
831 }
832
833 format_dev_t(td->dm_dev.name, dev);
834
835 refcount_set(&td->count, 1);
836 list_add(&td->list, &md->table_devices);
837 } else {
838 refcount_inc(&td->count);
839 }
840 mutex_unlock(&md->table_devices_lock);
841
842 *result = &td->dm_dev;
843 return 0;
844 }
845 EXPORT_SYMBOL_GPL(dm_get_table_device);
846
847 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
848 {
849 struct table_device *td = container_of(d, struct table_device, dm_dev);
850
851 mutex_lock(&md->table_devices_lock);
852 if (refcount_dec_and_test(&td->count)) {
853 close_table_device(td, md);
854 list_del(&td->list);
855 kfree(td);
856 }
857 mutex_unlock(&md->table_devices_lock);
858 }
859 EXPORT_SYMBOL(dm_put_table_device);
860
861 static void free_table_devices(struct list_head *devices)
862 {
863 struct list_head *tmp, *next;
864
865 list_for_each_safe(tmp, next, devices) {
866 struct table_device *td = list_entry(tmp, struct table_device, list);
867
868 DMWARN("dm_destroy: %s still exists with %d references",
869 td->dm_dev.name, refcount_read(&td->count));
870 kfree(td);
871 }
872 }
873
874 /*
875 * Get the geometry associated with a dm device
876 */
877 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
878 {
879 *geo = md->geometry;
880
881 return 0;
882 }
883
884 /*
885 * Set the geometry of a device.
886 */
887 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
888 {
889 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
890
891 if (geo->start > sz) {
892 DMWARN("Start sector is beyond the geometry limits.");
893 return -EINVAL;
894 }
895
896 md->geometry = *geo;
897
898 return 0;
899 }
900
901 static int __noflush_suspending(struct mapped_device *md)
902 {
903 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
904 }
905
906 /*
907 * Decrements the number of outstanding ios that a bio has been
908 * cloned into, completing the original io if necc.
909 */
910 static void dec_pending(struct dm_io *io, blk_status_t error)
911 {
912 unsigned long flags;
913 blk_status_t io_error;
914 struct bio *bio;
915 struct mapped_device *md = io->md;
916
917 /* Push-back supersedes any I/O errors */
918 if (unlikely(error)) {
919 spin_lock_irqsave(&io->endio_lock, flags);
920 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
921 io->status = error;
922 spin_unlock_irqrestore(&io->endio_lock, flags);
923 }
924
925 if (atomic_dec_and_test(&io->io_count)) {
926 if (io->status == BLK_STS_DM_REQUEUE) {
927 /*
928 * Target requested pushing back the I/O.
929 */
930 spin_lock_irqsave(&md->deferred_lock, flags);
931 if (__noflush_suspending(md))
932 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
933 bio_list_add_head(&md->deferred, io->orig_bio);
934 else
935 /* noflush suspend was interrupted. */
936 io->status = BLK_STS_IOERR;
937 spin_unlock_irqrestore(&md->deferred_lock, flags);
938 }
939
940 io_error = io->status;
941 bio = io->orig_bio;
942 end_io_acct(io);
943 free_io(md, io);
944
945 if (io_error == BLK_STS_DM_REQUEUE)
946 return;
947
948 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
949 /*
950 * Preflush done for flush with data, reissue
951 * without REQ_PREFLUSH.
952 */
953 bio->bi_opf &= ~REQ_PREFLUSH;
954 queue_io(md, bio);
955 } else {
956 /* done with normal IO or empty flush */
957 if (io_error)
958 bio->bi_status = io_error;
959 bio_endio(bio);
960 }
961 }
962 }
963
964 void disable_write_same(struct mapped_device *md)
965 {
966 struct queue_limits *limits = dm_get_queue_limits(md);
967
968 /* device doesn't really support WRITE SAME, disable it */
969 limits->max_write_same_sectors = 0;
970 }
971
972 void disable_write_zeroes(struct mapped_device *md)
973 {
974 struct queue_limits *limits = dm_get_queue_limits(md);
975
976 /* device doesn't really support WRITE ZEROES, disable it */
977 limits->max_write_zeroes_sectors = 0;
978 }
979
980 static void clone_endio(struct bio *bio)
981 {
982 blk_status_t error = bio->bi_status;
983 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
984 struct dm_io *io = tio->io;
985 struct mapped_device *md = tio->io->md;
986 dm_endio_fn endio = tio->ti->type->end_io;
987
988 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
989 if (bio_op(bio) == REQ_OP_WRITE_SAME &&
990 !bio->bi_disk->queue->limits.max_write_same_sectors)
991 disable_write_same(md);
992 if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
993 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
994 disable_write_zeroes(md);
995 }
996
997 if (endio) {
998 int r = endio(tio->ti, bio, &error);
999 switch (r) {
1000 case DM_ENDIO_REQUEUE:
1001 error = BLK_STS_DM_REQUEUE;
1002 /*FALLTHRU*/
1003 case DM_ENDIO_DONE:
1004 break;
1005 case DM_ENDIO_INCOMPLETE:
1006 /* The target will handle the io */
1007 return;
1008 default:
1009 DMWARN("unimplemented target endio return value: %d", r);
1010 BUG();
1011 }
1012 }
1013
1014 free_tio(tio);
1015 dec_pending(io, error);
1016 }
1017
1018 /*
1019 * Return maximum size of I/O possible at the supplied sector up to the current
1020 * target boundary.
1021 */
1022 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1023 {
1024 sector_t target_offset = dm_target_offset(ti, sector);
1025
1026 return ti->len - target_offset;
1027 }
1028
1029 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1030 {
1031 sector_t len = max_io_len_target_boundary(sector, ti);
1032 sector_t offset, max_len;
1033
1034 /*
1035 * Does the target need to split even further?
1036 */
1037 if (ti->max_io_len) {
1038 offset = dm_target_offset(ti, sector);
1039 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1040 max_len = sector_div(offset, ti->max_io_len);
1041 else
1042 max_len = offset & (ti->max_io_len - 1);
1043 max_len = ti->max_io_len - max_len;
1044
1045 if (len > max_len)
1046 len = max_len;
1047 }
1048
1049 return len;
1050 }
1051
1052 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1053 {
1054 if (len > UINT_MAX) {
1055 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1056 (unsigned long long)len, UINT_MAX);
1057 ti->error = "Maximum size of target IO is too large";
1058 return -EINVAL;
1059 }
1060
1061 /*
1062 * BIO based queue uses its own splitting. When multipage bvecs
1063 * is switched on, size of the incoming bio may be too big to
1064 * be handled in some targets, such as crypt.
1065 *
1066 * When these targets are ready for the big bio, we can remove
1067 * the limit.
1068 */
1069 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1070
1071 return 0;
1072 }
1073 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1074
1075 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1076 sector_t sector, int *srcu_idx)
1077 __acquires(md->io_barrier)
1078 {
1079 struct dm_table *map;
1080 struct dm_target *ti;
1081
1082 map = dm_get_live_table(md, srcu_idx);
1083 if (!map)
1084 return NULL;
1085
1086 ti = dm_table_find_target(map, sector);
1087 if (!dm_target_is_valid(ti))
1088 return NULL;
1089
1090 return ti;
1091 }
1092
1093 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1094 long nr_pages, void **kaddr, pfn_t *pfn)
1095 {
1096 struct mapped_device *md = dax_get_private(dax_dev);
1097 sector_t sector = pgoff * PAGE_SECTORS;
1098 struct dm_target *ti;
1099 long len, ret = -EIO;
1100 int srcu_idx;
1101
1102 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1103
1104 if (!ti)
1105 goto out;
1106 if (!ti->type->direct_access)
1107 goto out;
1108 len = max_io_len(sector, ti) / PAGE_SECTORS;
1109 if (len < 1)
1110 goto out;
1111 nr_pages = min(len, nr_pages);
1112 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1113
1114 out:
1115 dm_put_live_table(md, srcu_idx);
1116
1117 return ret;
1118 }
1119
1120 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1121 void *addr, size_t bytes, struct iov_iter *i)
1122 {
1123 struct mapped_device *md = dax_get_private(dax_dev);
1124 sector_t sector = pgoff * PAGE_SECTORS;
1125 struct dm_target *ti;
1126 long ret = 0;
1127 int srcu_idx;
1128
1129 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1130
1131 if (!ti)
1132 goto out;
1133 if (!ti->type->dax_copy_from_iter) {
1134 ret = copy_from_iter(addr, bytes, i);
1135 goto out;
1136 }
1137 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1138 out:
1139 dm_put_live_table(md, srcu_idx);
1140
1141 return ret;
1142 }
1143
1144 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1145 void *addr, size_t bytes, struct iov_iter *i)
1146 {
1147 struct mapped_device *md = dax_get_private(dax_dev);
1148 sector_t sector = pgoff * PAGE_SECTORS;
1149 struct dm_target *ti;
1150 long ret = 0;
1151 int srcu_idx;
1152
1153 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1154
1155 if (!ti)
1156 goto out;
1157 if (!ti->type->dax_copy_to_iter) {
1158 ret = copy_to_iter(addr, bytes, i);
1159 goto out;
1160 }
1161 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1162 out:
1163 dm_put_live_table(md, srcu_idx);
1164
1165 return ret;
1166 }
1167
1168 /*
1169 * A target may call dm_accept_partial_bio only from the map routine. It is
1170 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1171 *
1172 * dm_accept_partial_bio informs the dm that the target only wants to process
1173 * additional n_sectors sectors of the bio and the rest of the data should be
1174 * sent in a next bio.
