]> git.ipfire.org Git - people/ms/linux.git/blob - drivers/md/md.c
Merge tag 'irqchip-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm...
[people/ms/linux.git] / drivers / md / md.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 md.c : Multiple Devices driver for Linux
4 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5
6 completely rewritten, based on the MD driver code from Marc Zyngier
7
8 Changes:
9
10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14 - kmod support by: Cyrus Durgin
15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17
18 - lots of fixes and improvements to the RAID1/RAID5 and generic
19 RAID code (such as request based resynchronization):
20
21 Neil Brown <neilb@cse.unsw.edu.au>.
22
23 - persistent bitmap code
24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25
26
27 Errors, Warnings, etc.
28 Please use:
29 pr_crit() for error conditions that risk data loss
30 pr_err() for error conditions that are unexpected, like an IO error
31 or internal inconsistency
32 pr_warn() for error conditions that could have been predicated, like
33 adding a device to an array when it has incompatible metadata
34 pr_info() for every interesting, very rare events, like an array starting
35 or stopping, or resync starting or stopping
36 pr_debug() for everything else.
37
38 */
39
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/blk-integrity.h>
45 #include <linux/badblocks.h>
46 #include <linux/sysctl.h>
47 #include <linux/seq_file.h>
48 #include <linux/fs.h>
49 #include <linux/poll.h>
50 #include <linux/ctype.h>
51 #include <linux/string.h>
52 #include <linux/hdreg.h>
53 #include <linux/proc_fs.h>
54 #include <linux/random.h>
55 #include <linux/major.h>
56 #include <linux/module.h>
57 #include <linux/reboot.h>
58 #include <linux/file.h>
59 #include <linux/compat.h>
60 #include <linux/delay.h>
61 #include <linux/raid/md_p.h>
62 #include <linux/raid/md_u.h>
63 #include <linux/raid/detect.h>
64 #include <linux/slab.h>
65 #include <linux/percpu-refcount.h>
66 #include <linux/part_stat.h>
67
68 #include <trace/events/block.h>
69 #include "md.h"
70 #include "md-bitmap.h"
71 #include "md-cluster.h"
72
73 /* pers_list is a list of registered personalities protected
74 * by pers_lock.
75 * pers_lock does extra service to protect accesses to
76 * mddev->thread when the mutex cannot be held.
77 */
78 static LIST_HEAD(pers_list);
79 static DEFINE_SPINLOCK(pers_lock);
80
81 static struct kobj_type md_ktype;
82
83 struct md_cluster_operations *md_cluster_ops;
84 EXPORT_SYMBOL(md_cluster_ops);
85 static struct module *md_cluster_mod;
86
87 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
88 static struct workqueue_struct *md_wq;
89 static struct workqueue_struct *md_misc_wq;
90 static struct workqueue_struct *md_rdev_misc_wq;
91
92 static int remove_and_add_spares(struct mddev *mddev,
93 struct md_rdev *this);
94 static void mddev_detach(struct mddev *mddev);
95
96 /*
97 * Default number of read corrections we'll attempt on an rdev
98 * before ejecting it from the array. We divide the read error
99 * count by 2 for every hour elapsed between read errors.
100 */
101 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
102 /* Default safemode delay: 200 msec */
103 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
104 /*
105 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
106 * is 1000 KB/sec, so the extra system load does not show up that much.
107 * Increase it if you want to have more _guaranteed_ speed. Note that
108 * the RAID driver will use the maximum available bandwidth if the IO
109 * subsystem is idle. There is also an 'absolute maximum' reconstruction
110 * speed limit - in case reconstruction slows down your system despite
111 * idle IO detection.
112 *
113 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
114 * or /sys/block/mdX/md/sync_speed_{min,max}
115 */
116
117 static int sysctl_speed_limit_min = 1000;
118 static int sysctl_speed_limit_max = 200000;
119 static inline int speed_min(struct mddev *mddev)
120 {
121 return mddev->sync_speed_min ?
122 mddev->sync_speed_min : sysctl_speed_limit_min;
123 }
124
125 static inline int speed_max(struct mddev *mddev)
126 {
127 return mddev->sync_speed_max ?
128 mddev->sync_speed_max : sysctl_speed_limit_max;
129 }
130
131 static void rdev_uninit_serial(struct md_rdev *rdev)
132 {
133 if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
134 return;
135
136 kvfree(rdev->serial);
137 rdev->serial = NULL;
138 }
139
140 static void rdevs_uninit_serial(struct mddev *mddev)
141 {
142 struct md_rdev *rdev;
143
144 rdev_for_each(rdev, mddev)
145 rdev_uninit_serial(rdev);
146 }
147
148 static int rdev_init_serial(struct md_rdev *rdev)
149 {
150 /* serial_nums equals with BARRIER_BUCKETS_NR */
151 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
152 struct serial_in_rdev *serial = NULL;
153
154 if (test_bit(CollisionCheck, &rdev->flags))
155 return 0;
156
157 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
158 GFP_KERNEL);
159 if (!serial)
160 return -ENOMEM;
161
162 for (i = 0; i < serial_nums; i++) {
163 struct serial_in_rdev *serial_tmp = &serial[i];
164
165 spin_lock_init(&serial_tmp->serial_lock);
166 serial_tmp->serial_rb = RB_ROOT_CACHED;
167 init_waitqueue_head(&serial_tmp->serial_io_wait);
168 }
169
170 rdev->serial = serial;
171 set_bit(CollisionCheck, &rdev->flags);
172
173 return 0;
174 }
175
176 static int rdevs_init_serial(struct mddev *mddev)
177 {
178 struct md_rdev *rdev;
179 int ret = 0;
180
181 rdev_for_each(rdev, mddev) {
182 ret = rdev_init_serial(rdev);
183 if (ret)
184 break;
185 }
186
187 /* Free all resources if pool is not existed */
188 if (ret && !mddev->serial_info_pool)
189 rdevs_uninit_serial(mddev);
190
191 return ret;
192 }
193
194 /*
195 * rdev needs to enable serial stuffs if it meets the conditions:
196 * 1. it is multi-queue device flaged with writemostly.
197 * 2. the write-behind mode is enabled.
198 */
199 static int rdev_need_serial(struct md_rdev *rdev)
200 {
201 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
202 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
203 test_bit(WriteMostly, &rdev->flags));
204 }
205
206 /*
207 * Init resource for rdev(s), then create serial_info_pool if:
208 * 1. rdev is the first device which return true from rdev_enable_serial.
209 * 2. rdev is NULL, means we want to enable serialization for all rdevs.
210 */
211 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
212 bool is_suspend)
213 {
214 int ret = 0;
215
216 if (rdev && !rdev_need_serial(rdev) &&
217 !test_bit(CollisionCheck, &rdev->flags))
218 return;
219
220 if (!is_suspend)
221 mddev_suspend(mddev);
222
223 if (!rdev)
224 ret = rdevs_init_serial(mddev);
225 else
226 ret = rdev_init_serial(rdev);
227 if (ret)
228 goto abort;
229
230 if (mddev->serial_info_pool == NULL) {
231 /*
232 * already in memalloc noio context by
233 * mddev_suspend()
234 */
235 mddev->serial_info_pool =
236 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
237 sizeof(struct serial_info));
238 if (!mddev->serial_info_pool) {
239 rdevs_uninit_serial(mddev);
240 pr_err("can't alloc memory pool for serialization\n");
241 }
242 }
243
244 abort:
245 if (!is_suspend)
246 mddev_resume(mddev);
247 }
248
249 /*
250 * Free resource from rdev(s), and destroy serial_info_pool under conditions:
251 * 1. rdev is the last device flaged with CollisionCheck.
252 * 2. when bitmap is destroyed while policy is not enabled.
253 * 3. for disable policy, the pool is destroyed only when no rdev needs it.
254 */
255 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
256 bool is_suspend)
257 {
258 if (rdev && !test_bit(CollisionCheck, &rdev->flags))
259 return;
260
261 if (mddev->serial_info_pool) {
262 struct md_rdev *temp;
263 int num = 0; /* used to track if other rdevs need the pool */
264
265 if (!is_suspend)
266 mddev_suspend(mddev);
267 rdev_for_each(temp, mddev) {
268 if (!rdev) {
269 if (!mddev->serialize_policy ||
270 !rdev_need_serial(temp))
271 rdev_uninit_serial(temp);
272 else
273 num++;
274 } else if (temp != rdev &&
275 test_bit(CollisionCheck, &temp->flags))
276 num++;
277 }
278
279 if (rdev)
280 rdev_uninit_serial(rdev);
281
282 if (num)
283 pr_info("The mempool could be used by other devices\n");
284 else {
285 mempool_destroy(mddev->serial_info_pool);
286 mddev->serial_info_pool = NULL;
287 }
288 if (!is_suspend)
289 mddev_resume(mddev);
290 }
291 }
292
293 static struct ctl_table_header *raid_table_header;
294
295 static struct ctl_table raid_table[] = {
296 {
297 .procname = "speed_limit_min",
298 .data = &sysctl_speed_limit_min,
299 .maxlen = sizeof(int),
300 .mode = S_IRUGO|S_IWUSR,
301 .proc_handler = proc_dointvec,
302 },
303 {
304 .procname = "speed_limit_max",
305 .data = &sysctl_speed_limit_max,
306 .maxlen = sizeof(int),
307 .mode = S_IRUGO|S_IWUSR,
308 .proc_handler = proc_dointvec,
309 },
310 { }
311 };
312
313 static struct ctl_table raid_dir_table[] = {
314 {
315 .procname = "raid",
316 .maxlen = 0,
317 .mode = S_IRUGO|S_IXUGO,
318 .child = raid_table,
319 },
320 { }
321 };
322
323 static struct ctl_table raid_root_table[] = {
324 {
325 .procname = "dev",
326 .maxlen = 0,
327 .mode = 0555,
328 .child = raid_dir_table,
329 },
330 { }
331 };
332
333 static int start_readonly;
334
335 /*
336 * The original mechanism for creating an md device is to create
337 * a device node in /dev and to open it. This causes races with device-close.
338 * The preferred method is to write to the "new_array" module parameter.
339 * This can avoid races.
340 * Setting create_on_open to false disables the original mechanism
341 * so all the races disappear.
342 */
343 static bool create_on_open = true;
344
345 /*
346 * We have a system wide 'event count' that is incremented
347 * on any 'interesting' event, and readers of /proc/mdstat
348 * can use 'poll' or 'select' to find out when the event
349 * count increases.
350 *
351 * Events are:
352 * start array, stop array, error, add device, remove device,
353 * start build, activate spare
354 */
355 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
356 static atomic_t md_event_count;
357 void md_new_event(void)
358 {
359 atomic_inc(&md_event_count);
360 wake_up(&md_event_waiters);
361 }
362 EXPORT_SYMBOL_GPL(md_new_event);
363
364 /*
365 * Enables to iterate over all existing md arrays
366 * all_mddevs_lock protects this list.
367 */
368 static LIST_HEAD(all_mddevs);
369 static DEFINE_SPINLOCK(all_mddevs_lock);
370
371 /*
372 * iterates through all used mddevs in the system.
373 * We take care to grab the all_mddevs_lock whenever navigating
374 * the list, and to always hold a refcount when unlocked.
375 * Any code which breaks out of this loop while own
376 * a reference to the current mddev and must mddev_put it.
377 */
378 #define for_each_mddev(_mddev,_tmp) \
379 \
380 for (({ spin_lock(&all_mddevs_lock); \
381 _tmp = all_mddevs.next; \
382 _mddev = NULL;}); \
383 ({ if (_tmp != &all_mddevs) \
384 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
385 spin_unlock(&all_mddevs_lock); \
386 if (_mddev) mddev_put(_mddev); \
387 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
388 _tmp != &all_mddevs;}); \
389 ({ spin_lock(&all_mddevs_lock); \
390 _tmp = _tmp->next;}) \
391 )
392
393 /* Rather than calling directly into the personality make_request function,
394 * IO requests come here first so that we can check if the device is
395 * being suspended pending a reconfiguration.
396 * We hold a refcount over the call to ->make_request. By the time that
397 * call has finished, the bio has been linked into some internal structure
398 * and so is visible to ->quiesce(), so we don't need the refcount any more.
399 */
400 static bool is_suspended(struct mddev *mddev, struct bio *bio)
401 {
402 if (mddev->suspended)
403 return true;
404 if (bio_data_dir(bio) != WRITE)
405 return false;
406 if (mddev->suspend_lo >= mddev->suspend_hi)
407 return false;
408 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
409 return false;
410 if (bio_end_sector(bio) < mddev->suspend_lo)
411 return false;
412 return true;
413 }
414
415 void md_handle_request(struct mddev *mddev, struct bio *bio)
416 {
417 check_suspended:
418 rcu_read_lock();
419 if (is_suspended(mddev, bio)) {
420 DEFINE_WAIT(__wait);
421 /* Bail out if REQ_NOWAIT is set for the bio */
422 if (bio->bi_opf & REQ_NOWAIT) {
423 rcu_read_unlock();
424 bio_wouldblock_error(bio);
425 return;
426 }
427 for (;;) {
428 prepare_to_wait(&mddev->sb_wait, &__wait,
429 TASK_UNINTERRUPTIBLE);
430 if (!is_suspended(mddev, bio))
431 break;
432 rcu_read_unlock();
433 schedule();
434 rcu_read_lock();
435 }
436 finish_wait(&mddev->sb_wait, &__wait);
437 }
438 atomic_inc(&mddev->active_io);
439 rcu_read_unlock();
440
441 if (!mddev->pers->make_request(mddev, bio)) {
442 atomic_dec(&mddev->active_io);
443 wake_up(&mddev->sb_wait);
444 goto check_suspended;
445 }
446
447 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
448 wake_up(&mddev->sb_wait);
449 }
450 EXPORT_SYMBOL(md_handle_request);
451
452 static void md_submit_bio(struct bio *bio)
453 {
454 const int rw = bio_data_dir(bio);
455 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
456
457 if (mddev == NULL || mddev->pers == NULL) {
458 bio_io_error(bio);
459 return;
460 }
461
462 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
463 bio_io_error(bio);
464 return;
465 }
466
467 blk_queue_split(&bio);
468
469 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
470 if (bio_sectors(bio) != 0)
471 bio->bi_status = BLK_STS_IOERR;
472 bio_endio(bio);
473 return;
474 }
475
476 /* bio could be mergeable after passing to underlayer */
477 bio->bi_opf &= ~REQ_NOMERGE;
478
479 md_handle_request(mddev, bio);
480 }
481
482 /* mddev_suspend makes sure no new requests are submitted
483 * to the device, and that any requests that have been submitted
484 * are completely handled.
485 * Once mddev_detach() is called and completes, the module will be
486 * completely unused.
487 */
488 void mddev_suspend(struct mddev *mddev)
489 {
490 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
491 lockdep_assert_held(&mddev->reconfig_mutex);
492 if (mddev->suspended++)
493 return;
494 synchronize_rcu();
495 wake_up(&mddev->sb_wait);
496 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
497 smp_mb__after_atomic();
498 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
499 mddev->pers->quiesce(mddev, 1);
500 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
501 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
502
503 del_timer_sync(&mddev->safemode_timer);
504 /* restrict memory reclaim I/O during raid array is suspend */
505 mddev->noio_flag = memalloc_noio_save();
506 }
507 EXPORT_SYMBOL_GPL(mddev_suspend);
508
509 void mddev_resume(struct mddev *mddev)
510 {
511 /* entred the memalloc scope from mddev_suspend() */
512 memalloc_noio_restore(mddev->noio_flag);
513 lockdep_assert_held(&mddev->reconfig_mutex);
514 if (--mddev->suspended)
515 return;
516 wake_up(&mddev->sb_wait);
517 mddev->pers->quiesce(mddev, 0);
518
519 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
520 md_wakeup_thread(mddev->thread);
521 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
522 }
523 EXPORT_SYMBOL_GPL(mddev_resume);
524
525 /*
526 * Generic flush handling for md
527 */
528
529 static void md_end_flush(struct bio *bio)
530 {
531 struct md_rdev *rdev = bio->bi_private;
532 struct mddev *mddev = rdev->mddev;
533
534 rdev_dec_pending(rdev, mddev);
535
536 if (atomic_dec_and_test(&mddev->flush_pending)) {
537 /* The pre-request flush has finished */
538 queue_work(md_wq, &mddev->flush_work);
539 }
540 bio_put(bio);
541 }
542
543 static void md_submit_flush_data(struct work_struct *ws);
544
545 static void submit_flushes(struct work_struct *ws)
546 {
547 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
548 struct md_rdev *rdev;
549
550 mddev->start_flush = ktime_get_boottime();
551 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
552 atomic_set(&mddev->flush_pending, 1);
553 rcu_read_lock();
554 rdev_for_each_rcu(rdev, mddev)
555 if (rdev->raid_disk >= 0 &&
556 !test_bit(Faulty, &rdev->flags)) {
557 /* Take two references, one is dropped
558 * when request finishes, one after
559 * we reclaim rcu_read_lock
560 */
561 struct bio *bi;
562 atomic_inc(&rdev->nr_pending);
563 atomic_inc(&rdev->nr_pending);
564 rcu_read_unlock();
565 bi = bio_alloc_bioset(rdev->bdev, 0,
566 REQ_OP_WRITE | REQ_PREFLUSH,
567 GFP_NOIO, &mddev->bio_set);
568 bi->bi_end_io = md_end_flush;
569 bi->bi_private = rdev;
570 atomic_inc(&mddev->flush_pending);
571 submit_bio(bi);
572 rcu_read_lock();
573 rdev_dec_pending(rdev, mddev);
574 }
575 rcu_read_unlock();
576 if (atomic_dec_and_test(&mddev->flush_pending))
577 queue_work(md_wq, &mddev->flush_work);
578 }
579
580 static void md_submit_flush_data(struct work_struct *ws)
581 {
582 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
583 struct bio *bio = mddev->flush_bio;
584
585 /*
586 * must reset flush_bio before calling into md_handle_request to avoid a
587 * deadlock, because other bios passed md_handle_request suspend check
588 * could wait for this and below md_handle_request could wait for those
589 * bios because of suspend check
590 */
591 spin_lock_irq(&mddev->lock);
592 mddev->prev_flush_start = mddev->start_flush;
593 mddev->flush_bio = NULL;
594 spin_unlock_irq(&mddev->lock);
595 wake_up(&mddev->sb_wait);
596
597 if (bio->bi_iter.bi_size == 0) {
598 /* an empty barrier - all done */
599 bio_endio(bio);
600 } else {
601 bio->bi_opf &= ~REQ_PREFLUSH;
602 md_handle_request(mddev, bio);
603 }
604 }
605
606 /*
607 * Manages consolidation of flushes and submitting any flushes needed for
608 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
609 * being finished in another context. Returns false if the flushing is
610 * complete but still needs the I/O portion of the bio to be processed.
611 */
612 bool md_flush_request(struct mddev *mddev, struct bio *bio)
613 {
614 ktime_t req_start = ktime_get_boottime();
615 spin_lock_irq(&mddev->lock);
616 /* flush requests wait until ongoing flush completes,
617 * hence coalescing all the pending requests.
618 */
619 wait_event_lock_irq(mddev->sb_wait,
620 !mddev->flush_bio ||
621 ktime_before(req_start, mddev->prev_flush_start),
622 mddev->lock);
623 /* new request after previous flush is completed */
624 if (ktime_after(req_start, mddev->prev_flush_start)) {
625 WARN_ON(mddev->flush_bio);
626 mddev->flush_bio = bio;
627 bio = NULL;
628 }
629 spin_unlock_irq(&mddev->lock);
630
631 if (!bio) {
632 INIT_WORK(&mddev->flush_work, submit_flushes);
633 queue_work(md_wq, &mddev->flush_work);
634 } else {
635 /* flush was performed for some other bio while we waited. */
636 if (bio->bi_iter.bi_size == 0)
637 /* an empty barrier - all done */
638 bio_endio(bio);
639 else {
640 bio->bi_opf &= ~REQ_PREFLUSH;
641 return false;
642 }
643 }
644 return true;
645 }
646 EXPORT_SYMBOL(md_flush_request);
647
648 static inline struct mddev *mddev_get(struct mddev *mddev)
649 {
650 atomic_inc(&mddev->active);
651 return mddev;
652 }
653
654 static void mddev_delayed_delete(struct work_struct *ws);
655
656 static void mddev_put(struct mddev *mddev)
657 {
658 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
659 return;
660 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
661 mddev->ctime == 0 && !mddev->hold_active) {
662 /* Array is not configured at all, and not held active,
663 * so destroy it */
664 list_del_init(&mddev->all_mddevs);
665
666 /*
667 * Call queue_work inside the spinlock so that
668 * flush_workqueue() after mddev_find will succeed in waiting
669 * for the work to be done.
670 */
671 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
672 queue_work(md_misc_wq, &mddev->del_work);
673 }
674 spin_unlock(&all_mddevs_lock);
675 }
676
677 static void md_safemode_timeout(struct timer_list *t);
678
679 void mddev_init(struct mddev *mddev)
680 {
681 kobject_init(&mddev->kobj, &md_ktype);
682 mutex_init(&mddev->open_mutex);
683 mutex_init(&mddev->reconfig_mutex);
684 mutex_init(&mddev->bitmap_info.mutex);
685 INIT_LIST_HEAD(&mddev->disks);
686 INIT_LIST_HEAD(&mddev->all_mddevs);
687 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
688 atomic_set(&mddev->active, 1);
689 atomic_set(&mddev->openers, 0);
690 atomic_set(&mddev->active_io, 0);
691 spin_lock_init(&mddev->lock);
692 atomic_set(&mddev->flush_pending, 0);
693 init_waitqueue_head(&mddev->sb_wait);
694 init_waitqueue_head(&mddev->recovery_wait);
695 mddev->reshape_position = MaxSector;
696 mddev->reshape_backwards = 0;
697 mddev->last_sync_action = "none";
698 mddev->resync_min = 0;
699 mddev->resync_max = MaxSector;
700 mddev->level = LEVEL_NONE;
701 }
702 EXPORT_SYMBOL_GPL(mddev_init);
703
704 static struct mddev *mddev_find_locked(dev_t unit)
705 {
706 struct mddev *mddev;
707
708 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
709 if (mddev->unit == unit)
710 return mddev;
711
712 return NULL;
713 }
714
715 /* find an unused unit number */
716 static dev_t mddev_alloc_unit(void)
717 {
718 static int next_minor = 512;
719 int start = next_minor;
720 bool is_free = 0;
721 dev_t dev = 0;
722
723 while (!is_free) {
724 dev = MKDEV(MD_MAJOR, next_minor);
725 next_minor++;
726 if (next_minor > MINORMASK)
727 next_minor = 0;
728 if (next_minor == start)
729 return 0; /* Oh dear, all in use. */
730 is_free = !mddev_find_locked(dev);
731 }
732
733 return dev;
734 }
735
736 static struct mddev *mddev_find(dev_t unit)
737 {
738 struct mddev *mddev;
739
740 if (MAJOR(unit) != MD_MAJOR)
741 unit &= ~((1 << MdpMinorShift) - 1);
742
743 spin_lock(&all_mddevs_lock);
744 mddev = mddev_find_locked(unit);
745 if (mddev)
746 mddev_get(mddev);
747 spin_unlock(&all_mddevs_lock);
748
749 return mddev;
750 }
751
752 static struct mddev *mddev_alloc(dev_t unit)
753 {
754 struct mddev *new;
755 int error;
756
757 if (unit && MAJOR(unit) != MD_MAJOR)
758 unit &= ~((1 << MdpMinorShift) - 1);
759
760 new = kzalloc(sizeof(*new), GFP_KERNEL);
761 if (!new)
762 return ERR_PTR(-ENOMEM);
763 mddev_init(new);
764
765 spin_lock(&all_mddevs_lock);
766 if (unit) {
767 error = -EEXIST;
768 if (mddev_find_locked(unit))
769 goto out_free_new;
770 new->unit = unit;
771 if (MAJOR(unit) == MD_MAJOR)
772 new->md_minor = MINOR(unit);
773 else
774 new->md_minor = MINOR(unit) >> MdpMinorShift;
775 new->hold_active = UNTIL_IOCTL;
776 } else {
777 error = -ENODEV;
778 new->unit = mddev_alloc_unit();
779 if (!new->unit)
780 goto out_free_new;
781 new->md_minor = MINOR(new->unit);
782 new->hold_active = UNTIL_STOP;
783 }
784
785 list_add(&new->all_mddevs, &all_mddevs);
786 spin_unlock(&all_mddevs_lock);
787 return new;
788 out_free_new:
789 spin_unlock(&all_mddevs_lock);
790 kfree(new);
791 return ERR_PTR(error);
792 }
793
794 static const struct attribute_group md_redundancy_group;
795
796 void mddev_unlock(struct mddev *mddev)
797 {
798 if (mddev->to_remove) {
799 /* These cannot be removed under reconfig_mutex as
800 * an access to the files will try to take reconfig_mutex
801 * while holding the file unremovable, which leads to
802 * a deadlock.
803 * So hold set sysfs_active while the remove in happeing,
804 * and anything else which might set ->to_remove or my
805 * otherwise change the sysfs namespace will fail with
806 * -EBUSY if sysfs_active is still set.
807 * We set sysfs_active under reconfig_mutex and elsewhere
808 * test it under the same mutex to ensure its correct value
809 * is seen.
810 */
811 const struct attribute_group *to_remove = mddev->to_remove;
812 mddev->to_remove = NULL;
813 mddev->sysfs_active = 1;
814 mutex_unlock(&mddev->reconfig_mutex);
815
816 if (mddev->kobj.sd) {
817 if (to_remove != &md_redundancy_group)
818 sysfs_remove_group(&mddev->kobj, to_remove);
819 if (mddev->pers == NULL ||
820 mddev->pers->sync_request == NULL) {
821 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
822 if (mddev->sysfs_action)
823 sysfs_put(mddev->sysfs_action);
824 if (mddev->sysfs_completed)
825 sysfs_put(mddev->sysfs_completed);
826 if (mddev->sysfs_degraded)
827 sysfs_put(mddev->sysfs_degraded);
828 mddev->sysfs_action = NULL;
829 mddev->sysfs_completed = NULL;
830 mddev->sysfs_degraded = NULL;
831 }
832 }
833 mddev->sysfs_active = 0;
834 } else
835 mutex_unlock(&mddev->reconfig_mutex);
836
837 /* As we've dropped the mutex we need a spinlock to
838 * make sure the thread doesn't disappear
839 */
840 spin_lock(&pers_lock);
841 md_wakeup_thread(mddev->thread);
842 wake_up(&mddev->sb_wait);
843 spin_unlock(&pers_lock);
844 }
845 EXPORT_SYMBOL_GPL(mddev_unlock);
846
847 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
848 {
849 struct md_rdev *rdev;
850
851 rdev_for_each_rcu(rdev, mddev)
852 if (rdev->desc_nr == nr)
853 return rdev;
854
855 return NULL;
856 }
857 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
858
859 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
860 {
861 struct md_rdev *rdev;
862
863 rdev_for_each(rdev, mddev)
864 if (rdev->bdev->bd_dev == dev)
865 return rdev;
866
867 return NULL;
868 }
869
870 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
871 {
872 struct md_rdev *rdev;
873
874 rdev_for_each_rcu(rdev, mddev)
875 if (rdev->bdev->bd_dev == dev)
876 return rdev;
877
878 return NULL;
879 }
880 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
881
882 static struct md_personality *find_pers(int level, char *clevel)
883 {
884 struct md_personality *pers;
885 list_for_each_entry(pers, &pers_list, list) {
886 if (level != LEVEL_NONE && pers->level == level)
887 return pers;
888 if (strcmp(pers->name, clevel)==0)
889 return pers;
890 }
891 return NULL;
892 }
893
894 /* return the offset of the super block in 512byte sectors */
895 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
896 {
897 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev));
898 }
899
900 static int alloc_disk_sb(struct md_rdev *rdev)
901 {
902 rdev->sb_page = alloc_page(GFP_KERNEL);
903 if (!rdev->sb_page)
904 return -ENOMEM;
905 return 0;
906 }
907
908 void md_rdev_clear(struct md_rdev *rdev)
909 {
910 if (rdev->sb_page) {
911 put_page(rdev->sb_page);
912 rdev->sb_loaded = 0;
913 rdev->sb_page = NULL;
914 rdev->sb_start = 0;
915 rdev->sectors = 0;
916 }
917 if (rdev->bb_page) {
918 put_page(rdev->bb_page);
919 rdev->bb_page = NULL;
920 }
921 badblocks_exit(&rdev->badblocks);
922 }
923 EXPORT_SYMBOL_GPL(md_rdev_clear);
924
925 static void super_written(struct bio *bio)
926 {
927 struct md_rdev *rdev = bio->bi_private;
928 struct mddev *mddev = rdev->mddev;
929
930 if (bio->bi_status) {
931 pr_err("md: %s gets error=%d\n", __func__,
932 blk_status_to_errno(bio->bi_status));
933 md_error(mddev, rdev);
934 if (!test_bit(Faulty, &rdev->flags)
935 && (bio->bi_opf & MD_FAILFAST)) {
936 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
937 set_bit(LastDev, &rdev->flags);
938 }
939 } else
940 clear_bit(LastDev, &rdev->flags);
941
942 if (atomic_dec_and_test(&mddev->pending_writes))
943 wake_up(&mddev->sb_wait);
944 rdev_dec_pending(rdev, mddev);
945 bio_put(bio);
946 }
947
948 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
949 sector_t sector, int size, struct page *page)
950 {
951 /* write first size bytes of page to sector of rdev
952 * Increment mddev->pending_writes before returning
953 * and decrement it on completion, waking up sb_wait
954 * if zero is reached.
955 * If an error occurred, call md_error
956 */
957 struct bio *bio;
958
959 if (!page)
960 return;
961
962 if (test_bit(Faulty, &rdev->flags))
963 return;
964
965 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev,
966 1,
967 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA,
968 GFP_NOIO, &mddev->sync_set);
969
970 atomic_inc(&rdev->nr_pending);
971
972 bio->bi_iter.bi_sector = sector;
973 bio_add_page(bio, page, size, 0);
974 bio->bi_private = rdev;
975 bio->bi_end_io = super_written;
976
977 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
978 test_bit(FailFast, &rdev->flags) &&
979 !test_bit(LastDev, &rdev->flags))
980 bio->bi_opf |= MD_FAILFAST;
981
982 atomic_inc(&mddev->pending_writes);
983 submit_bio(bio);
984 }
985
986 int md_super_wait(struct mddev *mddev)
987 {
988 /* wait for all superblock writes that were scheduled to complete */
989 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
990 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
991 return -EAGAIN;
992 return 0;
993 }
994
995 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
996 struct page *page, int op, int op_flags, bool metadata_op)
997 {
998 struct bio bio;
999 struct bio_vec bvec;
1000
1001 if (metadata_op && rdev->meta_bdev)
1002 bio_init(&bio, rdev->meta_bdev, &bvec, 1, op | op_flags);
1003 else
1004 bio_init(&bio, rdev->bdev, &bvec, 1, op | op_flags);
1005
1006 if (metadata_op)
1007 bio.bi_iter.bi_sector = sector + rdev->sb_start;
1008 else if (rdev->mddev->reshape_position != MaxSector &&
1009 (rdev->mddev->reshape_backwards ==
1010 (sector >= rdev->mddev->reshape_position)))
1011 bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
1012 else
1013 bio.bi_iter.bi_sector = sector + rdev->data_offset;
1014 bio_add_page(&bio, page, size, 0);
1015
1016 submit_bio_wait(&bio);
1017
1018 return !bio.bi_status;
1019 }
1020 EXPORT_SYMBOL_GPL(sync_page_io);
1021
1022 static int read_disk_sb(struct md_rdev *rdev, int size)
1023 {
1024 if (rdev->sb_loaded)
1025 return 0;
1026
1027 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
1028 goto fail;
1029 rdev->sb_loaded = 1;
1030 return 0;
1031
1032 fail:
1033 pr_err("md: disabled device %pg, could not read superblock.\n",
1034 rdev->bdev);
1035 return -EINVAL;
1036 }
1037
1038 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1039 {
1040 return sb1->set_uuid0 == sb2->set_uuid0 &&
1041 sb1->set_uuid1 == sb2->set_uuid1 &&
1042 sb1->set_uuid2 == sb2->set_uuid2 &&
1043 sb1->set_uuid3 == sb2->set_uuid3;
1044 }
1045
1046 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1047 {
1048 int ret;
1049 mdp_super_t *tmp1, *tmp2;
1050
1051 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1052 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1053
1054 if (!tmp1 || !tmp2) {
1055 ret = 0;
1056 goto abort;
1057 }
1058
1059 *tmp1 = *sb1;
1060 *tmp2 = *sb2;
1061
1062 /*
1063 * nr_disks is not constant
1064 */
1065 tmp1->nr_disks = 0;
1066 tmp2->nr_disks = 0;
1067
1068 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1069 abort:
1070 kfree(tmp1);
1071 kfree(tmp2);
1072 return ret;
1073 }
1074
1075 static u32 md_csum_fold(u32 csum)
1076 {
1077 csum = (csum & 0xffff) + (csum >> 16);
1078 return (csum & 0xffff) + (csum >> 16);
1079 }
1080
1081 static unsigned int calc_sb_csum(mdp_super_t *sb)
1082 {
1083 u64 newcsum = 0;
1084 u32 *sb32 = (u32*)sb;
1085 int i;
1086 unsigned int disk_csum, csum;
1087
1088 disk_csum = sb->sb_csum;
1089 sb->sb_csum = 0;
1090
1091 for (i = 0; i < MD_SB_BYTES/4 ; i++)
1092 newcsum += sb32[i];
1093 csum = (newcsum & 0xffffffff) + (newcsum>>32);
1094
1095 #ifdef CONFIG_ALPHA
1096 /* This used to use csum_partial, which was wrong for several
1097 * reasons including that different results are returned on
1098 * different architectures. It isn't critical that we get exactly
1099 * the same return value as before (we always csum_fold before
1100 * testing, and that removes any differences). However as we
1101 * know that csum_partial always returned a 16bit value on
1102 * alphas, do a fold to maximise conformity to previous behaviour.
1103 */
1104 sb->sb_csum = md_csum_fold(disk_csum);
1105 #else
1106 sb->sb_csum = disk_csum;
1107 #endif
1108 return csum;
1109 }
1110
1111 /*
1112 * Handle superblock details.
1113 * We want to be able to handle multiple superblock formats
1114 * so we have a common interface to them all, and an array of
1115 * different handlers.
1116 * We rely on user-space to write the initial superblock, and support
1117 * reading and updating of superblocks.
1118 * Interface methods are:
1119 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1120 * loads and validates a superblock on dev.
1121 * if refdev != NULL, compare superblocks on both devices
1122 * Return:
1123 * 0 - dev has a superblock that is compatible with refdev
1124 * 1 - dev has a superblock that is compatible and newer than refdev
1125 * so dev should be used as the refdev in future
1126 * -EINVAL superblock incompatible or invalid
1127 * -othererror e.g. -EIO
1128 *
1129 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1130 * Verify that dev is acceptable into mddev.
1131 * The first time, mddev->raid_disks will be 0, and data from
1132 * dev should be merged in. Subsequent calls check that dev
1133 * is new enough. Return 0 or -EINVAL
1134 *
1135 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1136 * Update the superblock for rdev with data in mddev
1137 * This does not write to disc.
1138 *
1139 */
1140
1141 struct super_type {
1142 char *name;
1143 struct module *owner;
1144 int (*load_super)(struct md_rdev *rdev,
1145 struct md_rdev *refdev,
1146 int minor_version);
1147 int (*validate_super)(struct mddev *mddev,
1148 struct md_rdev *rdev);
1149 void (*sync_super)(struct mddev *mddev,
1150 struct md_rdev *rdev);
1151 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1152 sector_t num_sectors);
1153 int (*allow_new_offset)(struct md_rdev *rdev,
1154 unsigned long long new_offset);
1155 };
1156
1157 /*
1158 * Check that the given mddev has no bitmap.
1159 *
1160 * This function is called from the run method of all personalities that do not
1161 * support bitmaps. It prints an error message and returns non-zero if mddev
1162 * has a bitmap. Otherwise, it returns 0.
1163 *
1164 */
1165 int md_check_no_bitmap(struct mddev *mddev)
1166 {
1167 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1168 return 0;
1169 pr_warn("%s: bitmaps are not supported for %s\n",
1170 mdname(mddev), mddev->pers->name);
1171 return 1;
1172 }
1173 EXPORT_SYMBOL(md_check_no_bitmap);
1174
1175 /*
1176 * load_super for 0.90.0
1177 */
1178 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1179 {
1180 mdp_super_t *sb;
1181 int ret;
1182 bool spare_disk = true;
1183
1184 /*
1185 * Calculate the position of the superblock (512byte sectors),
1186 * it's at the end of the disk.
1187 *
1188 * It also happens to be a multiple of 4Kb.
1189 */
1190 rdev->sb_start = calc_dev_sboffset(rdev);
1191
1192 ret = read_disk_sb(rdev, MD_SB_BYTES);
1193 if (ret)
1194 return ret;
1195
1196 ret = -EINVAL;
1197
1198 sb = page_address(rdev->sb_page);
1199
1200 if (sb->md_magic != MD_SB_MAGIC) {
1201 pr_warn("md: invalid raid superblock magic on %pg\n",
1202 rdev->bdev);
1203 goto abort;
1204 }
1205
1206 if (sb->major_version != 0 ||
1207 sb->minor_version < 90 ||
1208 sb->minor_version > 91) {
1209 pr_warn("Bad version number %d.%d on %pg\n",
1210 sb->major_version, sb->minor_version, rdev->bdev);
1211 goto abort;
1212 }
1213
1214 if (sb->raid_disks <= 0)
1215 goto abort;
1216
1217 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1218 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev);
1219 goto abort;
1220 }
1221
1222 rdev->preferred_minor = sb->md_minor;
1223 rdev->data_offset = 0;
1224 rdev->new_data_offset = 0;
1225 rdev->sb_size = MD_SB_BYTES;
1226 rdev->badblocks.shift = -1;
1227
1228 if (sb->level == LEVEL_MULTIPATH)
1229 rdev->desc_nr = -1;
1230 else
1231 rdev->desc_nr = sb->this_disk.number;
1232
1233 /* not spare disk, or LEVEL_MULTIPATH */
1234 if (sb->level == LEVEL_MULTIPATH ||
1235 (rdev->desc_nr >= 0 &&
1236 rdev->desc_nr < MD_SB_DISKS &&
1237 sb->disks[rdev->desc_nr].state &
1238 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1239 spare_disk = false;
1240
1241 if (!refdev) {
1242 if (!spare_disk)
1243 ret = 1;
1244 else
1245 ret = 0;
1246 } else {
1247 __u64 ev1, ev2;
1248 mdp_super_t *refsb = page_address(refdev->sb_page);
1249 if (!md_uuid_equal(refsb, sb)) {
1250 pr_warn("md: %pg has different UUID to %pg\n",
1251 rdev->bdev, refdev->bdev);
1252 goto abort;
1253 }
1254 if (!md_sb_equal(refsb, sb)) {
1255 pr_warn("md: %pg has same UUID but different superblock to %pg\n",
1256 rdev->bdev, refdev->bdev);
1257 goto abort;
1258 }
1259 ev1 = md_event(sb);
1260 ev2 = md_event(refsb);
1261
1262 if (!spare_disk && ev1 > ev2)
1263 ret = 1;
1264 else
1265 ret = 0;
1266 }
1267 rdev->sectors = rdev->sb_start;
1268 /* Limit to 4TB as metadata cannot record more than that.