1175 *
1176 * A diagram that explains the arithmetics:
1177 * +--------------------+---------------+-------+
1178 * | 1 | 2 | 3 |
1179 * +--------------------+---------------+-------+
1180 *
1181 * <-------------- *tio->len_ptr --------------->
1182 * <------- bi_size ------->
1183 * <-- n_sectors -->
1184 *
1185 * Region 1 was already iterated over with bio_advance or similar function.
1186 * (it may be empty if the target doesn't use bio_advance)
1187 * Region 2 is the remaining bio size that the target wants to process.
1188 * (it may be empty if region 1 is non-empty, although there is no reason
1189 * to make it empty)
1190 * The target requires that region 3 is to be sent in the next bio.
1191 *
1192 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1193 * the partially processed part (the sum of regions 1+2) must be the same for all
1194 * copies of the bio.
1195 */
1196 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1197 {
1198 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1199 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1200 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1201 BUG_ON(bi_size > *tio->len_ptr);
1202 BUG_ON(n_sectors > bi_size);
1203 *tio->len_ptr -= bi_size - n_sectors;
1204 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1205 }
1206 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1207
1208 /*
1209 * The zone descriptors obtained with a zone report indicate
1210 * zone positions within the underlying device of the target. The zone
1211 * descriptors must be remapped to match their position within the dm device.
1212 * The caller target should obtain the zones information using
1213 * blkdev_report_zones() to ensure that remapping for partition offset is
1214 * already handled.
1215 */
1216 void dm_remap_zone_report(struct dm_target *ti, sector_t start,
1217 struct blk_zone *zones, unsigned int *nr_zones)
1218 {
1219 #ifdef CONFIG_BLK_DEV_ZONED
1220 struct blk_zone *zone;
1221 unsigned int nrz = *nr_zones;
1222 int i;
1223
1224 /*
1225 * Remap the start sector and write pointer position of the zones in
1226 * the array. Since we may have obtained from the target underlying
1227 * device more zones that the target size, also adjust the number
1228 * of zones.
1229 */
1230 for (i = 0; i < nrz; i++) {
1231 zone = zones + i;
1232 if (zone->start >= start + ti->len) {
1233 memset(zone, 0, sizeof(struct blk_zone) * (nrz - i));
1234 break;
1235 }
1236
1237 zone->start = zone->start + ti->begin - start;
1238 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
1239 continue;
1240
1241 if (zone->cond == BLK_ZONE_COND_FULL)
1242 zone->wp = zone->start + zone->len;
1243 else if (zone->cond == BLK_ZONE_COND_EMPTY)
1244 zone->wp = zone->start;
1245 else
1246 zone->wp = zone->wp + ti->begin - start;
1247 }
1248
1249 *nr_zones = i;
1250 #else /* !CONFIG_BLK_DEV_ZONED */
1251 *nr_zones = 0;
1252 #endif
1253 }
1254 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1255
1256 static blk_qc_t __map_bio(struct dm_target_io *tio)
1257 {
1258 int r;
1259 sector_t sector;
1260 struct bio *clone = &tio->clone;
1261 struct dm_io *io = tio->io;
1262 struct mapped_device *md = io->md;
1263 struct dm_target *ti = tio->ti;
1264 blk_qc_t ret = BLK_QC_T_NONE;
1265
1266 clone->bi_end_io = clone_endio;
1267
1268 /*
1269 * Map the clone. If r == 0 we don't need to do
1270 * anything, the target has assumed ownership of
1271 * this io.
1272 */
1273 atomic_inc(&io->io_count);
1274 sector = clone->bi_iter.bi_sector;
1275
1276 r = ti->type->map(ti, clone);
1277 switch (r) {
1278 case DM_MAPIO_SUBMITTED:
1279 break;
1280 case DM_MAPIO_REMAPPED:
1281 /* the bio has been remapped so dispatch it */
1282 trace_block_bio_remap(clone->bi_disk->queue, clone,
1283 bio_dev(io->orig_bio), sector);
1284 if (md->type == DM_TYPE_NVME_BIO_BASED)
1285 ret = direct_make_request(clone);
1286 else
1287 ret = generic_make_request(clone);
1288 break;
1289 case DM_MAPIO_KILL:
1290 free_tio(tio);
1291 dec_pending(io, BLK_STS_IOERR);
1292 break;
1293 case DM_MAPIO_REQUEUE:
1294 free_tio(tio);
1295 dec_pending(io, BLK_STS_DM_REQUEUE);
1296 break;
1297 default:
1298 DMWARN("unimplemented target map return value: %d", r);
1299 BUG();
1300 }
1301
1302 return ret;
1303 }
1304
1305 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1306 {
1307 bio->bi_iter.bi_sector = sector;
1308 bio->bi_iter.bi_size = to_bytes(len);
1309 }
1310
1311 /*
1312 * Creates a bio that consists of range of complete bvecs.
1313 */
1314 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1315 sector_t sector, unsigned len)
1316 {
1317 struct bio *clone = &tio->clone;
1318
1319 __bio_clone_fast(clone, bio);
1320
1321 if (unlikely(bio_integrity(bio) != NULL)) {
1322 int r;
1323
1324 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1325 !dm_target_passes_integrity(tio->ti->type))) {
1326 DMWARN("%s: the target %s doesn't support integrity data.",
1327 dm_device_name(tio->io->md),
1328 tio->ti->type->name);
1329 return -EIO;
1330 }
1331
1332 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1333 if (r < 0)
1334 return r;
1335 }
1336
1337 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1338 clone->bi_iter.bi_size = to_bytes(len);
1339
1340 if (unlikely(bio_integrity(bio) != NULL))
1341 bio_integrity_trim(clone);
1342
1343 return 0;
1344 }
1345
1346 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1347 struct dm_target *ti, unsigned num_bios)
1348 {
1349 struct dm_target_io *tio;
1350 int try;
1351
1352 if (!num_bios)
1353 return;
1354
1355 if (num_bios == 1) {
1356 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1357 bio_list_add(blist, &tio->clone);
1358 return;
1359 }
1360
1361 for (try = 0; try < 2; try++) {
1362 int bio_nr;
1363 struct bio *bio;
1364
1365 if (try)
1366 mutex_lock(&ci->io->md->table_devices_lock);
1367 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1368 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1369 if (!tio)
1370 break;
1371
1372 bio_list_add(blist, &tio->clone);
1373 }
1374 if (try)
1375 mutex_unlock(&ci->io->md->table_devices_lock);
1376 if (bio_nr == num_bios)
1377 return;
1378
1379 while ((bio = bio_list_pop(blist))) {
1380 tio = container_of(bio, struct dm_target_io, clone);
1381 free_tio(tio);
1382 }
1383 }
1384 }
1385
1386 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1387 struct dm_target_io *tio, unsigned *len)
1388 {
1389 struct bio *clone = &tio->clone;
1390
1391 tio->len_ptr = len;
1392
1393 __bio_clone_fast(clone, ci->bio);
1394 if (len)
1395 bio_setup_sector(clone, ci->sector, *len);
1396
1397 return __map_bio(tio);
1398 }
1399
1400 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1401 unsigned num_bios, unsigned *len)
1402 {
1403 struct bio_list blist = BIO_EMPTY_LIST;
1404 struct bio *bio;
1405 struct dm_target_io *tio;
1406
1407 alloc_multiple_bios(&blist, ci, ti, num_bios);
1408
1409 while ((bio = bio_list_pop(&blist))) {
1410 tio = container_of(bio, struct dm_target_io, clone);
1411 (void) __clone_and_map_simple_bio(ci, tio, len);
1412 }
1413 }
1414
1415 static int __send_empty_flush(struct clone_info *ci)
1416 {
1417 unsigned target_nr = 0;
1418 struct dm_target *ti;
1419
1420 BUG_ON(bio_has_data(ci->bio));
1421 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1422 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1423
1424 return 0;
1425 }
1426
1427 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1428 sector_t sector, unsigned *len)
1429 {
1430 struct bio *bio = ci->bio;
1431 struct dm_target_io *tio;
1432 int r;
1433
1434 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1435 tio->len_ptr = len;
1436 r = clone_bio(tio, bio, sector, *len);
1437 if (r < 0) {
1438 free_tio(tio);
1439 return r;
1440 }
1441 (void) __map_bio(tio);
1442
1443 return 0;
1444 }
1445
1446 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1447
1448 static unsigned get_num_discard_bios(struct dm_target *ti)
1449 {
1450 return ti->num_discard_bios;
1451 }
1452
1453 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1454 {
1455 return ti->num_secure_erase_bios;
1456 }
1457
1458 static unsigned get_num_write_same_bios(struct dm_target *ti)
1459 {
1460 return ti->num_write_same_bios;
1461 }
1462
1463 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1464 {
1465 return ti->num_write_zeroes_bios;
1466 }
1467
1468 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1469
1470 static bool is_split_required_for_discard(struct dm_target *ti)
1471 {
1472 return ti->split_discard_bios;
1473 }
1474
1475 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1476 get_num_bios_fn get_num_bios,
1477 is_split_required_fn is_split_required)
1478 {
1479 unsigned len;
1480 unsigned num_bios;
1481
1482 /*
1483 * Even though the device advertised support for this type of
1484 * request, that does not mean every target supports it, and
1485 * reconfiguration might also have changed that since the
1486 * check was performed.
1487 */
1488 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1489 if (!num_bios)
1490 return -EOPNOTSUPP;
1491
1492 if (is_split_required && !is_split_required(ti))
1493 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1494 else
1495 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1496
1497 __send_duplicate_bios(ci, ti, num_bios, &len);
1498
1499 ci->sector += len;
1500 ci->sector_count -= len;
1501
1502 return 0;
1503 }
1504
1505 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1506 {
1507 return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1508 is_split_required_for_discard);
1509 }
1510
1511 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1512 {
1513 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL);
1514 }
1515
1516 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1517 {
1518 return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1519 }
1520
1521 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1522 {
1523 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1524 }
1525
1526 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1527 int *result)
1528 {
1529 struct bio *bio = ci->bio;
1530
1531 if (bio_op(bio) == REQ_OP_DISCARD)
1532 *result = __send_discard(ci, ti);
1533 else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1534 *result = __send_secure_erase(ci, ti);
1535 else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1536 *result = __send_write_same(ci, ti);
1537 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1538 *result = __send_write_zeroes(ci, ti);
1539 else
1540 return false;
1541
1542 return true;
1543 }
1544
1545 /*
1546 * Select the correct strategy for processing a non-flush bio.
1547 */
1548 static int __split_and_process_non_flush(struct clone_info *ci)
1549 {
1550 struct dm_target *ti;
1551 unsigned len;
1552 int r;
1553
1554 ti = dm_table_find_target(ci->map, ci->sector);
1555 if (!dm_target_is_valid(ti))
1556 return -EIO;
1557
1558 if (unlikely(__process_abnormal_io(ci, ti, &r)))
1559 return r;
1560
1561 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1562
1563 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1564 if (r < 0)
1565 return r;
1566
1567 ci->sector += len;
1568 ci->sector_count -= len;
1569
1570 return 0;
1571 }
1572
1573 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1574 struct dm_table *map, struct bio *bio)
1575 {
1576 ci->map = map;
1577 ci->io = alloc_io(md, bio);
1578 ci->sector = bio->bi_iter.bi_sector;
1579 }
1580
1581 /*
1582 * Entry point to split a bio into clones and submit them to the targets.
1583 */
1584 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1585 struct dm_table *map, struct bio *bio)
1586 {
1587 struct clone_info ci;
1588 blk_qc_t ret = BLK_QC_T_NONE;
1589 int error = 0;
1590
1591 if (unlikely(!map)) {
1592 bio_io_error(bio);
1593 return ret;
1594 }
1595
1596 init_clone_info(&ci, md, map, bio);
1597
1598 if (bio->bi_opf & REQ_PREFLUSH) {
1599 ci.bio = &ci.io->md->flush_bio;
1600 ci.sector_count = 0;
1601 error = __send_empty_flush(&ci);
1602 /* dec_pending submits any data associated with flush */
1603 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1604 ci.bio = bio;
1605 ci.sector_count = 0;
1606 error = __split_and_process_non_flush(&ci);
1607 } else {
1608 ci.bio = bio;
1609 ci.sector_count = bio_sectors(bio);
1610 while (ci.sector_count && !error) {
1611 error = __split_and_process_non_flush(&ci);
1612 if (current->bio_list && ci.sector_count && !error) {
1613 /*
1614 * Remainder must be passed to generic_make_request()
1615 * so that it gets handled *after* bios already submitted
1616 * have been completely processed.
1617 * We take a clone of the original to store in
1618 * ci.io->orig_bio to be used by end_io_acct() and
1619 * for dec_pending to use for completion handling.
1620 */
1621 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1622 GFP_NOIO, &md->queue->bio_split);
1623 ci.io->orig_bio = b;
1624 bio_chain(b, bio);
1625 ret = generic_make_request(bio);
1626 break;
1627 }
1628 }
1629 }
1630
1631 /* drop the extra reference count */
1632 dec_pending(ci.io, errno_to_blk_status(error));
1633 return ret;
1634 }
1635
1636 /*
1637 * Optimized variant of __split_and_process_bio that leverages the
1638 * fact that targets that use it do _not_ have a need to split bios.
1639 */
1640 static blk_qc_t __process_bio(struct mapped_device *md,
1641 struct dm_table *map, struct bio *bio)
1642 {
1643 struct clone_info ci;
1644 blk_qc_t ret = BLK_QC_T_NONE;
1645 int error = 0;
1646
1647 if (unlikely(!map)) {
1648 bio_io_error(bio);
1649 return ret;
1650 }
1651
1652 init_clone_info(&ci, md, map, bio);
1653
1654 if (bio->bi_opf & REQ_PREFLUSH) {
1655 ci.bio = &ci.io->md->flush_bio;
1656 ci.sector_count = 0;
1657 error = __send_empty_flush(&ci);
1658 /* dec_pending submits any data associated with flush */
1659 } else {
1660 struct dm_target *ti = md->immutable_target;
1661 struct dm_target_io *tio;
1662
1663 /*
1664 * Defend against IO still getting in during teardown
1665 * - as was seen for a time with nvme-fcloop
1666 */
1667 if (WARN_ON_ONCE(!ti || !dm_target_is_valid(ti))) {
1668 error = -EIO;
1669 goto out;
1670 }
1671
1672 ci.bio = bio;
1673 ci.sector_count = bio_sectors(bio);
1674 if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1675 goto out;
1676
1677 tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1678 ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1679 }
1680 out:
1681 /* drop the extra reference count */
1682 dec_pending(ci.io, errno_to_blk_status(error));
1683 return ret;
1684 }
1685
1686 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1687
1688 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1689 process_bio_fn process_bio)
1690 {
1691 struct mapped_device *md = q->queuedata;
1692 blk_qc_t ret = BLK_QC_T_NONE;
1693 int srcu_idx;
1694 struct dm_table *map;
1695
1696 map = dm_get_live_table(md, &srcu_idx);
1697
1698 /* if we're suspended, we have to queue this io for later */
1699 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1700 dm_put_live_table(md, srcu_idx);
1701
1702 if (!(bio->bi_opf & REQ_RAHEAD))
1703 queue_io(md, bio);
1704 else
1705 bio_io_error(bio);
1706 return ret;
1707 }
1708
1709 ret = process_bio(md, map, bio);
1710
1711 dm_put_live_table(md, srcu_idx);
1712 return ret;
1713 }
1714
1715 /*
1716 * The request function that remaps the bio to one target and
1717 * splits off any remainder.