1269 * (not needed for Linear and RAID0 as metadata doesn't
1270 * record this size)
1271 */
1272 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1273 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1274
1275 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1276 /* "this cannot possibly happen" ... */
1277 ret = -EINVAL;
1278
1279 abort:
1280 return ret;
1281 }
1282
1283 /*
1284 * validate_super for 0.90.0
1285 */
1286 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1287 {
1288 mdp_disk_t *desc;
1289 mdp_super_t *sb = page_address(rdev->sb_page);
1290 __u64 ev1 = md_event(sb);
1291
1292 rdev->raid_disk = -1;
1293 clear_bit(Faulty, &rdev->flags);
1294 clear_bit(In_sync, &rdev->flags);
1295 clear_bit(Bitmap_sync, &rdev->flags);
1296 clear_bit(WriteMostly, &rdev->flags);
1297
1298 if (mddev->raid_disks == 0) {
1299 mddev->major_version = 0;
1300 mddev->minor_version = sb->minor_version;
1301 mddev->patch_version = sb->patch_version;
1302 mddev->external = 0;
1303 mddev->chunk_sectors = sb->chunk_size >> 9;
1304 mddev->ctime = sb->ctime;
1305 mddev->utime = sb->utime;
1306 mddev->level = sb->level;
1307 mddev->clevel[0] = 0;
1308 mddev->layout = sb->layout;
1309 mddev->raid_disks = sb->raid_disks;
1310 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1311 mddev->events = ev1;
1312 mddev->bitmap_info.offset = 0;
1313 mddev->bitmap_info.space = 0;
1314 /* bitmap can use 60 K after the 4K superblocks */
1315 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1316 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1317 mddev->reshape_backwards = 0;
1318
1319 if (mddev->minor_version >= 91) {
1320 mddev->reshape_position = sb->reshape_position;
1321 mddev->delta_disks = sb->delta_disks;
1322 mddev->new_level = sb->new_level;
1323 mddev->new_layout = sb->new_layout;
1324 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1325 if (mddev->delta_disks < 0)
1326 mddev->reshape_backwards = 1;
1327 } else {
1328 mddev->reshape_position = MaxSector;
1329 mddev->delta_disks = 0;
1330 mddev->new_level = mddev->level;
1331 mddev->new_layout = mddev->layout;
1332 mddev->new_chunk_sectors = mddev->chunk_sectors;
1333 }
1334 if (mddev->level == 0)
1335 mddev->layout = -1;
1336
1337 if (sb->state & (1<<MD_SB_CLEAN))
1338 mddev->recovery_cp = MaxSector;
1339 else {
1340 if (sb->events_hi == sb->cp_events_hi &&
1341 sb->events_lo == sb->cp_events_lo) {
1342 mddev->recovery_cp = sb->recovery_cp;
1343 } else
1344 mddev->recovery_cp = 0;
1345 }
1346
1347 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1348 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1349 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1350 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1351
1352 mddev->max_disks = MD_SB_DISKS;
1353
1354 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1355 mddev->bitmap_info.file == NULL) {
1356 mddev->bitmap_info.offset =
1357 mddev->bitmap_info.default_offset;
1358 mddev->bitmap_info.space =
1359 mddev->bitmap_info.default_space;
1360 }
1361
1362 } else if (mddev->pers == NULL) {
1363 /* Insist on good event counter while assembling, except
1364 * for spares (which don't need an event count) */
1365 ++ev1;
1366 if (sb->disks[rdev->desc_nr].state & (
1367 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1368 if (ev1 < mddev->events)
1369 return -EINVAL;
1370 } else if (mddev->bitmap) {
1371 /* if adding to array with a bitmap, then we can accept an
1372 * older device ... but not too old.
1373 */
1374 if (ev1 < mddev->bitmap->events_cleared)
1375 return 0;
1376 if (ev1 < mddev->events)
1377 set_bit(Bitmap_sync, &rdev->flags);
1378 } else {
1379 if (ev1 < mddev->events)
1380 /* just a hot-add of a new device, leave raid_disk at -1 */
1381 return 0;
1382 }
1383
1384 if (mddev->level != LEVEL_MULTIPATH) {
1385 desc = sb->disks + rdev->desc_nr;
1386
1387 if (desc->state & (1<<MD_DISK_FAULTY))
1388 set_bit(Faulty, &rdev->flags);
1389 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1390 desc->raid_disk < mddev->raid_disks */) {
1391 set_bit(In_sync, &rdev->flags);
1392 rdev->raid_disk = desc->raid_disk;
1393 rdev->saved_raid_disk = desc->raid_disk;
1394 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1395 /* active but not in sync implies recovery up to
1396 * reshape position. We don't know exactly where
1397 * that is, so set to zero for now */
1398 if (mddev->minor_version >= 91) {
1399 rdev->recovery_offset = 0;
1400 rdev->raid_disk = desc->raid_disk;
1401 }
1402 }
1403 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1404 set_bit(WriteMostly, &rdev->flags);
1405 if (desc->state & (1<<MD_DISK_FAILFAST))
1406 set_bit(FailFast, &rdev->flags);
1407 } else /* MULTIPATH are always insync */
1408 set_bit(In_sync, &rdev->flags);
1409 return 0;
1410 }
1411
1412 /*
1413 * sync_super for 0.90.0
1414 */
1415 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1416 {
1417 mdp_super_t *sb;
1418 struct md_rdev *rdev2;
1419 int next_spare = mddev->raid_disks;
1420
1421 /* make rdev->sb match mddev data..
1422 *
1423 * 1/ zero out disks
1424 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1425 * 3/ any empty disks < next_spare become removed
1426 *
1427 * disks[0] gets initialised to REMOVED because
1428 * we cannot be sure from other fields if it has
1429 * been initialised or not.
1430 */
1431 int i;
1432 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1433
1434 rdev->sb_size = MD_SB_BYTES;
1435
1436 sb = page_address(rdev->sb_page);
1437
1438 memset(sb, 0, sizeof(*sb));
1439
1440 sb->md_magic = MD_SB_MAGIC;
1441 sb->major_version = mddev->major_version;
1442 sb->patch_version = mddev->patch_version;
1443 sb->gvalid_words = 0; /* ignored */
1444 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1445 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1446 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1447 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1448
1449 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1450 sb->level = mddev->level;
1451 sb->size = mddev->dev_sectors / 2;
1452 sb->raid_disks = mddev->raid_disks;
1453 sb->md_minor = mddev->md_minor;
1454 sb->not_persistent = 0;
1455 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1456 sb->state = 0;
1457 sb->events_hi = (mddev->events>>32);
1458 sb->events_lo = (u32)mddev->events;
1459
1460 if (mddev->reshape_position == MaxSector)
1461 sb->minor_version = 90;
1462 else {
1463 sb->minor_version = 91;
1464 sb->reshape_position = mddev->reshape_position;
1465 sb->new_level = mddev->new_level;
1466 sb->delta_disks = mddev->delta_disks;
1467 sb->new_layout = mddev->new_layout;
1468 sb->new_chunk = mddev->new_chunk_sectors << 9;
1469 }
1470 mddev->minor_version = sb->minor_version;
1471 if (mddev->in_sync)
1472 {
1473 sb->recovery_cp = mddev->recovery_cp;
1474 sb->cp_events_hi = (mddev->events>>32);
1475 sb->cp_events_lo = (u32)mddev->events;
1476 if (mddev->recovery_cp == MaxSector)
1477 sb->state = (1<< MD_SB_CLEAN);
1478 } else
1479 sb->recovery_cp = 0;
1480
1481 sb->layout = mddev->layout;
1482 sb->chunk_size = mddev->chunk_sectors << 9;
1483
1484 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1485 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1486
1487 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1488 rdev_for_each(rdev2, mddev) {
1489 mdp_disk_t *d;
1490 int desc_nr;
1491 int is_active = test_bit(In_sync, &rdev2->flags);
1492
1493 if (rdev2->raid_disk >= 0 &&
1494 sb->minor_version >= 91)
1495 /* we have nowhere to store the recovery_offset,
1496 * but if it is not below the reshape_position,
1497 * we can piggy-back on that.
1498 */
1499 is_active = 1;
1500 if (rdev2->raid_disk < 0 ||
1501 test_bit(Faulty, &rdev2->flags))
1502 is_active = 0;
1503 if (is_active)
1504 desc_nr = rdev2->raid_disk;
1505 else
1506 desc_nr = next_spare++;
1507 rdev2->desc_nr = desc_nr;
1508 d = &sb->disks[rdev2->desc_nr];
1509 nr_disks++;
1510 d->number = rdev2->desc_nr;
1511 d->major = MAJOR(rdev2->bdev->bd_dev);
1512 d->minor = MINOR(rdev2->bdev->bd_dev);
1513 if (is_active)
1514 d->raid_disk = rdev2->raid_disk;
1515 else
1516 d->raid_disk = rdev2->desc_nr; /* compatibility */
1517 if (test_bit(Faulty, &rdev2->flags))
1518 d->state = (1<<MD_DISK_FAULTY);
1519 else if (is_active) {
1520 d->state = (1<<MD_DISK_ACTIVE);
1521 if (test_bit(In_sync, &rdev2->flags))
1522 d->state |= (1<<MD_DISK_SYNC);
1523 active++;
1524 working++;
1525 } else {
1526 d->state = 0;
1527 spare++;
1528 working++;
1529 }
1530 if (test_bit(WriteMostly, &rdev2->flags))
1531 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1532 if (test_bit(FailFast, &rdev2->flags))
1533 d->state |= (1<<MD_DISK_FAILFAST);
1534 }
1535 /* now set the "removed" and "faulty" bits on any missing devices */
1536 for (i=0 ; i < mddev->raid_disks ; i++) {
1537 mdp_disk_t *d = &sb->disks[i];
1538 if (d->state == 0 && d->number == 0) {
1539 d->number = i;
1540 d->raid_disk = i;
1541 d->state = (1<<MD_DISK_REMOVED);
1542 d->state |= (1<<MD_DISK_FAULTY);
1543 failed++;
1544 }
1545 }
1546 sb->nr_disks = nr_disks;
1547 sb->active_disks = active;
1548 sb->working_disks = working;
1549 sb->failed_disks = failed;
1550 sb->spare_disks = spare;
1551
1552 sb->this_disk = sb->disks[rdev->desc_nr];
1553 sb->sb_csum = calc_sb_csum(sb);
1554 }
1555
1556 /*
1557 * rdev_size_change for 0.90.0
1558 */
1559 static unsigned long long
1560 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1561 {
1562 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1563 return 0; /* component must fit device */
1564 if (rdev->mddev->bitmap_info.offset)
1565 return 0; /* can't move bitmap */
1566 rdev->sb_start = calc_dev_sboffset(rdev);
1567 if (!num_sectors || num_sectors > rdev->sb_start)
1568 num_sectors = rdev->sb_start;
1569 /* Limit to 4TB as metadata cannot record more than that.
1570 * 4TB == 2^32 KB, or 2*2^32 sectors.
1571 */
1572 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1573 num_sectors = (sector_t)(2ULL << 32) - 2;
1574 do {
1575 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1576 rdev->sb_page);
1577 } while (md_super_wait(rdev->mddev) < 0);
1578 return num_sectors;
1579 }
1580
1581 static int
1582 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1583 {
1584 /* non-zero offset changes not possible with v0.90 */
1585 return new_offset == 0;
1586 }
1587
1588 /*
1589 * version 1 superblock
1590 */
1591
1592 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1593 {
1594 __le32 disk_csum;
1595 u32 csum;
1596 unsigned long long newcsum;
1597 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1598 __le32 *isuper = (__le32*)sb;
1599
1600 disk_csum = sb->sb_csum;
1601 sb->sb_csum = 0;
1602 newcsum = 0;
1603 for (; size >= 4; size -= 4)
1604 newcsum += le32_to_cpu(*isuper++);
1605
1606 if (size == 2)
1607 newcsum += le16_to_cpu(*(__le16*) isuper);
1608
1609 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1610 sb->sb_csum = disk_csum;
1611 return cpu_to_le32(csum);
1612 }
1613
1614 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1615 {
1616 struct mdp_superblock_1 *sb;
1617 int ret;
1618 sector_t sb_start;
1619 sector_t sectors;
1620 int bmask;
1621 bool spare_disk = true;
1622
1623 /*
1624 * Calculate the position of the superblock in 512byte sectors.
1625 * It is always aligned to a 4K boundary and
1626 * depeding on minor_version, it can be:
1627 * 0: At least 8K, but less than 12K, from end of device
1628 * 1: At start of device
1629 * 2: 4K from start of device.
1630 */
1631 switch(minor_version) {
1632 case 0:
1633 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2;
1634 sb_start &= ~(sector_t)(4*2-1);
1635 break;
1636 case 1:
1637 sb_start = 0;
1638 break;
1639 case 2:
1640 sb_start = 8;
1641 break;
1642 default:
1643 return -EINVAL;
1644 }
1645 rdev->sb_start = sb_start;
1646
1647 /* superblock is rarely larger than 1K, but it can be larger,
1648 * and it is safe to read 4k, so we do that
1649 */
1650 ret = read_disk_sb(rdev, 4096);
1651 if (ret) return ret;
1652
1653 sb = page_address(rdev->sb_page);
1654
1655 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1656 sb->major_version != cpu_to_le32(1) ||
1657 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1658 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1659 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1660 return -EINVAL;
1661
1662 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1663 pr_warn("md: invalid superblock checksum on %pg\n",
1664 rdev->bdev);
1665 return -EINVAL;
1666 }
1667 if (le64_to_cpu(sb->data_size) < 10) {
1668 pr_warn("md: data_size too small on %pg\n",
1669 rdev->bdev);
1670 return -EINVAL;
1671 }
1672 if (sb->pad0 ||
1673 sb->pad3[0] ||
1674 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1675 /* Some padding is non-zero, might be a new feature */
1676 return -EINVAL;
1677
1678 rdev->preferred_minor = 0xffff;
1679 rdev->data_offset = le64_to_cpu(sb->data_offset);
1680 rdev->new_data_offset = rdev->data_offset;
1681 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1682 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1683 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1684 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1685
1686 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1687 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1688 if (rdev->sb_size & bmask)
1689 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1690
1691 if (minor_version
1692 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1693 return -EINVAL;
1694 if (minor_version
1695 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1696 return -EINVAL;
1697
1698 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1699 rdev->desc_nr = -1;
1700 else
1701 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1702
1703 if (!rdev->bb_page) {
1704 rdev->bb_page = alloc_page(GFP_KERNEL);
1705 if (!rdev->bb_page)
1706 return -ENOMEM;
1707 }
1708 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1709 rdev->badblocks.count == 0) {
1710 /* need to load the bad block list.
1711 * Currently we limit it to one page.
1712 */
1713 s32 offset;
1714 sector_t bb_sector;
1715 __le64 *bbp;
1716 int i;
1717 int sectors = le16_to_cpu(sb->bblog_size);
1718 if (sectors > (PAGE_SIZE / 512))
1719 return -EINVAL;
1720 offset = le32_to_cpu(sb->bblog_offset);
1721 if (offset == 0)
1722 return -EINVAL;
1723 bb_sector = (long long)offset;
1724 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1725 rdev->bb_page, REQ_OP_READ, 0, true))
1726 return -EIO;
1727 bbp = (__le64 *)page_address(rdev->bb_page);
1728 rdev->badblocks.shift = sb->bblog_shift;
1729 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1730 u64 bb = le64_to_cpu(*bbp);
1731 int count = bb & (0x3ff);
1732 u64 sector = bb >> 10;
1733 sector <<= sb->bblog_shift;
1734 count <<= sb->bblog_shift;
1735 if (bb + 1 == 0)
1736 break;
1737 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1738 return -EINVAL;
1739 }
1740 } else if (sb->bblog_offset != 0)
1741 rdev->badblocks.shift = 0;
1742
1743 if ((le32_to_cpu(sb->feature_map) &
1744 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1745 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1746 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1747 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1748 }
1749
1750 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1751 sb->level != 0)
1752 return -EINVAL;
1753
1754 /* not spare disk, or LEVEL_MULTIPATH */
1755 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1756 (rdev->desc_nr >= 0 &&
1757 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1758 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1759 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1760 spare_disk = false;
1761
1762 if (!refdev) {
1763 if (!spare_disk)
1764 ret = 1;
1765 else
1766 ret = 0;
1767 } else {
1768 __u64 ev1, ev2;
1769 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1770
1771 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1772 sb->level != refsb->level ||
1773 sb->layout != refsb->layout ||
1774 sb->chunksize != refsb->chunksize) {
1775 pr_warn("md: %pg has strangely different superblock to %pg\n",
1776 rdev->bdev,
1777 refdev->bdev);
1778 return -EINVAL;
1779 }
1780 ev1 = le64_to_cpu(sb->events);
1781 ev2 = le64_to_cpu(refsb->events);
1782
1783 if (!spare_disk && ev1 > ev2)
1784 ret = 1;
1785 else
1786 ret = 0;
1787 }
1788 if (minor_version)
1789 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
1790 else
1791 sectors = rdev->sb_start;
1792 if (sectors < le64_to_cpu(sb->data_size))
1793 return -EINVAL;
1794 rdev->sectors = le64_to_cpu(sb->data_size);
1795 return ret;
1796 }
1797
1798 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1799 {
1800 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1801 __u64 ev1 = le64_to_cpu(sb->events);
1802
1803 rdev->raid_disk = -1;
1804 clear_bit(Faulty, &rdev->flags);
1805 clear_bit(In_sync, &rdev->flags);
1806 clear_bit(Bitmap_sync, &rdev->flags);
1807 clear_bit(WriteMostly, &rdev->flags);
1808
1809 if (mddev->raid_disks == 0) {
1810 mddev->major_version = 1;
1811 mddev->patch_version = 0;
1812 mddev->external = 0;
1813 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1814 mddev->ctime = le64_to_cpu(sb->ctime);
1815 mddev->utime = le64_to_cpu(sb->utime);
1816 mddev->level = le32_to_cpu(sb->level);
1817 mddev->clevel[0] = 0;
1818 mddev->layout = le32_to_cpu(sb->layout);
1819 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1820 mddev->dev_sectors = le64_to_cpu(sb->size);
1821 mddev->events = ev1;
1822 mddev->bitmap_info.offset = 0;
1823 mddev->bitmap_info.space = 0;
1824 /* Default location for bitmap is 1K after superblock
1825 * using 3K - total of 4K
1826 */
1827 mddev->bitmap_info.default_offset = 1024 >> 9;
1828 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1829 mddev->reshape_backwards = 0;
1830
1831 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1832 memcpy(mddev->uuid, sb->set_uuid, 16);
1833
1834 mddev->max_disks = (4096-256)/2;
1835
1836 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1837 mddev->bitmap_info.file == NULL) {
1838 mddev->bitmap_info.offset =
1839 (__s32)le32_to_cpu(sb->bitmap_offset);
1840 /* Metadata doesn't record how much space is available.
1841 * For 1.0, we assume we can use up to the superblock
1842 * if before, else to 4K beyond superblock.
1843 * For others, assume no change is possible.
1844 */
1845 if (mddev->minor_version > 0)
1846 mddev->bitmap_info.space = 0;
1847 else if (mddev->bitmap_info.offset > 0)
1848 mddev->bitmap_info.space =
1849 8 - mddev->bitmap_info.offset;
1850 else
1851 mddev->bitmap_info.space =
1852 -mddev->bitmap_info.offset;
1853 }
1854
1855 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1856 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1857 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1858 mddev->new_level = le32_to_cpu(sb->new_level);
1859 mddev->new_layout = le32_to_cpu(sb->new_layout);
1860 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1861 if (mddev->delta_disks < 0 ||
1862 (mddev->delta_disks == 0 &&
1863 (le32_to_cpu(sb->feature_map)
1864 & MD_FEATURE_RESHAPE_BACKWARDS)))
1865 mddev->reshape_backwards = 1;
1866 } else {
1867 mddev->reshape_position = MaxSector;
1868 mddev->delta_disks = 0;
1869 mddev->new_level = mddev->level;
1870 mddev->new_layout = mddev->layout;
1871 mddev->new_chunk_sectors = mddev->chunk_sectors;
1872 }
1873
1874 if (mddev->level == 0 &&
1875 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1876 mddev->layout = -1;
1877
1878 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1879 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1880
1881 if (le32_to_cpu(sb->feature_map) &
1882 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1883 if (le32_to_cpu(sb->feature_map) &
1884 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1885 return -EINVAL;
1886 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1887 (le32_to_cpu(sb->feature_map) &
1888 MD_FEATURE_MULTIPLE_PPLS))
1889 return -EINVAL;
1890 set_bit(MD_HAS_PPL, &mddev->flags);
1891 }
1892 } else if (mddev->pers == NULL) {
1893 /* Insist of good event counter while assembling, except for
1894 * spares (which don't need an event count) */
1895 ++ev1;
1896 if (rdev->desc_nr >= 0 &&
1897 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1898 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1899 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1900 if (ev1 < mddev->events)
1901 return -EINVAL;
1902 } else if (mddev->bitmap) {
1903 /* If adding to array with a bitmap, then we can accept an
1904 * older device, but not too old.
1905 */
1906 if (ev1 < mddev->bitmap->events_cleared)
1907 return 0;
1908 if (ev1 < mddev->events)
1909 set_bit(Bitmap_sync, &rdev->flags);
1910 } else {
1911 if (ev1 < mddev->events)
1912 /* just a hot-add of a new device, leave raid_disk at -1 */
1913 return 0;
1914 }
1915 if (mddev->level != LEVEL_MULTIPATH) {
1916 int role;
1917 if (rdev->desc_nr < 0 ||
1918 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1919 role = MD_DISK_ROLE_SPARE;
1920 rdev->desc_nr = -1;
1921 } else
1922 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1923 switch(role) {
1924 case MD_DISK_ROLE_SPARE: /* spare */
1925 break;
1926 case MD_DISK_ROLE_FAULTY: /* faulty */
1927 set_bit(Faulty, &rdev->flags);
1928 break;
1929 case MD_DISK_ROLE_JOURNAL: /* journal device */
1930 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1931 /* journal device without journal feature */
1932 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1933 return -EINVAL;
1934 }
1935 set_bit(Journal, &rdev->flags);
1936 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1937 rdev->raid_disk = 0;
1938 break;
1939 default:
1940 rdev->saved_raid_disk = role;
1941 if ((le32_to_cpu(sb->feature_map) &
1942 MD_FEATURE_RECOVERY_OFFSET)) {
1943 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1944 if (!(le32_to_cpu(sb->feature_map) &
1945 MD_FEATURE_RECOVERY_BITMAP))
1946 rdev->saved_raid_disk = -1;
1947 } else {
1948 /*
1949 * If the array is FROZEN, then the device can't
1950 * be in_sync with rest of array.
1951 */
1952 if (!test_bit(MD_RECOVERY_FROZEN,
1953 &mddev->recovery))
1954 set_bit(In_sync, &rdev->flags);
1955 }
1956 rdev->raid_disk = role;
1957 break;
1958 }
1959 if (sb->devflags & WriteMostly1)
1960 set_bit(WriteMostly, &rdev->flags);
1961 if (sb->devflags & FailFast1)
1962 set_bit(FailFast, &rdev->flags);
1963 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1964 set_bit(Replacement, &rdev->flags);
1965 } else /* MULTIPATH are always insync */
1966 set_bit(In_sync, &rdev->flags);
1967
1968 return 0;
1969 }
1970
1971 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1972 {
1973 struct mdp_superblock_1 *sb;
1974 struct md_rdev *rdev2;
1975 int max_dev, i;
1976 /* make rdev->sb match mddev and rdev data. */
1977
1978 sb = page_address(rdev->sb_page);
1979
1980 sb->feature_map = 0;
1981 sb->pad0 = 0;
1982 sb->recovery_offset = cpu_to_le64(0);
1983 memset(sb->pad3, 0, sizeof(sb->pad3));
1984
1985 sb->utime = cpu_to_le64((__u64)mddev->utime);
1986 sb->events = cpu_to_le64(mddev->events);
1987 if (mddev->in_sync)
1988 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1989 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1990 sb->resync_offset = cpu_to_le64(MaxSector);
1991 else
1992 sb->resync_offset = cpu_to_le64(0);
1993
1994 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1995
1996 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1997 sb->size = cpu_to_le64(mddev->dev_sectors);
1998 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1999 sb->level = cpu_to_le32(mddev->level);
2000 sb->layout = cpu_to_le32(mddev->layout);
2001 if (test_bit(FailFast, &rdev->flags))
2002 sb->devflags |= FailFast1;
2003 else
2004 sb->devflags &= ~FailFast1;
2005
2006 if (test_bit(WriteMostly, &rdev->flags))
2007 sb->devflags |= WriteMostly1;
2008 else
2009 sb->devflags &= ~WriteMostly1;
2010 sb->data_offset = cpu_to_le64(rdev->data_offset);
2011 sb->data_size = cpu_to_le64(rdev->sectors);
2012
2013 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2014 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2015 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2016 }
2017
2018 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2019 !test_bit(In_sync, &rdev->flags)) {
2020 sb->feature_map |=
2021 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2022 sb->recovery_offset =
2023 cpu_to_le64(rdev->recovery_offset);
2024 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2025 sb->feature_map |=
2026 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2027 }
2028 /* Note: recovery_offset and journal_tail share space */
2029 if (test_bit(Journal, &rdev->flags))
2030 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2031 if (test_bit(Replacement, &rdev->flags))
2032 sb->feature_map |=
2033 cpu_to_le32(MD_FEATURE_REPLACEMENT);
2034
2035 if (mddev->reshape_position != MaxSector) {
2036 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2037 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2038 sb->new_layout = cpu_to_le32(mddev->new_layout);
2039 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2040 sb->new_level = cpu_to_le32(mddev->new_level);
2041 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2042 if (mddev->delta_disks == 0 &&
2043 mddev->reshape_backwards)
2044 sb->feature_map
2045 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2046 if (rdev->new_data_offset != rdev->data_offset) {
2047 sb->feature_map
2048 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2049 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2050 - rdev->data_offset));
2051 }
2052 }
2053
2054 if (mddev_is_clustered(mddev))
2055 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2056
2057 if (rdev->badblocks.count == 0)
2058 /* Nothing to do for bad blocks*/ ;
2059 else if (sb->bblog_offset == 0)
2060 /* Cannot record bad blocks on this device */
2061 md_error(mddev, rdev);
2062 else {
2063 struct badblocks *bb = &rdev->badblocks;
2064 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2065 u64 *p = bb->page;
2066 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2067 if (bb->changed) {
2068 unsigned seq;
2069
2070 retry:
2071 seq = read_seqbegin(&bb->lock);
2072
2073 memset(bbp, 0xff, PAGE_SIZE);
2074
2075 for (i = 0 ; i < bb->count ; i++) {
2076 u64 internal_bb = p[i];
2077 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2078 | BB_LEN(internal_bb));
2079 bbp[i] = cpu_to_le64(store_bb);
2080 }
2081 bb->changed = 0;
2082 if (read_seqretry(&bb->lock, seq))
2083 goto retry;
2084
2085 bb->sector = (rdev->sb_start +
2086 (int)le32_to_cpu(sb->bblog_offset));
2087 bb->size = le16_to_cpu(sb->bblog_size);
2088 }
2089 }
2090
2091 max_dev = 0;
2092 rdev_for_each(rdev2, mddev)
2093 if (rdev2->desc_nr+1 > max_dev)
2094 max_dev = rdev2->desc_nr+1;
2095
2096 if (max_dev > le32_to_cpu(sb->max_dev)) {
2097 int bmask;
2098 sb->max_dev = cpu_to_le32(max_dev);
2099 rdev->sb_size = max_dev * 2 + 256;
2100 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2101 if (rdev->sb_size & bmask)
2102 rdev->sb_size = (rdev->sb_size | bmask) + 1;
2103 } else
2104 max_dev = le32_to_cpu(sb->max_dev);
2105
2106 for (i=0; i<max_dev;i++)
2107 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2108
2109 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2110 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2111
2112 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2113 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2114 sb->feature_map |=
2115 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2116 else
2117 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2118 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2119 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2120 }
2121
2122 rdev_for_each(rdev2, mddev) {
2123 i = rdev2->desc_nr;
2124 if (test_bit(Faulty, &rdev2->flags))
2125 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2126 else if (test_bit(In_sync, &rdev2->flags))
2127 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2128 else if (test_bit(Journal, &rdev2->flags))
2129 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2130 else if (rdev2->raid_disk >= 0)
2131 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2132 else
2133 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2134 }
2135
2136 sb->sb_csum = calc_sb_1_csum(sb);
2137 }
2138
2139 static sector_t super_1_choose_bm_space(sector_t dev_size)
2140 {
2141 sector_t bm_space;
2142
2143 /* if the device is bigger than 8Gig, save 64k for bitmap
2144 * usage, if bigger than 200Gig, save 128k
2145 */
2146 if (dev_size < 64*2)
2147 bm_space = 0;
2148 else if (dev_size - 64*2 >= 200*1024*1024*2)
2149 bm_space = 128*2;
2150 else if (dev_size - 4*2 > 8*1024*1024*2)
2151 bm_space = 64*2;
2152 else
2153 bm_space = 4*2;
2154 return bm_space;
2155 }
2156
2157 static unsigned long long
2158 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2159 {
2160 struct mdp_superblock_1 *sb;
2161 sector_t max_sectors;
2162 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2163 return 0; /* component must fit device */
2164 if (rdev->data_offset != rdev->new_data_offset)
2165 return 0; /* too confusing */
2166 if (rdev->sb_start < rdev->data_offset) {
2167 /* minor versions 1 and 2; superblock before data */
2168 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
2169 if (!num_sectors || num_sectors > max_sectors)
2170 num_sectors = max_sectors;
2171 } else if (rdev->mddev->bitmap_info.offset) {
2172 /* minor version 0 with bitmap we can't move */
2173 return 0;
2174 } else {
2175 /* minor version 0; superblock after data */
2176 sector_t sb_start, bm_space;
2177 sector_t dev_size = bdev_nr_sectors(rdev->bdev);
2178
2179 /* 8K is for superblock */
2180 sb_start = dev_size - 8*2;
2181 sb_start &= ~(sector_t)(4*2 - 1);
2182
2183 bm_space = super_1_choose_bm_space(dev_size);
2184
2185 /* Space that can be used to store date needs to decrease
2186 * superblock bitmap space and bad block space(4K)
2187 */
2188 max_sectors = sb_start - bm_space - 4*2;
2189
2190 if (!num_sectors || num_sectors > max_sectors)
2191 num_sectors = max_sectors;
2192 rdev->sb_start = sb_start;
2193 }
2194 sb = page_address(rdev->sb_page);
2195 sb->data_size = cpu_to_le64(num_sectors);
2196 sb->super_offset = cpu_to_le64(rdev->sb_start);
2197 sb->sb_csum = calc_sb_1_csum(sb);
2198 do {
2199 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2200 rdev->sb_page);
2201 } while (md_super_wait(rdev->mddev) < 0);
2202 return num_sectors;
2203
2204 }
2205
2206 static int
2207 super_1_allow_new_offset(struct md_rdev *rdev,
2208 unsigned long long new_offset)
2209 {
2210 /* All necessary checks on new >= old have been done */
2211 struct bitmap *bitmap;
2212 if (new_offset >= rdev->data_offset)
2213 return 1;
2214
2215 /* with 1.0 metadata, there is no metadata to tread on
2216 * so we can always move back */
2217 if (rdev->mddev->minor_version == 0)
2218 return 1;
2219
2220 /* otherwise we must be sure not to step on
2221 * any metadata, so stay:
2222 * 36K beyond start of superblock
2223 * beyond end of badblocks
2224 * beyond write-intent bitmap
2225 */
2226 if (rdev->sb_start + (32+4)*2 > new_offset)
2227 return 0;
2228 bitmap = rdev->mddev->bitmap;
2229 if (bitmap && !rdev->mddev->bitmap_info.file &&
2230 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2231 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2232 return 0;
2233 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2234 return 0;
2235
2236 return 1;
2237 }
2238
2239 static struct super_type super_types[] = {
2240 [0] = {
2241 .name = "0.90.0",
2242 .owner = THIS_MODULE,
2243 .load_super = super_90_load,
2244 .validate_super = super_90_validate,
2245 .sync_super = super_90_sync,
2246 .rdev_size_change = super_90_rdev_size_change,
2247 .allow_new_offset = super_90_allow_new_offset,
2248 },
2249 [1] = {
2250 .name = "md-1",
2251 .owner = THIS_MODULE,
2252 .load_super = super_1_load,
2253 .validate_super = super_1_validate,
2254 .sync_super = super_1_sync,
2255 .rdev_size_change = super_1_rdev_size_change,
2256 .allow_new_offset = super_1_allow_new_offset,
2257 },
2258 };
2259
2260 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2261 {
2262 if (mddev->sync_super) {
2263 mddev->sync_super(mddev, rdev);
2264 return;
2265 }
2266
2267 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2268
2269 super_types[mddev->major_version].sync_super(mddev, rdev);
2270 }
2271
2272 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2273 {
2274 struct md_rdev *rdev, *rdev2;
2275
2276 rcu_read_lock();
2277 rdev_for_each_rcu(rdev, mddev1) {
2278 if (test_bit(Faulty, &rdev->flags) ||
2279 test_bit(Journal, &rdev->flags) ||
2280 rdev->raid_disk == -1)
2281 continue;
2282 rdev_for_each_rcu(rdev2, mddev2) {
2283 if (test_bit(Faulty, &rdev2->flags) ||
2284 test_bit(Journal, &rdev2->flags) ||
2285 rdev2->raid_disk == -1)
2286 continue;
2287 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2288 rcu_read_unlock();
2289 return 1;
2290 }
2291 }
2292 }
2293 rcu_read_unlock();
2294 return 0;
2295 }
2296
2297 static LIST_HEAD(pending_raid_disks);
2298
2299 /*
2300 * Try to register data integrity profile for an mddev
2301 *
2302 * This is called when an array is started and after a disk has been kicked
2303 * from the array. It only succeeds if all working and active component devices
2304 * are integrity capable with matching profiles.
2305 */
2306 int md_integrity_register(struct mddev *mddev)
2307 {
2308 struct md_rdev *rdev, *reference = NULL;
2309
2310 if (list_empty(&mddev->disks))
2311 return 0; /* nothing to do */
2312 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2313 return 0; /* shouldn't register, or already is */
2314 rdev_for_each(rdev, mddev) {
2315 /* skip spares and non-functional disks */
2316 if (test_bit(Faulty, &rdev->flags))
2317 continue;
2318 if (rdev->raid_disk < 0)
2319 continue;
2320 if (!reference) {
2321 /* Use the first rdev as the reference */
2322 reference = rdev;
2323 continue;
2324 }
2325 /* does this rdev's profile match the reference profile? */
2326 if (blk_integrity_compare(reference->bdev->bd_disk,
2327 rdev->bdev->bd_disk) < 0)
2328 return -EINVAL;
2329 }
2330 if (!reference || !bdev_get_integrity(reference->bdev))
2331 return 0;
2332 /*
2333 * All component devices are integrity capable and have matching
2334 * profiles, register the common profile for the md device.
2335 */
2336 blk_integrity_register(mddev->gendisk,
2337 bdev_get_integrity(reference->bdev));
2338
2339 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2340 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) ||
2341 (mddev->level != 1 && mddev->level != 10 &&
2342 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) {
2343 /*
2344 * No need to handle the failure of bioset_integrity_create,
2345 * because the function is called by md_run() -> pers->run(),
2346 * md_run calls bioset_exit -> bioset_integrity_free in case
2347 * of failure case.
2348 */
2349 pr_err("md: failed to create integrity pool for %s\n",
2350 mdname(mddev));
2351 return -EINVAL;
2352 }
2353 return 0;
2354 }
2355 EXPORT_SYMBOL(md_integrity_register);
2356
2357 /*
2358 * Attempt to add an rdev, but only if it is consistent with the current
2359 * integrity profile
2360 */
2361 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2362 {
2363 struct blk_integrity *bi_mddev;
2364
2365 if (!mddev->gendisk)
2366 return 0;
2367
2368 bi_mddev = blk_get_integrity(mddev->gendisk);
2369
2370 if (!bi_mddev) /* nothing to do */
2371 return 0;
2372
2373 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2374 pr_err("%s: incompatible integrity profile for %pg\n",
2375 mdname(mddev), rdev->bdev);
2376 return -ENXIO;
2377 }
2378
2379 return 0;
2380 }
2381 EXPORT_SYMBOL(md_integrity_add_rdev);
2382
2383 static bool rdev_read_only(struct md_rdev *rdev)
2384 {
2385 return bdev_read_only(rdev->bdev) ||
2386 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
2387 }
2388
2389 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2390 {
2391 char b[BDEVNAME_SIZE];
2392 int err;
2393
2394 /* prevent duplicates */
2395 if (find_rdev(mddev, rdev->bdev->bd_dev))
2396 return -EEXIST;
2397
2398 if (rdev_read_only(rdev) && mddev->pers)
2399 return -EROFS;
2400
2401 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2402 if (!test_bit(Journal, &rdev->flags) &&
2403 rdev->sectors &&
2404 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2405 if (mddev->pers) {
2406 /* Cannot change size, so fail
2407 * If mddev->level <= 0, then we don't care
2408 * about aligning sizes (e.g. linear)
2409 */
2410 if (mddev->level > 0)
2411 return -ENOSPC;
2412 } else
2413 mddev->dev_sectors = rdev->sectors;
2414 }
2415
2416 /* Verify rdev->desc_nr is unique.