1718 */
1719 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1720 {
1721 return __dm_make_request(q, bio, __split_and_process_bio);
1722 }
1723
1724 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1725 {
1726 return __dm_make_request(q, bio, __process_bio);
1727 }
1728
1729 static int dm_any_congested(void *congested_data, int bdi_bits)
1730 {
1731 int r = bdi_bits;
1732 struct mapped_device *md = congested_data;
1733 struct dm_table *map;
1734
1735 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1736 if (dm_request_based(md)) {
1737 /*
1738 * With request-based DM we only need to check the
1739 * top-level queue for congestion.
1740 */
1741 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1742 } else {
1743 map = dm_get_live_table_fast(md);
1744 if (map)
1745 r = dm_table_any_congested(map, bdi_bits);
1746 dm_put_live_table_fast(md);
1747 }
1748 }
1749
1750 return r;
1751 }
1752
1753 /*-----------------------------------------------------------------
1754 * An IDR is used to keep track of allocated minor numbers.
1755 *---------------------------------------------------------------*/
1756 static void free_minor(int minor)
1757 {
1758 spin_lock(&_minor_lock);
1759 idr_remove(&_minor_idr, minor);
1760 spin_unlock(&_minor_lock);
1761 }
1762
1763 /*
1764 * See if the device with a specific minor # is free.
1765 */
1766 static int specific_minor(int minor)
1767 {
1768 int r;
1769
1770 if (minor >= (1 << MINORBITS))
1771 return -EINVAL;
1772
1773 idr_preload(GFP_KERNEL);
1774 spin_lock(&_minor_lock);
1775
1776 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1777
1778 spin_unlock(&_minor_lock);
1779 idr_preload_end();
1780 if (r < 0)
1781 return r == -ENOSPC ? -EBUSY : r;
1782 return 0;
1783 }
1784
1785 static int next_free_minor(int *minor)
1786 {
1787 int r;
1788
1789 idr_preload(GFP_KERNEL);
1790 spin_lock(&_minor_lock);
1791
1792 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1793
1794 spin_unlock(&_minor_lock);
1795 idr_preload_end();
1796 if (r < 0)
1797 return r;
1798 *minor = r;
1799 return 0;
1800 }
1801
1802 static const struct block_device_operations dm_blk_dops;
1803 static const struct dax_operations dm_dax_ops;
1804
1805 static void dm_wq_work(struct work_struct *work);
1806
1807 static void dm_init_normal_md_queue(struct mapped_device *md)
1808 {
1809 /*
1810 * Initialize aspects of queue that aren't relevant for blk-mq
1811 */
1812 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1813 }
1814
1815 static void cleanup_mapped_device(struct mapped_device *md)
1816 {
1817 if (md->wq)
1818 destroy_workqueue(md->wq);
1819 bioset_exit(&md->bs);
1820 bioset_exit(&md->io_bs);
1821
1822 if (md->dax_dev) {
1823 kill_dax(md->dax_dev);
1824 put_dax(md->dax_dev);
1825 md->dax_dev = NULL;
1826 }
1827
1828 if (md->disk) {
1829 spin_lock(&_minor_lock);
1830 md->disk->private_data = NULL;
1831 spin_unlock(&_minor_lock);
1832 del_gendisk(md->disk);
1833 put_disk(md->disk);
1834 }
1835
1836 if (md->queue)
1837 blk_cleanup_queue(md->queue);
1838
1839 cleanup_srcu_struct(&md->io_barrier);
1840
1841 if (md->bdev) {
1842 bdput(md->bdev);
1843 md->bdev = NULL;
1844 }
1845
1846 mutex_destroy(&md->suspend_lock);
1847 mutex_destroy(&md->type_lock);
1848 mutex_destroy(&md->table_devices_lock);
1849
1850 dm_mq_cleanup_mapped_device(md);
1851 }
1852
1853 /*
1854 * Allocate and initialise a blank device with a given minor.
1855 */
1856 static struct mapped_device *alloc_dev(int minor)
1857 {
1858 int r, numa_node_id = dm_get_numa_node();
1859 struct dax_device *dax_dev = NULL;
1860 struct mapped_device *md;
1861 void *old_md;
1862
1863 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1864 if (!md) {
1865 DMWARN("unable to allocate device, out of memory.");
1866 return NULL;
1867 }
1868
1869 if (!try_module_get(THIS_MODULE))
1870 goto bad_module_get;
1871
1872 /* get a minor number for the dev */
1873 if (minor == DM_ANY_MINOR)
1874 r = next_free_minor(&minor);
1875 else
1876 r = specific_minor(minor);
1877 if (r < 0)
1878 goto bad_minor;
1879
1880 r = init_srcu_struct(&md->io_barrier);
1881 if (r < 0)
1882 goto bad_io_barrier;
1883
1884 md->numa_node_id = numa_node_id;
1885 md->init_tio_pdu = false;
1886 md->type = DM_TYPE_NONE;
1887 mutex_init(&md->suspend_lock);
1888 mutex_init(&md->type_lock);
1889 mutex_init(&md->table_devices_lock);
1890 spin_lock_init(&md->deferred_lock);
1891 atomic_set(&md->holders, 1);
1892 atomic_set(&md->open_count, 0);
1893 atomic_set(&md->event_nr, 0);
1894 atomic_set(&md->uevent_seq, 0);
1895 INIT_LIST_HEAD(&md->uevent_list);
1896 INIT_LIST_HEAD(&md->table_devices);
1897 spin_lock_init(&md->uevent_lock);
1898
1899 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL);
1900 if (!md->queue)
1901 goto bad;
1902 md->queue->queuedata = md;
1903 md->queue->backing_dev_info->congested_data = md;
1904
1905 md->disk = alloc_disk_node(1, md->numa_node_id);
1906 if (!md->disk)
1907 goto bad;
1908
1909 atomic_set(&md->pending[0], 0);
1910 atomic_set(&md->pending[1], 0);
1911 init_waitqueue_head(&md->wait);
1912 INIT_WORK(&md->work, dm_wq_work);
1913 init_waitqueue_head(&md->eventq);
1914 init_completion(&md->kobj_holder.completion);
1915
1916 md->disk->major = _major;
1917 md->disk->first_minor = minor;
1918 md->disk->fops = &dm_blk_dops;
1919 md->disk->queue = md->queue;
1920 md->disk->private_data = md;
1921 sprintf(md->disk->disk_name, "dm-%d", minor);
1922
1923 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1924 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1925 if (!dax_dev)
1926 goto bad;
1927 }
1928 md->dax_dev = dax_dev;
1929
1930 add_disk_no_queue_reg(md->disk);
1931 format_dev_t(md->name, MKDEV(_major, minor));
1932
1933 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1934 if (!md->wq)
1935 goto bad;
1936
1937 md->bdev = bdget_disk(md->disk, 0);
1938 if (!md->bdev)
1939 goto bad;
1940
1941 bio_init(&md->flush_bio, NULL, 0);
1942 bio_set_dev(&md->flush_bio, md->bdev);
1943 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1944
1945 dm_stats_init(&md->stats);
1946
1947 /* Populate the mapping, nobody knows we exist yet */
1948 spin_lock(&_minor_lock);
1949 old_md = idr_replace(&_minor_idr, md, minor);
1950 spin_unlock(&_minor_lock);
1951
1952 BUG_ON(old_md != MINOR_ALLOCED);
1953
1954 return md;
1955
1956 bad:
1957 cleanup_mapped_device(md);
1958 bad_io_barrier:
1959 free_minor(minor);
1960 bad_minor:
1961 module_put(THIS_MODULE);
1962 bad_module_get:
1963 kvfree(md);
1964 return NULL;
1965 }
1966
1967 static void unlock_fs(struct mapped_device *md);
1968
1969 static void free_dev(struct mapped_device *md)
1970 {
1971 int minor = MINOR(disk_devt(md->disk));
1972
1973 unlock_fs(md);
1974
1975 cleanup_mapped_device(md);
1976
1977 free_table_devices(&md->table_devices);
1978 dm_stats_cleanup(&md->stats);
1979 free_minor(minor);
1980
1981 module_put(THIS_MODULE);
1982 kvfree(md);
1983 }
1984
1985 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1986 {
1987 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1988 int ret = 0;
1989
1990 if (dm_table_bio_based(t)) {
1991 /*
1992 * The md may already have mempools that need changing.