2417 * If it is -1, assign a free number, else
2418 * check number is not in use
2419 */
2420 rcu_read_lock();
2421 if (rdev->desc_nr < 0) {
2422 int choice = 0;
2423 if (mddev->pers)
2424 choice = mddev->raid_disks;
2425 while (md_find_rdev_nr_rcu(mddev, choice))
2426 choice++;
2427 rdev->desc_nr = choice;
2428 } else {
2429 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2430 rcu_read_unlock();
2431 return -EBUSY;
2432 }
2433 }
2434 rcu_read_unlock();
2435 if (!test_bit(Journal, &rdev->flags) &&
2436 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2437 pr_warn("md: %s: array is limited to %d devices\n",
2438 mdname(mddev), mddev->max_disks);
2439 return -EBUSY;
2440 }
2441 bdevname(rdev->bdev,b);
2442 strreplace(b, '/', '!');
2443
2444 rdev->mddev = mddev;
2445 pr_debug("md: bind<%s>\n", b);
2446
2447 if (mddev->raid_disks)
2448 mddev_create_serial_pool(mddev, rdev, false);
2449
2450 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2451 goto fail;
2452
2453 /* failure here is OK */
2454 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
2455 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2456 rdev->sysfs_unack_badblocks =
2457 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2458 rdev->sysfs_badblocks =
2459 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2460
2461 list_add_rcu(&rdev->same_set, &mddev->disks);
2462 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2463
2464 /* May as well allow recovery to be retried once */
2465 mddev->recovery_disabled++;
2466
2467 return 0;
2468
2469 fail:
2470 pr_warn("md: failed to register dev-%s for %s\n",
2471 b, mdname(mddev));
2472 return err;
2473 }
2474
2475 static void rdev_delayed_delete(struct work_struct *ws)
2476 {
2477 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2478 kobject_del(&rdev->kobj);
2479 kobject_put(&rdev->kobj);
2480 }
2481
2482 static void unbind_rdev_from_array(struct md_rdev *rdev)
2483 {
2484 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2485 list_del_rcu(&rdev->same_set);
2486 pr_debug("md: unbind<%pg>\n", rdev->bdev);
2487 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2488 rdev->mddev = NULL;
2489 sysfs_remove_link(&rdev->kobj, "block");
2490 sysfs_put(rdev->sysfs_state);
2491 sysfs_put(rdev->sysfs_unack_badblocks);
2492 sysfs_put(rdev->sysfs_badblocks);
2493 rdev->sysfs_state = NULL;
2494 rdev->sysfs_unack_badblocks = NULL;
2495 rdev->sysfs_badblocks = NULL;
2496 rdev->badblocks.count = 0;
2497 /* We need to delay this, otherwise we can deadlock when
2498 * writing to 'remove' to "dev/state". We also need
2499 * to delay it due to rcu usage.
2500 */
2501 synchronize_rcu();
2502 INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2503 kobject_get(&rdev->kobj);
2504 queue_work(md_rdev_misc_wq, &rdev->del_work);
2505 }
2506
2507 /*
2508 * prevent the device from being mounted, repartitioned or
2509 * otherwise reused by a RAID array (or any other kernel
2510 * subsystem), by bd_claiming the device.
2511 */
2512 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2513 {
2514 int err = 0;
2515 struct block_device *bdev;
2516
2517 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2518 shared ? (struct md_rdev *)lock_rdev : rdev);
2519 if (IS_ERR(bdev)) {
2520 pr_warn("md: could not open device unknown-block(%u,%u).\n",
2521 MAJOR(dev), MINOR(dev));
2522 return PTR_ERR(bdev);
2523 }
2524 rdev->bdev = bdev;
2525 return err;
2526 }
2527
2528 static void unlock_rdev(struct md_rdev *rdev)
2529 {
2530 struct block_device *bdev = rdev->bdev;
2531 rdev->bdev = NULL;
2532 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2533 }
2534
2535 void md_autodetect_dev(dev_t dev);
2536
2537 static void export_rdev(struct md_rdev *rdev)
2538 {
2539 pr_debug("md: export_rdev(%pg)\n", rdev->bdev);
2540 md_rdev_clear(rdev);
2541 #ifndef MODULE
2542 if (test_bit(AutoDetected, &rdev->flags))
2543 md_autodetect_dev(rdev->bdev->bd_dev);
2544 #endif
2545 unlock_rdev(rdev);
2546 kobject_put(&rdev->kobj);
2547 }
2548
2549 void md_kick_rdev_from_array(struct md_rdev *rdev)
2550 {
2551 unbind_rdev_from_array(rdev);
2552 export_rdev(rdev);
2553 }
2554 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2555
2556 static void export_array(struct mddev *mddev)
2557 {
2558 struct md_rdev *rdev;
2559
2560 while (!list_empty(&mddev->disks)) {
2561 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2562 same_set);
2563 md_kick_rdev_from_array(rdev);
2564 }
2565 mddev->raid_disks = 0;
2566 mddev->major_version = 0;
2567 }
2568
2569 static bool set_in_sync(struct mddev *mddev)
2570 {
2571 lockdep_assert_held(&mddev->lock);
2572 if (!mddev->in_sync) {
2573 mddev->sync_checkers++;
2574 spin_unlock(&mddev->lock);
2575 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2576 spin_lock(&mddev->lock);
2577 if (!mddev->in_sync &&
2578 percpu_ref_is_zero(&mddev->writes_pending)) {
2579 mddev->in_sync = 1;
2580 /*
2581 * Ensure ->in_sync is visible before we clear
2582 * ->sync_checkers.
2583 */
2584 smp_mb();
2585 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2586 sysfs_notify_dirent_safe(mddev->sysfs_state);
2587 }
2588 if (--mddev->sync_checkers == 0)
2589 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2590 }
2591 if (mddev->safemode == 1)
2592 mddev->safemode = 0;
2593 return mddev->in_sync;
2594 }
2595
2596 static void sync_sbs(struct mddev *mddev, int nospares)
2597 {
2598 /* Update each superblock (in-memory image), but
2599 * if we are allowed to, skip spares which already
2600 * have the right event counter, or have one earlier
2601 * (which would mean they aren't being marked as dirty
2602 * with the rest of the array)
2603 */
2604 struct md_rdev *rdev;
2605 rdev_for_each(rdev, mddev) {
2606 if (rdev->sb_events == mddev->events ||
2607 (nospares &&
2608 rdev->raid_disk < 0 &&
2609 rdev->sb_events+1 == mddev->events)) {
2610 /* Don't update this superblock */
2611 rdev->sb_loaded = 2;
2612 } else {
2613 sync_super(mddev, rdev);
2614 rdev->sb_loaded = 1;
2615 }
2616 }
2617 }
2618
2619 static bool does_sb_need_changing(struct mddev *mddev)
2620 {
2621 struct md_rdev *rdev = NULL, *iter;
2622 struct mdp_superblock_1 *sb;
2623 int role;
2624
2625 /* Find a good rdev */
2626 rdev_for_each(iter, mddev)
2627 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) {
2628 rdev = iter;
2629 break;
2630 }
2631
2632 /* No good device found. */
2633 if (!rdev)
2634 return false;
2635
2636 sb = page_address(rdev->sb_page);
2637 /* Check if a device has become faulty or a spare become active */
2638 rdev_for_each(rdev, mddev) {
2639 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2640 /* Device activated? */
2641 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 &&
2642 !test_bit(Faulty, &rdev->flags))
2643 return true;
2644 /* Device turned faulty? */
2645 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX))
2646 return true;
2647 }
2648
2649 /* Check if any mddev parameters have changed */
2650 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2651 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2652 (mddev->layout != le32_to_cpu(sb->layout)) ||
2653 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2654 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2655 return true;
2656
2657 return false;
2658 }
2659
2660 void md_update_sb(struct mddev *mddev, int force_change)
2661 {
2662 struct md_rdev *rdev;
2663 int sync_req;
2664 int nospares = 0;
2665 int any_badblocks_changed = 0;
2666 int ret = -1;
2667
2668 if (mddev->ro) {
2669 if (force_change)
2670 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2671 return;
2672 }
2673
2674 repeat:
2675 if (mddev_is_clustered(mddev)) {
2676 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2677 force_change = 1;
2678 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2679 nospares = 1;
2680 ret = md_cluster_ops->metadata_update_start(mddev);
2681 /* Has someone else has updated the sb */
2682 if (!does_sb_need_changing(mddev)) {
2683 if (ret == 0)
2684 md_cluster_ops->metadata_update_cancel(mddev);
2685 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2686 BIT(MD_SB_CHANGE_DEVS) |
2687 BIT(MD_SB_CHANGE_CLEAN));
2688 return;
2689 }
2690 }
2691
2692 /*
2693 * First make sure individual recovery_offsets are correct
2694 * curr_resync_completed can only be used during recovery.
2695 * During reshape/resync it might use array-addresses rather
2696 * that device addresses.
2697 */
2698 rdev_for_each(rdev, mddev) {
2699 if (rdev->raid_disk >= 0 &&
2700 mddev->delta_disks >= 0 &&
2701 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2702 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2703 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2704 !test_bit(Journal, &rdev->flags) &&
2705 !test_bit(In_sync, &rdev->flags) &&
2706 mddev->curr_resync_completed > rdev->recovery_offset)
2707 rdev->recovery_offset = mddev->curr_resync_completed;
2708
2709 }
2710 if (!mddev->persistent) {
2711 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2712 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2713 if (!mddev->external) {
2714 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2715 rdev_for_each(rdev, mddev) {
2716 if (rdev->badblocks.changed) {
2717 rdev->badblocks.changed = 0;
2718 ack_all_badblocks(&rdev->badblocks);
2719 md_error(mddev, rdev);
2720 }
2721 clear_bit(Blocked, &rdev->flags);
2722 clear_bit(BlockedBadBlocks, &rdev->flags);
2723 wake_up(&rdev->blocked_wait);
2724 }
2725 }
2726 wake_up(&mddev->sb_wait);
2727 return;
2728 }
2729
2730 spin_lock(&mddev->lock);
2731
2732 mddev->utime = ktime_get_real_seconds();
2733
2734 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2735 force_change = 1;
2736 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2737 /* just a clean<-> dirty transition, possibly leave spares alone,
2738 * though if events isn't the right even/odd, we will have to do
2739 * spares after all
2740 */
2741 nospares = 1;
2742 if (force_change)
2743 nospares = 0;
2744 if (mddev->degraded)
2745 /* If the array is degraded, then skipping spares is both
2746 * dangerous and fairly pointless.
2747 * Dangerous because a device that was removed from the array
2748 * might have a event_count that still looks up-to-date,
2749 * so it can be re-added without a resync.
2750 * Pointless because if there are any spares to skip,
2751 * then a recovery will happen and soon that array won't
2752 * be degraded any more and the spare can go back to sleep then.
2753 */
2754 nospares = 0;
2755
2756 sync_req = mddev->in_sync;
2757
2758 /* If this is just a dirty<->clean transition, and the array is clean
2759 * and 'events' is odd, we can roll back to the previous clean state */
2760 if (nospares
2761 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2762 && mddev->can_decrease_events
2763 && mddev->events != 1) {
2764 mddev->events--;
2765 mddev->can_decrease_events = 0;
2766 } else {
2767 /* otherwise we have to go forward and ... */
2768 mddev->events ++;
2769 mddev->can_decrease_events = nospares;
2770 }
2771
2772 /*
2773 * This 64-bit counter should never wrap.
2774 * Either we are in around ~1 trillion A.C., assuming
2775 * 1 reboot per second, or we have a bug...
2776 */
2777 WARN_ON(mddev->events == 0);
2778
2779 rdev_for_each(rdev, mddev) {
2780 if (rdev->badblocks.changed)
2781 any_badblocks_changed++;
2782 if (test_bit(Faulty, &rdev->flags))
2783 set_bit(FaultRecorded, &rdev->flags);
2784 }
2785
2786 sync_sbs(mddev, nospares);
2787 spin_unlock(&mddev->lock);
2788
2789 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2790 mdname(mddev), mddev->in_sync);
2791
2792 if (mddev->queue)
2793 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2794 rewrite:
2795 md_bitmap_update_sb(mddev->bitmap);
2796 rdev_for_each(rdev, mddev) {
2797 if (rdev->sb_loaded != 1)
2798 continue; /* no noise on spare devices */
2799
2800 if (!test_bit(Faulty, &rdev->flags)) {
2801 md_super_write(mddev,rdev,
2802 rdev->sb_start, rdev->sb_size,
2803 rdev->sb_page);
2804 pr_debug("md: (write) %pg's sb offset: %llu\n",
2805 rdev->bdev,
2806 (unsigned long long)rdev->sb_start);
2807 rdev->sb_events = mddev->events;
2808 if (rdev->badblocks.size) {
2809 md_super_write(mddev, rdev,
2810 rdev->badblocks.sector,
2811 rdev->badblocks.size << 9,
2812 rdev->bb_page);
2813 rdev->badblocks.size = 0;
2814 }
2815
2816 } else
2817 pr_debug("md: %pg (skipping faulty)\n",
2818 rdev->bdev);
2819
2820 if (mddev->level == LEVEL_MULTIPATH)
2821 /* only need to write one superblock... */
2822 break;
2823 }
2824 if (md_super_wait(mddev) < 0)
2825 goto rewrite;
2826 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2827
2828 if (mddev_is_clustered(mddev) && ret == 0)
2829 md_cluster_ops->metadata_update_finish(mddev);
2830
2831 if (mddev->in_sync != sync_req ||
2832 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2833 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2834 /* have to write it out again */
2835 goto repeat;
2836 wake_up(&mddev->sb_wait);
2837 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2838 sysfs_notify_dirent_safe(mddev->sysfs_completed);
2839
2840 rdev_for_each(rdev, mddev) {
2841 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2842 clear_bit(Blocked, &rdev->flags);
2843
2844 if (any_badblocks_changed)
2845 ack_all_badblocks(&rdev->badblocks);
2846 clear_bit(BlockedBadBlocks, &rdev->flags);
2847 wake_up(&rdev->blocked_wait);
2848 }
2849 }
2850 EXPORT_SYMBOL(md_update_sb);
2851
2852 static int add_bound_rdev(struct md_rdev *rdev)
2853 {
2854 struct mddev *mddev = rdev->mddev;
2855 int err = 0;
2856 bool add_journal = test_bit(Journal, &rdev->flags);
2857
2858 if (!mddev->pers->hot_remove_disk || add_journal) {
2859 /* If there is hot_add_disk but no hot_remove_disk
2860 * then added disks for geometry changes,
2861 * and should be added immediately.
2862 */
2863 super_types[mddev->major_version].
2864 validate_super(mddev, rdev);
2865 if (add_journal)
2866 mddev_suspend(mddev);
2867 err = mddev->pers->hot_add_disk(mddev, rdev);
2868 if (add_journal)
2869 mddev_resume(mddev);
2870 if (err) {
2871 md_kick_rdev_from_array(rdev);
2872 return err;
2873 }
2874 }
2875 sysfs_notify_dirent_safe(rdev->sysfs_state);
2876
2877 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2878 if (mddev->degraded)
2879 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2880 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2881 md_new_event();
2882 md_wakeup_thread(mddev->thread);
2883 return 0;
2884 }
2885
2886 /* words written to sysfs files may, or may not, be \n terminated.
2887 * We want to accept with case. For this we use cmd_match.
2888 */
2889 static int cmd_match(const char *cmd, const char *str)
2890 {
2891 /* See if cmd, written into a sysfs file, matches
2892 * str. They must either be the same, or cmd can
2893 * have a trailing newline
2894 */
2895 while (*cmd && *str && *cmd == *str) {
2896 cmd++;
2897 str++;
2898 }
2899 if (*cmd == '\n')
2900 cmd++;
2901 if (*str || *cmd)
2902 return 0;
2903 return 1;
2904 }
2905
2906 struct rdev_sysfs_entry {
2907 struct attribute attr;
2908 ssize_t (*show)(struct md_rdev *, char *);
2909 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2910 };
2911
2912 static ssize_t
2913 state_show(struct md_rdev *rdev, char *page)
2914 {
2915 char *sep = ",";
2916 size_t len = 0;
2917 unsigned long flags = READ_ONCE(rdev->flags);
2918
2919 if (test_bit(Faulty, &flags) ||
2920 (!test_bit(ExternalBbl, &flags) &&
2921 rdev->badblocks.unacked_exist))
2922 len += sprintf(page+len, "faulty%s", sep);
2923 if (test_bit(In_sync, &flags))
2924 len += sprintf(page+len, "in_sync%s", sep);
2925 if (test_bit(Journal, &flags))
2926 len += sprintf(page+len, "journal%s", sep);
2927 if (test_bit(WriteMostly, &flags))
2928 len += sprintf(page+len, "write_mostly%s", sep);
2929 if (test_bit(Blocked, &flags) ||
2930 (rdev->badblocks.unacked_exist
2931 && !test_bit(Faulty, &flags)))
2932 len += sprintf(page+len, "blocked%s", sep);
2933 if (!test_bit(Faulty, &flags) &&
2934 !test_bit(Journal, &flags) &&
2935 !test_bit(In_sync, &flags))
2936 len += sprintf(page+len, "spare%s", sep);
2937 if (test_bit(WriteErrorSeen, &flags))
2938 len += sprintf(page+len, "write_error%s", sep);
2939 if (test_bit(WantReplacement, &flags))
2940 len += sprintf(page+len, "want_replacement%s", sep);
2941 if (test_bit(Replacement, &flags))
2942 len += sprintf(page+len, "replacement%s", sep);
2943 if (test_bit(ExternalBbl, &flags))
2944 len += sprintf(page+len, "external_bbl%s", sep);
2945 if (test_bit(FailFast, &flags))
2946 len += sprintf(page+len, "failfast%s", sep);
2947
2948 if (len)
2949 len -= strlen(sep);
2950
2951 return len+sprintf(page+len, "\n");
2952 }
2953
2954 static ssize_t
2955 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2956 {
2957 /* can write
2958 * faulty - simulates an error
2959 * remove - disconnects the device
2960 * writemostly - sets write_mostly
2961 * -writemostly - clears write_mostly
2962 * blocked - sets the Blocked flags
2963 * -blocked - clears the Blocked and possibly simulates an error
2964 * insync - sets Insync providing device isn't active
2965 * -insync - clear Insync for a device with a slot assigned,
2966 * so that it gets rebuilt based on bitmap
2967 * write_error - sets WriteErrorSeen
2968 * -write_error - clears WriteErrorSeen
2969 * {,-}failfast - set/clear FailFast
2970 */
2971
2972 struct mddev *mddev = rdev->mddev;
2973 int err = -EINVAL;
2974 bool need_update_sb = false;
2975
2976 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2977 md_error(rdev->mddev, rdev);
2978
2979 if (test_bit(MD_BROKEN, &rdev->mddev->flags))
2980 err = -EBUSY;
2981 else
2982 err = 0;
2983 } else if (cmd_match(buf, "remove")) {
2984 if (rdev->mddev->pers) {
2985 clear_bit(Blocked, &rdev->flags);
2986 remove_and_add_spares(rdev->mddev, rdev);
2987 }
2988 if (rdev->raid_disk >= 0)
2989 err = -EBUSY;
2990 else {
2991 err = 0;
2992 if (mddev_is_clustered(mddev))
2993 err = md_cluster_ops->remove_disk(mddev, rdev);
2994
2995 if (err == 0) {
2996 md_kick_rdev_from_array(rdev);
2997 if (mddev->pers) {
2998 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2999 md_wakeup_thread(mddev->thread);
3000 }
3001 md_new_event();
3002 }
3003 }
3004 } else if (cmd_match(buf, "writemostly")) {
3005 set_bit(WriteMostly, &rdev->flags);
3006 mddev_create_serial_pool(rdev->mddev, rdev, false);
3007 need_update_sb = true;
3008 err = 0;
3009 } else if (cmd_match(buf, "-writemostly")) {
3010 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3011 clear_bit(WriteMostly, &rdev->flags);
3012 need_update_sb = true;
3013 err = 0;
3014 } else if (cmd_match(buf, "blocked")) {
3015 set_bit(Blocked, &rdev->flags);
3016 err = 0;
3017 } else if (cmd_match(buf, "-blocked")) {
3018 if (!test_bit(Faulty, &rdev->flags) &&
3019 !test_bit(ExternalBbl, &rdev->flags) &&
3020 rdev->badblocks.unacked_exist) {
3021 /* metadata handler doesn't understand badblocks,
3022 * so we need to fail the device
3023 */
3024 md_error(rdev->mddev, rdev);
3025 }
3026 clear_bit(Blocked, &rdev->flags);
3027 clear_bit(BlockedBadBlocks, &rdev->flags);
3028 wake_up(&rdev->blocked_wait);
3029 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3030 md_wakeup_thread(rdev->mddev->thread);
3031
3032 err = 0;
3033 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3034 set_bit(In_sync, &rdev->flags);
3035 err = 0;
3036 } else if (cmd_match(buf, "failfast")) {
3037 set_bit(FailFast, &rdev->flags);
3038 need_update_sb = true;
3039 err = 0;
3040 } else if (cmd_match(buf, "-failfast")) {
3041 clear_bit(FailFast, &rdev->flags);
3042 need_update_sb = true;
3043 err = 0;
3044 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3045 !test_bit(Journal, &rdev->flags)) {
3046 if (rdev->mddev->pers == NULL) {
3047 clear_bit(In_sync, &rdev->flags);
3048 rdev->saved_raid_disk = rdev->raid_disk;
3049 rdev->raid_disk = -1;
3050 err = 0;
3051 }
3052 } else if (cmd_match(buf, "write_error")) {
3053 set_bit(WriteErrorSeen, &rdev->flags);
3054 err = 0;
3055 } else if (cmd_match(buf, "-write_error")) {
3056 clear_bit(WriteErrorSeen, &rdev->flags);
3057 err = 0;
3058 } else if (cmd_match(buf, "want_replacement")) {
3059 /* Any non-spare device that is not a replacement can
3060 * become want_replacement at any time, but we then need to
3061 * check if recovery is needed.
3062 */
3063 if (rdev->raid_disk >= 0 &&
3064 !test_bit(Journal, &rdev->flags) &&
3065 !test_bit(Replacement, &rdev->flags))
3066 set_bit(WantReplacement, &rdev->flags);
3067 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3068 md_wakeup_thread(rdev->mddev->thread);
3069 err = 0;
3070 } else if (cmd_match(buf, "-want_replacement")) {
3071 /* Clearing 'want_replacement' is always allowed.
3072 * Once replacements starts it is too late though.
3073 */
3074 err = 0;
3075 clear_bit(WantReplacement, &rdev->flags);
3076 } else if (cmd_match(buf, "replacement")) {
3077 /* Can only set a device as a replacement when array has not
3078 * yet been started. Once running, replacement is automatic
3079 * from spares, or by assigning 'slot'.
3080 */
3081 if (rdev->mddev->pers)
3082 err = -EBUSY;
3083 else {
3084 set_bit(Replacement, &rdev->flags);
3085 err = 0;
3086 }
3087 } else if (cmd_match(buf, "-replacement")) {
3088 /* Similarly, can only clear Replacement before start */
3089 if (rdev->mddev->pers)
3090 err = -EBUSY;
3091 else {
3092 clear_bit(Replacement, &rdev->flags);
3093 err = 0;
3094 }
3095 } else if (cmd_match(buf, "re-add")) {
3096 if (!rdev->mddev->pers)
3097 err = -EINVAL;
3098 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3099 rdev->saved_raid_disk >= 0) {
3100 /* clear_bit is performed _after_ all the devices
3101 * have their local Faulty bit cleared. If any writes
3102 * happen in the meantime in the local node, they
3103 * will land in the local bitmap, which will be synced
3104 * by this node eventually
3105 */
3106 if (!mddev_is_clustered(rdev->mddev) ||
3107 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3108 clear_bit(Faulty, &rdev->flags);
3109 err = add_bound_rdev(rdev);
3110 }
3111 } else
3112 err = -EBUSY;
3113 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3114 set_bit(ExternalBbl, &rdev->flags);
3115 rdev->badblocks.shift = 0;
3116 err = 0;
3117 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3118 clear_bit(ExternalBbl, &rdev->flags);
3119 err = 0;
3120 }
3121 if (need_update_sb)
3122 md_update_sb(mddev, 1);
3123 if (!err)
3124 sysfs_notify_dirent_safe(rdev->sysfs_state);
3125 return err ? err : len;
3126 }
3127 static struct rdev_sysfs_entry rdev_state =
3128 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3129
3130 static ssize_t
3131 errors_show(struct md_rdev *rdev, char *page)
3132 {
3133 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3134 }
3135
3136 static ssize_t
3137 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3138 {
3139 unsigned int n;
3140 int rv;
3141
3142 rv = kstrtouint(buf, 10, &n);
3143 if (rv < 0)
3144 return rv;
3145 atomic_set(&rdev->corrected_errors, n);
3146 return len;
3147 }
3148 static struct rdev_sysfs_entry rdev_errors =
3149 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3150
3151 static ssize_t
3152 slot_show(struct md_rdev *rdev, char *page)
3153 {
3154 if (test_bit(Journal, &rdev->flags))
3155 return sprintf(page, "journal\n");
3156 else if (rdev->raid_disk < 0)
3157 return sprintf(page, "none\n");
3158 else
3159 return sprintf(page, "%d\n", rdev->raid_disk);
3160 }
3161
3162 static ssize_t
3163 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3164 {
3165 int slot;
3166 int err;
3167
3168 if (test_bit(Journal, &rdev->flags))
3169 return -EBUSY;
3170 if (strncmp(buf, "none", 4)==0)
3171 slot = -1;
3172 else {
3173 err = kstrtouint(buf, 10, (unsigned int *)&slot);
3174 if (err < 0)
3175 return err;
3176 }
3177 if (rdev->mddev->pers && slot == -1) {
3178 /* Setting 'slot' on an active array requires also
3179 * updating the 'rd%d' link, and communicating
3180 * with the personality with ->hot_*_disk.
3181 * For now we only support removing
3182 * failed/spare devices. This normally happens automatically,
3183 * but not when the metadata is externally managed.
3184 */
3185 if (rdev->raid_disk == -1)
3186 return -EEXIST;
3187 /* personality does all needed checks */
3188 if (rdev->mddev->pers->hot_remove_disk == NULL)
3189 return -EINVAL;
3190 clear_bit(Blocked, &rdev->flags);
3191 remove_and_add_spares(rdev->mddev, rdev);
3192 if (rdev->raid_disk >= 0)
3193 return -EBUSY;
3194 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3195 md_wakeup_thread(rdev->mddev->thread);
3196 } else if (rdev->mddev->pers) {
3197 /* Activating a spare .. or possibly reactivating
3198 * if we ever get bitmaps working here.
3199 */
3200 int err;
3201
3202 if (rdev->raid_disk != -1)
3203 return -EBUSY;
3204
3205 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3206 return -EBUSY;
3207
3208 if (rdev->mddev->pers->hot_add_disk == NULL)
3209 return -EINVAL;
3210
3211 if (slot >= rdev->mddev->raid_disks &&
3212 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3213 return -ENOSPC;
3214
3215 rdev->raid_disk = slot;
3216 if (test_bit(In_sync, &rdev->flags))
3217 rdev->saved_raid_disk = slot;
3218 else
3219 rdev->saved_raid_disk = -1;
3220 clear_bit(In_sync, &rdev->flags);
3221 clear_bit(Bitmap_sync, &rdev->flags);
3222 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3223 if (err) {
3224 rdev->raid_disk = -1;
3225 return err;
3226 } else
3227 sysfs_notify_dirent_safe(rdev->sysfs_state);
3228 /* failure here is OK */;
3229 sysfs_link_rdev(rdev->mddev, rdev);
3230 /* don't wakeup anyone, leave that to userspace. */
3231 } else {
3232 if (slot >= rdev->mddev->raid_disks &&
3233 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3234 return -ENOSPC;
3235 rdev->raid_disk = slot;
3236 /* assume it is working */
3237 clear_bit(Faulty, &rdev->flags);
3238 clear_bit(WriteMostly, &rdev->flags);
3239 set_bit(In_sync, &rdev->flags);
3240 sysfs_notify_dirent_safe(rdev->sysfs_state);
3241 }
3242 return len;
3243 }
3244
3245 static struct rdev_sysfs_entry rdev_slot =
3246 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3247
3248 static ssize_t
3249 offset_show(struct md_rdev *rdev, char *page)
3250 {
3251 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3252 }
3253
3254 static ssize_t
3255 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3256 {
3257 unsigned long long offset;
3258 if (kstrtoull(buf, 10, &offset) < 0)
3259 return -EINVAL;
3260 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3261 return -EBUSY;
3262 if (rdev->sectors && rdev->mddev->external)
3263 /* Must set offset before size, so overlap checks
3264 * can be sane */
3265 return -EBUSY;
3266 rdev->data_offset = offset;
3267 rdev->new_data_offset = offset;
3268 return len;
3269 }
3270
3271 static struct rdev_sysfs_entry rdev_offset =
3272 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3273
3274 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3275 {
3276 return sprintf(page, "%llu\n",
3277 (unsigned long long)rdev->new_data_offset);
3278 }
3279
3280 static ssize_t new_offset_store(struct md_rdev *rdev,
3281 const char *buf, size_t len)
3282 {
3283 unsigned long long new_offset;
3284 struct mddev *mddev = rdev->mddev;
3285
3286 if (kstrtoull(buf, 10, &new_offset) < 0)
3287 return -EINVAL;
3288
3289 if (mddev->sync_thread ||
3290 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3291 return -EBUSY;
3292 if (new_offset == rdev->data_offset)
3293 /* reset is always permitted */
3294 ;
3295 else if (new_offset > rdev->data_offset) {
3296 /* must not push array size beyond rdev_sectors */
3297 if (new_offset - rdev->data_offset
3298 + mddev->dev_sectors > rdev->sectors)
3299 return -E2BIG;
3300 }
3301 /* Metadata worries about other space details. */
3302
3303 /* decreasing the offset is inconsistent with a backwards
3304 * reshape.
3305 */
3306 if (new_offset < rdev->data_offset &&
3307 mddev->reshape_backwards)
3308 return -EINVAL;
3309 /* Increasing offset is inconsistent with forwards
3310 * reshape. reshape_direction should be set to
3311 * 'backwards' first.
3312 */
3313 if (new_offset > rdev->data_offset &&
3314 !mddev->reshape_backwards)
3315 return -EINVAL;
3316
3317 if (mddev->pers && mddev->persistent &&
3318 !super_types[mddev->major_version]
3319 .allow_new_offset(rdev, new_offset))
3320 return -E2BIG;
3321 rdev->new_data_offset = new_offset;
3322 if (new_offset > rdev->data_offset)
3323 mddev->reshape_backwards = 1;
3324 else if (new_offset < rdev->data_offset)
3325 mddev->reshape_backwards = 0;
3326
3327 return len;
3328 }
3329 static struct rdev_sysfs_entry rdev_new_offset =
3330 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3331
3332 static ssize_t
3333 rdev_size_show(struct md_rdev *rdev, char *page)
3334 {
3335 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3336 }
3337
3338 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3339 {
3340 /* check if two start/length pairs overlap */
3341 if (s1+l1 <= s2)
3342 return 0;
3343 if (s2+l2 <= s1)
3344 return 0;
3345 return 1;
3346 }
3347
3348 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3349 {
3350 unsigned long long blocks;
3351 sector_t new;
3352
3353 if (kstrtoull(buf, 10, &blocks) < 0)
3354 return -EINVAL;
3355
3356 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3357 return -EINVAL; /* sector conversion overflow */
3358
3359 new = blocks * 2;
3360 if (new != blocks * 2)
3361 return -EINVAL; /* unsigned long long to sector_t overflow */
3362
3363 *sectors = new;
3364 return 0;
3365 }
3366
3367 static ssize_t
3368 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3369 {
3370 struct mddev *my_mddev = rdev->mddev;
3371 sector_t oldsectors = rdev->sectors;
3372 sector_t sectors;
3373
3374 if (test_bit(Journal, &rdev->flags))
3375 return -EBUSY;
3376 if (strict_blocks_to_sectors(buf, &sectors) < 0)
3377 return -EINVAL;
3378 if (rdev->data_offset != rdev->new_data_offset)
3379 return -EINVAL; /* too confusing */
3380 if (my_mddev->pers && rdev->raid_disk >= 0) {
3381 if (my_mddev->persistent) {
3382 sectors = super_types[my_mddev->major_version].
3383 rdev_size_change(rdev, sectors);
3384 if (!sectors)
3385 return -EBUSY;
3386 } else if (!sectors)
3387 sectors = bdev_nr_sectors(rdev->bdev) -
3388 rdev->data_offset;
3389 if (!my_mddev->pers->resize)
3390 /* Cannot change size for RAID0 or Linear etc */
3391 return -EINVAL;
3392 }
3393 if (sectors < my_mddev->dev_sectors)
3394 return -EINVAL; /* component must fit device */
3395
3396 rdev->sectors = sectors;
3397 if (sectors > oldsectors && my_mddev->external) {
3398 /* Need to check that all other rdevs with the same
3399 * ->bdev do not overlap. 'rcu' is sufficient to walk
3400 * the rdev lists safely.
3401 * This check does not provide a hard guarantee, it
3402 * just helps avoid dangerous mistakes.
3403 */
3404 struct mddev *mddev;
3405 int overlap = 0;
3406 struct list_head *tmp;
3407
3408 rcu_read_lock();
3409 for_each_mddev(mddev, tmp) {
3410 struct md_rdev *rdev2;
3411
3412 rdev_for_each(rdev2, mddev)
3413 if (rdev->bdev == rdev2->bdev &&
3414 rdev != rdev2 &&
3415 overlaps(rdev->data_offset, rdev->sectors,
3416 rdev2->data_offset,
3417 rdev2->sectors)) {
3418 overlap = 1;
3419 break;
3420 }
3421 if (overlap) {
3422 mddev_put(mddev);
3423 break;
3424 }
3425 }
3426 rcu_read_unlock();
3427 if (overlap) {
3428 /* Someone else could have slipped in a size
3429 * change here, but doing so is just silly.
3430 * We put oldsectors back because we *know* it is
3431 * safe, and trust userspace not to race with
3432 * itself
3433 */
3434 rdev->sectors = oldsectors;
3435 return -EBUSY;
3436 }
3437 }
3438 return len;
3439 }
3440
3441 static struct rdev_sysfs_entry rdev_size =
3442 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3443
3444 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3445 {
3446 unsigned long long recovery_start = rdev->recovery_offset;
3447
3448 if (test_bit(In_sync, &rdev->flags) ||
3449 recovery_start == MaxSector)
3450 return sprintf(page, "none\n");
3451
3452 return sprintf(page, "%llu\n", recovery_start);
3453 }
3454
3455 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3456 {
3457 unsigned long long recovery_start;
3458
3459 if (cmd_match(buf, "none"))
3460 recovery_start = MaxSector;
3461 else if (kstrtoull(buf, 10, &recovery_start))
3462 return -EINVAL;
3463
3464 if (rdev->mddev->pers &&
3465 rdev->raid_disk >= 0)
3466 return -EBUSY;
3467
3468 rdev->recovery_offset = recovery_start;
3469 if (recovery_start == MaxSector)
3470 set_bit(In_sync, &rdev->flags);
3471 else
3472 clear_bit(In_sync, &rdev->flags);
3473 return len;
3474 }
3475
3476 static struct rdev_sysfs_entry rdev_recovery_start =
3477 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3478
3479 /* sysfs access to bad-blocks list.
3480 * We present two files.
3481 * 'bad-blocks' lists sector numbers and lengths of ranges that
3482 * are recorded as bad. The list is truncated to fit within
3483 * the one-page limit of sysfs.
3484 * Writing "sector length" to this file adds an acknowledged
3485 * bad block list.
3486 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3487 * been acknowledged. Writing to this file adds bad blocks
3488 * without acknowledging them. This is largely for testing.
3489 */
3490 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3491 {
3492 return badblocks_show(&rdev->badblocks, page, 0);
3493 }
3494 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3495 {
3496 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3497 /* Maybe that ack was all we needed */
3498 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3499 wake_up(&rdev->blocked_wait);
3500 return rv;
3501 }
3502 static struct rdev_sysfs_entry rdev_bad_blocks =
3503 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3504
3505 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3506 {
3507 return badblocks_show(&rdev->badblocks, page, 1);
3508 }
3509 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3510 {
3511 return badblocks_store(&rdev->badblocks, page, len, 1);
3512 }
3513 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3514 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3515
3516 static ssize_t
3517 ppl_sector_show(struct md_rdev *rdev, char *page)
3518 {
3519 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3520 }
3521
3522 static ssize_t
3523 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3524 {
3525 unsigned long long sector;
3526
3527 if (kstrtoull(buf, 10, &sector) < 0)
3528 return -EINVAL;
3529 if (sector != (sector_t)sector)
3530 return -EINVAL;
3531
3532 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3533 rdev->raid_disk >= 0)
3534 return -EBUSY;
3535
3536 if (rdev->mddev->persistent) {
3537 if (rdev->mddev->major_version == 0)
3538 return -EINVAL;
3539 if ((sector > rdev->sb_start &&
3540 sector - rdev->sb_start > S16_MAX) ||
3541 (sector < rdev->sb_start &&
3542 rdev->sb_start - sector > -S16_MIN))
3543 return -EINVAL;
3544 rdev->ppl.offset = sector - rdev->sb_start;
3545 } else if (!rdev->mddev->external) {
3546 return -EBUSY;
3547 }
3548 rdev->ppl.sector = sector;
3549 return len;
3550 }
3551
3552 static struct rdev_sysfs_entry rdev_ppl_sector =
3553 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3554
3555 static ssize_t
3556 ppl_size_show(struct md_rdev *rdev, char *page)
3557 {
3558 return sprintf(page, "%u\n", rdev->ppl.size);
3559 }
3560
3561 static ssize_t
3562 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3563 {
3564 unsigned int size;
3565
3566 if (kstrtouint(buf, 10, &size) < 0)
3567 return -EINVAL;
3568
3569 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3570 rdev->raid_disk >= 0)
3571 return -EBUSY;
3572
3573 if (rdev->mddev->persistent) {
3574 if (rdev->mddev->major_version == 0)
3575 return -EINVAL;
3576 if (size > U16_MAX)
3577 return -EINVAL;
3578 } else if (!rdev->mddev->external) {
3579 return -EBUSY;
3580 }
3581 rdev->ppl.size = size;
3582 return len;
3583 }
3584
3585 static struct rdev_sysfs_entry rdev_ppl_size =
3586 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3587
3588 static struct attribute *rdev_default_attrs[] = {
3589 &rdev_state.attr,
3590 &rdev_errors.attr,
3591 &rdev_slot.attr,
3592 &rdev_offset.attr,
3593 &rdev_new_offset.attr,
3594 &rdev_size.attr,
3595 &rdev_recovery_start.attr,
3596 &rdev_bad_blocks.attr,
3597 &rdev_unack_bad_blocks.attr,
3598 &rdev_ppl_sector.attr,
3599 &rdev_ppl_size.attr,
3600 NULL,
3601 };
3602 ATTRIBUTE_GROUPS(rdev_default);
3603 static ssize_t
3604 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3605 {
3606 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3607 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3608
3609 if (!entry->show)
3610 return -EIO;
3611 if (!rdev->mddev)
3612 return -ENODEV;
3613 return entry->show(rdev, page);
3614 }
3615
3616 static ssize_t
3617 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3618 const char *page, size_t length)
3619 {
3620 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3621 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3622 ssize_t rv;
3623 struct mddev *mddev = rdev->mddev;
3624
3625 if (!entry->store)
3626 return -EIO;
3627 if (!capable(CAP_SYS_ADMIN))
3628 return -EACCES;
3629 rv = mddev ? mddev_lock(mddev) : -ENODEV;
3630 if (!rv) {
3631 if (rdev->mddev == NULL)
3632 rv = -ENODEV;
3633 else
3634 rv = entry->store(rdev, page, length);
3635 mddev_unlock(mddev);
3636 }
3637 return rv;
3638 }
3639
3640 static void rdev_free(struct kobject *ko)
3641 {
3642 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3643 kfree(rdev);
3644 }
3645 static const struct sysfs_ops rdev_sysfs_ops = {
3646 .show = rdev_attr_show,
3647 .store = rdev_attr_store,
3648 };
3649 static struct kobj_type rdev_ktype = {
3650 .release = rdev_free,
3651 .sysfs_ops = &rdev_sysfs_ops,
3652 .default_groups = rdev_default_groups,
3653 };
3654
3655 int md_rdev_init(struct md_rdev *rdev)
3656 {
3657 rdev->desc_nr = -1;
3658 rdev->saved_raid_disk = -1;
3659 rdev->raid_disk = -1;
3660 rdev->flags = 0;
3661 rdev->data_offset = 0;
3662 rdev->new_data_offset = 0;
3663 rdev->sb_events = 0;
3664 rdev->last_read_error = 0;
3665 rdev->sb_loaded = 0;
3666 rdev->bb_page = NULL;
3667 atomic_set(&rdev->nr_pending, 0);
3668 atomic_set(&rdev->read_errors, 0);
3669 atomic_set(&rdev->corrected_errors, 0);
3670
3671 INIT_LIST_HEAD(&rdev->same_set);
3672 init_waitqueue_head(&rdev->blocked_wait);
3673
3674 /* Add space to store bad block list.
3675 * This reserves the space even on arrays where it cannot
3676 * be used - I wonder if that matters
3677 */
3678 return badblocks_init(&rdev->badblocks, 0);
3679 }
3680 EXPORT_SYMBOL_GPL(md_rdev_init);
3681 /*
3682 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3683 *
3684 * mark the device faulty if:
3685 *
3686 * - the device is nonexistent (zero size)
3687 * - the device has no valid superblock
3688 *
3689 * a faulty rdev _never_ has rdev->sb set.
3690 */
3691 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3692 {
3693 int err;
3694 struct md_rdev *rdev;
3695 sector_t size;
3696
3697 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3698 if (!rdev)
3699 return ERR_PTR(-ENOMEM);
3700
3701 err = md_rdev_init(rdev);
3702 if (err)
3703 goto abort_free;
3704 err = alloc_disk_sb(rdev);
3705 if (err)
3706 goto abort_free;
3707
3708 err = lock_rdev(rdev, newdev, super_format == -2);
3709 if (err)
3710 goto abort_free;
3711
3712 kobject_init(&rdev->kobj, &rdev_ktype);
3713
3714 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS;
3715 if (!size) {
3716 pr_warn("md: %pg has zero or unknown size, marking faulty!\n",
3717 rdev->bdev);
3718 err = -EINVAL;
3719 goto abort_free;
3720 }
3721
3722 if (super_format >= 0) {
3723 err = super_types[super_format].
3724 load_super(rdev, NULL, super_minor);
3725 if (err == -EINVAL) {
3726 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n",
3727 rdev->bdev,
3728 super_format, super_minor);
3729 goto abort_free;
3730 }
3731 if (err < 0) {
3732 pr_warn("md: could not read %pg's sb, not importing!\n",
3733 rdev->bdev);
3734 goto abort_free;
3735 }
3736 }
3737
3738 return rdev;
3739
3740 abort_free:
3741 if (rdev->bdev)
3742 unlock_rdev(rdev);
3743 md_rdev_clear(rdev);
3744 kfree(rdev);
3745 return ERR_PTR(err);
3746 }
3747
3748 /*
3749 * Check a full RAID array for plausibility
3750 */
3751
3752 static int analyze_sbs(struct mddev *mddev)
3753 {
3754 int i;
3755 struct md_rdev *rdev, *freshest, *tmp;
3756
3757 freshest = NULL;
3758 rdev_for_each_safe(rdev, tmp, mddev)
3759 switch (super_types[mddev->major_version].
3760 load_super(rdev, freshest, mddev->minor_version)) {
3761 case 1:
3762 freshest = rdev;
3763 break;
3764 case 0:
3765 break;
3766 default:
3767 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n",
3768 rdev->bdev);
3769 md_kick_rdev_from_array(rdev);
3770 }
3771
3772 /* Cannot find a valid fresh disk */
3773 if (!freshest) {
3774 pr_warn("md: cannot find a valid disk\n");
3775 return -EINVAL;
3776 }
3777
3778 super_types[mddev->major_version].
3779 validate_super(mddev, freshest);
3780
3781 i = 0;
3782 rdev_for_each_safe(rdev, tmp, mddev) {
3783 if (mddev->max_disks &&
3784 (rdev->desc_nr >= mddev->max_disks ||
3785 i > mddev->max_disks)) {
3786 pr_warn("md: %s: %pg: only %d devices permitted\n",
3787 mdname(mddev), rdev->bdev,
3788 mddev->max_disks);
3789 md_kick_rdev_from_array(rdev);
3790 continue;
3791 }
3792 if (rdev != freshest) {
3793 if (super_types[mddev->major_version].
3794 validate_super(mddev, rdev)) {
3795 pr_warn("md: kicking non-fresh %pg from array!\n",
3796 rdev->bdev);
3797 md_kick_rdev_from_array(rdev);
3798 continue;
3799 }
3800 }
3801 if (mddev->level == LEVEL_MULTIPATH) {
3802 rdev->desc_nr = i++;
3803 rdev->raid_disk = rdev->desc_nr;
3804 set_bit(In_sync, &rdev->flags);
3805 } else if (rdev->raid_disk >=
3806 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3807 !test_bit(Journal, &rdev->flags)) {
3808 rdev->raid_disk = -1;
3809 clear_bit(In_sync, &rdev->flags);
3810 }
3811 }
3812
3813 return 0;
3814 }
3815
3816 /* Read a fixed-point number.
3817 * Numbers in sysfs attributes should be in "standard" units where
3818 * possible, so time should be in seconds.
3819 * However we internally use a a much smaller unit such as
3820 * milliseconds or jiffies.
3821 * This function takes a decimal number with a possible fractional
3822 * component, and produces an integer which is the result of
3823 * multiplying that number by 10^'scale'.
3824 * all without any floating-point arithmetic.
3825 */
3826 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3827 {
3828 unsigned long result = 0;
3829 long decimals = -1;
3830 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3831 if (*cp == '.')
3832 decimals = 0;
3833 else if (decimals < scale) {
3834 unsigned int value;
3835 value = *cp - '0';
3836 result = result * 10 + value;
3837 if (decimals >= 0)
3838 decimals++;
3839 }
3840 cp++;
3841 }
3842 if (*cp == '\n')
3843 cp++;
3844 if (*cp)
3845 return -EINVAL;
3846 if (decimals < 0)
3847 decimals = 0;
3848 *res = result * int_pow(10, scale - decimals);
3849 return 0;
3850 }
3851
3852 static ssize_t
3853 safe_delay_show(struct mddev *mddev, char *page)
3854 {
3855 int msec = (mddev->safemode_delay*1000)/HZ;
3856 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3857 }
3858 static ssize_t
3859 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3860 {
3861 unsigned long msec;
3862
3863 if (mddev_is_clustered(mddev)) {
3864 pr_warn("md: Safemode is disabled for clustered mode\n");
3865 return -EINVAL;
3866 }
3867
3868 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3869 return -EINVAL;
3870 if (msec == 0)
3871 mddev->safemode_delay = 0;
3872 else {
3873 unsigned long old_delay = mddev->safemode_delay;
3874 unsigned long new_delay = (msec*HZ)/1000;
3875
3876 if (new_delay == 0)
3877 new_delay = 1;
3878 mddev->safemode_delay = new_delay;
3879 if (new_delay < old_delay || old_delay == 0)
3880 mod_timer(&mddev->safemode_timer, jiffies+1);
3881 }
3882 return len;
3883 }
3884 static struct md_sysfs_entry md_safe_delay =
3885 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3886
3887 static ssize_t
3888 level_show(struct mddev *mddev, char *page)
3889 {
3890 struct md_personality *p;
3891 int ret;
3892 spin_lock(&mddev->lock);
3893 p = mddev->pers;
3894 if (p)
3895 ret = sprintf(page, "%s\n", p->name);
3896 else if (mddev->clevel[0])
3897 ret = sprintf(page, "%s\n", mddev->clevel);
3898 else if (mddev->level != LEVEL_NONE)
3899 ret = sprintf(page, "%d\n", mddev->level);
3900 else
3901 ret = 0;
3902 spin_unlock(&mddev->lock);
3903 return ret;
3904 }
3905
3906 static ssize_t
3907 level_store(struct mddev *mddev, const char *buf, size_t len)
3908 {
3909 char clevel[16];
3910 ssize_t rv;
3911 size_t slen = len;
3912 struct md_personality *pers, *oldpers;
3913 long level;
3914 void *priv, *oldpriv;
3915 struct md_rdev *rdev;
3916
3917 if (slen == 0 || slen >= sizeof(clevel))
3918 return -EINVAL;
3919
3920 rv = mddev_lock(mddev);
3921 if (rv)
3922 return rv;
3923
3924 if (mddev->pers == NULL) {
3925 strncpy(mddev->clevel, buf, slen);
3926 if (mddev->clevel[slen-1] == '\n')
3927 slen--;
3928 mddev->clevel[slen] = 0;
3929 mddev->level = LEVEL_NONE;
3930 rv = len;
3931 goto out_unlock;
3932 }
3933 rv = -EROFS;
3934 if (mddev->ro)
3935 goto out_unlock;
3936
3937 /* request to change the personality. Need to ensure:
3938 * - array is not engaged in resync/recovery/reshape
3939 * - old personality can be suspended
3940 * - new personality will access other array.
3941 */
3942
3943 rv = -EBUSY;
3944 if (mddev->sync_thread ||
3945 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3946 mddev->reshape_position != MaxSector ||
3947 mddev->sysfs_active)
3948 goto out_unlock;
3949
3950 rv = -EINVAL;
3951 if (!mddev->pers->quiesce) {
3952 pr_warn("md: %s: %s does not support online personality change\n",
3953 mdname(mddev), mddev->pers->name);
3954 goto out_unlock;
3955 }
3956
3957 /* Now find the new personality */
3958 strncpy(clevel, buf, slen);
3959 if (clevel[slen-1] == '\n')
3960 slen--;
3961 clevel[slen] = 0;
3962 if (kstrtol(clevel, 10, &level))
3963 level = LEVEL_NONE;
3964
3965 if (request_module("md-%s", clevel) != 0)
3966 request_module("md-level-%s", clevel);
3967 spin_lock(&pers_lock);
3968 pers = find_pers(level, clevel);
3969 if (!pers || !try_module_get(pers->owner)) {
3970 spin_unlock(&pers_lock);
3971 pr_warn("md: personality %s not loaded\n", clevel);
3972 rv = -EINVAL;
3973 goto out_unlock;
3974 }
3975 spin_unlock(&pers_lock);
3976
3977 if (pers == mddev->pers) {
3978 /* Nothing to do! */
3979 module_put(pers->owner);
3980 rv = len;
3981 goto out_unlock;
3982 }
3983 if (!pers->takeover) {
3984 module_put(pers->owner);
3985 pr_warn("md: %s: %s does not support personality takeover\n",
3986 mdname(mddev), clevel);
3987 rv = -EINVAL;
3988 goto out_unlock;
3989 }
3990
3991 rdev_for_each(rdev, mddev)
3992 rdev->new_raid_disk = rdev->raid_disk;
3993
3994 /* ->takeover must set new_* and/or delta_disks
3995 * if it succeeds, and may set them when it fails.
3996 */
3997 priv = pers->takeover(mddev);
3998 if (IS_ERR(priv)) {
3999 mddev->new_level = mddev->level;
4000 mddev->new_layout = mddev->layout;
4001 mddev->new_chunk_sectors = mddev->chunk_sectors;
4002 mddev->raid_disks -= mddev->delta_disks;
4003 mddev->delta_disks = 0;
4004 mddev->reshape_backwards = 0;
4005 module_put(pers->owner);
4006 pr_warn("md: %s: %s would not accept array\n",
4007 mdname(mddev), clevel);
4008 rv = PTR_ERR(priv);
4009 goto out_unlock;
4010 }
4011
4012 /* Looks like we have a winner */
4013 mddev_suspend(mddev);
4014 mddev_detach(mddev);
4015
4016 spin_lock(&mddev->lock);
4017 oldpers = mddev->pers;
4018 oldpriv = mddev->private;
4019 mddev->pers = pers;
4020 mddev->private = priv;
4021 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4022 mddev->level = mddev->new_level;
4023 mddev->layout = mddev->new_layout;
4024 mddev->chunk_sectors = mddev->new_chunk_sectors;
4025 mddev->delta_disks = 0;
4026 mddev->reshape_backwards = 0;
4027 mddev->degraded = 0;
4028 spin_unlock(&mddev->lock);
4029
4030 if (oldpers->sync_request == NULL &&
4031 mddev->external) {
4032 /* We are converting from a no-redundancy array
4033 * to a redundancy array and metadata is managed
4034 * externally so we need to be sure that writes
4035 * won't block due to a need to transition
4036 * clean->dirty
4037 * until external management is started.
4038 */
4039 mddev->in_sync = 0;
4040 mddev->safemode_delay = 0;
4041 mddev->safemode = 0;
4042 }
4043
4044 oldpers->free(mddev, oldpriv);
4045
4046 if (oldpers->sync_request == NULL &&
4047 pers->sync_request != NULL) {
4048 /* need to add the md_redundancy_group */
4049 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4050 pr_warn("md: cannot register extra attributes for %s\n",
4051 mdname(mddev));
4052 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4053 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4054 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4055 }
4056 if (oldpers->sync_request != NULL &&
4057 pers->sync_request == NULL) {
4058 /* need to remove the md_redundancy_group */
4059 if (mddev->to_remove == NULL)
4060 mddev->to_remove = &md_redundancy_group;
4061 }
4062
4063 module_put(oldpers->owner);
4064
4065 rdev_for_each(rdev, mddev) {
4066 if (rdev->raid_disk < 0)
4067 continue;
4068 if (rdev->new_raid_disk >= mddev->raid_disks)
4069 rdev->new_raid_disk = -1;
4070 if (rdev->new_raid_disk == rdev->raid_disk)
4071 continue;
4072 sysfs_unlink_rdev(mddev, rdev);
4073 }
4074 rdev_for_each(rdev, mddev) {
4075 if (rdev->raid_disk < 0)
4076 continue;
4077 if (rdev->new_raid_disk == rdev->raid_disk)
4078 continue;
4079 rdev->raid_disk = rdev->new_raid_disk;
4080 if (rdev->raid_disk < 0)
4081 clear_bit(In_sync, &rdev->flags);
4082 else {
4083 if (sysfs_link_rdev(mddev, rdev))
4084 pr_warn("md: cannot register rd%d for %s after level change\n",
4085 rdev->raid_disk, mdname(mddev));
4086 }
4087 }
4088
4089 if (pers->sync_request == NULL) {
4090 /* this is now an array without redundancy, so
4091 * it must always be in_sync
4092 */
4093 mddev->in_sync = 1;
4094 del_timer_sync(&mddev->safemode_timer);
4095 }
4096 blk_set_stacking_limits(&mddev->queue->limits);
4097 pers->run(mddev);
4098 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4099 mddev_resume(mddev);
4100 if (!mddev->thread)
4101 md_update_sb(mddev, 1);
4102 sysfs_notify_dirent_safe(mddev->sysfs_level);
4103 md_new_event();
4104 rv = len;
4105 out_unlock:
4106 mddev_unlock(mddev);
4107 return rv;
4108 }
4109
4110 static struct md_sysfs_entry md_level =
4111 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4112
4113 static ssize_t
4114 layout_show(struct mddev *mddev, char *page)
4115 {
4116 /* just a number, not meaningful for all levels */
4117 if (mddev->reshape_position != MaxSector &&
4118 mddev->layout != mddev->new_layout)
4119 return sprintf(page, "%d (%d)\n",
4120 mddev->new_layout, mddev->layout);
4121 return sprintf(page, "%d\n", mddev->layout);
4122 }
4123
4124 static ssize_t
4125 layout_store(struct mddev *mddev, const char *buf, size_t len)
4126 {
4127 unsigned int n;
4128 int err;
4129
4130 err = kstrtouint(buf, 10, &n);
4131 if (err < 0)
4132 return err;
4133 err = mddev_lock(mddev);
4134 if (err)
4135 return err;
4136
4137 if (mddev->pers) {
4138 if (mddev->pers->check_reshape == NULL)
4139 err = -EBUSY;
4140 else if (mddev->ro)
4141 err = -EROFS;
4142 else {
4143 mddev->new_layout = n;
4144 err = mddev->pers->check_reshape(mddev);
4145 if (err)
4146 mddev->new_layout = mddev->layout;
4147 }
4148 } else {
4149 mddev->new_layout = n;
4150 if (mddev->reshape_position == MaxSector)
4151 mddev->layout = n;
4152 }
4153 mddev_unlock(mddev);
4154 return err ?: len;
4155 }
4156 static struct md_sysfs_entry md_layout =
4157 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4158
4159 static ssize_t
4160 raid_disks_show(struct mddev *mddev, char *page)
4161 {
4162 if (mddev->raid_disks == 0)
4163 return 0;
4164 if (mddev->reshape_position != MaxSector &&
4165 mddev->delta_disks != 0)
4166 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4167 mddev->raid_disks - mddev->delta_disks);
4168 return sprintf(page, "%d\n", mddev->raid_disks);
4169 }
4170
4171 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4172
4173 static ssize_t
4174 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4175 {
4176 unsigned int n;
4177 int err;
4178
4179 err = kstrtouint(buf, 10, &n);
4180 if (err < 0)
4181 return err;
4182
4183 err = mddev_lock(mddev);
4184 if (err)
4185 return err;
4186 if (mddev->pers)
4187 err = update_raid_disks(mddev, n);
4188 else if (mddev->reshape_position != MaxSector) {
4189 struct md_rdev *rdev;
4190 int olddisks = mddev->raid_disks - mddev->delta_disks;
4191
4192 err = -EINVAL;
4193 rdev_for_each(rdev, mddev) {
4194 if (olddisks < n &&
4195 rdev->data_offset < rdev->new_data_offset)
4196 goto out_unlock;
4197 if (olddisks > n &&
4198 rdev->data_offset > rdev->new_data_offset)
4199 goto out_unlock;
4200 }
4201 err = 0;
4202 mddev->delta_disks = n - olddisks;
4203 mddev->raid_disks = n;
4204 mddev->reshape_backwards = (mddev->delta_disks < 0);
4205 } else
4206 mddev->raid_disks = n;
4207 out_unlock:
4208 mddev_unlock(mddev);
4209 return err ? err : len;
4210 }
4211 static struct md_sysfs_entry md_raid_disks =
4212 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4213
4214 static ssize_t
4215 uuid_show(struct mddev *mddev, char *page)
4216 {
4217 return sprintf(page, "%pU\n", mddev->uuid);
4218 }
4219 static struct md_sysfs_entry md_uuid =
4220 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4221
4222 static ssize_t
4223 chunk_size_show(struct mddev *mddev, char *page)
4224 {
4225 if (mddev->reshape_position != MaxSector &&
4226 mddev->chunk_sectors != mddev->new_chunk_sectors)
4227 return sprintf(page, "%d (%d)\n",
4228 mddev->new_chunk_sectors << 9,
4229 mddev->chunk_sectors << 9);
4230 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4231 }
4232
4233 static ssize_t
4234 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4235 {
4236 unsigned long n;
4237 int err;
4238
4239 err = kstrtoul(buf, 10, &n);
4240 if (err < 0)
4241 return err;
4242
4243 err = mddev_lock(mddev);
4244 if (err)
4245 return err;
4246 if (mddev->pers) {
4247 if (mddev->pers->check_reshape == NULL)
4248 err = -EBUSY;
4249 else if (mddev->ro)
4250 err = -EROFS;
4251 else {
4252 mddev->new_chunk_sectors = n >> 9;
4253 err = mddev->pers->check_reshape(mddev);
4254 if (err)
4255 mddev->new_chunk_sectors = mddev->chunk_sectors;
4256 }
4257 } else {
4258 mddev->new_chunk_sectors = n >> 9;
4259 if (mddev->reshape_position == MaxSector)
4260 mddev->chunk_sectors = n >> 9;
4261 }
4262 mddev_unlock(mddev);
4263 return err ?: len;
4264 }
4265 static struct md_sysfs_entry md_chunk_size =
4266 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4267
4268 static ssize_t
4269 resync_start_show(struct mddev *mddev, char *page)
4270 {
4271 if (mddev->recovery_cp == MaxSector)
4272 return sprintf(page, "none\n");
4273 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4274 }
4275
4276 static ssize_t
4277 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4278 {
4279 unsigned long long n;
4280 int err;
4281
4282 if (cmd_match(buf, "none"))
4283 n = MaxSector;
4284 else {
4285 err = kstrtoull(buf, 10, &n);
4286 if (err < 0)
4287 return err;
4288 if (n != (sector_t)n)
4289 return -EINVAL;
4290 }
4291
4292 err = mddev_lock(mddev);
4293 if (err)
4294 return err;
4295 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4296 err = -EBUSY;
4297
4298 if (!err) {
4299 mddev->recovery_cp = n;
4300 if (mddev->pers)
4301 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4302 }
4303 mddev_unlock(mddev);
4304 return err ?: len;
4305 }
4306 static struct md_sysfs_entry md_resync_start =
4307 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4308 resync_start_show, resync_start_store);
4309
4310 /*
4311 * The array state can be:
4312 *
4313 * clear
4314 * No devices, no size, no level
4315 * Equivalent to STOP_ARRAY ioctl
4316 * inactive
4317 * May have some settings, but array is not active
4318 * all IO results in error
4319 * When written, doesn't tear down array, but just stops it
4320 * suspended (not supported yet)
4321 * All IO requests will block. The array can be reconfigured.
4322 * Writing this, if accepted, will block until array is quiescent
4323 * readonly
4324 * no resync can happen. no superblocks get written.
4325 * write requests fail
4326 * read-auto
4327 * like readonly, but behaves like 'clean' on a write request.
4328 *
4329 * clean - no pending writes, but otherwise active.
4330 * When written to inactive array, starts without resync
4331 * If a write request arrives then
4332 * if metadata is known, mark 'dirty' and switch to 'active'.
4333 * if not known, block and switch to write-pending
4334 * If written to an active array that has pending writes, then fails.
4335 * active
4336 * fully active: IO and resync can be happening.
4337 * When written to inactive array, starts with resync
4338 *
4339 * write-pending
4340 * clean, but writes are blocked waiting for 'active' to be written.
4341 *
4342 * active-idle
4343 * like active, but no writes have been seen for a while (100msec).
4344 *
4345 * broken
4346 * Array is failed. It's useful because mounted-arrays aren't stopped
4347 * when array is failed, so this state will at least alert the user that
4348 * something is wrong.
4349 */
4350 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4351 write_pending, active_idle, broken, bad_word};
4352 static char *array_states[] = {
4353 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4354 "write-pending", "active-idle", "broken", NULL };
4355
4356 static int match_word(const char *word, char **list)
4357 {
4358 int n;
4359 for (n=0; list[n]; n++)
4360 if (cmd_match(word, list[n]))
4361 break;
4362 return n;
4363 }
4364
4365 static ssize_t
4366 array_state_show(struct mddev *mddev, char *page)
4367 {
4368 enum array_state st = inactive;
4369
4370 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4371 switch(mddev->ro) {
4372 case 1:
4373 st = readonly;
4374 break;
4375 case 2:
4376 st = read_auto;
4377 break;
4378 case 0:
4379 spin_lock(&mddev->lock);
4380 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4381 st = write_pending;
4382 else if (mddev->in_sync)
4383 st = clean;
4384 else if (mddev->safemode)
4385 st = active_idle;
4386 else
4387 st = active;
4388 spin_unlock(&mddev->lock);
4389 }
4390
4391 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4392 st = broken;
4393 } else {
4394 if (list_empty(&mddev->disks) &&
4395 mddev->raid_disks == 0 &&
4396 mddev->dev_sectors == 0)
4397 st = clear;
4398 else
4399 st = inactive;
4400 }
4401 return sprintf(page, "%s\n", array_states[st]);
4402 }
4403
4404 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4405 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4406 static int restart_array(struct mddev *mddev);
4407
4408 static ssize_t
4409 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4410 {
4411 int err = 0;
4412 enum array_state st = match_word(buf, array_states);
4413
4414 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4415 /* don't take reconfig_mutex when toggling between
4416 * clean and active
4417 */
4418 spin_lock(&mddev->lock);
4419 if (st == active) {
4420 restart_array(mddev);
4421 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4422 md_wakeup_thread(mddev->thread);
4423 wake_up(&mddev->sb_wait);
4424 } else /* st == clean */ {
4425 restart_array(mddev);
4426 if (!set_in_sync(mddev))
4427 err = -EBUSY;
4428 }
4429 if (!err)
4430 sysfs_notify_dirent_safe(mddev->sysfs_state);
4431 spin_unlock(&mddev->lock);
4432 return err ?: len;
4433 }
4434 err = mddev_lock(mddev);
4435 if (err)
4436 return err;
4437 err = -EINVAL;
4438 switch(st) {
4439 case bad_word:
4440 break;
4441 case clear:
4442 /* stopping an active array */
4443 err = do_md_stop(mddev, 0, NULL);
4444 break;
4445 case inactive:
4446 /* stopping an active array */
4447 if (mddev->pers)
4448 err = do_md_stop(mddev, 2, NULL);
4449 else
4450 err = 0; /* already inactive */
4451 break;
4452 case suspended:
4453 break; /* not supported yet */
4454 case readonly:
4455 if (mddev->pers)
4456 err = md_set_readonly(mddev, NULL);
4457 else {
4458 mddev->ro = 1;
4459 set_disk_ro(mddev->gendisk, 1);
4460 err = do_md_run(mddev);
4461 }
4462 break;
4463 case read_auto:
4464 if (mddev->pers) {
4465 if (mddev->ro == 0)
4466 err = md_set_readonly(mddev, NULL);
4467 else if (mddev->ro == 1)
4468 err = restart_array(mddev);
4469 if (err == 0) {
4470 mddev->ro = 2;
4471 set_disk_ro(mddev->gendisk, 0);
4472 }
4473 } else {
4474 mddev->ro = 2;
4475 err = do_md_run(mddev);
4476 }
4477 break;
4478 case clean:
4479 if (mddev->pers) {
4480 err = restart_array(mddev);
4481 if (err)
4482 break;
4483 spin_lock(&mddev->lock);
4484 if (!set_in_sync(mddev))
4485 err = -EBUSY;
4486 spin_unlock(&mddev->lock);
4487 } else
4488 err = -EINVAL;
4489 break;
4490 case active:
4491 if (mddev->pers) {
4492 err = restart_array(mddev);
4493 if (err)
4494 break;
4495 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4496 wake_up(&mddev->sb_wait);
4497 err = 0;
4498 } else {
4499 mddev->ro = 0;
4500 set_disk_ro(mddev->gendisk, 0);
4501 err = do_md_run(mddev);
4502 }
4503 break;
4504 case write_pending:
4505 case active_idle:
4506 case broken:
4507 /* these cannot be set */
4508 break;
4509 }
4510
4511 if (!err) {
4512 if (mddev->hold_active == UNTIL_IOCTL)
4513 mddev->hold_active = 0;
4514 sysfs_notify_dirent_safe(mddev->sysfs_state);
4515 }
4516 mddev_unlock(mddev);
4517 return err ?: len;
4518 }
4519 static struct md_sysfs_entry md_array_state =
4520 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4521
4522 static ssize_t
4523 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4524 return sprintf(page, "%d\n",
4525 atomic_read(&mddev->max_corr_read_errors));
4526 }
4527
4528 static ssize_t
4529 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4530 {
4531 unsigned int n;
4532 int rv;
4533
4534 rv = kstrtouint(buf, 10, &n);
4535 if (rv < 0)
4536 return rv;
4537 atomic_set(&mddev->max_corr_read_errors, n);
4538 return len;
4539 }
4540
4541 static struct md_sysfs_entry max_corr_read_errors =
4542 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4543 max_corrected_read_errors_store);
4544
4545 static ssize_t
4546 null_show(struct mddev *mddev, char *page)
4547 {
4548 return -EINVAL;
4549 }
4550
4551 /* need to ensure rdev_delayed_delete() has completed */
4552 static void flush_rdev_wq(struct mddev *mddev)
4553 {
4554 struct md_rdev *rdev;
4555
4556 rcu_read_lock();
4557 rdev_for_each_rcu(rdev, mddev)
4558 if (work_pending(&rdev->del_work)) {
4559 flush_workqueue(md_rdev_misc_wq);
4560 break;
4561 }
4562 rcu_read_unlock();
4563 }
4564
4565 static ssize_t
4566 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4567 {
4568 /* buf must be %d:%d\n? giving major and minor numbers */
4569 /* The new device is added to the array.
4570 * If the array has a persistent superblock, we read the
4571 * superblock to initialise info and check validity.
4572 * Otherwise, only checking done is that in bind_rdev_to_array,
4573 * which mainly checks size.
4574 */
4575 char *e;
4576 int major = simple_strtoul(buf, &e, 10);
4577 int minor;
4578 dev_t dev;
4579 struct md_rdev *rdev;
4580 int err;
4581
4582 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4583 return -EINVAL;
4584 minor = simple_strtoul(e+1, &e, 10);
4585 if (*e && *e != '\n')
4586 return -EINVAL;
4587 dev = MKDEV(major, minor);
4588 if (major != MAJOR(dev) ||
4589 minor != MINOR(dev))
4590 return -EOVERFLOW;
4591
4592 flush_rdev_wq(mddev);
4593 err = mddev_lock(mddev);
4594 if (err)
4595 return err;
4596 if (mddev->persistent) {
4597 rdev = md_import_device(dev, mddev->major_version,
4598 mddev->minor_version);
4599 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4600 struct md_rdev *rdev0
4601 = list_entry(mddev->disks.next,
4602 struct md_rdev, same_set);
4603 err = super_types[mddev->major_version]
4604 .load_super(rdev, rdev0, mddev->minor_version);
4605 if (err < 0)
4606 goto out;
4607 }
4608 } else if (mddev->external)
4609 rdev = md_import_device(dev, -2, -1);
4610 else
4611 rdev = md_import_device(dev, -1, -1);
4612
4613 if (IS_ERR(rdev)) {
4614 mddev_unlock(mddev);
4615 return PTR_ERR(rdev);
4616 }
4617 err = bind_rdev_to_array(rdev, mddev);
4618 out:
4619 if (err)
4620 export_rdev(rdev);
4621 mddev_unlock(mddev);
4622 if (!err)
4623 md_new_event();
4624 return err ? err : len;
4625 }
4626
4627 static struct md_sysfs_entry md_new_device =
4628 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4629
4630 static ssize_t
4631 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4632 {
4633 char *end;
4634 unsigned long chunk, end_chunk;
4635 int err;
4636
4637 err = mddev_lock(mddev);
4638 if (err)
4639 return err;
4640 if (!mddev->bitmap)
4641 goto out;
4642 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4643 while (*buf) {
4644 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4645 if (buf == end) break;
4646 if (*end == '-') { /* range */
4647 buf = end + 1;
4648 end_chunk = simple_strtoul(buf, &end, 0);
4649 if (buf == end) break;
4650 }
4651 if (*end && !isspace(*end)) break;
4652 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4653 buf = skip_spaces(end);
4654 }
4655 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4656 out:
4657 mddev_unlock(mddev);
4658 return len;
4659 }
4660
4661 static struct md_sysfs_entry md_bitmap =
4662 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4663
4664 static ssize_t
4665 size_show(struct mddev *mddev, char *page)
4666 {
4667 return sprintf(page, "%llu\n",
4668 (unsigned long long)mddev->dev_sectors / 2);
4669 }
4670
4671 static int update_size(struct mddev *mddev, sector_t num_sectors);
4672
4673 static ssize_t
4674 size_store(struct mddev *mddev, const char *buf, size_t len)
4675 {
4676 /* If array is inactive, we can reduce the component size, but
4677 * not increase it (except from 0).
4678 * If array is active, we can try an on-line resize
4679 */
4680 sector_t sectors;
4681 int err = strict_blocks_to_sectors(buf, &sectors);
4682
4683 if (err < 0)
4684 return err;
4685 err = mddev_lock(mddev);
4686 if (err)
4687 return err;
4688 if (mddev->pers) {
4689 err = update_size(mddev, sectors);
4690 if (err == 0)
4691 md_update_sb(mddev, 1);
4692 } else {
4693 if (mddev->dev_sectors == 0 ||
4694 mddev->dev_sectors > sectors)
4695 mddev->dev_sectors = sectors;
4696 else
4697 err = -ENOSPC;
4698 }
4699 mddev_unlock(mddev);
4700 return err ? err : len;
4701 }
4702
4703 static struct md_sysfs_entry md_size =
4704 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4705
4706 /* Metadata version.
4707 * This is one of
4708 * 'none' for arrays with no metadata (good luck...)
4709 * 'external' for arrays with externally managed metadata,
4710 * or N.M for internally known formats
4711 */
4712 static ssize_t
4713 metadata_show(struct mddev *mddev, char *page)
4714 {
4715 if (mddev->persistent)
4716 return sprintf(page, "%d.%d\n",
4717 mddev->major_version, mddev->minor_version);
4718 else if (mddev->external)
4719 return sprintf(page, "external:%s\n", mddev->metadata_type);
4720 else
4721 return sprintf(page, "none\n");
4722 }
4723
4724 static ssize_t
4725 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4726 {
4727 int major, minor;
4728 char *e;
4729 int err;
4730 /* Changing the details of 'external' metadata is
4731 * always permitted. Otherwise there must be
4732 * no devices attached to the array.
4733 */
4734
4735 err = mddev_lock(mddev);
4736 if (err)
4737 return err;
4738 err = -EBUSY;
4739 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4740 ;
4741 else if (!list_empty(&mddev->disks))
4742 goto out_unlock;
4743
4744 err = 0;
4745 if (cmd_match(buf, "none")) {
4746 mddev->persistent = 0;
4747 mddev->external = 0;
4748 mddev->major_version = 0;
4749 mddev->minor_version = 90;
4750 goto out_unlock;
4751 }
4752 if (strncmp(buf, "external:", 9) == 0) {
4753 size_t namelen = len-9;
4754 if (namelen >= sizeof(mddev->metadata_type))
4755 namelen = sizeof(mddev->metadata_type)-1;
4756 strncpy(mddev->metadata_type, buf+9, namelen);
4757 mddev->metadata_type[namelen] = 0;
4758 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4759 mddev->metadata_type[--namelen] = 0;
4760 mddev->persistent = 0;
4761 mddev->external = 1;
4762 mddev->major_version = 0;
4763 mddev->minor_version = 90;
4764 goto out_unlock;
4765 }
4766 major = simple_strtoul(buf, &e, 10);
4767 err = -EINVAL;
4768 if (e==buf || *e != '.')