1993 * If so, reload bioset because front_pad may have changed
1994 * because a different table was loaded.
1995 */
1996 bioset_exit(&md->bs);
1997 bioset_exit(&md->io_bs);
1998
1999 } else if (bioset_initialized(&md->bs)) {
2000 /*
2001 * There's no need to reload with request-based dm
2002 * because the size of front_pad doesn't change.
2003 * Note for future: If you are to reload bioset,
2004 * prep-ed requests in the queue may refer
2005 * to bio from the old bioset, so you must walk
2006 * through the queue to unprep.
2007 */
2008 goto out;
2009 }
2010
2011 BUG_ON(!p ||
2012 bioset_initialized(&md->bs) ||
2013 bioset_initialized(&md->io_bs));
2014
2015 ret = bioset_init_from_src(&md->bs, &p->bs);
2016 if (ret)
2017 goto out;
2018 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2019 if (ret)
2020 bioset_exit(&md->bs);
2021 out:
2022 /* mempool bind completed, no longer need any mempools in the table */
2023 dm_table_free_md_mempools(t);
2024 return ret;
2025 }
2026
2027 /*
2028 * Bind a table to the device.
2029 */
2030 static void event_callback(void *context)
2031 {
2032 unsigned long flags;
2033 LIST_HEAD(uevents);
2034 struct mapped_device *md = (struct mapped_device *) context;
2035
2036 spin_lock_irqsave(&md->uevent_lock, flags);
2037 list_splice_init(&md->uevent_list, &uevents);
2038 spin_unlock_irqrestore(&md->uevent_lock, flags);
2039
2040 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2041
2042 atomic_inc(&md->event_nr);
2043 wake_up(&md->eventq);
2044 dm_issue_global_event();
2045 }
2046
2047 /*
2048 * Protected by md->suspend_lock obtained by dm_swap_table().
2049 */
2050 static void __set_size(struct mapped_device *md, sector_t size)
2051 {
2052 lockdep_assert_held(&md->suspend_lock);
2053
2054 set_capacity(md->disk, size);
2055
2056 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2057 }
2058
2059 /*
2060 * Returns old map, which caller must destroy.
2061 */
2062 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2063 struct queue_limits *limits)
2064 {
2065 struct dm_table *old_map;
2066 struct request_queue *q = md->queue;
2067 bool request_based = dm_table_request_based(t);
2068 sector_t size;
2069 int ret;
2070
2071 lockdep_assert_held(&md->suspend_lock);
2072
2073 size = dm_table_get_size(t);
2074
2075 /*
2076 * Wipe any geometry if the size of the table changed.
2077 */
2078 if (size != dm_get_size(md))
2079 memset(&md->geometry, 0, sizeof(md->geometry));
2080
2081 __set_size(md, size);
2082
2083 dm_table_event_callback(t, event_callback, md);
2084
2085 /*
2086 * The queue hasn't been stopped yet, if the old table type wasn't
2087 * for request-based during suspension. So stop it to prevent
2088 * I/O mapping before resume.
2089 * This must be done before setting the queue restrictions,
2090 * because request-based dm may be run just after the setting.
2091 */
2092 if (request_based)
2093 dm_stop_queue(q);
2094
2095 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2096 /*
2097 * Leverage the fact that request-based DM targets and
2098 * NVMe bio based targets are immutable singletons
2099 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2100 * and __process_bio.
2101 */
2102 md->immutable_target = dm_table_get_immutable_target(t);
2103 }
2104
2105 ret = __bind_mempools(md, t);
2106 if (ret) {
2107 old_map = ERR_PTR(ret);
2108 goto out;
2109 }
2110
2111 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2112 rcu_assign_pointer(md->map, (void *)t);
2113 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2114
2115 dm_table_set_restrictions(t, q, limits);
2116 if (old_map)
2117 dm_sync_table(md);
2118
2119 out:
2120 return old_map;
2121 }
2122
2123 /*
2124 * Returns unbound table for the caller to free.
2125 */
2126 static struct dm_table *__unbind(struct mapped_device *md)
2127 {
2128 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2129
2130 if (!map)
2131 return NULL;
2132
2133 dm_table_event_callback(map, NULL, NULL);
2134 RCU_INIT_POINTER(md->map, NULL);
2135 dm_sync_table(md);
2136
2137 return map;
2138 }
2139
2140 /*
2141 * Constructor for a new device.
2142 */
2143 int dm_create(int minor, struct mapped_device **result)
2144 {
2145 int r;
2146 struct mapped_device *md;
2147
2148 md = alloc_dev(minor);
2149 if (!md)
2150 return -ENXIO;
2151
2152 r = dm_sysfs_init(md);
2153 if (r) {
2154 free_dev(md);
2155 return r;
2156 }
2157
2158 *result = md;
2159 return 0;
2160 }
2161
2162 /*
2163 * Functions to manage md->type.
2164 * All are required to hold md->type_lock.
2165 */
2166 void dm_lock_md_type(struct mapped_device *md)
2167 {
2168 mutex_lock(&md->type_lock);
2169 }
2170
2171 void dm_unlock_md_type(struct mapped_device *md)
2172 {
2173 mutex_unlock(&md->type_lock);
2174 }
2175
2176 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2177 {
2178 BUG_ON(!mutex_is_locked(&md->type_lock));
2179 md->type = type;
2180 }
2181
2182 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2183 {
2184 return md->type;
2185 }
2186
2187 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2188 {
2189 return md->immutable_target_type;
2190 }
2191
2192 /*
2193 * The queue_limits are only valid as long as you have a reference
2194 * count on 'md'.
2195 */
2196 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2197 {
2198 BUG_ON(!atomic_read(&md->holders));
2199 return &md->queue->limits;
2200 }
2201 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2202
2203 /*
2204 * Setup the DM device's queue based on md's type
2205 */
2206 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2207 {
2208 int r;
2209 struct queue_limits limits;
2210 enum dm_queue_mode type = dm_get_md_type(md);
2211
2212 switch (type) {
2213 case DM_TYPE_REQUEST_BASED:
2214 r = dm_mq_init_request_queue(md, t);
2215 if (r) {
2216 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2217 return r;
2218 }
2219 break;
2220 case DM_TYPE_BIO_BASED:
2221 case DM_TYPE_DAX_BIO_BASED:
2222 dm_init_normal_md_queue(md);
2223 blk_queue_make_request(md->queue, dm_make_request);
2224 break;
2225 case DM_TYPE_NVME_BIO_BASED:
2226 dm_init_normal_md_queue(md);
2227 blk_queue_make_request(md->queue, dm_make_request_nvme);
2228 break;
2229 case DM_TYPE_NONE:
2230 WARN_ON_ONCE(true);
2231 break;
2232 }
2233
2234 r = dm_calculate_queue_limits(t, &limits);
2235 if (r) {
2236 DMERR("Cannot calculate initial queue limits");
2237 return r;
2238 }
2239 dm_table_set_restrictions(t, md->queue, &limits);
2240 blk_register_queue(md->disk);
2241
2242 return 0;
2243 }
2244
2245 struct mapped_device *dm_get_md(dev_t dev)
2246 {
2247 struct mapped_device *md;
2248 unsigned minor = MINOR(dev);
2249
2250 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2251 return NULL;
2252
2253 spin_lock(&_minor_lock);
2254
2255 md = idr_find(&_minor_idr, minor);
2256 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2257 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2258 md = NULL;
2259 goto out;
2260 }
2261 dm_get(md);
2262 out:
2263 spin_unlock(&_minor_lock);
2264
2265 return md;
2266 }
2267 EXPORT_SYMBOL_GPL(dm_get_md);
2268
2269 void *dm_get_mdptr(struct mapped_device *md)
2270 {
2271 return md->interface_ptr;
2272 }
2273
2274 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2275 {
2276 md->interface_ptr = ptr;
2277 }
2278
2279 void dm_get(struct mapped_device *md)
2280 {
2281 atomic_inc(&md->holders);
2282 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2283 }
2284
2285 int dm_hold(struct mapped_device *md)
2286 {
2287 spin_lock(&_minor_lock);
2288 if (test_bit(DMF_FREEING, &md->flags)) {
2289 spin_unlock(&_minor_lock);
2290 return -EBUSY;
2291 }
2292 dm_get(md);
2293 spin_unlock(&_minor_lock);
2294 return 0;
2295 }
2296 EXPORT_SYMBOL_GPL(dm_hold);
2297
2298 const char *dm_device_name(struct mapped_device *md)
2299 {
2300 return md->name;
2301 }
2302 EXPORT_SYMBOL_GPL(dm_device_name);
2303
2304 static void __dm_destroy(struct mapped_device *md, bool wait)
2305 {
2306 struct dm_table *map;
2307 int srcu_idx;
2308
2309 might_sleep();
2310
2311 spin_lock(&_minor_lock);
2312 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2313 set_bit(DMF_FREEING, &md->flags);
2314 spin_unlock(&_minor_lock);
2315
2316 blk_set_queue_dying(md->queue);
2317
2318 /*
2319 * Take suspend_lock so that presuspend and postsuspend methods
2320 * do not race with internal suspend.