4769 goto out_unlock;
4770 buf = e+1;
4771 minor = simple_strtoul(buf, &e, 10);
4772 if (e==buf || (*e && *e != '\n') )
4773 goto out_unlock;
4774 err = -ENOENT;
4775 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4776 goto out_unlock;
4777 mddev->major_version = major;
4778 mddev->minor_version = minor;
4779 mddev->persistent = 1;
4780 mddev->external = 0;
4781 err = 0;
4782 out_unlock:
4783 mddev_unlock(mddev);
4784 return err ?: len;
4785 }
4786
4787 static struct md_sysfs_entry md_metadata =
4788 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4789
4790 static ssize_t
4791 action_show(struct mddev *mddev, char *page)
4792 {
4793 char *type = "idle";
4794 unsigned long recovery = mddev->recovery;
4795 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4796 type = "frozen";
4797 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4798 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4799 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4800 type = "reshape";
4801 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4802 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4803 type = "resync";
4804 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4805 type = "check";
4806 else
4807 type = "repair";
4808 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4809 type = "recover";
4810 else if (mddev->reshape_position != MaxSector)
4811 type = "reshape";
4812 }
4813 return sprintf(page, "%s\n", type);
4814 }
4815
4816 static ssize_t
4817 action_store(struct mddev *mddev, const char *page, size_t len)
4818 {
4819 if (!mddev->pers || !mddev->pers->sync_request)
4820 return -EINVAL;
4821
4822
4823 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4824 if (cmd_match(page, "frozen"))
4825 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4826 else
4827 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4828 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4829 mddev_lock(mddev) == 0) {
4830 if (work_pending(&mddev->del_work))
4831 flush_workqueue(md_misc_wq);
4832 if (mddev->sync_thread) {
4833 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4834 md_reap_sync_thread(mddev);
4835 }
4836 mddev_unlock(mddev);
4837 }
4838 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4839 return -EBUSY;
4840 else if (cmd_match(page, "resync"))
4841 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4842 else if (cmd_match(page, "recover")) {
4843 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4844 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4845 } else if (cmd_match(page, "reshape")) {
4846 int err;
4847 if (mddev->pers->start_reshape == NULL)
4848 return -EINVAL;
4849 err = mddev_lock(mddev);
4850 if (!err) {
4851 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4852 err = -EBUSY;
4853 else {
4854 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4855 err = mddev->pers->start_reshape(mddev);
4856 }
4857 mddev_unlock(mddev);
4858 }
4859 if (err)
4860 return err;
4861 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4862 } else {
4863 if (cmd_match(page, "check"))
4864 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4865 else if (!cmd_match(page, "repair"))
4866 return -EINVAL;
4867 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4868 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4869 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4870 }
4871 if (mddev->ro == 2) {
4872 /* A write to sync_action is enough to justify
4873 * canceling read-auto mode
4874 */
4875 mddev->ro = 0;
4876 md_wakeup_thread(mddev->sync_thread);
4877 }
4878 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4879 md_wakeup_thread(mddev->thread);
4880 sysfs_notify_dirent_safe(mddev->sysfs_action);
4881 return len;
4882 }
4883
4884 static struct md_sysfs_entry md_scan_mode =
4885 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4886
4887 static ssize_t
4888 last_sync_action_show(struct mddev *mddev, char *page)
4889 {
4890 return sprintf(page, "%s\n", mddev->last_sync_action);
4891 }
4892
4893 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4894
4895 static ssize_t
4896 mismatch_cnt_show(struct mddev *mddev, char *page)
4897 {
4898 return sprintf(page, "%llu\n",
4899 (unsigned long long)
4900 atomic64_read(&mddev->resync_mismatches));
4901 }
4902
4903 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4904
4905 static ssize_t
4906 sync_min_show(struct mddev *mddev, char *page)
4907 {
4908 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4909 mddev->sync_speed_min ? "local": "system");
4910 }
4911
4912 static ssize_t
4913 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4914 {
4915 unsigned int min;
4916 int rv;
4917
4918 if (strncmp(buf, "system", 6)==0) {
4919 min = 0;
4920 } else {
4921 rv = kstrtouint(buf, 10, &min);
4922 if (rv < 0)
4923 return rv;
4924 if (min == 0)
4925 return -EINVAL;
4926 }
4927 mddev->sync_speed_min = min;
4928 return len;
4929 }
4930
4931 static struct md_sysfs_entry md_sync_min =
4932 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4933
4934 static ssize_t
4935 sync_max_show(struct mddev *mddev, char *page)
4936 {
4937 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4938 mddev->sync_speed_max ? "local": "system");
4939 }
4940
4941 static ssize_t
4942 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4943 {
4944 unsigned int max;
4945 int rv;
4946
4947 if (strncmp(buf, "system", 6)==0) {
4948 max = 0;
4949 } else {
4950 rv = kstrtouint(buf, 10, &max);
4951 if (rv < 0)
4952 return rv;
4953 if (max == 0)
4954 return -EINVAL;
4955 }
4956 mddev->sync_speed_max = max;
4957 return len;
4958 }
4959
4960 static struct md_sysfs_entry md_sync_max =
4961 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4962
4963 static ssize_t
4964 degraded_show(struct mddev *mddev, char *page)
4965 {
4966 return sprintf(page, "%d\n", mddev->degraded);
4967 }
4968 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4969
4970 static ssize_t
4971 sync_force_parallel_show(struct mddev *mddev, char *page)
4972 {
4973 return sprintf(page, "%d\n", mddev->parallel_resync);
4974 }
4975
4976 static ssize_t
4977 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4978 {
4979 long n;
4980
4981 if (kstrtol(buf, 10, &n))
4982 return -EINVAL;
4983
4984 if (n != 0 && n != 1)
4985 return -EINVAL;
4986
4987 mddev->parallel_resync = n;
4988
4989 if (mddev->sync_thread)
4990 wake_up(&resync_wait);
4991
4992 return len;
4993 }
4994
4995 /* force parallel resync, even with shared block devices */
4996 static struct md_sysfs_entry md_sync_force_parallel =
4997 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4998 sync_force_parallel_show, sync_force_parallel_store);
4999
5000 static ssize_t
5001 sync_speed_show(struct mddev *mddev, char *page)
5002 {
5003 unsigned long resync, dt, db;
5004 if (mddev->curr_resync == 0)
5005 return sprintf(page, "none\n");
5006 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5007 dt = (jiffies - mddev->resync_mark) / HZ;
5008 if (!dt) dt++;
5009 db = resync - mddev->resync_mark_cnt;
5010 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5011 }
5012
5013 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5014
5015 static ssize_t
5016 sync_completed_show(struct mddev *mddev, char *page)
5017 {
5018 unsigned long long max_sectors, resync;
5019
5020 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5021 return sprintf(page, "none\n");
5022
5023 if (mddev->curr_resync == 1 ||
5024 mddev->curr_resync == 2)
5025 return sprintf(page, "delayed\n");
5026
5027 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5028 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5029 max_sectors = mddev->resync_max_sectors;
5030 else
5031 max_sectors = mddev->dev_sectors;
5032
5033 resync = mddev->curr_resync_completed;
5034 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5035 }
5036
5037 static struct md_sysfs_entry md_sync_completed =
5038 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5039
5040 static ssize_t
5041 min_sync_show(struct mddev *mddev, char *page)
5042 {
5043 return sprintf(page, "%llu\n",
5044 (unsigned long long)mddev->resync_min);
5045 }
5046 static ssize_t
5047 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5048 {
5049 unsigned long long min;
5050 int err;
5051
5052 if (kstrtoull(buf, 10, &min))
5053 return -EINVAL;
5054
5055 spin_lock(&mddev->lock);
5056 err = -EINVAL;
5057 if (min > mddev->resync_max)
5058 goto out_unlock;
5059
5060 err = -EBUSY;
5061 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5062 goto out_unlock;
5063
5064 /* Round down to multiple of 4K for safety */
5065 mddev->resync_min = round_down(min, 8);
5066 err = 0;
5067
5068 out_unlock:
5069 spin_unlock(&mddev->lock);
5070 return err ?: len;
5071 }
5072
5073 static struct md_sysfs_entry md_min_sync =
5074 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5075
5076 static ssize_t
5077 max_sync_show(struct mddev *mddev, char *page)
5078 {
5079 if (mddev->resync_max == MaxSector)
5080 return sprintf(page, "max\n");
5081 else
5082 return sprintf(page, "%llu\n",
5083 (unsigned long long)mddev->resync_max);
5084 }
5085 static ssize_t
5086 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5087 {
5088 int err;
5089 spin_lock(&mddev->lock);
5090 if (strncmp(buf, "max", 3) == 0)
5091 mddev->resync_max = MaxSector;
5092 else {
5093 unsigned long long max;
5094 int chunk;
5095
5096 err = -EINVAL;
5097 if (kstrtoull(buf, 10, &max))
5098 goto out_unlock;
5099 if (max < mddev->resync_min)
5100 goto out_unlock;
5101
5102 err = -EBUSY;
5103 if (max < mddev->resync_max &&
5104 mddev->ro == 0 &&
5105 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5106 goto out_unlock;
5107
5108 /* Must be a multiple of chunk_size */
5109 chunk = mddev->chunk_sectors;
5110 if (chunk) {
5111 sector_t temp = max;
5112
5113 err = -EINVAL;
5114 if (sector_div(temp, chunk))
5115 goto out_unlock;
5116 }
5117 mddev->resync_max = max;
5118 }
5119 wake_up(&mddev->recovery_wait);
5120 err = 0;
5121 out_unlock:
5122 spin_unlock(&mddev->lock);
5123 return err ?: len;
5124 }
5125
5126 static struct md_sysfs_entry md_max_sync =
5127 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5128
5129 static ssize_t
5130 suspend_lo_show(struct mddev *mddev, char *page)
5131 {
5132 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5133 }
5134
5135 static ssize_t
5136 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5137 {
5138 unsigned long long new;
5139 int err;
5140
5141 err = kstrtoull(buf, 10, &new);
5142 if (err < 0)
5143 return err;
5144 if (new != (sector_t)new)
5145 return -EINVAL;
5146
5147 err = mddev_lock(mddev);
5148 if (err)
5149 return err;
5150 err = -EINVAL;
5151 if (mddev->pers == NULL ||
5152 mddev->pers->quiesce == NULL)
5153 goto unlock;
5154 mddev_suspend(mddev);
5155 mddev->suspend_lo = new;
5156 mddev_resume(mddev);
5157
5158 err = 0;
5159 unlock:
5160 mddev_unlock(mddev);
5161 return err ?: len;
5162 }
5163 static struct md_sysfs_entry md_suspend_lo =
5164 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5165
5166 static ssize_t
5167 suspend_hi_show(struct mddev *mddev, char *page)
5168 {
5169 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5170 }
5171
5172 static ssize_t
5173 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5174 {
5175 unsigned long long new;
5176 int err;
5177
5178 err = kstrtoull(buf, 10, &new);
5179 if (err < 0)
5180 return err;
5181 if (new != (sector_t)new)
5182 return -EINVAL;
5183
5184 err = mddev_lock(mddev);
5185 if (err)
5186 return err;
5187 err = -EINVAL;
5188 if (mddev->pers == NULL)
5189 goto unlock;
5190
5191 mddev_suspend(mddev);
5192 mddev->suspend_hi = new;
5193 mddev_resume(mddev);
5194
5195 err = 0;
5196 unlock:
5197 mddev_unlock(mddev);
5198 return err ?: len;
5199 }
5200 static struct md_sysfs_entry md_suspend_hi =
5201 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5202
5203 static ssize_t
5204 reshape_position_show(struct mddev *mddev, char *page)
5205 {
5206 if (mddev->reshape_position != MaxSector)
5207 return sprintf(page, "%llu\n",
5208 (unsigned long long)mddev->reshape_position);
5209 strcpy(page, "none\n");
5210 return 5;
5211 }
5212
5213 static ssize_t
5214 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5215 {
5216 struct md_rdev *rdev;
5217 unsigned long long new;
5218 int err;
5219
5220 err = kstrtoull(buf, 10, &new);
5221 if (err < 0)
5222 return err;
5223 if (new != (sector_t)new)
5224 return -EINVAL;
5225 err = mddev_lock(mddev);
5226 if (err)
5227 return err;
5228 err = -EBUSY;
5229 if (mddev->pers)
5230 goto unlock;
5231 mddev->reshape_position = new;
5232 mddev->delta_disks = 0;
5233 mddev->reshape_backwards = 0;
5234 mddev->new_level = mddev->level;
5235 mddev->new_layout = mddev->layout;
5236 mddev->new_chunk_sectors = mddev->chunk_sectors;
5237 rdev_for_each(rdev, mddev)
5238 rdev->new_data_offset = rdev->data_offset;
5239 err = 0;
5240 unlock:
5241 mddev_unlock(mddev);
5242 return err ?: len;
5243 }
5244
5245 static struct md_sysfs_entry md_reshape_position =
5246 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5247 reshape_position_store);
5248
5249 static ssize_t
5250 reshape_direction_show(struct mddev *mddev, char *page)
5251 {
5252 return sprintf(page, "%s\n",
5253 mddev->reshape_backwards ? "backwards" : "forwards");
5254 }
5255
5256 static ssize_t
5257 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5258 {
5259 int backwards = 0;
5260 int err;
5261
5262 if (cmd_match(buf, "forwards"))
5263 backwards = 0;
5264 else if (cmd_match(buf, "backwards"))
5265 backwards = 1;
5266 else
5267 return -EINVAL;
5268 if (mddev->reshape_backwards == backwards)
5269 return len;
5270
5271 err = mddev_lock(mddev);
5272 if (err)
5273 return err;
5274 /* check if we are allowed to change */
5275 if (mddev->delta_disks)
5276 err = -EBUSY;
5277 else if (mddev->persistent &&
5278 mddev->major_version == 0)
5279 err = -EINVAL;
5280 else
5281 mddev->reshape_backwards = backwards;
5282 mddev_unlock(mddev);
5283 return err ?: len;
5284 }
5285
5286 static struct md_sysfs_entry md_reshape_direction =
5287 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5288 reshape_direction_store);
5289
5290 static ssize_t
5291 array_size_show(struct mddev *mddev, char *page)
5292 {
5293 if (mddev->external_size)
5294 return sprintf(page, "%llu\n",
5295 (unsigned long long)mddev->array_sectors/2);
5296 else
5297 return sprintf(page, "default\n");
5298 }
5299
5300 static ssize_t
5301 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5302 {
5303 sector_t sectors;
5304 int err;
5305
5306 err = mddev_lock(mddev);
5307 if (err)
5308 return err;
5309
5310 /* cluster raid doesn't support change array_sectors */
5311 if (mddev_is_clustered(mddev)) {
5312 mddev_unlock(mddev);
5313 return -EINVAL;
5314 }
5315
5316 if (strncmp(buf, "default", 7) == 0) {
5317 if (mddev->pers)
5318 sectors = mddev->pers->size(mddev, 0, 0);
5319 else
5320 sectors = mddev->array_sectors;
5321
5322 mddev->external_size = 0;
5323 } else {
5324 if (strict_blocks_to_sectors(buf, &sectors) < 0)
5325 err = -EINVAL;
5326 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5327 err = -E2BIG;
5328 else
5329 mddev->external_size = 1;
5330 }
5331
5332 if (!err) {
5333 mddev->array_sectors = sectors;
5334 if (mddev->pers)
5335 set_capacity_and_notify(mddev->gendisk,
5336 mddev->array_sectors);
5337 }
5338 mddev_unlock(mddev);
5339 return err ?: len;
5340 }
5341
5342 static struct md_sysfs_entry md_array_size =
5343 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5344 array_size_store);
5345
5346 static ssize_t
5347 consistency_policy_show(struct mddev *mddev, char *page)
5348 {
5349 int ret;
5350
5351 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5352 ret = sprintf(page, "journal\n");
5353 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5354 ret = sprintf(page, "ppl\n");
5355 } else if (mddev->bitmap) {
5356 ret = sprintf(page, "bitmap\n");
5357 } else if (mddev->pers) {
5358 if (mddev->pers->sync_request)
5359 ret = sprintf(page, "resync\n");
5360 else
5361 ret = sprintf(page, "none\n");
5362 } else {
5363 ret = sprintf(page, "unknown\n");
5364 }
5365
5366 return ret;
5367 }
5368
5369 static ssize_t
5370 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5371 {
5372 int err = 0;
5373
5374 if (mddev->pers) {
5375 if (mddev->pers->change_consistency_policy)
5376 err = mddev->pers->change_consistency_policy(mddev, buf);
5377 else
5378 err = -EBUSY;
5379 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5380 set_bit(MD_HAS_PPL, &mddev->flags);
5381 } else {
5382 err = -EINVAL;
5383 }
5384
5385 return err ? err : len;
5386 }
5387
5388 static struct md_sysfs_entry md_consistency_policy =
5389 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5390 consistency_policy_store);
5391
5392 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5393 {
5394 return sprintf(page, "%d\n", mddev->fail_last_dev);
5395 }
5396
5397 /*
5398 * Setting fail_last_dev to true to allow last device to be forcibly removed
5399 * from RAID1/RAID10.
5400 */
5401 static ssize_t
5402 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5403 {
5404 int ret;
5405 bool value;
5406
5407 ret = kstrtobool(buf, &value);
5408 if (ret)
5409 return ret;
5410
5411 if (value != mddev->fail_last_dev)
5412 mddev->fail_last_dev = value;
5413
5414 return len;
5415 }
5416 static struct md_sysfs_entry md_fail_last_dev =
5417 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5418 fail_last_dev_store);
5419
5420 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5421 {
5422 if (mddev->pers == NULL || (mddev->pers->level != 1))
5423 return sprintf(page, "n/a\n");
5424 else
5425 return sprintf(page, "%d\n", mddev->serialize_policy);
5426 }
5427
5428 /*
5429 * Setting serialize_policy to true to enforce write IO is not reordered
5430 * for raid1.
5431 */
5432 static ssize_t
5433 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5434 {
5435 int err;
5436 bool value;
5437
5438 err = kstrtobool(buf, &value);
5439 if (err)
5440 return err;
5441
5442 if (value == mddev->serialize_policy)
5443 return len;
5444
5445 err = mddev_lock(mddev);
5446 if (err)
5447 return err;
5448 if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5449 pr_err("md: serialize_policy is only effective for raid1\n");
5450 err = -EINVAL;
5451 goto unlock;
5452 }
5453
5454 mddev_suspend(mddev);
5455 if (value)
5456 mddev_create_serial_pool(mddev, NULL, true);
5457 else
5458 mddev_destroy_serial_pool(mddev, NULL, true);
5459 mddev->serialize_policy = value;
5460 mddev_resume(mddev);
5461 unlock:
5462 mddev_unlock(mddev);
5463 return err ?: len;
5464 }
5465
5466 static struct md_sysfs_entry md_serialize_policy =
5467 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5468 serialize_policy_store);
5469
5470
5471 static struct attribute *md_default_attrs[] = {
5472 &md_level.attr,
5473 &md_layout.attr,
5474 &md_raid_disks.attr,
5475 &md_uuid.attr,
5476 &md_chunk_size.attr,
5477 &md_size.attr,
5478 &md_resync_start.attr,
5479 &md_metadata.attr,
5480 &md_new_device.attr,
5481 &md_safe_delay.attr,
5482 &md_array_state.attr,
5483 &md_reshape_position.attr,
5484 &md_reshape_direction.attr,
5485 &md_array_size.attr,
5486 &max_corr_read_errors.attr,
5487 &md_consistency_policy.attr,
5488 &md_fail_last_dev.attr,
5489 &md_serialize_policy.attr,
5490 NULL,
5491 };
5492
5493 static const struct attribute_group md_default_group = {
5494 .attrs = md_default_attrs,
5495 };
5496
5497 static struct attribute *md_redundancy_attrs[] = {
5498 &md_scan_mode.attr,
5499 &md_last_scan_mode.attr,
5500 &md_mismatches.attr,
5501 &md_sync_min.attr,
5502 &md_sync_max.attr,
5503 &md_sync_speed.attr,
5504 &md_sync_force_parallel.attr,
5505 &md_sync_completed.attr,
5506 &md_min_sync.attr,
5507 &md_max_sync.attr,
5508 &md_suspend_lo.attr,
5509 &md_suspend_hi.attr,
5510 &md_bitmap.attr,
5511 &md_degraded.attr,
5512 NULL,
5513 };
5514 static const struct attribute_group md_redundancy_group = {
5515 .name = NULL,
5516 .attrs = md_redundancy_attrs,
5517 };
5518
5519 static const struct attribute_group *md_attr_groups[] = {
5520 &md_default_group,
5521 &md_bitmap_group,
5522 NULL,
5523 };
5524
5525 static ssize_t
5526 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5527 {
5528 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5529 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5530 ssize_t rv;
5531
5532 if (!entry->show)
5533 return -EIO;
5534 spin_lock(&all_mddevs_lock);
5535 if (list_empty(&mddev->all_mddevs)) {
5536 spin_unlock(&all_mddevs_lock);
5537 return -EBUSY;
5538 }
5539 mddev_get(mddev);
5540 spin_unlock(&all_mddevs_lock);
5541
5542 rv = entry->show(mddev, page);
5543 mddev_put(mddev);
5544 return rv;
5545 }
5546
5547 static ssize_t
5548 md_attr_store(struct kobject *kobj, struct attribute *attr,
5549 const char *page, size_t length)
5550 {
5551 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5552 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5553 ssize_t rv;
5554
5555 if (!entry->store)
5556 return -EIO;
5557 if (!capable(CAP_SYS_ADMIN))
5558 return -EACCES;
5559 spin_lock(&all_mddevs_lock);
5560 if (list_empty(&mddev->all_mddevs)) {
5561 spin_unlock(&all_mddevs_lock);
5562 return -EBUSY;
5563 }
5564 mddev_get(mddev);
5565 spin_unlock(&all_mddevs_lock);
5566 rv = entry->store(mddev, page, length);
5567 mddev_put(mddev);
5568 return rv;
5569 }
5570
5571 static void md_free(struct kobject *ko)
5572 {
5573 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5574
5575 if (mddev->sysfs_state)
5576 sysfs_put(mddev->sysfs_state);
5577 if (mddev->sysfs_level)
5578 sysfs_put(mddev->sysfs_level);
5579
5580 if (mddev->gendisk) {
5581 del_gendisk(mddev->gendisk);
5582 blk_cleanup_disk(mddev->gendisk);
5583 }
5584 percpu_ref_exit(&mddev->writes_pending);
5585
5586 bioset_exit(&mddev->bio_set);
5587 bioset_exit(&mddev->sync_set);
5588 kfree(mddev);
5589 }
5590
5591 static const struct sysfs_ops md_sysfs_ops = {
5592 .show = md_attr_show,
5593 .store = md_attr_store,
5594 };
5595 static struct kobj_type md_ktype = {
5596 .release = md_free,
5597 .sysfs_ops = &md_sysfs_ops,
5598 .default_groups = md_attr_groups,
5599 };
5600
5601 int mdp_major = 0;
5602
5603 static void mddev_delayed_delete(struct work_struct *ws)
5604 {
5605 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5606
5607 kobject_del(&mddev->kobj);
5608 kobject_put(&mddev->kobj);
5609 }
5610
5611 static void no_op(struct percpu_ref *r) {}
5612
5613 int mddev_init_writes_pending(struct mddev *mddev)
5614 {
5615 if (mddev->writes_pending.percpu_count_ptr)
5616 return 0;
5617 if (percpu_ref_init(&mddev->writes_pending, no_op,
5618 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5619 return -ENOMEM;
5620 /* We want to start with the refcount at zero */
5621 percpu_ref_put(&mddev->writes_pending);
5622 return 0;
5623 }
5624 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5625
5626 static int md_alloc(dev_t dev, char *name)
5627 {
5628 /*
5629 * If dev is zero, name is the name of a device to allocate with
5630 * an arbitrary minor number. It will be "md_???"
5631 * If dev is non-zero it must be a device number with a MAJOR of
5632 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5633 * the device is being created by opening a node in /dev.
5634 * If "name" is not NULL, the device is being created by
5635 * writing to /sys/module/md_mod/parameters/new_array.
5636 */
5637 static DEFINE_MUTEX(disks_mutex);
5638 struct mddev *mddev;
5639 struct gendisk *disk;
5640 int partitioned;
5641 int shift;
5642 int unit;
5643 int error ;
5644
5645 /*
5646 * Wait for any previous instance of this device to be completely
5647 * removed (mddev_delayed_delete).
5648 */
5649 flush_workqueue(md_misc_wq);
5650
5651 mutex_lock(&disks_mutex);
5652 mddev = mddev_alloc(dev);
5653 if (IS_ERR(mddev)) {
5654 mutex_unlock(&disks_mutex);
5655 return PTR_ERR(mddev);
5656 }
5657
5658 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5659 shift = partitioned ? MdpMinorShift : 0;
5660 unit = MINOR(mddev->unit) >> shift;
5661
5662 if (name && !dev) {
5663 /* Need to ensure that 'name' is not a duplicate.
5664 */
5665 struct mddev *mddev2;
5666 spin_lock(&all_mddevs_lock);
5667
5668 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5669 if (mddev2->gendisk &&
5670 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5671 spin_unlock(&all_mddevs_lock);
5672 error = -EEXIST;
5673 goto out_unlock_disks_mutex;
5674 }
5675 spin_unlock(&all_mddevs_lock);
5676 }
5677 if (name && dev)
5678 /*
5679 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5680 */
5681 mddev->hold_active = UNTIL_STOP;
5682
5683 error = -ENOMEM;
5684 disk = blk_alloc_disk(NUMA_NO_NODE);
5685 if (!disk)
5686 goto out_unlock_disks_mutex;
5687
5688 disk->major = MAJOR(mddev->unit);
5689 disk->first_minor = unit << shift;
5690 disk->minors = 1 << shift;
5691 if (name)
5692 strcpy(disk->disk_name, name);
5693 else if (partitioned)
5694 sprintf(disk->disk_name, "md_d%d", unit);
5695 else
5696 sprintf(disk->disk_name, "md%d", unit);
5697 disk->fops = &md_fops;
5698 disk->private_data = mddev;
5699
5700 mddev->queue = disk->queue;
5701 blk_set_stacking_limits(&mddev->queue->limits);
5702 blk_queue_write_cache(mddev->queue, true, true);
5703 disk->events |= DISK_EVENT_MEDIA_CHANGE;
5704 mddev->gendisk = disk;
5705 error = add_disk(disk);
5706 if (error)
5707 goto out_cleanup_disk;
5708
5709 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5710 if (error)
5711 goto out_del_gendisk;
5712
5713 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5714 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5715 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5716 goto out_unlock_disks_mutex;
5717
5718 out_del_gendisk:
5719 del_gendisk(disk);
5720 out_cleanup_disk:
5721 blk_cleanup_disk(disk);
5722 out_unlock_disks_mutex:
5723 mutex_unlock(&disks_mutex);
5724 mddev_put(mddev);
5725 return error;
5726 }
5727
5728 static void md_probe(dev_t dev)
5729 {
5730 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
5731 return;
5732 if (create_on_open)
5733 md_alloc(dev, NULL);
5734 }
5735
5736 static int add_named_array(const char *val, const struct kernel_param *kp)
5737 {
5738 /*
5739 * val must be "md_*" or "mdNNN".
5740 * For "md_*" we allocate an array with a large free minor number, and
5741 * set the name to val. val must not already be an active name.
5742 * For "mdNNN" we allocate an array with the minor number NNN
5743 * which must not already be in use.
5744 */
5745 int len = strlen(val);
5746 char buf[DISK_NAME_LEN];
5747 unsigned long devnum;
5748
5749 while (len && val[len-1] == '\n')
5750 len--;
5751 if (len >= DISK_NAME_LEN)
5752 return -E2BIG;
5753 strscpy(buf, val, len+1);
5754 if (strncmp(buf, "md_", 3) == 0)
5755 return md_alloc(0, buf);
5756 if (strncmp(buf, "md", 2) == 0 &&
5757 isdigit(buf[2]) &&
5758 kstrtoul(buf+2, 10, &devnum) == 0 &&
5759 devnum <= MINORMASK)
5760 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5761
5762 return -EINVAL;
5763 }
5764
5765 static void md_safemode_timeout(struct timer_list *t)
5766 {
5767 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5768
5769 mddev->safemode = 1;
5770 if (mddev->external)
5771 sysfs_notify_dirent_safe(mddev->sysfs_state);
5772
5773 md_wakeup_thread(mddev->thread);
5774 }
5775
5776 static int start_dirty_degraded;
5777
5778 int md_run(struct mddev *mddev)
5779 {
5780 int err;
5781 struct md_rdev *rdev;
5782 struct md_personality *pers;
5783 bool nowait = true;
5784
5785 if (list_empty(&mddev->disks))
5786 /* cannot run an array with no devices.. */
5787 return -EINVAL;
5788
5789 if (mddev->pers)
5790 return -EBUSY;
5791 /* Cannot run until previous stop completes properly */
5792 if (mddev->sysfs_active)
5793 return -EBUSY;
5794
5795 /*
5796 * Analyze all RAID superblock(s)
5797 */
5798 if (!mddev->raid_disks) {
5799 if (!mddev->persistent)
5800 return -EINVAL;
5801 err = analyze_sbs(mddev);
5802 if (err)
5803 return -EINVAL;
5804 }
5805
5806 if (mddev->level != LEVEL_NONE)
5807 request_module("md-level-%d", mddev->level);
5808 else if (mddev->clevel[0])
5809 request_module("md-%s", mddev->clevel);
5810
5811 /*
5812 * Drop all container device buffers, from now on
5813 * the only valid external interface is through the md
5814 * device.
5815 */
5816 mddev->has_superblocks = false;
5817 rdev_for_each(rdev, mddev) {
5818 if (test_bit(Faulty, &rdev->flags))
5819 continue;
5820 sync_blockdev(rdev->bdev);
5821 invalidate_bdev(rdev->bdev);
5822 if (mddev->ro != 1 && rdev_read_only(rdev)) {
5823 mddev->ro = 1;
5824 if (mddev->gendisk)
5825 set_disk_ro(mddev->gendisk, 1);
5826 }
5827
5828 if (rdev->sb_page)
5829 mddev->has_superblocks = true;
5830
5831 /* perform some consistency tests on the device.
5832 * We don't want the data to overlap the metadata,
5833 * Internal Bitmap issues have been handled elsewhere.
5834 */
5835 if (rdev->meta_bdev) {
5836 /* Nothing to check */;
5837 } else if (rdev->data_offset < rdev->sb_start) {
5838 if (mddev->dev_sectors &&
5839 rdev->data_offset + mddev->dev_sectors
5840 > rdev->sb_start) {
5841 pr_warn("md: %s: data overlaps metadata\n",
5842 mdname(mddev));
5843 return -EINVAL;
5844 }
5845 } else {
5846 if (rdev->sb_start + rdev->sb_size/512
5847 > rdev->data_offset) {
5848 pr_warn("md: %s: metadata overlaps data\n",
5849 mdname(mddev));
5850 return -EINVAL;
5851 }
5852 }
5853 sysfs_notify_dirent_safe(rdev->sysfs_state);
5854 nowait = nowait && blk_queue_nowait(bdev_get_queue(rdev->bdev));
5855 }
5856
5857 if (!bioset_initialized(&mddev->bio_set)) {
5858 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5859 if (err)
5860 return err;
5861 }
5862 if (!bioset_initialized(&mddev->sync_set)) {
5863 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5864 if (err)
5865 goto exit_bio_set;
5866 }
5867
5868 spin_lock(&pers_lock);
5869 pers = find_pers(mddev->level, mddev->clevel);
5870 if (!pers || !try_module_get(pers->owner)) {
5871 spin_unlock(&pers_lock);
5872 if (mddev->level != LEVEL_NONE)
5873 pr_warn("md: personality for level %d is not loaded!\n",
5874 mddev->level);
5875 else
5876 pr_warn("md: personality for level %s is not loaded!\n",
5877 mddev->clevel);
5878 err = -EINVAL;
5879 goto abort;
5880 }
5881 spin_unlock(&pers_lock);
5882 if (mddev->level != pers->level) {
5883 mddev->level = pers->level;
5884 mddev->new_level = pers->level;
5885 }
5886 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5887
5888 if (mddev->reshape_position != MaxSector &&
5889 pers->start_reshape == NULL) {
5890 /* This personality cannot handle reshaping... */
5891 module_put(pers->owner);
5892 err = -EINVAL;
5893 goto abort;
5894 }
5895
5896 if (pers->sync_request) {
5897 /* Warn if this is a potentially silly
5898 * configuration.
5899 */
5900 struct md_rdev *rdev2;
5901 int warned = 0;
5902
5903 rdev_for_each(rdev, mddev)
5904 rdev_for_each(rdev2, mddev) {
5905 if (rdev < rdev2 &&
5906 rdev->bdev->bd_disk ==
5907 rdev2->bdev->bd_disk) {
5908 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n",
5909 mdname(mddev),
5910 rdev->bdev,
5911 rdev2->bdev);
5912 warned = 1;
5913 }
5914 }
5915
5916 if (warned)
5917 pr_warn("True protection against single-disk failure might be compromised.\n");
5918 }
5919
5920 mddev->recovery = 0;
5921 /* may be over-ridden by personality */
5922 mddev->resync_max_sectors = mddev->dev_sectors;
5923
5924 mddev->ok_start_degraded = start_dirty_degraded;
5925
5926 if (start_readonly && mddev->ro == 0)
5927 mddev->ro = 2; /* read-only, but switch on first write */
5928
5929 err = pers->run(mddev);
5930 if (err)
5931 pr_warn("md: pers->run() failed ...\n");
5932 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5933 WARN_ONCE(!mddev->external_size,
5934 "%s: default size too small, but 'external_size' not in effect?\n",
5935 __func__);
5936 pr_warn("md: invalid array_size %llu > default size %llu\n",
5937 (unsigned long long)mddev->array_sectors / 2,
5938 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5939 err = -EINVAL;
5940 }
5941 if (err == 0 && pers->sync_request &&
5942 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5943 struct bitmap *bitmap;
5944
5945 bitmap = md_bitmap_create(mddev, -1);
5946 if (IS_ERR(bitmap)) {
5947 err = PTR_ERR(bitmap);
5948 pr_warn("%s: failed to create bitmap (%d)\n",
5949 mdname(mddev), err);
5950 } else
5951 mddev->bitmap = bitmap;
5952
5953 }
5954 if (err)
5955 goto bitmap_abort;
5956
5957 if (mddev->bitmap_info.max_write_behind > 0) {
5958 bool create_pool = false;
5959
5960 rdev_for_each(rdev, mddev) {
5961 if (test_bit(WriteMostly, &rdev->flags) &&
5962 rdev_init_serial(rdev))
5963 create_pool = true;
5964 }
5965 if (create_pool && mddev->serial_info_pool == NULL) {
5966 mddev->serial_info_pool =
5967 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
5968 sizeof(struct serial_info));
5969 if (!mddev->serial_info_pool) {
5970 err = -ENOMEM;
5971 goto bitmap_abort;
5972 }
5973 }
5974 }
5975
5976 if (mddev->queue) {
5977 bool nonrot = true;
5978
5979 rdev_for_each(rdev, mddev) {
5980 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) {
5981 nonrot = false;
5982 break;
5983 }
5984 }
5985 if (mddev->degraded)
5986 nonrot = false;
5987 if (nonrot)
5988 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
5989 else
5990 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
5991 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue);
5992
5993 /* Set the NOWAIT flags if all underlying devices support it */
5994 if (nowait)
5995 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue);
5996 }
5997 if (pers->sync_request) {
5998 if (mddev->kobj.sd &&
5999 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6000 pr_warn("md: cannot register extra attributes for %s\n",
6001 mdname(mddev));
6002 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6003 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6004 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6005 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
6006 mddev->ro = 0;
6007
6008 atomic_set(&mddev->max_corr_read_errors,
6009 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6010 mddev->safemode = 0;
6011 if (mddev_is_clustered(mddev))
6012 mddev->safemode_delay = 0;
6013 else
6014 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6015 mddev->in_sync = 1;
6016 smp_wmb();
6017 spin_lock(&mddev->lock);
6018 mddev->pers = pers;
6019 spin_unlock(&mddev->lock);
6020 rdev_for_each(rdev, mddev)
6021 if (rdev->raid_disk >= 0)
6022 sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6023
6024 if (mddev->degraded && !mddev->ro)
6025 /* This ensures that recovering status is reported immediately
6026 * via sysfs - until a lack of spares is confirmed.