2321 */
2322 mutex_lock(&md->suspend_lock);
2323 map = dm_get_live_table(md, &srcu_idx);
2324 if (!dm_suspended_md(md)) {
2325 dm_table_presuspend_targets(map);
2326 dm_table_postsuspend_targets(map);
2327 }
2328 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2329 dm_put_live_table(md, srcu_idx);
2330 mutex_unlock(&md->suspend_lock);
2331
2332 /*
2333 * Rare, but there may be I/O requests still going to complete,
2334 * for example. Wait for all references to disappear.
2335 * No one should increment the reference count of the mapped_device,
2336 * after the mapped_device state becomes DMF_FREEING.
2337 */
2338 if (wait)
2339 while (atomic_read(&md->holders))
2340 msleep(1);
2341 else if (atomic_read(&md->holders))
2342 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2343 dm_device_name(md), atomic_read(&md->holders));
2344
2345 dm_sysfs_exit(md);
2346 dm_table_destroy(__unbind(md));
2347 free_dev(md);
2348 }
2349
2350 void dm_destroy(struct mapped_device *md)
2351 {
2352 __dm_destroy(md, true);
2353 }
2354
2355 void dm_destroy_immediate(struct mapped_device *md)
2356 {
2357 __dm_destroy(md, false);
2358 }
2359
2360 void dm_put(struct mapped_device *md)
2361 {
2362 atomic_dec(&md->holders);
2363 }
2364 EXPORT_SYMBOL_GPL(dm_put);
2365
2366 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2367 {
2368 int r = 0;
2369 DEFINE_WAIT(wait);
2370
2371 while (1) {
2372 prepare_to_wait(&md->wait, &wait, task_state);
2373
2374 if (!md_in_flight(md))
2375 break;
2376
2377 if (signal_pending_state(task_state, current)) {
2378 r = -EINTR;
2379 break;
2380 }
2381
2382 io_schedule();
2383 }
2384 finish_wait(&md->wait, &wait);
2385
2386 return r;
2387 }
2388
2389 /*
2390 * Process the deferred bios
2391 */
2392 static void dm_wq_work(struct work_struct *work)
2393 {
2394 struct mapped_device *md = container_of(work, struct mapped_device,
2395 work);
2396 struct bio *c;
2397 int srcu_idx;
2398 struct dm_table *map;
2399
2400 map = dm_get_live_table(md, &srcu_idx);
2401
2402 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2403 spin_lock_irq(&md->deferred_lock);
2404 c = bio_list_pop(&md->deferred);
2405 spin_unlock_irq(&md->deferred_lock);
2406
2407 if (!c)
2408 break;
2409
2410 if (dm_request_based(md))
2411 generic_make_request(c);
2412 else
2413 __split_and_process_bio(md, map, c);
2414 }
2415
2416 dm_put_live_table(md, srcu_idx);
2417 }
2418
2419 static void dm_queue_flush(struct mapped_device *md)
2420 {
2421 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2422 smp_mb__after_atomic();
2423 queue_work(md->wq, &md->work);
2424 }
2425
2426 /*
2427 * Swap in a new table, returning the old one for the caller to destroy.
2428 */
2429 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2430 {
2431 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2432 struct queue_limits limits;
2433 int r;
2434
2435 mutex_lock(&md->suspend_lock);
2436
2437 /* device must be suspended */
2438 if (!dm_suspended_md(md))
2439 goto out;
2440
2441 /*
2442 * If the new table has no data devices, retain the existing limits.
2443 * This helps multipath with queue_if_no_path if all paths disappear,
2444 * then new I/O is queued based on these limits, and then some paths
2445 * reappear.
2446 */
2447 if (dm_table_has_no_data_devices(table)) {
2448 live_map = dm_get_live_table_fast(md);
2449 if (live_map)
2450 limits = md->queue->limits;
2451 dm_put_live_table_fast(md);
2452 }
2453
2454 if (!live_map) {
2455 r = dm_calculate_queue_limits(table, &limits);
2456 if (r) {
2457 map = ERR_PTR(r);
2458 goto out;
2459 }
2460 }
2461
2462 map = __bind(md, table, &limits);
2463 dm_issue_global_event();
2464
2465 out:
2466 mutex_unlock(&md->suspend_lock);
2467 return map;
2468 }
2469
2470 /*
2471 * Functions to lock and unlock any filesystem running on the
2472 * device.
2473 */
2474 static int lock_fs(struct mapped_device *md)
2475 {
2476 int r;
2477
2478 WARN_ON(md->frozen_sb);
2479
2480 md->frozen_sb = freeze_bdev(md->bdev);
2481 if (IS_ERR(md->frozen_sb)) {
2482 r = PTR_ERR(md->frozen_sb);
2483 md->frozen_sb = NULL;
2484 return r;
2485 }
2486
2487 set_bit(DMF_FROZEN, &md->flags);
2488
2489 return 0;
2490 }
2491
2492 static void unlock_fs(struct mapped_device *md)
2493 {
2494 if (!test_bit(DMF_FROZEN, &md->flags))
2495 return;
2496
2497 thaw_bdev(md->bdev, md->frozen_sb);
2498 md->frozen_sb = NULL;
2499 clear_bit(DMF_FROZEN, &md->flags);
2500 }
2501
2502 /*
2503 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2504 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2505 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2506 *
2507 * If __dm_suspend returns 0, the device is completely quiescent
2508 * now. There is no request-processing activity. All new requests
2509 * are being added to md->deferred list.
2510 */
2511 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2512 unsigned suspend_flags, long task_state,
2513 int dmf_suspended_flag)
2514 {
2515 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2516 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2517 int r;
2518
2519 lockdep_assert_held(&md->suspend_lock);
2520
2521 /*
2522 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2523 * This flag is cleared before dm_suspend returns.
2524 */
2525 if (noflush)
2526 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2527 else
2528 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2529
2530 /*
2531 * This gets reverted if there's an error later and the targets
2532 * provide the .presuspend_undo hook.
2533 */
2534 dm_table_presuspend_targets(map);
2535
2536 /*
2537 * Flush I/O to the device.
2538 * Any I/O submitted after lock_fs() may not be flushed.
2539 * noflush takes precedence over do_lockfs.
2540 * (lock_fs() flushes I/Os and waits for them to complete.)
2541 */
2542 if (!noflush && do_lockfs) {
2543 r = lock_fs(md);
2544 if (r) {
2545 dm_table_presuspend_undo_targets(map);
2546 return r;
2547 }
2548 }
2549
2550 /*
2551 * Here we must make sure that no processes are submitting requests
2552 * to target drivers i.e. no one may be executing
2553 * __split_and_process_bio. This is called from dm_request and
2554 * dm_wq_work.
2555 *
2556 * To get all processes out of __split_and_process_bio in dm_request,
2557 * we take the write lock. To prevent any process from reentering
2558 * __split_and_process_bio from dm_request and quiesce the thread
2559 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2560 * flush_workqueue(md->wq).
2561 */
2562 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2563 if (map)
2564 synchronize_srcu(&md->io_barrier);
2565
2566 /*
2567 * Stop md->queue before flushing md->wq in case request-based
2568 * dm defers requests to md->wq from md->queue.