6027 */
6028 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6029 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6030
6031 if (mddev->sb_flags)
6032 md_update_sb(mddev, 0);
6033
6034 md_new_event();
6035 return 0;
6036
6037 bitmap_abort:
6038 mddev_detach(mddev);
6039 if (mddev->private)
6040 pers->free(mddev, mddev->private);
6041 mddev->private = NULL;
6042 module_put(pers->owner);
6043 md_bitmap_destroy(mddev);
6044 abort:
6045 bioset_exit(&mddev->sync_set);
6046 exit_bio_set:
6047 bioset_exit(&mddev->bio_set);
6048 return err;
6049 }
6050 EXPORT_SYMBOL_GPL(md_run);
6051
6052 int do_md_run(struct mddev *mddev)
6053 {
6054 int err;
6055
6056 set_bit(MD_NOT_READY, &mddev->flags);
6057 err = md_run(mddev);
6058 if (err)
6059 goto out;
6060 err = md_bitmap_load(mddev);
6061 if (err) {
6062 md_bitmap_destroy(mddev);
6063 goto out;
6064 }
6065
6066 if (mddev_is_clustered(mddev))
6067 md_allow_write(mddev);
6068
6069 /* run start up tasks that require md_thread */
6070 md_start(mddev);
6071
6072 md_wakeup_thread(mddev->thread);
6073 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6074
6075 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6076 clear_bit(MD_NOT_READY, &mddev->flags);
6077 mddev->changed = 1;
6078 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6079 sysfs_notify_dirent_safe(mddev->sysfs_state);
6080 sysfs_notify_dirent_safe(mddev->sysfs_action);
6081 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6082 out:
6083 clear_bit(MD_NOT_READY, &mddev->flags);
6084 return err;
6085 }
6086
6087 int md_start(struct mddev *mddev)
6088 {
6089 int ret = 0;
6090
6091 if (mddev->pers->start) {
6092 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6093 md_wakeup_thread(mddev->thread);
6094 ret = mddev->pers->start(mddev);
6095 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6096 md_wakeup_thread(mddev->sync_thread);
6097 }
6098 return ret;
6099 }
6100 EXPORT_SYMBOL_GPL(md_start);
6101
6102 static int restart_array(struct mddev *mddev)
6103 {
6104 struct gendisk *disk = mddev->gendisk;
6105 struct md_rdev *rdev;
6106 bool has_journal = false;
6107 bool has_readonly = false;
6108
6109 /* Complain if it has no devices */
6110 if (list_empty(&mddev->disks))
6111 return -ENXIO;
6112 if (!mddev->pers)
6113 return -EINVAL;
6114 if (!mddev->ro)
6115 return -EBUSY;
6116
6117 rcu_read_lock();
6118 rdev_for_each_rcu(rdev, mddev) {
6119 if (test_bit(Journal, &rdev->flags) &&
6120 !test_bit(Faulty, &rdev->flags))
6121 has_journal = true;
6122 if (rdev_read_only(rdev))
6123 has_readonly = true;
6124 }
6125 rcu_read_unlock();
6126 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6127 /* Don't restart rw with journal missing/faulty */
6128 return -EINVAL;
6129 if (has_readonly)
6130 return -EROFS;
6131
6132 mddev->safemode = 0;
6133 mddev->ro = 0;
6134 set_disk_ro(disk, 0);
6135 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6136 /* Kick recovery or resync if necessary */
6137 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6138 md_wakeup_thread(mddev->thread);
6139 md_wakeup_thread(mddev->sync_thread);
6140 sysfs_notify_dirent_safe(mddev->sysfs_state);
6141 return 0;
6142 }
6143
6144 static void md_clean(struct mddev *mddev)
6145 {
6146 mddev->array_sectors = 0;
6147 mddev->external_size = 0;
6148 mddev->dev_sectors = 0;
6149 mddev->raid_disks = 0;
6150 mddev->recovery_cp = 0;
6151 mddev->resync_min = 0;
6152 mddev->resync_max = MaxSector;
6153 mddev->reshape_position = MaxSector;
6154 mddev->external = 0;
6155 mddev->persistent = 0;
6156 mddev->level = LEVEL_NONE;
6157 mddev->clevel[0] = 0;
6158 mddev->flags = 0;
6159 mddev->sb_flags = 0;
6160 mddev->ro = 0;
6161 mddev->metadata_type[0] = 0;
6162 mddev->chunk_sectors = 0;
6163 mddev->ctime = mddev->utime = 0;
6164 mddev->layout = 0;
6165 mddev->max_disks = 0;
6166 mddev->events = 0;
6167 mddev->can_decrease_events = 0;
6168 mddev->delta_disks = 0;
6169 mddev->reshape_backwards = 0;
6170 mddev->new_level = LEVEL_NONE;
6171 mddev->new_layout = 0;
6172 mddev->new_chunk_sectors = 0;
6173 mddev->curr_resync = 0;
6174 atomic64_set(&mddev->resync_mismatches, 0);
6175 mddev->suspend_lo = mddev->suspend_hi = 0;
6176 mddev->sync_speed_min = mddev->sync_speed_max = 0;
6177 mddev->recovery = 0;
6178 mddev->in_sync = 0;
6179 mddev->changed = 0;
6180 mddev->degraded = 0;
6181 mddev->safemode = 0;
6182 mddev->private = NULL;
6183 mddev->cluster_info = NULL;
6184 mddev->bitmap_info.offset = 0;
6185 mddev->bitmap_info.default_offset = 0;
6186 mddev->bitmap_info.default_space = 0;
6187 mddev->bitmap_info.chunksize = 0;
6188 mddev->bitmap_info.daemon_sleep = 0;
6189 mddev->bitmap_info.max_write_behind = 0;
6190 mddev->bitmap_info.nodes = 0;
6191 }
6192
6193 static void __md_stop_writes(struct mddev *mddev)
6194 {
6195 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6196 if (work_pending(&mddev->del_work))
6197 flush_workqueue(md_misc_wq);
6198 if (mddev->sync_thread) {
6199 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6200 md_reap_sync_thread(mddev);
6201 }
6202
6203 del_timer_sync(&mddev->safemode_timer);
6204
6205 if (mddev->pers && mddev->pers->quiesce) {
6206 mddev->pers->quiesce(mddev, 1);
6207 mddev->pers->quiesce(mddev, 0);
6208 }
6209 md_bitmap_flush(mddev);
6210
6211 if (mddev->ro == 0 &&
6212 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6213 mddev->sb_flags)) {
6214 /* mark array as shutdown cleanly */
6215 if (!mddev_is_clustered(mddev))
6216 mddev->in_sync = 1;
6217 md_update_sb(mddev, 1);
6218 }
6219 /* disable policy to guarantee rdevs free resources for serialization */
6220 mddev->serialize_policy = 0;
6221 mddev_destroy_serial_pool(mddev, NULL, true);
6222 }
6223
6224 void md_stop_writes(struct mddev *mddev)
6225 {
6226 mddev_lock_nointr(mddev);
6227 __md_stop_writes(mddev);
6228 mddev_unlock(mddev);
6229 }
6230 EXPORT_SYMBOL_GPL(md_stop_writes);
6231
6232 static void mddev_detach(struct mddev *mddev)
6233 {
6234 md_bitmap_wait_behind_writes(mddev);
6235 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) {
6236 mddev->pers->quiesce(mddev, 1);
6237 mddev->pers->quiesce(mddev, 0);
6238 }
6239 md_unregister_thread(&mddev->thread);
6240 if (mddev->queue)
6241 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6242 }
6243
6244 static void __md_stop(struct mddev *mddev)
6245 {
6246 struct md_personality *pers = mddev->pers;
6247 md_bitmap_destroy(mddev);
6248 mddev_detach(mddev);
6249 /* Ensure ->event_work is done */
6250 if (mddev->event_work.func)
6251 flush_workqueue(md_misc_wq);
6252 spin_lock(&mddev->lock);
6253 mddev->pers = NULL;
6254 spin_unlock(&mddev->lock);
6255 if (mddev->private)
6256 pers->free(mddev, mddev->private);
6257 mddev->private = NULL;
6258 if (pers->sync_request && mddev->to_remove == NULL)
6259 mddev->to_remove = &md_redundancy_group;
6260 module_put(pers->owner);
6261 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6262 }
6263
6264 void md_stop(struct mddev *mddev)
6265 {
6266 /* stop the array and free an attached data structures.
6267 * This is called from dm-raid
6268 */
6269 __md_stop(mddev);
6270 bioset_exit(&mddev->bio_set);
6271 bioset_exit(&mddev->sync_set);
6272 }
6273
6274 EXPORT_SYMBOL_GPL(md_stop);
6275
6276 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6277 {
6278 int err = 0;
6279 int did_freeze = 0;
6280
6281 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6282 did_freeze = 1;
6283 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6284 md_wakeup_thread(mddev->thread);
6285 }
6286 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6287 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6288 if (mddev->sync_thread)
6289 /* Thread might be blocked waiting for metadata update
6290 * which will now never happen */
6291 wake_up_process(mddev->sync_thread->tsk);
6292
6293 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6294 return -EBUSY;
6295 mddev_unlock(mddev);
6296 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6297 &mddev->recovery));
6298 wait_event(mddev->sb_wait,
6299 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6300 mddev_lock_nointr(mddev);
6301
6302 mutex_lock(&mddev->open_mutex);
6303 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6304 mddev->sync_thread ||
6305 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6306 pr_warn("md: %s still in use.\n",mdname(mddev));
6307 if (did_freeze) {
6308 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6309 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6310 md_wakeup_thread(mddev->thread);
6311 }
6312 err = -EBUSY;
6313 goto out;
6314 }
6315 if (mddev->pers) {
6316 __md_stop_writes(mddev);
6317
6318 err = -ENXIO;
6319 if (mddev->ro==1)
6320 goto out;
6321 mddev->ro = 1;
6322 set_disk_ro(mddev->gendisk, 1);
6323 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6324 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6325 md_wakeup_thread(mddev->thread);
6326 sysfs_notify_dirent_safe(mddev->sysfs_state);
6327 err = 0;
6328 }
6329 out:
6330 mutex_unlock(&mddev->open_mutex);
6331 return err;
6332 }
6333
6334 /* mode:
6335 * 0 - completely stop and dis-assemble array
6336 * 2 - stop but do not disassemble array
6337 */
6338 static int do_md_stop(struct mddev *mddev, int mode,
6339 struct block_device *bdev)
6340 {
6341 struct gendisk *disk = mddev->gendisk;
6342 struct md_rdev *rdev;
6343 int did_freeze = 0;
6344
6345 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6346 did_freeze = 1;
6347 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6348 md_wakeup_thread(mddev->thread);
6349 }
6350 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6351 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6352 if (mddev->sync_thread)
6353 /* Thread might be blocked waiting for metadata update
6354 * which will now never happen */
6355 wake_up_process(mddev->sync_thread->tsk);
6356
6357 mddev_unlock(mddev);
6358 wait_event(resync_wait, (mddev->sync_thread == NULL &&
6359 !test_bit(MD_RECOVERY_RUNNING,
6360 &mddev->recovery)));
6361 mddev_lock_nointr(mddev);
6362
6363 mutex_lock(&mddev->open_mutex);
6364 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6365 mddev->sysfs_active ||
6366 mddev->sync_thread ||
6367 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6368 pr_warn("md: %s still in use.\n",mdname(mddev));
6369 mutex_unlock(&mddev->open_mutex);
6370 if (did_freeze) {
6371 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6372 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6373 md_wakeup_thread(mddev->thread);
6374 }
6375 return -EBUSY;
6376 }
6377 if (mddev->pers) {
6378 if (mddev->ro)
6379 set_disk_ro(disk, 0);
6380
6381 __md_stop_writes(mddev);
6382 __md_stop(mddev);
6383
6384 /* tell userspace to handle 'inactive' */
6385 sysfs_notify_dirent_safe(mddev->sysfs_state);
6386
6387 rdev_for_each(rdev, mddev)
6388 if (rdev->raid_disk >= 0)
6389 sysfs_unlink_rdev(mddev, rdev);
6390
6391 set_capacity_and_notify(disk, 0);
6392 mutex_unlock(&mddev->open_mutex);
6393 mddev->changed = 1;
6394
6395 if (mddev->ro)
6396 mddev->ro = 0;
6397 } else
6398 mutex_unlock(&mddev->open_mutex);
6399 /*
6400 * Free resources if final stop
6401 */
6402 if (mode == 0) {
6403 pr_info("md: %s stopped.\n", mdname(mddev));
6404
6405 if (mddev->bitmap_info.file) {
6406 struct file *f = mddev->bitmap_info.file;
6407 spin_lock(&mddev->lock);
6408 mddev->bitmap_info.file = NULL;
6409 spin_unlock(&mddev->lock);
6410 fput(f);
6411 }
6412 mddev->bitmap_info.offset = 0;
6413
6414 export_array(mddev);
6415
6416 md_clean(mddev);
6417 if (mddev->hold_active == UNTIL_STOP)
6418 mddev->hold_active = 0;
6419 }
6420 md_new_event();
6421 sysfs_notify_dirent_safe(mddev->sysfs_state);
6422 return 0;
6423 }
6424
6425 #ifndef MODULE
6426 static void autorun_array(struct mddev *mddev)
6427 {
6428 struct md_rdev *rdev;
6429 int err;
6430
6431 if (list_empty(&mddev->disks))
6432 return;
6433
6434 pr_info("md: running: ");
6435
6436 rdev_for_each(rdev, mddev) {
6437 pr_cont("<%pg>", rdev->bdev);
6438 }
6439 pr_cont("\n");
6440
6441 err = do_md_run(mddev);
6442 if (err) {
6443 pr_warn("md: do_md_run() returned %d\n", err);
6444 do_md_stop(mddev, 0, NULL);
6445 }
6446 }
6447
6448 /*
6449 * lets try to run arrays based on all disks that have arrived
6450 * until now. (those are in pending_raid_disks)
6451 *
6452 * the method: pick the first pending disk, collect all disks with
6453 * the same UUID, remove all from the pending list and put them into
6454 * the 'same_array' list. Then order this list based on superblock
6455 * update time (freshest comes first), kick out 'old' disks and
6456 * compare superblocks. If everything's fine then run it.
6457 *
6458 * If "unit" is allocated, then bump its reference count
6459 */
6460 static void autorun_devices(int part)
6461 {
6462 struct md_rdev *rdev0, *rdev, *tmp;
6463 struct mddev *mddev;
6464
6465 pr_info("md: autorun ...\n");
6466 while (!list_empty(&pending_raid_disks)) {
6467 int unit;
6468 dev_t dev;
6469 LIST_HEAD(candidates);
6470 rdev0 = list_entry(pending_raid_disks.next,
6471 struct md_rdev, same_set);
6472
6473 pr_debug("md: considering %pg ...\n", rdev0->bdev);
6474 INIT_LIST_HEAD(&candidates);
6475 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6476 if (super_90_load(rdev, rdev0, 0) >= 0) {
6477 pr_debug("md: adding %pg ...\n",
6478 rdev->bdev);
6479 list_move(&rdev->same_set, &candidates);
6480 }
6481 /*
6482 * now we have a set of devices, with all of them having
6483 * mostly sane superblocks. It's time to allocate the
6484 * mddev.
6485 */
6486 if (part) {
6487 dev = MKDEV(mdp_major,
6488 rdev0->preferred_minor << MdpMinorShift);
6489 unit = MINOR(dev) >> MdpMinorShift;
6490 } else {
6491 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6492 unit = MINOR(dev);
6493 }
6494 if (rdev0->preferred_minor != unit) {
6495 pr_warn("md: unit number in %pg is bad: %d\n",
6496 rdev0->bdev, rdev0->preferred_minor);
6497 break;
6498 }
6499
6500 md_probe(dev);
6501 mddev = mddev_find(dev);
6502 if (!mddev)
6503 break;
6504
6505 if (mddev_lock(mddev))
6506 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6507 else if (mddev->raid_disks || mddev->major_version
6508 || !list_empty(&mddev->disks)) {
6509 pr_warn("md: %s already running, cannot run %pg\n",
6510 mdname(mddev), rdev0->bdev);
6511 mddev_unlock(mddev);
6512 } else {
6513 pr_debug("md: created %s\n", mdname(mddev));
6514 mddev->persistent = 1;
6515 rdev_for_each_list(rdev, tmp, &candidates) {
6516 list_del_init(&rdev->same_set);
6517 if (bind_rdev_to_array(rdev, mddev))
6518 export_rdev(rdev);
6519 }
6520 autorun_array(mddev);
6521 mddev_unlock(mddev);
6522 }
6523 /* on success, candidates will be empty, on error
6524 * it won't...
6525 */
6526 rdev_for_each_list(rdev, tmp, &candidates) {
6527 list_del_init(&rdev->same_set);
6528 export_rdev(rdev);
6529 }
6530 mddev_put(mddev);
6531 }
6532 pr_info("md: ... autorun DONE.\n");
6533 }
6534 #endif /* !MODULE */
6535
6536 static int get_version(void __user *arg)
6537 {
6538 mdu_version_t ver;
6539
6540 ver.major = MD_MAJOR_VERSION;
6541 ver.minor = MD_MINOR_VERSION;
6542 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6543
6544 if (copy_to_user(arg, &ver, sizeof(ver)))
6545 return -EFAULT;
6546
6547 return 0;
6548 }
6549
6550 static int get_array_info(struct mddev *mddev, void __user *arg)
6551 {
6552 mdu_array_info_t info;
6553 int nr,working,insync,failed,spare;
6554 struct md_rdev *rdev;
6555
6556 nr = working = insync = failed = spare = 0;
6557 rcu_read_lock();
6558 rdev_for_each_rcu(rdev, mddev) {
6559 nr++;
6560 if (test_bit(Faulty, &rdev->flags))
6561 failed++;
6562 else {
6563 working++;
6564 if (test_bit(In_sync, &rdev->flags))
6565 insync++;
6566 else if (test_bit(Journal, &rdev->flags))
6567 /* TODO: add journal count to md_u.h */
6568 ;
6569 else
6570 spare++;
6571 }
6572 }
6573 rcu_read_unlock();
6574
6575 info.major_version = mddev->major_version;
6576 info.minor_version = mddev->minor_version;
6577 info.patch_version = MD_PATCHLEVEL_VERSION;
6578 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6579 info.level = mddev->level;
6580 info.size = mddev->dev_sectors / 2;
6581 if (info.size != mddev->dev_sectors / 2) /* overflow */
6582 info.size = -1;
6583 info.nr_disks = nr;
6584 info.raid_disks = mddev->raid_disks;
6585 info.md_minor = mddev->md_minor;
6586 info.not_persistent= !mddev->persistent;
6587
6588 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6589 info.state = 0;
6590 if (mddev->in_sync)
6591 info.state = (1<<MD_SB_CLEAN);
6592 if (mddev->bitmap && mddev->bitmap_info.offset)
6593 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6594 if (mddev_is_clustered(mddev))
6595 info.state |= (1<<MD_SB_CLUSTERED);
6596 info.active_disks = insync;
6597 info.working_disks = working;
6598 info.failed_disks = failed;
6599 info.spare_disks = spare;
6600
6601 info.layout = mddev->layout;
6602 info.chunk_size = mddev->chunk_sectors << 9;
6603
6604 if (copy_to_user(arg, &info, sizeof(info)))
6605 return -EFAULT;
6606
6607 return 0;
6608 }
6609
6610 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6611 {
6612 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6613 char *ptr;
6614 int err;
6615
6616 file = kzalloc(sizeof(*file), GFP_NOIO);
6617 if (!file)
6618 return -ENOMEM;
6619
6620 err = 0;
6621 spin_lock(&mddev->lock);
6622 /* bitmap enabled */
6623 if (mddev->bitmap_info.file) {
6624 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6625 sizeof(file->pathname));
6626 if (IS_ERR(ptr))
6627 err = PTR_ERR(ptr);
6628 else
6629 memmove(file->pathname, ptr,
6630 sizeof(file->pathname)-(ptr-file->pathname));
6631 }
6632 spin_unlock(&mddev->lock);
6633
6634 if (err == 0 &&
6635 copy_to_user(arg, file, sizeof(*file)))
6636 err = -EFAULT;
6637
6638 kfree(file);
6639 return err;
6640 }
6641
6642 static int get_disk_info(struct mddev *mddev, void __user * arg)
6643 {
6644 mdu_disk_info_t info;
6645 struct md_rdev *rdev;
6646
6647 if (copy_from_user(&info, arg, sizeof(info)))
6648 return -EFAULT;
6649
6650 rcu_read_lock();
6651 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6652 if (rdev) {
6653 info.major = MAJOR(rdev->bdev->bd_dev);
6654 info.minor = MINOR(rdev->bdev->bd_dev);
6655 info.raid_disk = rdev->raid_disk;
6656 info.state = 0;
6657 if (test_bit(Faulty, &rdev->flags))
6658 info.state |= (1<<MD_DISK_FAULTY);
6659 else if (test_bit(In_sync, &rdev->flags)) {
6660 info.state |= (1<<MD_DISK_ACTIVE);
6661 info.state |= (1<<MD_DISK_SYNC);
6662 }
6663 if (test_bit(Journal, &rdev->flags))
6664 info.state |= (1<<MD_DISK_JOURNAL);
6665 if (test_bit(WriteMostly, &rdev->flags))
6666 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6667 if (test_bit(FailFast, &rdev->flags))
6668 info.state |= (1<<MD_DISK_FAILFAST);
6669 } else {
6670 info.major = info.minor = 0;
6671 info.raid_disk = -1;
6672 info.state = (1<<MD_DISK_REMOVED);
6673 }
6674 rcu_read_unlock();
6675
6676 if (copy_to_user(arg, &info, sizeof(info)))
6677 return -EFAULT;
6678
6679 return 0;
6680 }
6681
6682 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6683 {
6684 struct md_rdev *rdev;
6685 dev_t dev = MKDEV(info->major,info->minor);
6686
6687 if (mddev_is_clustered(mddev) &&
6688 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6689 pr_warn("%s: Cannot add to clustered mddev.\n",
6690 mdname(mddev));
6691 return -EINVAL;
6692 }
6693
6694 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6695 return -EOVERFLOW;
6696
6697 if (!mddev->raid_disks) {
6698 int err;
6699 /* expecting a device which has a superblock */
6700 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6701 if (IS_ERR(rdev)) {
6702 pr_warn("md: md_import_device returned %ld\n",
6703 PTR_ERR(rdev));
6704 return PTR_ERR(rdev);
6705 }
6706 if (!list_empty(&mddev->disks)) {
6707 struct md_rdev *rdev0
6708 = list_entry(mddev->disks.next,
6709 struct md_rdev, same_set);
6710 err = super_types[mddev->major_version]
6711 .load_super(rdev, rdev0, mddev->minor_version);
6712 if (err < 0) {
6713 pr_warn("md: %pg has different UUID to %pg\n",
6714 rdev->bdev,
6715 rdev0->bdev);
6716 export_rdev(rdev);
6717 return -EINVAL;
6718 }
6719 }
6720 err = bind_rdev_to_array(rdev, mddev);
6721 if (err)
6722 export_rdev(rdev);
6723 return err;
6724 }
6725
6726 /*
6727 * md_add_new_disk can be used once the array is assembled
6728 * to add "hot spares". They must already have a superblock
6729 * written
6730 */
6731 if (mddev->pers) {
6732 int err;
6733 if (!mddev->pers->hot_add_disk) {
6734 pr_warn("%s: personality does not support diskops!\n",
6735 mdname(mddev));
6736 return -EINVAL;
6737 }
6738 if (mddev->persistent)
6739 rdev = md_import_device(dev, mddev->major_version,
6740 mddev->minor_version);
6741 else
6742 rdev = md_import_device(dev, -1, -1);
6743 if (IS_ERR(rdev)) {
6744 pr_warn("md: md_import_device returned %ld\n",
6745 PTR_ERR(rdev));
6746 return PTR_ERR(rdev);
6747 }
6748 /* set saved_raid_disk if appropriate */
6749 if (!mddev->persistent) {
6750 if (info->state & (1<<MD_DISK_SYNC) &&
6751 info->raid_disk < mddev->raid_disks) {
6752 rdev->raid_disk = info->raid_disk;
6753 set_bit(In_sync, &rdev->flags);
6754 clear_bit(Bitmap_sync, &rdev->flags);
6755 } else
6756 rdev->raid_disk = -1;
6757 rdev->saved_raid_disk = rdev->raid_disk;
6758 } else
6759 super_types[mddev->major_version].
6760 validate_super(mddev, rdev);
6761 if ((info->state & (1<<MD_DISK_SYNC)) &&
6762 rdev->raid_disk != info->raid_disk) {
6763 /* This was a hot-add request, but events doesn't
6764 * match, so reject it.
6765 */
6766 export_rdev(rdev);
6767 return -EINVAL;
6768 }
6769
6770 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6771 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6772 set_bit(WriteMostly, &rdev->flags);
6773 else
6774 clear_bit(WriteMostly, &rdev->flags);
6775 if (info->state & (1<<MD_DISK_FAILFAST))
6776 set_bit(FailFast, &rdev->flags);
6777 else
6778 clear_bit(FailFast, &rdev->flags);
6779
6780 if (info->state & (1<<MD_DISK_JOURNAL)) {
6781 struct md_rdev *rdev2;
6782 bool has_journal = false;
6783
6784 /* make sure no existing journal disk */
6785 rdev_for_each(rdev2, mddev) {
6786 if (test_bit(Journal, &rdev2->flags)) {
6787 has_journal = true;
6788 break;
6789 }
6790 }
6791 if (has_journal || mddev->bitmap) {
6792 export_rdev(rdev);
6793 return -EBUSY;
6794 }
6795 set_bit(Journal, &rdev->flags);
6796 }
6797 /*
6798 * check whether the device shows up in other nodes
6799 */
6800 if (mddev_is_clustered(mddev)) {
6801 if (info->state & (1 << MD_DISK_CANDIDATE))
6802 set_bit(Candidate, &rdev->flags);
6803 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6804 /* --add initiated by this node */
6805 err = md_cluster_ops->add_new_disk(mddev, rdev);
6806 if (err) {
6807 export_rdev(rdev);
6808 return err;
6809 }
6810 }
6811 }
6812
6813 rdev->raid_disk = -1;
6814 err = bind_rdev_to_array(rdev, mddev);
6815
6816 if (err)
6817 export_rdev(rdev);
6818
6819 if (mddev_is_clustered(mddev)) {
6820 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6821 if (!err) {
6822 err = md_cluster_ops->new_disk_ack(mddev,
6823 err == 0);
6824 if (err)
6825 md_kick_rdev_from_array(rdev);
6826 }
6827 } else {
6828 if (err)
6829 md_cluster_ops->add_new_disk_cancel(mddev);
6830 else
6831 err = add_bound_rdev(rdev);
6832 }
6833
6834 } else if (!err)
6835 err = add_bound_rdev(rdev);
6836
6837 return err;
6838 }
6839
6840 /* otherwise, md_add_new_disk is only allowed
6841 * for major_version==0 superblocks
6842 */
6843 if (mddev->major_version != 0) {
6844 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6845 return -EINVAL;
6846 }
6847
6848 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6849 int err;
6850 rdev = md_import_device(dev, -1, 0);
6851 if (IS_ERR(rdev)) {
6852 pr_warn("md: error, md_import_device() returned %ld\n",
6853 PTR_ERR(rdev));
6854 return PTR_ERR(rdev);
6855 }
6856 rdev->desc_nr = info->number;
6857 if (info->raid_disk < mddev->raid_disks)
6858 rdev->raid_disk = info->raid_disk;
6859 else
6860 rdev->raid_disk = -1;
6861
6862 if (rdev->raid_disk < mddev->raid_disks)
6863 if (info->state & (1<<MD_DISK_SYNC))
6864 set_bit(In_sync, &rdev->flags);
6865
6866 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6867 set_bit(WriteMostly, &rdev->flags);
6868 if (info->state & (1<<MD_DISK_FAILFAST))
6869 set_bit(FailFast, &rdev->flags);
6870
6871 if (!mddev->persistent) {
6872 pr_debug("md: nonpersistent superblock ...\n");
6873 rdev->sb_start = bdev_nr_sectors(rdev->bdev);
6874 } else
6875 rdev->sb_start = calc_dev_sboffset(rdev);
6876 rdev->sectors = rdev->sb_start;
6877
6878 err = bind_rdev_to_array(rdev, mddev);
6879 if (err) {
6880 export_rdev(rdev);
6881 return err;
6882 }
6883 }
6884
6885 return 0;
6886 }
6887
6888 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6889 {
6890 struct md_rdev *rdev;
6891
6892 if (!mddev->pers)
6893 return -ENODEV;
6894
6895 rdev = find_rdev(mddev, dev);
6896 if (!rdev)
6897 return -ENXIO;
6898
6899 if (rdev->raid_disk < 0)
6900 goto kick_rdev;
6901
6902 clear_bit(Blocked, &rdev->flags);
6903 remove_and_add_spares(mddev, rdev);
6904
6905 if (rdev->raid_disk >= 0)
6906 goto busy;
6907
6908 kick_rdev:
6909 if (mddev_is_clustered(mddev)) {
6910 if (md_cluster_ops->remove_disk(mddev, rdev))
6911 goto busy;
6912 }
6913
6914 md_kick_rdev_from_array(rdev);
6915 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6916 if (mddev->thread)
6917 md_wakeup_thread(mddev->thread);
6918 else
6919 md_update_sb(mddev, 1);
6920 md_new_event();
6921
6922 return 0;
6923 busy:
6924 pr_debug("md: cannot remove active disk %pg from %s ...\n",
6925 rdev->bdev, mdname(mddev));
6926 return -EBUSY;
6927 }
6928
6929 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6930 {
6931 int err;
6932 struct md_rdev *rdev;
6933
6934 if (!mddev->pers)
6935 return -ENODEV;
6936
6937 if (mddev->major_version != 0) {
6938 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6939 mdname(mddev));
6940 return -EINVAL;
6941 }
6942 if (!mddev->pers->hot_add_disk) {
6943 pr_warn("%s: personality does not support diskops!\n",
6944 mdname(mddev));
6945 return -EINVAL;
6946 }
6947
6948 rdev = md_import_device(dev, -1, 0);
6949 if (IS_ERR(rdev)) {
6950 pr_warn("md: error, md_import_device() returned %ld\n",
6951 PTR_ERR(rdev));
6952 return -EINVAL;
6953 }
6954
6955 if (mddev->persistent)
6956 rdev->sb_start = calc_dev_sboffset(rdev);
6957 else
6958 rdev->sb_start = bdev_nr_sectors(rdev->bdev);
6959
6960 rdev->sectors = rdev->sb_start;
6961
6962 if (test_bit(Faulty, &rdev->flags)) {
6963 pr_warn("md: can not hot-add faulty %pg disk to %s!\n",
6964 rdev->bdev, mdname(mddev));
6965 err = -EINVAL;
6966 goto abort_export;
6967 }
6968
6969 clear_bit(In_sync, &rdev->flags);
6970 rdev->desc_nr = -1;
6971 rdev->saved_raid_disk = -1;
6972 err = bind_rdev_to_array(rdev, mddev);
6973 if (err)
6974 goto abort_export;
6975
6976 /*
6977 * The rest should better be atomic, we can have disk failures
6978 * noticed in interrupt contexts ...
6979 */
6980
6981 rdev->raid_disk = -1;
6982
6983 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6984 if (!mddev->thread)
6985 md_update_sb(mddev, 1);
6986 /*
6987 * If the new disk does not support REQ_NOWAIT,
6988 * disable on the whole MD.
6989 */
6990 if (!blk_queue_nowait(bdev_get_queue(rdev->bdev))) {
6991 pr_info("%s: Disabling nowait because %pg does not support nowait\n",
6992 mdname(mddev), rdev->bdev);
6993 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue);
6994 }
6995 /*
6996 * Kick recovery, maybe this spare has to be added to the
6997 * array immediately.
6998 */
6999 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7000 md_wakeup_thread(mddev->thread);
7001 md_new_event();
7002 return 0;
7003
7004 abort_export:
7005 export_rdev(rdev);
7006 return err;
7007 }
7008
7009 static int set_bitmap_file(struct mddev *mddev, int fd)
7010 {
7011 int err = 0;
7012
7013 if (mddev->pers) {
7014 if (!mddev->pers->quiesce || !mddev->thread)
7015 return -EBUSY;
7016 if (mddev->recovery || mddev->sync_thread)
7017 return -EBUSY;
7018 /* we should be able to change the bitmap.. */
7019 }
7020
7021 if (fd >= 0) {
7022 struct inode *inode;
7023 struct file *f;
7024
7025 if (mddev->bitmap || mddev->bitmap_info.file)
7026 return -EEXIST; /* cannot add when bitmap is present */
7027 f = fget(fd);
7028
7029 if (f == NULL) {
7030 pr_warn("%s: error: failed to get bitmap file\n",
7031 mdname(mddev));
7032 return -EBADF;
7033 }
7034
7035 inode = f->f_mapping->host;
7036 if (!S_ISREG(inode->i_mode)) {
7037 pr_warn("%s: error: bitmap file must be a regular file\n",
7038 mdname(mddev));
7039 err = -EBADF;
7040 } else if (!(f->f_mode & FMODE_WRITE)) {
7041 pr_warn("%s: error: bitmap file must open for write\n",
7042 mdname(mddev));
7043 err = -EBADF;
7044 } else if (atomic_read(&inode->i_writecount) != 1) {
7045 pr_warn("%s: error: bitmap file is already in use\n",
7046 mdname(mddev));
7047 err = -EBUSY;
7048 }
7049 if (err) {
7050 fput(f);
7051 return err;
7052 }
7053 mddev->bitmap_info.file = f;
7054 mddev->bitmap_info.offset = 0; /* file overrides offset */
7055 } else if (mddev->bitmap == NULL)
7056 return -ENOENT; /* cannot remove what isn't there */
7057 err = 0;
7058 if (mddev->pers) {
7059 if (fd >= 0) {
7060 struct bitmap *bitmap;
7061
7062 bitmap = md_bitmap_create(mddev, -1);
7063 mddev_suspend(mddev);
7064 if (!IS_ERR(bitmap)) {
7065 mddev->bitmap = bitmap;
7066 err = md_bitmap_load(mddev);
7067 } else
7068 err = PTR_ERR(bitmap);
7069 if (err) {
7070 md_bitmap_destroy(mddev);
7071 fd = -1;
7072 }
7073 mddev_resume(mddev);
7074 } else if (fd < 0) {
7075 mddev_suspend(mddev);
7076 md_bitmap_destroy(mddev);
7077 mddev_resume(mddev);
7078 }
7079 }
7080 if (fd < 0) {
7081 struct file *f = mddev->bitmap_info.file;
7082 if (f) {
7083 spin_lock(&mddev->lock);
7084 mddev->bitmap_info.file = NULL;
7085 spin_unlock(&mddev->lock);
7086 fput(f);
7087 }
7088 }
7089
7090 return err;
7091 }
7092
7093 /*
7094 * md_set_array_info is used two different ways
7095 * The original usage is when creating a new array.
7096 * In this usage, raid_disks is > 0 and it together with
7097 * level, size, not_persistent,layout,chunksize determine the
7098 * shape of the array.
7099 * This will always create an array with a type-0.90.0 superblock.
7100 * The newer usage is when assembling an array.
7101 * In this case raid_disks will be 0, and the major_version field is
7102 * use to determine which style super-blocks are to be found on the devices.
7103 * The minor and patch _version numbers are also kept incase the
7104 * super_block handler wishes to interpret them.
7105 */
7106 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7107 {
7108 if (info->raid_disks == 0) {
7109 /* just setting version number for superblock loading */
7110 if (info->major_version < 0 ||
7111 info->major_version >= ARRAY_SIZE(super_types) ||
7112 super_types[info->major_version].name == NULL) {
7113 /* maybe try to auto-load a module? */
7114 pr_warn("md: superblock version %d not known\n",
7115 info->major_version);
7116 return -EINVAL;
7117 }
7118 mddev->major_version = info->major_version;
7119 mddev->minor_version = info->minor_version;
7120 mddev->patch_version = info->patch_version;
7121 mddev->persistent = !info->not_persistent;
7122 /* ensure mddev_put doesn't delete this now that there
7123 * is some minimal configuration.
7124 */
7125 mddev->ctime = ktime_get_real_seconds();
7126 return 0;
7127 }
7128 mddev->major_version = MD_MAJOR_VERSION;
7129 mddev->minor_version = MD_MINOR_VERSION;
7130 mddev->patch_version = MD_PATCHLEVEL_VERSION;
7131 mddev->ctime = ktime_get_real_seconds();
7132
7133 mddev->level = info->level;
7134 mddev->clevel[0] = 0;
7135 mddev->dev_sectors = 2 * (sector_t)info->size;
7136 mddev->raid_disks = info->raid_disks;
7137 /* don't set md_minor, it is determined by which /dev/md* was
7138 * openned
7139 */
7140 if (info->state & (1<<MD_SB_CLEAN))
7141 mddev->recovery_cp = MaxSector;
7142 else
7143 mddev->recovery_cp = 0;
7144 mddev->persistent = ! info->not_persistent;
7145 mddev->external = 0;
7146
7147 mddev->layout = info->layout;
7148 if (mddev->level == 0)
7149 /* Cannot trust RAID0 layout info here */
7150 mddev->layout = -1;
7151 mddev->chunk_sectors = info->chunk_size >> 9;
7152
7153 if (mddev->persistent) {
7154 mddev->max_disks = MD_SB_DISKS;
7155 mddev->flags = 0;
7156 mddev->sb_flags = 0;
7157 }
7158 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7159
7160 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7161 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7162 mddev->bitmap_info.offset = 0;
7163
7164 mddev->reshape_position = MaxSector;
7165
7166 /*
7167 * Generate a 128 bit UUID
7168 */
7169 get_random_bytes(mddev->uuid, 16);
7170
7171 mddev->new_level = mddev->level;
7172 mddev->new_chunk_sectors = mddev->chunk_sectors;
7173 mddev->new_layout = mddev->layout;
7174 mddev->delta_disks = 0;
7175 mddev->reshape_backwards = 0;
7176
7177 return 0;
7178 }
7179
7180 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7181 {
7182 lockdep_assert_held(&mddev->reconfig_mutex);
7183
7184 if (mddev->external_size)
7185 return;
7186
7187 mddev->array_sectors = array_sectors;
7188 }
7189 EXPORT_SYMBOL(md_set_array_sectors);
7190
7191 static int update_size(struct mddev *mddev, sector_t num_sectors)
7192 {
7193 struct md_rdev *rdev;
7194 int rv;
7195 int fit = (num_sectors == 0);
7196 sector_t old_dev_sectors = mddev->dev_sectors;
7197
7198 if (mddev->pers->resize == NULL)
7199 return -EINVAL;
7200 /* The "num_sectors" is the number of sectors of each device that
7201 * is used. This can only make sense for arrays with redundancy.
7202 * linear and raid0 always use whatever space is available. We can only
7203 * consider changing this number if no resync or reconstruction is
7204 * happening, and if the new size is acceptable. It must fit before the
7205 * sb_start or, if that is <data_offset, it must fit before the size
7206 * of each device. If num_sectors is zero, we find the largest size
7207 * that fits.
7208 */
7209 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7210 mddev->sync_thread)
7211 return -EBUSY;
7212 if (mddev->ro)
7213 return -EROFS;
7214
7215 rdev_for_each(rdev, mddev) {
7216 sector_t avail = rdev->sectors;
7217
7218 if (fit && (num_sectors == 0 || num_sectors > avail))
7219 num_sectors = avail;
7220 if (avail < num_sectors)
7221 return -ENOSPC;
7222 }
7223 rv = mddev->pers->resize(mddev, num_sectors);
7224 if (!rv) {
7225 if (mddev_is_clustered(mddev))
7226 md_cluster_ops->update_size(mddev, old_dev_sectors);
7227 else if (mddev->queue) {
7228 set_capacity_and_notify(mddev->gendisk,
7229 mddev->array_sectors);
7230 }
7231 }
7232 return rv;
7233 }
7234
7235 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7236 {
7237 int rv;
7238 struct md_rdev *rdev;
7239 /* change the number of raid disks */
7240 if (mddev->pers->check_reshape == NULL)
7241 return -EINVAL;
7242 if (mddev->ro)
7243 return -EROFS;
7244 if (raid_disks <= 0 ||
7245 (mddev->max_disks && raid_disks >= mddev->max_disks))
7246 return -EINVAL;
7247 if (mddev->sync_thread ||
7248 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7249 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7250 mddev->reshape_position != MaxSector)
7251 return -EBUSY;
7252
7253 rdev_for_each(rdev, mddev) {
7254 if (mddev->raid_disks < raid_disks &&
7255 rdev->data_offset < rdev->new_data_offset)
7256 return -EINVAL;
7257 if (mddev->raid_disks > raid_disks &&
7258 rdev->data_offset > rdev->new_data_offset)
7259 return -EINVAL;
7260 }
7261
7262 mddev->delta_disks = raid_disks - mddev->raid_disks;
7263 if (mddev->delta_disks < 0)
7264 mddev->reshape_backwards = 1;
7265 else if (mddev->delta_disks > 0)
7266 mddev->reshape_backwards = 0;
7267
7268 rv = mddev->pers->check_reshape(mddev);
7269 if (rv < 0) {
7270 mddev->delta_disks = 0;
7271 mddev->reshape_backwards = 0;
7272 }
7273 return rv;
7274 }
7275
7276 /*
7277 * update_array_info is used to change the configuration of an
7278 * on-line array.
7279 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7280 * fields in the info are checked against the array.
7281 * Any differences that cannot be handled will cause an error.
7282 * Normally, only one change can be managed at a time.
7283 */
7284 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7285 {
7286 int rv = 0;
7287 int cnt = 0;
7288 int state = 0;
7289
7290 /* calculate expected state,ignoring low bits */
7291 if (mddev->bitmap && mddev->bitmap_info.offset)
7292 state |= (1 << MD_SB_BITMAP_PRESENT);
7293
7294 if (mddev->major_version != info->major_version ||
7295 mddev->minor_version != info->minor_version ||
7296 /* mddev->patch_version != info->patch_version || */
7297 mddev->ctime != info->ctime ||
7298 mddev->level != info->level ||
7299 /* mddev->layout != info->layout || */
7300 mddev->persistent != !info->not_persistent ||
7301 mddev->chunk_sectors != info->chunk_size >> 9 ||
7302 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7303 ((state^info->state) & 0xfffffe00)
7304 )
7305 return -EINVAL;
7306 /* Check there is only one change */
7307 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7308 cnt++;
7309 if (mddev->raid_disks != info->raid_disks)
7310 cnt++;
7311 if (mddev->layout != info->layout)
7312 cnt++;
7313 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7314 cnt++;
7315 if (cnt == 0)
7316 return 0;
7317 if (cnt > 1)
7318 return -EINVAL;
7319
7320 if (mddev->layout != info->layout) {
7321 /* Change layout
7322 * we don't need to do anything at the md level, the
7323 * personality will take care of it all.
7324 */
7325 if (mddev->pers->check_reshape == NULL)
7326 return -EINVAL;
7327 else {
7328 mddev->new_layout = info->layout;
7329 rv = mddev->pers->check_reshape(mddev);
7330 if (rv)
7331 mddev->new_layout = mddev->layout;
7332 return rv;
7333 }
7334 }
7335 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7336 rv = update_size(mddev, (sector_t)info->size * 2);
7337
7338 if (mddev->raid_disks != info->raid_disks)
7339 rv = update_raid_disks(mddev, info->raid_disks);
7340
7341 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7342 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7343 rv = -EINVAL;
7344 goto err;
7345 }
7346 if (mddev->recovery || mddev->sync_thread) {
7347 rv = -EBUSY;
7348 goto err;
7349 }
7350 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7351 struct bitmap *bitmap;
7352 /* add the bitmap */
7353 if (mddev->bitmap) {
7354 rv = -EEXIST;
7355 goto err;
7356 }
7357 if (mddev->bitmap_info.default_offset == 0) {
7358 rv = -EINVAL;
7359 goto err;
7360 }
7361 mddev->bitmap_info.offset =
7362 mddev->bitmap_info.default_offset;
7363 mddev->bitmap_info.space =
7364 mddev->bitmap_info.default_space;
7365 bitmap = md_bitmap_create(mddev, -1);
7366 mddev_suspend(mddev);
7367 if (!IS_ERR(bitmap)) {
7368 mddev->bitmap = bitmap;
7369 rv = md_bitmap_load(mddev);
7370 } else
7371 rv = PTR_ERR(bitmap);
7372 if (rv)
7373 md_bitmap_destroy(mddev);
7374 mddev_resume(mddev);
7375 } else {
7376 /* remove the bitmap */
7377 if (!mddev->bitmap) {
7378 rv = -ENOENT;
7379 goto err;
7380 }
7381 if (mddev->bitmap->storage.file) {
7382 rv = -EINVAL;
7383 goto err;
7384 }
7385 if (mddev->bitmap_info.nodes) {
7386 /* hold PW on all the bitmap lock */
7387 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7388 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7389 rv = -EPERM;
7390 md_cluster_ops->unlock_all_bitmaps(mddev);
7391 goto err;
7392 }
7393
7394 mddev->bitmap_info.nodes = 0;
7395 md_cluster_ops->leave(mddev);
7396 module_put(md_cluster_mod);
7397 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7398 }
7399 mddev_suspend(mddev);
7400 md_bitmap_destroy(mddev);
7401 mddev_resume(mddev);
7402 mddev->bitmap_info.offset = 0;
7403 }
7404 }
7405 md_update_sb(mddev, 1);
7406 return rv;
7407 err:
7408 return rv;
7409 }
7410
7411 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7412 {
7413 struct md_rdev *rdev;
7414 int err = 0;
7415
7416 if (mddev->pers == NULL)
7417 return -ENODEV;
7418
7419 rcu_read_lock();
7420 rdev = md_find_rdev_rcu(mddev, dev);
7421 if (!rdev)
7422 err = -ENODEV;
7423 else {
7424 md_error(mddev, rdev);
7425 if (test_bit(MD_BROKEN, &mddev->flags))
7426 err = -EBUSY;
7427 }
7428 rcu_read_unlock();
7429 return err;
7430 }
7431
7432 /*
7433 * We have a problem here : there is no easy way to give a CHS
7434 * virtual geometry. We currently pretend that we have a 2 heads
7435 * 4 sectors (with a BIG number of cylinders...). This drives
7436 * dosfs just mad... ;-)
7437 */
7438 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7439 {
7440 struct mddev *mddev = bdev->bd_disk->private_data;
7441
7442 geo->heads = 2;
7443 geo->sectors = 4;
7444 geo->cylinders = mddev->array_sectors / 8;
7445 return 0;
7446 }
7447
7448 static inline bool md_ioctl_valid(unsigned int cmd)
7449 {
7450 switch (cmd) {
7451 case ADD_NEW_DISK:
7452 case GET_ARRAY_INFO:
7453 case GET_BITMAP_FILE:
7454 case GET_DISK_INFO:
7455 case HOT_ADD_DISK:
7456 case HOT_REMOVE_DISK:
7457 case RAID_VERSION:
7458 case RESTART_ARRAY_RW:
7459 case RUN_ARRAY:
7460 case SET_ARRAY_INFO:
7461 case SET_BITMAP_FILE:
7462 case SET_DISK_FAULTY:
7463 case STOP_ARRAY:
7464 case STOP_ARRAY_RO:
7465 case CLUSTERED_DISK_NACK:
7466 return true;
7467 default:
7468 return false;
7469 }
7470 }
7471
7472 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7473 unsigned int cmd, unsigned long arg)
7474 {
7475 int err = 0;
7476 void __user *argp = (void __user *)arg;
7477 struct mddev *mddev = NULL;
7478 bool did_set_md_closing = false;
7479
7480 if (!md_ioctl_valid(cmd))
7481 return -ENOTTY;
7482
7483 switch (cmd) {
7484 case RAID_VERSION:
7485 case GET_ARRAY_INFO:
7486 case GET_DISK_INFO:
7487 break;
7488 default:
7489 if (!capable(CAP_SYS_ADMIN))
7490 return -EACCES;
7491 }
7492
7493 /*
7494 * Commands dealing with the RAID driver but not any
7495 * particular array:
7496 */
7497 switch (cmd) {
7498 case RAID_VERSION:
7499 err = get_version(argp);
7500 goto out;
7501 default:;
7502 }
7503
7504 /*
7505 * Commands creating/starting a new array:
7506 */
7507
7508 mddev = bdev->bd_disk->private_data;
7509
7510 if (!mddev) {
7511 BUG();
7512 goto out;
7513 }
7514
7515 /* Some actions do not requires the mutex */
7516 switch (cmd) {
7517 case GET_ARRAY_INFO:
7518 if (!mddev->raid_disks && !mddev->external)
7519 err = -ENODEV;
7520 else
7521 err = get_array_info(mddev, argp);
7522 goto out;
7523
7524 case GET_DISK_INFO:
7525 if (!mddev->raid_disks && !mddev->external)
7526 err = -ENODEV;
7527 else
7528 err = get_disk_info(mddev, argp);
7529 goto out;
7530
7531 case SET_DISK_FAULTY:
7532 err = set_disk_faulty(mddev, new_decode_dev(arg));
7533 goto out;
7534
7535 case GET_BITMAP_FILE:
7536 err = get_bitmap_file(mddev, argp);
7537 goto out;
7538
7539 }
7540
7541 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7542 flush_rdev_wq(mddev);
7543
7544 if (cmd == HOT_REMOVE_DISK)
7545 /* need to ensure recovery thread has run */
7546 wait_event_interruptible_timeout(mddev->sb_wait,
7547 !test_bit(MD_RECOVERY_NEEDED,
7548 &mddev->recovery),
7549 msecs_to_jiffies(5000));
7550 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7551 /* Need to flush page cache, and ensure no-one else opens
7552 * and writes
7553 */
7554 mutex_lock(&mddev->open_mutex);
7555 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7556 mutex_unlock(&mddev->open_mutex);
7557 err = -EBUSY;
7558 goto out;
7559 }
7560 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7561 mutex_unlock(&mddev->open_mutex);
7562 err = -EBUSY;
7563 goto out;
7564 }
7565 did_set_md_closing = true;
7566 mutex_unlock(&mddev->open_mutex);
7567 sync_blockdev(bdev);
7568 }
7569 err = mddev_lock(mddev);
7570 if (err) {
7571 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7572 err, cmd);
7573 goto out;
7574 }
7575
7576 if (cmd == SET_ARRAY_INFO) {
7577 mdu_array_info_t info;
7578 if (!arg)
7579 memset(&info, 0, sizeof(info));
7580 else if (copy_from_user(&info, argp, sizeof(info))) {
7581 err = -EFAULT;
7582 goto unlock;
7583 }
7584 if (mddev->pers) {
7585 err = update_array_info(mddev, &info);
7586 if (err) {
7587 pr_warn("md: couldn't update array info. %d\n", err);
7588 goto unlock;
7589 }
7590 goto unlock;
7591 }
7592 if (!list_empty(&mddev->disks)) {
7593 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7594 err = -EBUSY;
7595 goto unlock;
7596 }
7597 if (mddev->raid_disks) {
7598 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7599 err = -EBUSY;
7600 goto unlock;
7601 }
7602 err = md_set_array_info(mddev, &info);
7603 if (err) {
7604 pr_warn("md: couldn't set array info. %d\n", err);
7605 goto unlock;
7606 }
7607 goto unlock;
7608 }
7609
7610 /*
7611 * Commands querying/configuring an existing array:
7612 */
7613 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7614 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7615 if ((!mddev->raid_disks && !mddev->external)
7616 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7617 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7618 && cmd != GET_BITMAP_FILE) {
7619 err = -ENODEV;
7620 goto unlock;
7621 }
7622
7623 /*
7624 * Commands even a read-only array can execute:
7625 */
7626 switch (cmd) {
7627 case RESTART_ARRAY_RW:
7628 err = restart_array(mddev);
7629 goto unlock;
7630
7631 case STOP_ARRAY:
7632 err = do_md_stop(mddev, 0, bdev);
7633 goto unlock;
7634
7635 case STOP_ARRAY_RO:
7636 err = md_set_readonly(mddev, bdev);
7637 goto unlock;
7638
7639 case HOT_REMOVE_DISK:
7640 err = hot_remove_disk(mddev, new_decode_dev(arg));
7641 goto unlock;
7642
7643 case ADD_NEW_DISK:
7644 /* We can support ADD_NEW_DISK on read-only arrays
7645 * only if we are re-adding a preexisting device.
7646 * So require mddev->pers and MD_DISK_SYNC.
7647 */
7648 if (mddev->pers) {
7649 mdu_disk_info_t info;
7650 if (copy_from_user(&info, argp, sizeof(info)))
7651 err = -EFAULT;
7652 else if (!(info.state & (1<<MD_DISK_SYNC)))
7653 /* Need to clear read-only for this */
7654 break;
7655 else
7656 err = md_add_new_disk(mddev, &info);
7657 goto unlock;
7658 }
7659 break;
7660 }
7661
7662 /*
7663 * The remaining ioctls are changing the state of the
7664 * superblock, so we do not allow them on read-only arrays.
7665 */
7666 if (mddev->ro && mddev->pers) {
7667 if (mddev->ro == 2) {
7668 mddev->ro = 0;
7669 sysfs_notify_dirent_safe(mddev->sysfs_state);
7670 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7671 /* mddev_unlock will wake thread */
7672 /* If a device failed while we were read-only, we
7673 * need to make sure the metadata is updated now.
7674 */
7675 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7676 mddev_unlock(mddev);
7677 wait_event(mddev->sb_wait,
7678 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7679 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7680 mddev_lock_nointr(mddev);
7681 }
7682 } else {
7683 err = -EROFS;
7684 goto unlock;
7685 }
7686 }
7687
7688 switch (cmd) {
7689 case ADD_NEW_DISK:
7690 {
7691 mdu_disk_info_t info;
7692 if (copy_from_user(&info, argp, sizeof(info)))
7693 err = -EFAULT;
7694 else
7695 err = md_add_new_disk(mddev, &info);
7696 goto unlock;
7697 }
7698
7699 case CLUSTERED_DISK_NACK:
7700 if (mddev_is_clustered(mddev))
7701 md_cluster_ops->new_disk_ack(mddev, false);
7702 else
7703 err = -EINVAL;
7704 goto unlock;
7705
7706 case HOT_ADD_DISK:
7707 err = hot_add_disk(mddev, new_decode_dev(arg));
7708 goto unlock;
7709
7710 case RUN_ARRAY:
7711 err = do_md_run(mddev);
7712 goto unlock;
7713
7714 case SET_BITMAP_FILE:
7715 err = set_bitmap_file(mddev, (int)arg);
7716 goto unlock;
7717
7718 default:
7719 err = -EINVAL;
7720 goto unlock;
7721 }
7722
7723 unlock:
7724 if (mddev->hold_active == UNTIL_IOCTL &&
7725 err != -EINVAL)
7726 mddev->hold_active = 0;
7727 mddev_unlock(mddev);
7728 out:
7729 if(did_set_md_closing)
7730 clear_bit(MD_CLOSING, &mddev->flags);
7731 return err;
7732 }
7733 #ifdef CONFIG_COMPAT
7734 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7735 unsigned int cmd, unsigned long arg)
7736 {
7737 switch (cmd) {
7738 case HOT_REMOVE_DISK:
7739 case HOT_ADD_DISK:
7740 case SET_DISK_FAULTY:
7741 case SET_BITMAP_FILE:
7742 /* These take in integer arg, do not convert */
7743 break;
7744 default:
7745 arg = (unsigned long)compat_ptr(arg);
7746 break;
7747 }
7748
7749 return md_ioctl(bdev, mode, cmd, arg);
7750 }
7751 #endif /* CONFIG_COMPAT */
7752
7753 static int md_set_read_only(struct block_device *bdev, bool ro)
7754 {
7755 struct mddev *mddev = bdev->bd_disk->private_data;
7756 int err;
7757
7758 err = mddev_lock(mddev);
7759 if (err)
7760 return err;
7761
7762 if (!mddev->raid_disks && !mddev->external) {
7763 err = -ENODEV;
7764 goto out_unlock;
7765 }
7766
7767 /*
7768 * Transitioning to read-auto need only happen for arrays that call
7769 * md_write_start and which are not ready for writes yet.
7770 */
7771 if (!ro && mddev->ro == 1 && mddev->pers) {
7772 err = restart_array(mddev);
7773 if (err)
7774 goto out_unlock;
7775 mddev->ro = 2;
7776 }
7777
7778 out_unlock:
7779 mddev_unlock(mddev);
7780 return err;
7781 }
7782
7783 static int md_open(struct block_device *bdev, fmode_t mode)
7784 {
7785 /*
7786 * Succeed if we can lock the mddev, which confirms that
7787 * it isn't being stopped right now.
7788 */
7789 struct mddev *mddev = mddev_find(bdev->bd_dev);
7790 int err;
7791
7792 if (!mddev)
7793 return -ENODEV;
7794
7795 if (mddev->gendisk != bdev->bd_disk) {
7796 /* we are racing with mddev_put which is discarding this
7797 * bd_disk.
7798 */
7799 mddev_put(mddev);
7800 /* Wait until bdev->bd_disk is definitely gone */
7801 if (work_pending(&mddev->del_work))
7802 flush_workqueue(md_misc_wq);
7803 return -EBUSY;
7804 }
7805 BUG_ON(mddev != bdev->bd_disk->private_data);
7806
7807 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7808 goto out;
7809
7810 if (test_bit(MD_CLOSING, &mddev->flags)) {
7811 mutex_unlock(&mddev->open_mutex);
7812 err = -ENODEV;
7813 goto out;
7814 }
7815
7816 err = 0;
7817 atomic_inc(&mddev->openers);
7818 mutex_unlock(&mddev->open_mutex);
7819
7820 bdev_check_media_change(bdev);
7821 out:
7822 if (err)
7823 mddev_put(mddev);
7824 return err;
7825 }
7826
7827 static void md_release(struct gendisk *disk, fmode_t mode)
7828 {
7829 struct mddev *mddev = disk->private_data;
7830
7831 BUG_ON(!mddev);
7832 atomic_dec(&mddev->openers);
7833 mddev_put(mddev);
7834 }
7835
7836 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7837 {
7838 struct mddev *mddev = disk->private_data;
7839 unsigned int ret = 0;
7840
7841 if (mddev->changed)
7842 ret = DISK_EVENT_MEDIA_CHANGE;
7843 mddev->changed = 0;
7844 return ret;
7845 }
7846
7847 const struct block_device_operations md_fops =
7848 {
7849 .owner = THIS_MODULE,
7850 .submit_bio = md_submit_bio,
7851 .open = md_open,
7852 .release = md_release,
7853 .ioctl = md_ioctl,
7854 #ifdef CONFIG_COMPAT
7855 .compat_ioctl = md_compat_ioctl,
7856 #endif
7857 .getgeo = md_getgeo,
7858 .check_events = md_check_events,
7859 .set_read_only = md_set_read_only,
7860 };
7861
7862 static int md_thread(void *arg)
7863 {
7864 struct md_thread *thread = arg;
7865
7866 /*
7867 * md_thread is a 'system-thread', it's priority should be very
7868 * high. We avoid resource deadlocks individually in each
7869 * raid personality. (RAID5 does preallocation) We also use RR and
7870 * the very same RT priority as kswapd, thus we will never get
7871 * into a priority inversion deadlock.
7872 *
7873 * we definitely have to have equal or higher priority than
7874 * bdflush, otherwise bdflush will deadlock if there are too
7875 * many dirty RAID5 blocks.
7876 */
7877
7878 allow_signal(SIGKILL);
7879 while (!kthread_should_stop()) {
7880
7881 /* We need to wait INTERRUPTIBLE so that
7882 * we don't add to the load-average.
7883 * That means we need to be sure no signals are
7884 * pending
7885 */
7886 if (signal_pending(current))
7887 flush_signals(current);
7888
7889 wait_event_interruptible_timeout
7890 (thread->wqueue,
7891 test_bit(THREAD_WAKEUP, &thread->flags)
7892 || kthread_should_stop() || kthread_should_park(),
7893 thread->timeout);
7894
7895 clear_bit(THREAD_WAKEUP, &thread->flags);
7896 if (kthread_should_park())
7897 kthread_parkme();
7898 if (!kthread_should_stop())
7899 thread->run(thread);
7900 }
7901
7902 return 0;
7903 }
7904
7905 void md_wakeup_thread(struct md_thread *thread)
7906 {
7907 if (thread) {
7908 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7909 set_bit(THREAD_WAKEUP, &thread->flags);
7910 wake_up(&thread->wqueue);
7911 }
7912 }
7913 EXPORT_SYMBOL(md_wakeup_thread);
7914
7915 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7916 struct mddev *mddev, const char *name)
7917 {
7918 struct md_thread *thread;
7919
7920 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7921 if (!thread)
7922 return NULL;
7923
7924 init_waitqueue_head(&thread->wqueue);
7925
7926 thread->run = run;
7927 thread->mddev = mddev;
7928 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7929 thread->tsk = kthread_run(md_thread, thread,
7930 "%s_%s",
7931 mdname(thread->mddev),
7932 name);
7933 if (IS_ERR(thread->tsk)) {
7934 kfree(thread);
7935 return NULL;
7936 }
7937 return thread;
7938 }
7939 EXPORT_SYMBOL(md_register_thread);
7940
7941 void md_unregister_thread(struct md_thread **threadp)
7942 {
7943 struct md_thread *thread;
7944
7945 /*
7946 * Locking ensures that mddev_unlock does not wake_up a
7947 * non-existent thread
7948 */
7949 spin_lock(&pers_lock);
7950 thread = *threadp;
7951 if (!thread) {
7952 spin_unlock(&pers_lock);
7953 return;
7954 }
7955 *threadp = NULL;
7956 spin_unlock(&pers_lock);
7957
7958 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7959 kthread_stop(thread->tsk);
7960 kfree(thread);
7961 }
7962 EXPORT_SYMBOL(md_unregister_thread);
7963
7964 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7965 {
7966 if (!rdev || test_bit(Faulty, &rdev->flags))
7967 return;
7968
7969 if (!mddev->pers || !mddev->pers->error_handler)
7970 return;
7971 mddev->pers->error_handler(mddev, rdev);
7972
7973 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags))
7974 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7975 sysfs_notify_dirent_safe(rdev->sysfs_state);
7976 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7977 if (!test_bit(MD_BROKEN, &mddev->flags)) {
7978 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7979 md_wakeup_thread(mddev->thread);
7980 }
7981 if (mddev->event_work.func)
7982 queue_work(md_misc_wq, &mddev->event_work);
7983 md_new_event();
7984 }
7985 EXPORT_SYMBOL(md_error);
7986
7987 /* seq_file implementation /proc/mdstat */
7988
7989 static void status_unused(struct seq_file *seq)
7990 {
7991 int i = 0;
7992 struct md_rdev *rdev;
7993
7994 seq_printf(seq, "unused devices: ");
7995
7996 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7997 i++;
7998 seq_printf(seq, "%pg ", rdev->bdev);
7999 }
8000 if (!i)
8001 seq_printf(seq, "<none>");
8002
8003 seq_printf(seq, "\n");
8004 }
8005
8006 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8007 {
8008 sector_t max_sectors, resync, res;
8009 unsigned long dt, db = 0;
8010 sector_t rt, curr_mark_cnt, resync_mark_cnt;
8011 int scale, recovery_active;
8012 unsigned int per_milli;
8013
8014 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8015 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8016 max_sectors = mddev->resync_max_sectors;
8017 else
8018 max_sectors = mddev->dev_sectors;
8019
8020 resync = mddev->curr_resync;
8021 if (resync <= 3) {
8022 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8023 /* Still cleaning up */
8024 resync = max_sectors;
8025 } else if (resync > max_sectors)
8026 resync = max_sectors;
8027 else
8028 resync -= atomic_read(&mddev->recovery_active);
8029
8030 if (resync == 0) {
8031 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8032 struct md_rdev *rdev;
8033
8034 rdev_for_each(rdev, mddev)
8035 if (rdev->raid_disk >= 0 &&
8036 !test_bit(Faulty, &rdev->flags) &&
8037 rdev->recovery_offset != MaxSector &&
8038 rdev->recovery_offset) {
8039 seq_printf(seq, "\trecover=REMOTE");
8040 return 1;
8041 }
8042 if (mddev->reshape_position != MaxSector)
8043 seq_printf(seq, "\treshape=REMOTE");
8044 else
8045 seq_printf(seq, "\tresync=REMOTE");
8046 return 1;
8047 }
8048 if (mddev->recovery_cp < MaxSector) {
8049 seq_printf(seq, "\tresync=PENDING");
8050 return 1;
8051 }
8052 return 0;
8053 }
8054 if (resync < 3) {
8055 seq_printf(seq, "\tresync=DELAYED");
8056 return 1;
8057 }
8058
8059 WARN_ON(max_sectors == 0);
8060 /* Pick 'scale' such that (resync>>scale)*1000 will fit
8061 * in a sector_t, and (max_sectors>>scale) will fit in a
8062 * u32, as those are the requirements for sector_div.
8063 * Thus 'scale' must be at least 10
8064 */
8065 scale = 10;
8066 if (sizeof(sector_t) > sizeof(unsigned long)) {
8067 while ( max_sectors/2 > (1ULL<<(scale+32)))
8068 scale++;
8069 }
8070 res = (resync>>scale)*1000;
8071 sector_div(res, (u32)((max_sectors>>scale)+1));
8072
8073 per_milli = res;
8074 {
8075 int i, x = per_milli/50, y = 20-x;
8076 seq_printf(seq, "[");
8077 for (i = 0; i < x; i++)
8078 seq_printf(seq, "=");
8079 seq_printf(seq, ">");
8080 for (i = 0; i < y; i++)
8081 seq_printf(seq, ".");
8082 seq_printf(seq, "] ");
8083 }
8084 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8085 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8086 "reshape" :
8087 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8088 "check" :
8089 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8090 "resync" : "recovery"))),
8091 per_milli/10, per_milli % 10,
8092 (unsigned long long) resync/2,
8093 (unsigned long long) max_sectors/2);
8094
8095 /*
8096 * dt: time from mark until now
8097 * db: blocks written from mark until now
8098 * rt: remaining time
8099 *
8100 * rt is a sector_t, which is always 64bit now. We are keeping
8101 * the original algorithm, but it is not really necessary.
8102 *
8103 * Original algorithm:
8104 * So we divide before multiply in case it is 32bit and close
8105 * to the limit.
8106 * We scale the divisor (db) by 32 to avoid losing precision
8107 * near the end of resync when the number of remaining sectors
8108 * is close to 'db'.
8109 * We then divide rt by 32 after multiplying by db to compensate.
8110 * The '+1' avoids division by zero if db is very small.
8111 */
8112 dt = ((jiffies - mddev->resync_mark) / HZ);
8113 if (!dt) dt++;
8114
8115 curr_mark_cnt = mddev->curr_mark_cnt;
8116 recovery_active = atomic_read(&mddev->recovery_active);
8117 resync_mark_cnt = mddev->resync_mark_cnt;
8118
8119 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8120 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8121
8122 rt = max_sectors - resync; /* number of remaining sectors */
8123 rt = div64_u64(rt, db/32+1);
8124 rt *= dt;
8125 rt >>= 5;
8126
8127 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8128 ((unsigned long)rt % 60)/6);
8129
8130 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8131 return 1;
8132 }
8133
8134 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8135 {
8136 struct list_head *tmp;
8137 loff_t l = *pos;
8138 struct mddev *mddev;
8139
8140 if (l == 0x10000) {
8141 ++*pos;
8142 return (void *)2;
8143 }
8144 if (l > 0x10000)
8145 return NULL;
8146 if (!l--)
8147 /* header */
8148 return (void*)1;
8149
8150 spin_lock(&all_mddevs_lock);
8151 list_for_each(tmp,&all_mddevs)
8152 if (!l--) {
8153 mddev = list_entry(tmp, struct mddev, all_mddevs);
8154 mddev_get(mddev);
8155 spin_unlock(&all_mddevs_lock);
8156 return mddev;
8157 }
8158 spin_unlock(&all_mddevs_lock);
8159 if (!l--)
8160 return (void*)2;/* tail */
8161 return NULL;
8162 }
8163
8164 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8165 {
8166 struct list_head *tmp;
8167 struct mddev *next_mddev, *mddev = v;
8168
8169 ++*pos;
8170 if (v == (void*)2)
8171 return NULL;
8172
8173 spin_lock(&all_mddevs_lock);
8174 if (v == (void*)1)
8175 tmp = all_mddevs.next;
8176 else
8177 tmp = mddev->all_mddevs.next;
8178 if (tmp != &all_mddevs)
8179 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
8180 else {
8181 next_mddev = (void*)2;
8182 *pos = 0x10000;
8183 }
8184 spin_unlock(&all_mddevs_lock);
8185
8186 if (v != (void*)1)
8187 mddev_put(mddev);
8188 return next_mddev;
8189
8190 }
8191
8192 static void md_seq_stop(struct seq_file *seq, void *v)
8193 {
8194 struct mddev *mddev = v;
8195
8196 if (mddev && v != (void*)1 && v != (void*)2)
8197 mddev_put(mddev);
8198 }
8199
8200 static int md_seq_show(struct seq_file *seq, void *v)
8201 {
8202 struct mddev *mddev = v;
8203 sector_t sectors;
8204 struct md_rdev *rdev;
8205
8206 if (v == (void*)1) {
8207 struct md_personality *pers;
8208 seq_printf(seq, "Personalities : ");
8209 spin_lock(&pers_lock);
8210 list_for_each_entry(pers, &pers_list, list)
8211 seq_printf(seq, "[%s] ", pers->name);
8212
8213 spin_unlock(&pers_lock);
8214 seq_printf(seq, "\n");
8215 seq->poll_event = atomic_read(&md_event_count);
8216 return 0;
8217 }
8218 if (v == (void*)2) {
8219 status_unused(seq);
8220 return 0;
8221 }
8222
8223 spin_lock(&mddev->lock);
8224 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8225 seq_printf(seq, "%s : %sactive", mdname(mddev),
8226 mddev->pers ? "" : "in");
8227 if (mddev->pers) {
8228 if (mddev->ro==1)
8229 seq_printf(seq, " (read-only)");
8230 if (mddev->ro==2)
8231 seq_printf(seq, " (auto-read-only)");
8232 seq_printf(seq, " %s", mddev->pers->name);
8233 }
8234
8235 sectors = 0;
8236 rcu_read_lock();
8237 rdev_for_each_rcu(rdev, mddev) {
8238 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr);
8239
8240 if (test_bit(WriteMostly, &rdev->flags))
8241 seq_printf(seq, "(W)");
8242 if (test_bit(Journal, &rdev->flags))
8243 seq_printf(seq, "(J)");
8244 if (test_bit(Faulty, &rdev->flags)) {
8245 seq_printf(seq, "(F)");
8246 continue;
8247 }
8248 if (rdev->raid_disk < 0)
8249 seq_printf(seq, "(S)"); /* spare */
8250 if (test_bit(Replacement, &rdev->flags))
8251 seq_printf(seq, "(R)");
8252 sectors += rdev->sectors;
8253 }
8254 rcu_read_unlock();
8255
8256 if (!list_empty(&mddev->disks)) {
8257 if (mddev->pers)
8258 seq_printf(seq, "\n %llu blocks",
8259 (unsigned long long)
8260 mddev->array_sectors / 2);
8261 else
8262 seq_printf(seq, "\n %llu blocks",
8263 (unsigned long long)sectors / 2);
8264 }
8265 if (mddev->persistent) {
8266 if (mddev->major_version != 0 ||
8267 mddev->minor_version != 90) {
8268 seq_printf(seq," super %d.%d",
8269 mddev->major_version,
8270 mddev->minor_version);
8271 }
8272 } else if (mddev->external)
8273 seq_printf(seq, " super external:%s",
8274 mddev->metadata_type);
8275 else
8276 seq_printf(seq, " super non-persistent");
8277
8278 if (mddev->pers) {
8279 mddev->pers->status(seq, mddev);
8280 seq_printf(seq, "\n ");
8281 if (mddev->pers->sync_request) {
8282 if (status_resync(seq, mddev))
8283 seq_printf(seq, "\n ");
8284 }
8285 } else
8286 seq_printf(seq, "\n ");
8287
8288 md_bitmap_status(seq, mddev->bitmap);
8289
8290 seq_printf(seq, "\n");
8291 }
8292 spin_unlock(&mddev->lock);
8293
8294 return 0;
8295 }
8296
8297 static const struct seq_operations md_seq_ops = {
8298 .start = md_seq_start,
8299 .next = md_seq_next,
8300 .stop = md_seq_stop,
8301 .show = md_seq_show,
8302 };
8303
8304 static int md_seq_open(struct inode *inode, struct file *file)
8305 {
8306 struct seq_file *seq;
8307 int error;
8308
8309 error = seq_open(file, &md_seq_ops);
8310 if (error)
8311 return error;
8312
8313 seq = file->private_data;
8314 seq->poll_event = atomic_read(&md_event_count);
8315 return error;
8316 }
8317
8318 static int md_unloading;
8319 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8320 {
8321 struct seq_file *seq = filp->private_data;
8322 __poll_t mask;
8323
8324 if (md_unloading)
8325 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8326 poll_wait(filp, &md_event_waiters, wait);
8327
8328 /* always allow read */
8329 mask = EPOLLIN | EPOLLRDNORM;
8330
8331 if (seq->poll_event != atomic_read(&md_event_count))
8332 mask |= EPOLLERR | EPOLLPRI;
8333 return mask;
8334 }
8335
8336 static const struct proc_ops mdstat_proc_ops = {
8337 .proc_open = md_seq_open,
8338 .proc_read = seq_read,
8339 .proc_lseek = seq_lseek,
8340 .proc_release = seq_release,
8341 .proc_poll = mdstat_poll,
8342 };
8343
8344 int register_md_personality(struct md_personality *p)
8345 {
8346 pr_debug("md: %s personality registered for level %d\n",
8347 p->name, p->level);
8348 spin_lock(&pers_lock);
8349 list_add_tail(&p->list, &pers_list);
8350 spin_unlock(&pers_lock);
8351 return 0;
8352 }
8353 EXPORT_SYMBOL(register_md_personality);
8354
8355 int unregister_md_personality(struct md_personality *p)
8356 {
8357 pr_debug("md: %s personality unregistered\n", p->name);
8358 spin_lock(&pers_lock);
8359 list_del_init(&p->list);
8360 spin_unlock(&pers_lock);
8361 return 0;
8362 }
8363 EXPORT_SYMBOL(unregister_md_personality);
8364
8365 int register_md_cluster_operations(struct md_cluster_operations *ops,
8366 struct module *module)
8367 {
8368 int ret = 0;
8369 spin_lock(&pers_lock);
8370 if (md_cluster_ops != NULL)
8371 ret = -EALREADY;
8372 else {
8373 md_cluster_ops = ops;
8374 md_cluster_mod = module;
8375 }
8376 spin_unlock(&pers_lock);
8377 return ret;
8378 }
8379 EXPORT_SYMBOL(register_md_cluster_operations);
8380
8381 int unregister_md_cluster_operations(void)
8382 {
8383 spin_lock(&pers_lock);
8384 md_cluster_ops = NULL;
8385 spin_unlock(&pers_lock);
8386 return 0;
8387 }
8388 EXPORT_SYMBOL(unregister_md_cluster_operations);
8389
8390 int md_setup_cluster(struct mddev *mddev, int nodes)
8391 {
8392 int ret;
8393 if (!md_cluster_ops)
8394 request_module("md-cluster");
8395 spin_lock(&pers_lock);
8396 /* ensure module won't be unloaded */
8397 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8398 pr_warn("can't find md-cluster module or get its reference.\n");
8399 spin_unlock(&pers_lock);
8400 return -ENOENT;
8401 }
8402 spin_unlock(&pers_lock);
8403
8404 ret = md_cluster_ops->join(mddev, nodes);
8405 if (!ret)
8406 mddev->safemode_delay = 0;
8407 return ret;
8408 }
8409
8410 void md_cluster_stop(struct mddev *mddev)
8411 {
8412 if (!md_cluster_ops)
8413 return;
8414 md_cluster_ops->leave(mddev);
8415 module_put(md_cluster_mod);
8416 }
8417
8418 static int is_mddev_idle(struct mddev *mddev, int init)
8419 {
8420 struct md_rdev *rdev;
8421 int idle;
8422 int curr_events;
8423
8424 idle = 1;
8425 rcu_read_lock();
8426 rdev_for_each_rcu(rdev, mddev) {
8427 struct gendisk *disk = rdev->bdev->bd_disk;
8428 curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
8429 atomic_read(&disk->sync_io);
8430 /* sync IO will cause sync_io to increase before the disk_stats
8431 * as sync_io is counted when a request starts, and
8432 * disk_stats is counted when it completes.
8433 * So resync activity will cause curr_events to be smaller than
8434 * when there was no such activity.
8435 * non-sync IO will cause disk_stat to increase without
8436 * increasing sync_io so curr_events will (eventually)
8437 * be larger than it was before. Once it becomes
8438 * substantially larger, the test below will cause
8439 * the array to appear non-idle, and resync will slow
8440 * down.
8441 * If there is a lot of outstanding resync activity when
8442 * we set last_event to curr_events, then all that activity
8443 * completing might cause the array to appear non-idle
8444 * and resync will be slowed down even though there might
8445 * not have been non-resync activity. This will only
8446 * happen once though. 'last_events' will soon reflect
8447 * the state where there is little or no outstanding
8448 * resync requests, and further resync activity will
8449 * always make curr_events less than last_events.
8450 *
8451 */
8452 if (init || curr_events - rdev->last_events > 64) {
8453 rdev->last_events = curr_events;
8454 idle = 0;
8455 }
8456 }
8457 rcu_read_unlock();
8458 return idle;
8459 }
8460
8461 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8462 {
8463 /* another "blocks" (512byte) blocks have been synced */
8464 atomic_sub(blocks, &mddev->recovery_active);
8465 wake_up(&mddev->recovery_wait);
8466 if (!ok) {
8467 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8468 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8469 md_wakeup_thread(mddev->thread);
8470 // stop recovery, signal do_sync ....
8471 }
8472 }
8473 EXPORT_SYMBOL(md_done_sync);
8474
8475 /* md_write_start(mddev, bi)
8476 * If we need to update some array metadata (e.g. 'active' flag
8477 * in superblock) before writing, schedule a superblock update
8478 * and wait for it to complete.
8479 * A return value of 'false' means that the write wasn't recorded
8480 * and cannot proceed as the array is being suspend.
8481 */
8482 bool md_write_start(struct mddev *mddev, struct bio *bi)
8483 {
8484 int did_change = 0;
8485
8486 if (bio_data_dir(bi) != WRITE)
8487 return true;
8488
8489 BUG_ON(mddev->ro == 1);
8490 if (mddev->ro == 2) {
8491 /* need to switch to read/write */
8492 mddev->ro = 0;
8493 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8494 md_wakeup_thread(mddev->thread);
8495 md_wakeup_thread(mddev->sync_thread);
8496 did_change = 1;
8497 }
8498 rcu_read_lock();
8499 percpu_ref_get(&mddev->writes_pending);
8500 smp_mb(); /* Match smp_mb in set_in_sync() */
8501 if (mddev->safemode == 1)
8502 mddev->safemode = 0;
8503 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8504 if (mddev->in_sync || mddev->sync_checkers) {
8505 spin_lock(&mddev->lock);
8506 if (mddev->in_sync) {
8507 mddev->in_sync = 0;
8508 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8509 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8510 md_wakeup_thread(mddev->thread);
8511 did_change = 1;
8512 }
8513 spin_unlock(&mddev->lock);
8514 }
8515 rcu_read_unlock();
8516 if (did_change)
8517 sysfs_notify_dirent_safe(mddev->sysfs_state);
8518 if (!mddev->has_superblocks)
8519 return true;
8520 wait_event(mddev->sb_wait,
8521 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8522 mddev->suspended);
8523 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8524 percpu_ref_put(&mddev->writes_pending);
8525 return false;
8526 }
8527 return true;
8528 }
8529 EXPORT_SYMBOL(md_write_start);
8530
8531 /* md_write_inc can only be called when md_write_start() has
8532 * already been called at least once of the current request.
8533 * It increments the counter and is useful when a single request
8534 * is split into several parts. Each part causes an increment and
8535 * so needs a matching md_write_end().
8536 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8537 * a spinlocked region.