2569 */
2570 if (dm_request_based(md))
2571 dm_stop_queue(md->queue);
2572
2573 flush_workqueue(md->wq);
2574
2575 /*
2576 * At this point no more requests are entering target request routines.
2577 * We call dm_wait_for_completion to wait for all existing requests
2578 * to finish.
2579 */
2580 r = dm_wait_for_completion(md, task_state);
2581 if (!r)
2582 set_bit(dmf_suspended_flag, &md->flags);
2583
2584 if (noflush)
2585 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2586 if (map)
2587 synchronize_srcu(&md->io_barrier);
2588
2589 /* were we interrupted ? */
2590 if (r < 0) {
2591 dm_queue_flush(md);
2592
2593 if (dm_request_based(md))
2594 dm_start_queue(md->queue);
2595
2596 unlock_fs(md);
2597 dm_table_presuspend_undo_targets(map);
2598 /* pushback list is already flushed, so skip flush */
2599 }
2600
2601 return r;
2602 }
2603
2604 /*
2605 * We need to be able to change a mapping table under a mounted
2606 * filesystem. For example we might want to move some data in
2607 * the background. Before the table can be swapped with
2608 * dm_bind_table, dm_suspend must be called to flush any in
2609 * flight bios and ensure that any further io gets deferred.
2610 */
2611 /*
2612 * Suspend mechanism in request-based dm.
2613 *
2614 * 1. Flush all I/Os by lock_fs() if needed.
2615 * 2. Stop dispatching any I/O by stopping the request_queue.
2616 * 3. Wait for all in-flight I/Os to be completed or requeued.
2617 *
2618 * To abort suspend, start the request_queue.
2619 */
2620 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2621 {
2622 struct dm_table *map = NULL;
2623 int r = 0;
2624
2625 retry:
2626 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2627
2628 if (dm_suspended_md(md)) {
2629 r = -EINVAL;
2630 goto out_unlock;
2631 }
2632
2633 if (dm_suspended_internally_md(md)) {
2634 /* already internally suspended, wait for internal resume */
2635 mutex_unlock(&md->suspend_lock);
2636 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2637 if (r)
2638 return r;
2639 goto retry;
2640 }
2641
2642 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2643
2644 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2645 if (r)
2646 goto out_unlock;
2647
2648 dm_table_postsuspend_targets(map);
2649
2650 out_unlock:
2651 mutex_unlock(&md->suspend_lock);
2652 return r;
2653 }
2654
2655 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2656 {
2657 if (map) {
2658 int r = dm_table_resume_targets(map);
2659 if (r)
2660 return r;
2661 }
2662
2663 dm_queue_flush(md);
2664
2665 /*
2666 * Flushing deferred I/Os must be done after targets are resumed
2667 * so that mapping of targets can work correctly.
2668 * Request-based dm is queueing the deferred I/Os in its request_queue.
2669 */
2670 if (dm_request_based(md))
2671 dm_start_queue(md->queue);
2672
2673 unlock_fs(md);
2674
2675 return 0;
2676 }
2677
2678 int dm_resume(struct mapped_device *md)
2679 {
2680 int r;
2681 struct dm_table *map = NULL;
2682
2683 retry:
2684 r = -EINVAL;
2685 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2686
2687 if (!dm_suspended_md(md))
2688 goto out;
2689
2690 if (dm_suspended_internally_md(md)) {
2691 /* already internally suspended, wait for internal resume */
2692 mutex_unlock(&md->suspend_lock);
2693 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2694 if (r)
2695 return r;
2696 goto retry;
2697 }
2698
2699 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2700 if (!map || !dm_table_get_size(map))
2701 goto out;
2702
2703 r = __dm_resume(md, map);
2704 if (r)
2705 goto out;
2706
2707 clear_bit(DMF_SUSPENDED, &md->flags);
2708 out:
2709 mutex_unlock(&md->suspend_lock);
2710
2711 return r;
2712 }
2713
2714 /*
2715 * Internal suspend/resume works like userspace-driven suspend. It waits
2716 * until all bios finish and prevents issuing new bios to the target drivers.
2717 * It may be used only from the kernel.
2718 */
2719
2720 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2721 {
2722 struct dm_table *map = NULL;
2723
2724 lockdep_assert_held(&md->suspend_lock);
2725
2726 if (md->internal_suspend_count++)
2727 return; /* nested internal suspend */
2728
2729 if (dm_suspended_md(md)) {
2730 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2731 return; /* nest suspend */
2732 }
2733
2734 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2735
2736 /*
2737 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2738 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2739 * would require changing .presuspend to return an error -- avoid this
2740 * until there is a need for more elaborate variants of internal suspend.
2741 */
2742 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2743 DMF_SUSPENDED_INTERNALLY);
2744
2745 dm_table_postsuspend_targets(map);
2746 }
2747
2748 static void __dm_internal_resume(struct mapped_device *md)
2749 {
2750 BUG_ON(!md->internal_suspend_count);
2751
2752 if (--md->internal_suspend_count)
2753 return; /* resume from nested internal suspend */
2754
2755 if (dm_suspended_md(md))
2756 goto done; /* resume from nested suspend */
2757
2758 /*
2759 * NOTE: existing callers don't need to call dm_table_resume_targets
2760 * (which may fail -- so best to avoid it for now by passing NULL map)
2761 */
2762 (void) __dm_resume(md, NULL);
2763
2764 done:
2765 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2766 smp_mb__after_atomic();
2767 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2768 }
2769
2770 void dm_internal_suspend_noflush(struct mapped_device *md)
2771 {
2772 mutex_lock(&md->suspend_lock);
2773 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2774 mutex_unlock(&md->suspend_lock);
2775 }
2776 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2777
2778 void dm_internal_resume(struct mapped_device *md)
2779 {
2780 mutex_lock(&md->suspend_lock);
2781 __dm_internal_resume(md);
2782 mutex_unlock(&md->suspend_lock);
2783 }
2784 EXPORT_SYMBOL_GPL(dm_internal_resume);
2785
2786 /*
2787 * Fast variants of internal suspend/resume hold md->suspend_lock,
2788 * which prevents interaction with userspace-driven suspend.
2789 */
2790
2791 void dm_internal_suspend_fast(struct mapped_device *md)
2792 {
2793 mutex_lock(&md->suspend_lock);
2794 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2795 return;
2796
2797 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2798 synchronize_srcu(&md->io_barrier);
2799 flush_workqueue(md->wq);
2800 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2801 }
2802 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2803
2804 void dm_internal_resume_fast(struct mapped_device *md)
2805 {
2806 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2807 goto done;
2808
2809 dm_queue_flush(md);
2810
2811 done:
2812 mutex_unlock(&md->suspend_lock);
2813 }
2814 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2815
2816 /*-----------------------------------------------------------------
2817 * Event notification.
2818 *---------------------------------------------------------------*/
2819 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2820 unsigned cookie)
2821 {
2822 char udev_cookie[DM_COOKIE_LENGTH];
2823 char *envp[] = { udev_cookie, NULL };
2824
2825 if (!cookie)
2826 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2827 else {
2828 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2829 DM_COOKIE_ENV_VAR_NAME, cookie);
2830 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2831 action, envp);
2832 }
2833 }
2834
2835 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2836 {
2837 return atomic_add_return(1, &md->uevent_seq);
2838 }
2839
2840 uint32_t dm_get_event_nr(struct mapped_device *md)
2841 {
2842 return atomic_read(&md->event_nr);
2843 }
2844
2845 int dm_wait_event(struct mapped_device *md, int event_nr)
2846 {
2847 return wait_event_interruptible(md->eventq,
2848 (event_nr != atomic_read(&md->event_nr)));
2849 }
2850
2851 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2852 {
2853 unsigned long flags;
2854
2855 spin_lock_irqsave(&md->uevent_lock, flags);
2856 list_add(elist, &md->uevent_list);
2857 spin_unlock_irqrestore(&md->uevent_lock, flags);
2858 }
2859
2860 /*
2861 * The gendisk is only valid as long as you have a reference
2862 * count on 'md'.
2863 */
2864 struct gendisk *dm_disk(struct mapped_device *md)
2865 {
2866 return md->disk;
2867 }
2868 EXPORT_SYMBOL_GPL(dm_disk);
2869
2870 struct kobject *dm_kobject(struct mapped_device *md)
2871 {
2872 return &md->kobj_holder.kobj;
2873 }
2874
2875 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2876 {
2877 struct mapped_device *md;
2878
2879 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2880
2881 spin_lock(&_minor_lock);
2882 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2883 md = NULL;
2884 goto out;
2885 }
2886 dm_get(md);
2887 out:
2888 spin_unlock(&_minor_lock);
2889
2890 return md;
2891 }
2892
2893 int dm_suspended_md(struct mapped_device *md)
2894 {
2895 return test_bit(DMF_SUSPENDED, &md->flags);
2896 }
2897
2898 int dm_suspended_internally_md(struct mapped_device *md)
2899 {
2900 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2901 }
2902
2903 int dm_test_deferred_remove_flag(struct mapped_device *md)
2904 {
2905 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2906 }
2907
2908 int dm_suspended(struct dm_target *ti)
2909 {
2910 return dm_suspended_md(dm_table_get_md(ti->table));
2911 }
2912 EXPORT_SYMBOL_GPL(dm_suspended);
2913
2914 int dm_noflush_suspending(struct dm_target *ti)
2915 {
2916 return __noflush_suspending(dm_table_get_md(ti->table));
2917 }
2918 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2919
2920 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2921 unsigned integrity, unsigned per_io_data_size,
2922 unsigned min_pool_size)
2923 {
2924 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2925 unsigned int pool_size = 0;
2926 unsigned int front_pad, io_front_pad;
2927 int ret;
2928
2929 if (!pools)
2930 return NULL;
2931
2932 switch (type) {
2933 case DM_TYPE_BIO_BASED:
2934 case DM_TYPE_DAX_BIO_BASED:
2935 case DM_TYPE_NVME_BIO_BASED:
2936 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2937 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2938 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2939 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2940 if (ret)
2941 goto out;
2942 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2943 goto out;
2944 break;
2945 case DM_TYPE_REQUEST_BASED:
2946 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2947 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2948 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2949 break;
2950 default:
2951 BUG();
2952 }
2953
2954 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2955 if (ret)
2956 goto out;
2957
2958 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2959 goto out;
2960
2961 return pools;
2962
2963 out:
2964 dm_free_md_mempools(pools);
2965
2966 return NULL;
2967 }
2968
2969 void dm_free_md_mempools(struct dm_md_mempools *pools)
2970 {
2971 if (!pools)
2972 return;
2973
2974 bioset_exit(&pools->bs);
2975 bioset_exit(&pools->io_bs);
2976
2977 kfree(pools);
2978 }
2979
2980 struct dm_pr {
2981 u64 old_key;
2982 u64 new_key;
2983 u32 flags;
2984 bool fail_early;
2985 };
2986
2987 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2988 void *data)
2989 {
2990 struct mapped_device *md = bdev->bd_disk->private_data;
2991 struct dm_table *table;
2992 struct dm_target *ti;
2993 int ret = -ENOTTY, srcu_idx;
2994
2995 table = dm_get_live_table(md, &srcu_idx);
2996 if (!table || !dm_table_get_size(table))
2997 goto out;
2998
2999 /* We only support devices that have a single target */
3000 if (dm_table_get_num_targets(table) != 1)
3001 goto out;
3002 ti = dm_table_get_target(table, 0);
3003
3004 ret = -EINVAL;
3005 if (!ti->type->iterate_devices)
3006 goto out;
3007
3008 ret = ti->type->iterate_devices(ti, fn, data);
3009 out:
3010 dm_put_live_table(md, srcu_idx);
3011 return ret;
3012 }
3013
3014 /*
3015 * For register / unregister we need to manually call out to every path.
3016 */
3017 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3018 sector_t start, sector_t len, void *data)
3019 {
3020 struct dm_pr *pr = data;
3021 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3022
3023 if (!ops || !ops->pr_register)
3024 return -EOPNOTSUPP;
3025 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3026 }
3027
3028 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3029 u32 flags)
3030 {
3031 struct dm_pr pr = {
3032 .old_key = old_key,
3033 .new_key = new_key,
3034 .flags = flags,
3035 .fail_early = true,
3036 };
3037 int ret;
3038
3039 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3040 if (ret && new_key) {
3041 /* unregister all paths if we failed to register any path */
3042 pr.old_key = new_key;
3043 pr.new_key = 0;
3044 pr.flags = 0;
3045 pr.fail_early = false;
3046 dm_call_pr(bdev, __dm_pr_register, &pr);
3047 }
3048
3049 return ret;
3050 }
3051
3052 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3053 u32 flags)
3054 {
3055 struct mapped_device *md = bdev->bd_disk->private_data;
3056 const struct pr_ops *ops;
3057 int r, srcu_idx;
3058
3059 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3060 if (r < 0)
3061 goto out;
3062
3063 ops = bdev->bd_disk->fops->pr_ops;
3064 if (ops && ops->pr_reserve)
3065 r = ops->pr_reserve(bdev, key, type, flags);
3066 else
3067 r = -EOPNOTSUPP;
3068 out:
3069 dm_unprepare_ioctl(md, srcu_idx);
3070 return r;
3071 }
3072
3073 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3074 {
3075 struct mapped_device *md = bdev->bd_disk->private_data;
3076 const struct pr_ops *ops;
3077 int r, srcu_idx;
3078
3079 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3080 if (r < 0)
3081 goto out;
3082
3083 ops = bdev->bd_disk->fops->pr_ops;
3084 if (ops && ops->pr_release)
3085 r = ops->pr_release(bdev, key, type);
3086 else
3087 r = -EOPNOTSUPP;
3088 out:
3089 dm_unprepare_ioctl(md, srcu_idx);
3090 return r;
3091 }
3092
3093 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3094 enum pr_type type, bool abort)
3095 {
3096 struct mapped_device *md = bdev->bd_disk->private_data;
3097 const struct pr_ops *ops;
3098 int r, srcu_idx;
3099
3100 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3101 if (r < 0)
3102 goto out;
3103
3104 ops = bdev->bd_disk->fops->pr_ops;
3105 if (ops && ops->pr_preempt)
3106 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3107 else
3108 r = -EOPNOTSUPP;
3109 out:
3110 dm_unprepare_ioctl(md, srcu_idx);
3111 return r;
3112 }
3113
3114 static int dm_pr_clear(struct block_device *bdev, u64 key)
3115 {
3116 struct mapped_device *md = bdev->bd_disk->private_data;
3117 const struct pr_ops *ops;
3118 int r, srcu_idx;
3119
3120 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3121 if (r < 0)
3122 goto out;
3123
3124 ops = bdev->bd_disk->fops->pr_ops;
3125 if (ops && ops->pr_clear)
3126 r = ops->pr_clear(bdev, key);
3127 else
3128 r = -EOPNOTSUPP;
3129 out:
3130 dm_unprepare_ioctl(md, srcu_idx);
3131 return r;
3132 }
3133
3134 static const struct pr_ops dm_pr_ops = {
3135 .pr_register = dm_pr_register,
3136 .pr_reserve = dm_pr_reserve,
3137 .pr_release = dm_pr_release,
3138 .pr_preempt = dm_pr_preempt,
3139 .pr_clear = dm_pr_clear,
3140 };
3141
3142 static const struct block_device_operations dm_blk_dops = {
3143 .open = dm_blk_open,
3144 .release = dm_blk_close,
3145 .ioctl = dm_blk_ioctl,
3146 .getgeo = dm_blk_getgeo,
3147 .report_zones = dm_blk_report_zones,
3148 .pr_ops = &dm_pr_ops,
3149 .owner = THIS_MODULE
3150 };
3151
3152 static const struct dax_operations dm_dax_ops = {
3153 .direct_access = dm_dax_direct_access,
3154 .copy_from_iter = dm_dax_copy_from_iter,
3155 .copy_to_iter = dm_dax_copy_to_iter,
3156 };
3157
3158 /*
3159 * module hooks
3160 */
3161 module_init(dm_init);
3162 module_exit(dm_exit);
3163
3164 module_param(major, uint, 0);
3165 MODULE_PARM_DESC(major, "The major number of the device mapper");
3166
3167 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3168 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3169
3170 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3171 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3172
3173 MODULE_DESCRIPTION(DM_NAME " driver");
3174 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3175 MODULE_LICENSE("GPL");