8538 */
8539 void md_write_inc(struct mddev *mddev, struct bio *bi)
8540 {
8541 if (bio_data_dir(bi) != WRITE)
8542 return;
8543 WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8544 percpu_ref_get(&mddev->writes_pending);
8545 }
8546 EXPORT_SYMBOL(md_write_inc);
8547
8548 void md_write_end(struct mddev *mddev)
8549 {
8550 percpu_ref_put(&mddev->writes_pending);
8551
8552 if (mddev->safemode == 2)
8553 md_wakeup_thread(mddev->thread);
8554 else if (mddev->safemode_delay)
8555 /* The roundup() ensures this only performs locking once
8556 * every ->safemode_delay jiffies
8557 */
8558 mod_timer(&mddev->safemode_timer,
8559 roundup(jiffies, mddev->safemode_delay) +
8560 mddev->safemode_delay);
8561 }
8562
8563 EXPORT_SYMBOL(md_write_end);
8564
8565 /* This is used by raid0 and raid10 */
8566 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
8567 struct bio *bio, sector_t start, sector_t size)
8568 {
8569 struct bio *discard_bio = NULL;
8570
8571 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO,
8572 &discard_bio) || !discard_bio)
8573 return;
8574
8575 bio_chain(discard_bio, bio);
8576 bio_clone_blkg_association(discard_bio, bio);
8577 if (mddev->gendisk)
8578 trace_block_bio_remap(discard_bio,
8579 disk_devt(mddev->gendisk),
8580 bio->bi_iter.bi_sector);
8581 submit_bio_noacct(discard_bio);
8582 }
8583 EXPORT_SYMBOL_GPL(md_submit_discard_bio);
8584
8585 int acct_bioset_init(struct mddev *mddev)
8586 {
8587 int err = 0;
8588
8589 if (!bioset_initialized(&mddev->io_acct_set))
8590 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE,
8591 offsetof(struct md_io_acct, bio_clone), 0);
8592 return err;
8593 }
8594 EXPORT_SYMBOL_GPL(acct_bioset_init);
8595
8596 void acct_bioset_exit(struct mddev *mddev)
8597 {
8598 bioset_exit(&mddev->io_acct_set);
8599 }
8600 EXPORT_SYMBOL_GPL(acct_bioset_exit);
8601
8602 static void md_end_io_acct(struct bio *bio)
8603 {
8604 struct md_io_acct *md_io_acct = bio->bi_private;
8605 struct bio *orig_bio = md_io_acct->orig_bio;
8606
8607 orig_bio->bi_status = bio->bi_status;
8608
8609 bio_end_io_acct(orig_bio, md_io_acct->start_time);
8610 bio_put(bio);
8611 bio_endio(orig_bio);
8612 }
8613
8614 /*
8615 * Used by personalities that don't already clone the bio and thus can't
8616 * easily add the timestamp to their extended bio structure.
8617 */
8618 void md_account_bio(struct mddev *mddev, struct bio **bio)
8619 {
8620 struct block_device *bdev = (*bio)->bi_bdev;
8621 struct md_io_acct *md_io_acct;
8622 struct bio *clone;
8623
8624 if (!blk_queue_io_stat(bdev->bd_disk->queue))
8625 return;
8626
8627 clone = bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_acct_set);
8628 md_io_acct = container_of(clone, struct md_io_acct, bio_clone);
8629 md_io_acct->orig_bio = *bio;
8630 md_io_acct->start_time = bio_start_io_acct(*bio);
8631
8632 clone->bi_end_io = md_end_io_acct;
8633 clone->bi_private = md_io_acct;
8634 *bio = clone;
8635 }
8636 EXPORT_SYMBOL_GPL(md_account_bio);
8637
8638 /* md_allow_write(mddev)
8639 * Calling this ensures that the array is marked 'active' so that writes
8640 * may proceed without blocking. It is important to call this before
8641 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8642 * Must be called with mddev_lock held.
8643 */
8644 void md_allow_write(struct mddev *mddev)
8645 {
8646 if (!mddev->pers)
8647 return;
8648 if (mddev->ro)
8649 return;
8650 if (!mddev->pers->sync_request)
8651 return;
8652
8653 spin_lock(&mddev->lock);
8654 if (mddev->in_sync) {
8655 mddev->in_sync = 0;
8656 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8657 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8658 if (mddev->safemode_delay &&
8659 mddev->safemode == 0)
8660 mddev->safemode = 1;
8661 spin_unlock(&mddev->lock);
8662 md_update_sb(mddev, 0);
8663 sysfs_notify_dirent_safe(mddev->sysfs_state);
8664 /* wait for the dirty state to be recorded in the metadata */
8665 wait_event(mddev->sb_wait,
8666 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8667 } else
8668 spin_unlock(&mddev->lock);
8669 }
8670 EXPORT_SYMBOL_GPL(md_allow_write);
8671
8672 #define SYNC_MARKS 10
8673 #define SYNC_MARK_STEP (3*HZ)
8674 #define UPDATE_FREQUENCY (5*60*HZ)
8675 void md_do_sync(struct md_thread *thread)
8676 {
8677 struct mddev *mddev = thread->mddev;
8678 struct mddev *mddev2;
8679 unsigned int currspeed = 0, window;
8680 sector_t max_sectors,j, io_sectors, recovery_done;
8681 unsigned long mark[SYNC_MARKS];
8682 unsigned long update_time;
8683 sector_t mark_cnt[SYNC_MARKS];
8684 int last_mark,m;
8685 struct list_head *tmp;
8686 sector_t last_check;
8687 int skipped = 0;
8688 struct md_rdev *rdev;
8689 char *desc, *action = NULL;
8690 struct blk_plug plug;
8691 int ret;
8692
8693 /* just incase thread restarts... */
8694 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8695 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8696 return;
8697 if (mddev->ro) {/* never try to sync a read-only array */
8698 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8699 return;
8700 }
8701
8702 if (mddev_is_clustered(mddev)) {
8703 ret = md_cluster_ops->resync_start(mddev);
8704 if (ret)
8705 goto skip;
8706
8707 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8708 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8709 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8710 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8711 && ((unsigned long long)mddev->curr_resync_completed
8712 < (unsigned long long)mddev->resync_max_sectors))
8713 goto skip;
8714 }
8715
8716 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8717 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8718 desc = "data-check";
8719 action = "check";
8720 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8721 desc = "requested-resync";
8722 action = "repair";
8723 } else
8724 desc = "resync";
8725 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8726 desc = "reshape";
8727 else
8728 desc = "recovery";
8729
8730 mddev->last_sync_action = action ?: desc;
8731
8732 /* we overload curr_resync somewhat here.
8733 * 0 == not engaged in resync at all
8734 * 2 == checking that there is no conflict with another sync
8735 * 1 == like 2, but have yielded to allow conflicting resync to
8736 * commence
8737 * other == active in resync - this many blocks
8738 *
8739 * Before starting a resync we must have set curr_resync to
8740 * 2, and then checked that every "conflicting" array has curr_resync
8741 * less than ours. When we find one that is the same or higher
8742 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8743 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8744 * This will mean we have to start checking from the beginning again.
8745 *
8746 */
8747
8748 do {
8749 int mddev2_minor = -1;
8750 mddev->curr_resync = 2;
8751
8752 try_again:
8753 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8754 goto skip;
8755 for_each_mddev(mddev2, tmp) {
8756 if (mddev2 == mddev)
8757 continue;
8758 if (!mddev->parallel_resync
8759 && mddev2->curr_resync
8760 && match_mddev_units(mddev, mddev2)) {
8761 DEFINE_WAIT(wq);
8762 if (mddev < mddev2 && mddev->curr_resync == 2) {
8763 /* arbitrarily yield */
8764 mddev->curr_resync = 1;
8765 wake_up(&resync_wait);
8766 }
8767 if (mddev > mddev2 && mddev->curr_resync == 1)
8768 /* no need to wait here, we can wait the next
8769 * time 'round when curr_resync == 2
8770 */
8771 continue;
8772 /* We need to wait 'interruptible' so as not to
8773 * contribute to the load average, and not to
8774 * be caught by 'softlockup'
8775 */
8776 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8777 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8778 mddev2->curr_resync >= mddev->curr_resync) {
8779 if (mddev2_minor != mddev2->md_minor) {
8780 mddev2_minor = mddev2->md_minor;
8781 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8782 desc, mdname(mddev),
8783 mdname(mddev2));
8784 }
8785 mddev_put(mddev2);
8786 if (signal_pending(current))
8787 flush_signals(current);
8788 schedule();
8789 finish_wait(&resync_wait, &wq);
8790 goto try_again;
8791 }
8792 finish_wait(&resync_wait, &wq);
8793 }
8794 }
8795 } while (mddev->curr_resync < 2);
8796
8797 j = 0;
8798 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8799 /* resync follows the size requested by the personality,
8800 * which defaults to physical size, but can be virtual size
8801 */
8802 max_sectors = mddev->resync_max_sectors;
8803 atomic64_set(&mddev->resync_mismatches, 0);
8804 /* we don't use the checkpoint if there's a bitmap */
8805 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8806 j = mddev->resync_min;
8807 else if (!mddev->bitmap)
8808 j = mddev->recovery_cp;
8809
8810 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8811 max_sectors = mddev->resync_max_sectors;
8812 /*
8813 * If the original node aborts reshaping then we continue the
8814 * reshaping, so set j again to avoid restart reshape from the
8815 * first beginning
8816 */
8817 if (mddev_is_clustered(mddev) &&
8818 mddev->reshape_position != MaxSector)
8819 j = mddev->reshape_position;
8820 } else {
8821 /* recovery follows the physical size of devices */
8822 max_sectors = mddev->dev_sectors;
8823 j = MaxSector;
8824 rcu_read_lock();
8825 rdev_for_each_rcu(rdev, mddev)
8826 if (rdev->raid_disk >= 0 &&
8827 !test_bit(Journal, &rdev->flags) &&
8828 !test_bit(Faulty, &rdev->flags) &&
8829 !test_bit(In_sync, &rdev->flags) &&
8830 rdev->recovery_offset < j)
8831 j = rdev->recovery_offset;
8832 rcu_read_unlock();
8833
8834 /* If there is a bitmap, we need to make sure all
8835 * writes that started before we added a spare
8836 * complete before we start doing a recovery.
8837 * Otherwise the write might complete and (via
8838 * bitmap_endwrite) set a bit in the bitmap after the
8839 * recovery has checked that bit and skipped that
8840 * region.
8841 */
8842 if (mddev->bitmap) {
8843 mddev->pers->quiesce(mddev, 1);
8844 mddev->pers->quiesce(mddev, 0);
8845 }
8846 }
8847
8848 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8849 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8850 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8851 speed_max(mddev), desc);
8852
8853 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8854
8855 io_sectors = 0;
8856 for (m = 0; m < SYNC_MARKS; m++) {
8857 mark[m] = jiffies;
8858 mark_cnt[m] = io_sectors;
8859 }
8860 last_mark = 0;
8861 mddev->resync_mark = mark[last_mark];
8862 mddev->resync_mark_cnt = mark_cnt[last_mark];
8863
8864 /*
8865 * Tune reconstruction:
8866 */
8867 window = 32 * (PAGE_SIZE / 512);
8868 pr_debug("md: using %dk window, over a total of %lluk.\n",
8869 window/2, (unsigned long long)max_sectors/2);
8870
8871 atomic_set(&mddev->recovery_active, 0);
8872 last_check = 0;
8873
8874 if (j>2) {
8875 pr_debug("md: resuming %s of %s from checkpoint.\n",
8876 desc, mdname(mddev));
8877 mddev->curr_resync = j;
8878 } else
8879 mddev->curr_resync = 3; /* no longer delayed */
8880 mddev->curr_resync_completed = j;
8881 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8882 md_new_event();
8883 update_time = jiffies;
8884
8885 blk_start_plug(&plug);
8886 while (j < max_sectors) {
8887 sector_t sectors;
8888
8889 skipped = 0;
8890
8891 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8892 ((mddev->curr_resync > mddev->curr_resync_completed &&
8893 (mddev->curr_resync - mddev->curr_resync_completed)
8894 > (max_sectors >> 4)) ||
8895 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8896 (j - mddev->curr_resync_completed)*2
8897 >= mddev->resync_max - mddev->curr_resync_completed ||
8898 mddev->curr_resync_completed > mddev->resync_max
8899 )) {
8900 /* time to update curr_resync_completed */
8901 wait_event(mddev->recovery_wait,
8902 atomic_read(&mddev->recovery_active) == 0);
8903 mddev->curr_resync_completed = j;
8904 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8905 j > mddev->recovery_cp)
8906 mddev->recovery_cp = j;
8907 update_time = jiffies;
8908 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8909 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8910 }
8911
8912 while (j >= mddev->resync_max &&
8913 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8914 /* As this condition is controlled by user-space,
8915 * we can block indefinitely, so use '_interruptible'
8916 * to avoid triggering warnings.
8917 */
8918 flush_signals(current); /* just in case */
8919 wait_event_interruptible(mddev->recovery_wait,
8920 mddev->resync_max > j
8921 || test_bit(MD_RECOVERY_INTR,
8922 &mddev->recovery));
8923 }
8924
8925 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8926 break;
8927
8928 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8929 if (sectors == 0) {
8930 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8931 break;
8932 }
8933
8934 if (!skipped) { /* actual IO requested */
8935 io_sectors += sectors;
8936 atomic_add(sectors, &mddev->recovery_active);
8937 }
8938
8939 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8940 break;
8941
8942 j += sectors;
8943 if (j > max_sectors)
8944 /* when skipping, extra large numbers can be returned. */
8945 j = max_sectors;
8946 if (j > 2)
8947 mddev->curr_resync = j;
8948 mddev->curr_mark_cnt = io_sectors;
8949 if (last_check == 0)
8950 /* this is the earliest that rebuild will be
8951 * visible in /proc/mdstat
8952 */
8953 md_new_event();
8954
8955 if (last_check + window > io_sectors || j == max_sectors)
8956 continue;
8957
8958 last_check = io_sectors;
8959 repeat:
8960 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8961 /* step marks */
8962 int next = (last_mark+1) % SYNC_MARKS;
8963
8964 mddev->resync_mark = mark[next];
8965 mddev->resync_mark_cnt = mark_cnt[next];
8966 mark[next] = jiffies;
8967 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8968 last_mark = next;
8969 }
8970
8971 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8972 break;
8973
8974 /*
8975 * this loop exits only if either when we are slower than
8976 * the 'hard' speed limit, or the system was IO-idle for
8977 * a jiffy.
8978 * the system might be non-idle CPU-wise, but we only care
8979 * about not overloading the IO subsystem. (things like an
8980 * e2fsck being done on the RAID array should execute fast)
8981 */
8982 cond_resched();
8983
8984 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8985 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8986 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8987
8988 if (currspeed > speed_min(mddev)) {
8989 if (currspeed > speed_max(mddev)) {
8990 msleep(500);
8991 goto repeat;
8992 }
8993 if (!is_mddev_idle(mddev, 0)) {
8994 /*
8995 * Give other IO more of a chance.
8996 * The faster the devices, the less we wait.
8997 */
8998 wait_event(mddev->recovery_wait,
8999 !atomic_read(&mddev->recovery_active));
9000 }
9001 }
9002 }
9003 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
9004 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
9005 ? "interrupted" : "done");
9006 /*
9007 * this also signals 'finished resyncing' to md_stop
9008 */
9009 blk_finish_plug(&plug);
9010 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
9011
9012 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9013 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9014 mddev->curr_resync > 3) {
9015 mddev->curr_resync_completed = mddev->curr_resync;
9016 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9017 }
9018 mddev->pers->sync_request(mddev, max_sectors, &skipped);
9019
9020 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
9021 mddev->curr_resync > 3) {
9022 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
9023 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9024 if (mddev->curr_resync >= mddev->recovery_cp) {
9025 pr_debug("md: checkpointing %s of %s.\n",
9026 desc, mdname(mddev));
9027 if (test_bit(MD_RECOVERY_ERROR,
9028 &mddev->recovery))
9029 mddev->recovery_cp =
9030 mddev->curr_resync_completed;
9031 else
9032 mddev->recovery_cp =
9033 mddev->curr_resync;
9034 }
9035 } else
9036 mddev->recovery_cp = MaxSector;
9037 } else {
9038 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9039 mddev->curr_resync = MaxSector;
9040 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9041 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9042 rcu_read_lock();
9043 rdev_for_each_rcu(rdev, mddev)
9044 if (rdev->raid_disk >= 0 &&
9045 mddev->delta_disks >= 0 &&
9046 !test_bit(Journal, &rdev->flags) &&
9047 !test_bit(Faulty, &rdev->flags) &&
9048 !test_bit(In_sync, &rdev->flags) &&
9049 rdev->recovery_offset < mddev->curr_resync)
9050 rdev->recovery_offset = mddev->curr_resync;
9051 rcu_read_unlock();
9052 }
9053 }
9054 }
9055 skip:
9056 /* set CHANGE_PENDING here since maybe another update is needed,
9057 * so other nodes are informed. It should be harmless for normal
9058 * raid */
9059 set_mask_bits(&mddev->sb_flags, 0,
9060 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9061
9062 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9063 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9064 mddev->delta_disks > 0 &&
9065 mddev->pers->finish_reshape &&
9066 mddev->pers->size &&
9067 mddev->queue) {
9068 mddev_lock_nointr(mddev);
9069 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9070 mddev_unlock(mddev);
9071 if (!mddev_is_clustered(mddev))
9072 set_capacity_and_notify(mddev->gendisk,
9073 mddev->array_sectors);
9074 }
9075
9076 spin_lock(&mddev->lock);
9077 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9078 /* We completed so min/max setting can be forgotten if used. */
9079 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9080 mddev->resync_min = 0;
9081 mddev->resync_max = MaxSector;
9082 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9083 mddev->resync_min = mddev->curr_resync_completed;
9084 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9085 mddev->curr_resync = 0;
9086 spin_unlock(&mddev->lock);
9087
9088 wake_up(&resync_wait);
9089 md_wakeup_thread(mddev->thread);
9090 return;
9091 }
9092 EXPORT_SYMBOL_GPL(md_do_sync);
9093
9094 static int remove_and_add_spares(struct mddev *mddev,
9095 struct md_rdev *this)
9096 {
9097 struct md_rdev *rdev;
9098 int spares = 0;
9099 int removed = 0;
9100 bool remove_some = false;
9101
9102 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9103 /* Mustn't remove devices when resync thread is running */
9104 return 0;
9105
9106 rdev_for_each(rdev, mddev) {
9107 if ((this == NULL || rdev == this) &&
9108 rdev->raid_disk >= 0 &&
9109 !test_bit(Blocked, &rdev->flags) &&
9110 test_bit(Faulty, &rdev->flags) &&
9111 atomic_read(&rdev->nr_pending)==0) {
9112 /* Faulty non-Blocked devices with nr_pending == 0
9113 * never get nr_pending incremented,
9114 * never get Faulty cleared, and never get Blocked set.
9115 * So we can synchronize_rcu now rather than once per device
9116 */
9117 remove_some = true;
9118 set_bit(RemoveSynchronized, &rdev->flags);
9119 }
9120 }
9121
9122 if (remove_some)
9123 synchronize_rcu();
9124 rdev_for_each(rdev, mddev) {
9125 if ((this == NULL || rdev == this) &&
9126 rdev->raid_disk >= 0 &&
9127 !test_bit(Blocked, &rdev->flags) &&
9128 ((test_bit(RemoveSynchronized, &rdev->flags) ||
9129 (!test_bit(In_sync, &rdev->flags) &&
9130 !test_bit(Journal, &rdev->flags))) &&
9131 atomic_read(&rdev->nr_pending)==0)) {
9132 if (mddev->pers->hot_remove_disk(
9133 mddev, rdev) == 0) {
9134 sysfs_unlink_rdev(mddev, rdev);
9135 rdev->saved_raid_disk = rdev->raid_disk;
9136 rdev->raid_disk = -1;
9137 removed++;
9138 }
9139 }
9140 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9141 clear_bit(RemoveSynchronized, &rdev->flags);
9142 }
9143
9144 if (removed && mddev->kobj.sd)
9145 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9146
9147 if (this && removed)
9148 goto no_add;
9149
9150 rdev_for_each(rdev, mddev) {
9151 if (this && this != rdev)
9152 continue;
9153 if (test_bit(Candidate, &rdev->flags))
9154 continue;
9155 if (rdev->raid_disk >= 0 &&
9156 !test_bit(In_sync, &rdev->flags) &&
9157 !test_bit(Journal, &rdev->flags) &&
9158 !test_bit(Faulty, &rdev->flags))
9159 spares++;
9160 if (rdev->raid_disk >= 0)
9161 continue;
9162 if (test_bit(Faulty, &rdev->flags))
9163 continue;
9164 if (!test_bit(Journal, &rdev->flags)) {
9165 if (mddev->ro &&
9166 ! (rdev->saved_raid_disk >= 0 &&
9167 !test_bit(Bitmap_sync, &rdev->flags)))
9168 continue;
9169
9170 rdev->recovery_offset = 0;
9171 }
9172 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9173 /* failure here is OK */
9174 sysfs_link_rdev(mddev, rdev);
9175 if (!test_bit(Journal, &rdev->flags))
9176 spares++;
9177 md_new_event();
9178 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9179 }
9180 }
9181 no_add:
9182 if (removed)
9183 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9184 return spares;
9185 }
9186
9187 static void md_start_sync(struct work_struct *ws)
9188 {
9189 struct mddev *mddev = container_of(ws, struct mddev, del_work);
9190
9191 mddev->sync_thread = md_register_thread(md_do_sync,
9192 mddev,
9193 "resync");
9194 if (!mddev->sync_thread) {
9195 pr_warn("%s: could not start resync thread...\n",
9196 mdname(mddev));
9197 /* leave the spares where they are, it shouldn't hurt */
9198 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9199 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9200 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9201 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9202 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9203 wake_up(&resync_wait);
9204 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9205 &mddev->recovery))
9206 if (mddev->sysfs_action)
9207 sysfs_notify_dirent_safe(mddev->sysfs_action);
9208 } else
9209 md_wakeup_thread(mddev->sync_thread);
9210 sysfs_notify_dirent_safe(mddev->sysfs_action);
9211 md_new_event();
9212 }
9213
9214 /*
9215 * This routine is regularly called by all per-raid-array threads to
9216 * deal with generic issues like resync and super-block update.
9217 * Raid personalities that don't have a thread (linear/raid0) do not
9218 * need this as they never do any recovery or update the superblock.
9219 *
9220 * It does not do any resync itself, but rather "forks" off other threads
9221 * to do that as needed.
9222 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9223 * "->recovery" and create a thread at ->sync_thread.
9224 * When the thread finishes it sets MD_RECOVERY_DONE
9225 * and wakeups up this thread which will reap the thread and finish up.
9226 * This thread also removes any faulty devices (with nr_pending == 0).
9227 *
9228 * The overall approach is:
9229 * 1/ if the superblock needs updating, update it.
9230 * 2/ If a recovery thread is running, don't do anything else.
9231 * 3/ If recovery has finished, clean up, possibly marking spares active.
9232 * 4/ If there are any faulty devices, remove them.
9233 * 5/ If array is degraded, try to add spares devices
9234 * 6/ If array has spares or is not in-sync, start a resync thread.
9235 */
9236 void md_check_recovery(struct mddev *mddev)
9237 {
9238 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9239 /* Write superblock - thread that called mddev_suspend()
9240 * holds reconfig_mutex for us.
9241 */
9242 set_bit(MD_UPDATING_SB, &mddev->flags);
9243 smp_mb__after_atomic();
9244 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9245 md_update_sb(mddev, 0);
9246 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9247 wake_up(&mddev->sb_wait);
9248 }
9249
9250 if (mddev->suspended)
9251 return;
9252
9253 if (mddev->bitmap)
9254 md_bitmap_daemon_work(mddev);
9255
9256 if (signal_pending(current)) {
9257 if (mddev->pers->sync_request && !mddev->external) {
9258 pr_debug("md: %s in immediate safe mode\n",
9259 mdname(mddev));
9260 mddev->safemode = 2;
9261 }
9262 flush_signals(current);
9263 }
9264
9265 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9266 return;
9267 if ( ! (
9268 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9269 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9270 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9271 (mddev->external == 0 && mddev->safemode == 1) ||
9272 (mddev->safemode == 2
9273 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9274 ))
9275 return;
9276
9277 if (mddev_trylock(mddev)) {
9278 int spares = 0;
9279 bool try_set_sync = mddev->safemode != 0;
9280
9281 if (!mddev->external && mddev->safemode == 1)
9282 mddev->safemode = 0;
9283
9284 if (mddev->ro) {
9285 struct md_rdev *rdev;
9286 if (!mddev->external && mddev->in_sync)
9287 /* 'Blocked' flag not needed as failed devices
9288 * will be recorded if array switched to read/write.
9289 * Leaving it set will prevent the device
9290 * from being removed.
9291 */
9292 rdev_for_each(rdev, mddev)
9293 clear_bit(Blocked, &rdev->flags);
9294 /* On a read-only array we can:
9295 * - remove failed devices
9296 * - add already-in_sync devices if the array itself
9297 * is in-sync.
9298 * As we only add devices that are already in-sync,
9299 * we can activate the spares immediately.
9300 */
9301 remove_and_add_spares(mddev, NULL);
9302 /* There is no thread, but we need to call
9303 * ->spare_active and clear saved_raid_disk
9304 */
9305 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9306 md_reap_sync_thread(mddev);
9307 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9308 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9309 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9310 goto unlock;
9311 }
9312
9313 if (mddev_is_clustered(mddev)) {
9314 struct md_rdev *rdev, *tmp;
9315 /* kick the device if another node issued a
9316 * remove disk.
9317 */
9318 rdev_for_each_safe(rdev, tmp, mddev) {
9319 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9320 rdev->raid_disk < 0)
9321 md_kick_rdev_from_array(rdev);
9322 }
9323 }
9324
9325 if (try_set_sync && !mddev->external && !mddev->in_sync) {
9326 spin_lock(&mddev->lock);
9327 set_in_sync(mddev);
9328 spin_unlock(&mddev->lock);
9329 }
9330
9331 if (mddev->sb_flags)
9332 md_update_sb(mddev, 0);
9333
9334 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9335 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9336 /* resync/recovery still happening */
9337 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9338 goto unlock;
9339 }
9340 if (mddev->sync_thread) {
9341 md_reap_sync_thread(mddev);
9342 goto unlock;
9343 }
9344 /* Set RUNNING before clearing NEEDED to avoid
9345 * any transients in the value of "sync_action".
9346 */
9347 mddev->curr_resync_completed = 0;
9348 spin_lock(&mddev->lock);
9349 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9350 spin_unlock(&mddev->lock);
9351 /* Clear some bits that don't mean anything, but
9352 * might be left set
9353 */
9354 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9355 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9356
9357 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9358 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9359 goto not_running;
9360 /* no recovery is running.
9361 * remove any failed drives, then
9362 * add spares if possible.
9363 * Spares are also removed and re-added, to allow
9364 * the personality to fail the re-add.
9365 */
9366
9367 if (mddev->reshape_position != MaxSector) {
9368 if (mddev->pers->check_reshape == NULL ||
9369 mddev->pers->check_reshape(mddev) != 0)
9370 /* Cannot proceed */
9371 goto not_running;
9372 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9373 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9374 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
9375 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9376 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9377 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9378 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9379 } else if (mddev->recovery_cp < MaxSector) {
9380 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9381 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9382 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9383 /* nothing to be done ... */
9384 goto not_running;
9385
9386 if (mddev->pers->sync_request) {
9387 if (spares) {
9388 /* We are adding a device or devices to an array
9389 * which has the bitmap stored on all devices.
9390 * So make sure all bitmap pages get written
9391 */
9392 md_bitmap_write_all(mddev->bitmap);
9393 }
9394 INIT_WORK(&mddev->del_work, md_start_sync);
9395 queue_work(md_misc_wq, &mddev->del_work);
9396 goto unlock;
9397 }
9398 not_running:
9399 if (!mddev->sync_thread) {
9400 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9401 wake_up(&resync_wait);
9402 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9403 &mddev->recovery))
9404 if (mddev->sysfs_action)
9405 sysfs_notify_dirent_safe(mddev->sysfs_action);
9406 }
9407 unlock:
9408 wake_up(&mddev->sb_wait);
9409 mddev_unlock(mddev);
9410 }
9411 }
9412 EXPORT_SYMBOL(md_check_recovery);
9413
9414 void md_reap_sync_thread(struct mddev *mddev)
9415 {
9416 struct md_rdev *rdev;
9417 sector_t old_dev_sectors = mddev->dev_sectors;
9418 bool is_reshaped = false;
9419
9420 /* resync has finished, collect result */
9421 md_unregister_thread(&mddev->sync_thread);
9422 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9423 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9424 mddev->degraded != mddev->raid_disks) {
9425 /* success...*/
9426 /* activate any spares */
9427 if (mddev->pers->spare_active(mddev)) {
9428 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9429 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9430 }
9431 }
9432 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9433 mddev->pers->finish_reshape) {
9434 mddev->pers->finish_reshape(mddev);
9435 if (mddev_is_clustered(mddev))
9436 is_reshaped = true;
9437 }
9438
9439 /* If array is no-longer degraded, then any saved_raid_disk
9440 * information must be scrapped.
9441 */
9442 if (!mddev->degraded)
9443 rdev_for_each(rdev, mddev)
9444 rdev->saved_raid_disk = -1;
9445
9446 md_update_sb(mddev, 1);
9447 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9448 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9449 * clustered raid */
9450 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9451 md_cluster_ops->resync_finish(mddev);
9452 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9453 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9454 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9455 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9456 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9457 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9458 /*
9459 * We call md_cluster_ops->update_size here because sync_size could
9460 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9461 * so it is time to update size across cluster.
9462 */
9463 if (mddev_is_clustered(mddev) && is_reshaped
9464 && !test_bit(MD_CLOSING, &mddev->flags))
9465 md_cluster_ops->update_size(mddev, old_dev_sectors);
9466 wake_up(&resync_wait);
9467 /* flag recovery needed just to double check */
9468 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9469 sysfs_notify_dirent_safe(mddev->sysfs_action);
9470 md_new_event();
9471 if (mddev->event_work.func)
9472 queue_work(md_misc_wq, &mddev->event_work);
9473 }
9474 EXPORT_SYMBOL(md_reap_sync_thread);
9475
9476 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9477 {
9478 sysfs_notify_dirent_safe(rdev->sysfs_state);
9479 wait_event_timeout(rdev->blocked_wait,
9480 !test_bit(Blocked, &rdev->flags) &&
9481 !test_bit(BlockedBadBlocks, &rdev->flags),
9482 msecs_to_jiffies(5000));
9483 rdev_dec_pending(rdev, mddev);
9484 }
9485 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9486
9487 void md_finish_reshape(struct mddev *mddev)
9488 {
9489 /* called be personality module when reshape completes. */
9490 struct md_rdev *rdev;
9491
9492 rdev_for_each(rdev, mddev) {
9493 if (rdev->data_offset > rdev->new_data_offset)
9494 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9495 else
9496 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9497 rdev->data_offset = rdev->new_data_offset;
9498 }
9499 }
9500 EXPORT_SYMBOL(md_finish_reshape);
9501
9502 /* Bad block management */
9503
9504 /* Returns 1 on success, 0 on failure */
9505 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9506 int is_new)
9507 {
9508 struct mddev *mddev = rdev->mddev;
9509 int rv;
9510 if (is_new)
9511 s += rdev->new_data_offset;
9512 else
9513 s += rdev->data_offset;
9514 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9515 if (rv == 0) {
9516 /* Make sure they get written out promptly */
9517 if (test_bit(ExternalBbl, &rdev->flags))
9518 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9519 sysfs_notify_dirent_safe(rdev->sysfs_state);
9520 set_mask_bits(&mddev->sb_flags, 0,
9521 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9522 md_wakeup_thread(rdev->mddev->thread);
9523 return 1;
9524 } else
9525 return 0;
9526 }
9527 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9528
9529 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9530 int is_new)
9531 {
9532 int rv;
9533 if (is_new)
9534 s += rdev->new_data_offset;
9535 else
9536 s += rdev->data_offset;
9537 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9538 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9539 sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9540 return rv;
9541 }
9542 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9543
9544 static int md_notify_reboot(struct notifier_block *this,
9545 unsigned long code, void *x)
9546 {
9547 struct list_head *tmp;
9548 struct mddev *mddev;
9549 int need_delay = 0;
9550
9551 for_each_mddev(mddev, tmp) {
9552 if (mddev_trylock(mddev)) {
9553 if (mddev->pers)
9554 __md_stop_writes(mddev);
9555 if (mddev->persistent)
9556 mddev->safemode = 2;
9557 mddev_unlock(mddev);
9558 }
9559 need_delay = 1;
9560 }
9561 /*
9562 * certain more exotic SCSI devices are known to be
9563 * volatile wrt too early system reboots. While the
9564 * right place to handle this issue is the given
9565 * driver, we do want to have a safe RAID driver ...
9566 */
9567 if (need_delay)
9568 msleep(1000);
9569
9570 return NOTIFY_DONE;
9571 }
9572
9573 static struct notifier_block md_notifier = {
9574 .notifier_call = md_notify_reboot,
9575 .next = NULL,
9576 .priority = INT_MAX, /* before any real devices */
9577 };
9578
9579 static void md_geninit(void)
9580 {
9581 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9582
9583 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9584 }
9585
9586 static int __init md_init(void)
9587 {
9588 int ret = -ENOMEM;
9589
9590 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9591 if (!md_wq)
9592 goto err_wq;
9593
9594 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9595 if (!md_misc_wq)
9596 goto err_misc_wq;
9597
9598 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9599 if (!md_rdev_misc_wq)
9600 goto err_rdev_misc_wq;
9601
9602 ret = __register_blkdev(MD_MAJOR, "md", md_probe);
9603 if (ret < 0)
9604 goto err_md;
9605
9606 ret = __register_blkdev(0, "mdp", md_probe);
9607 if (ret < 0)
9608 goto err_mdp;
9609 mdp_major = ret;
9610
9611 register_reboot_notifier(&md_notifier);
9612 raid_table_header = register_sysctl_table(raid_root_table);
9613
9614 md_geninit();
9615 return 0;
9616
9617 err_mdp:
9618 unregister_blkdev(MD_MAJOR, "md");
9619 err_md:
9620 destroy_workqueue(md_rdev_misc_wq);
9621 err_rdev_misc_wq:
9622 destroy_workqueue(md_misc_wq);
9623 err_misc_wq:
9624 destroy_workqueue(md_wq);
9625 err_wq:
9626 return ret;
9627 }
9628
9629 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9630 {
9631 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9632 struct md_rdev *rdev2, *tmp;
9633 int role, ret;
9634
9635 /*
9636 * If size is changed in another node then we need to
9637 * do resize as well.
9638 */
9639 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9640 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9641 if (ret)
9642 pr_info("md-cluster: resize failed\n");
9643 else
9644 md_bitmap_update_sb(mddev->bitmap);
9645 }
9646
9647 /* Check for change of roles in the active devices */
9648 rdev_for_each_safe(rdev2, tmp, mddev) {
9649 if (test_bit(Faulty, &rdev2->flags))
9650 continue;
9651
9652 /* Check if the roles changed */
9653 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9654
9655 if (test_bit(Candidate, &rdev2->flags)) {
9656 if (role == MD_DISK_ROLE_FAULTY) {
9657 pr_info("md: Removing Candidate device %pg because add failed\n",
9658 rdev2->bdev);
9659 md_kick_rdev_from_array(rdev2);
9660 continue;
9661 }
9662 else
9663 clear_bit(Candidate, &rdev2->flags);
9664 }
9665
9666 if (role != rdev2->raid_disk) {
9667 /*
9668 * got activated except reshape is happening.
9669 */
9670 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE &&
9671 !(le32_to_cpu(sb->feature_map) &
9672 MD_FEATURE_RESHAPE_ACTIVE)) {
9673 rdev2->saved_raid_disk = role;
9674 ret = remove_and_add_spares(mddev, rdev2);
9675 pr_info("Activated spare: %pg\n",
9676 rdev2->bdev);
9677 /* wakeup mddev->thread here, so array could
9678 * perform resync with the new activated disk */
9679 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9680 md_wakeup_thread(mddev->thread);
9681 }
9682 /* device faulty
9683 * We just want to do the minimum to mark the disk
9684 * as faulty. The recovery is performed by the
9685 * one who initiated the error.
9686 */
9687 if (role == MD_DISK_ROLE_FAULTY ||
9688 role == MD_DISK_ROLE_JOURNAL) {
9689 md_error(mddev, rdev2);
9690 clear_bit(Blocked, &rdev2->flags);
9691 }
9692 }
9693 }
9694
9695 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9696 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9697 if (ret)
9698 pr_warn("md: updating array disks failed. %d\n", ret);
9699 }
9700
9701 /*
9702 * Since mddev->delta_disks has already updated in update_raid_disks,
9703 * so it is time to check reshape.
9704 */
9705 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9706 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9707 /*
9708 * reshape is happening in the remote node, we need to
9709 * update reshape_position and call start_reshape.
9710 */
9711 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9712 if (mddev->pers->update_reshape_pos)
9713 mddev->pers->update_reshape_pos(mddev);
9714 if (mddev->pers->start_reshape)
9715 mddev->pers->start_reshape(mddev);
9716 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9717 mddev->reshape_position != MaxSector &&
9718 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9719 /* reshape is just done in another node. */
9720 mddev->reshape_position = MaxSector;
9721 if (mddev->pers->update_reshape_pos)
9722 mddev->pers->update_reshape_pos(mddev);
9723 }
9724
9725 /* Finally set the event to be up to date */
9726 mddev->events = le64_to_cpu(sb->events);
9727 }
9728
9729 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9730 {
9731 int err;
9732 struct page *swapout = rdev->sb_page;
9733 struct mdp_superblock_1 *sb;
9734
9735 /* Store the sb page of the rdev in the swapout temporary
9736 * variable in case we err in the future
9737 */
9738 rdev->sb_page = NULL;
9739 err = alloc_disk_sb(rdev);
9740 if (err == 0) {
9741 ClearPageUptodate(rdev->sb_page);
9742 rdev->sb_loaded = 0;
9743 err = super_types[mddev->major_version].
9744 load_super(rdev, NULL, mddev->minor_version);
9745 }
9746 if (err < 0) {
9747 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9748 __func__, __LINE__, rdev->desc_nr, err);
9749 if (rdev->sb_page)
9750 put_page(rdev->sb_page);
9751 rdev->sb_page = swapout;
9752 rdev->sb_loaded = 1;
9753 return err;
9754 }
9755
9756 sb = page_address(rdev->sb_page);
9757 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9758 * is not set
9759 */
9760
9761 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9762 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9763
9764 /* The other node finished recovery, call spare_active to set
9765 * device In_sync and mddev->degraded
9766 */
9767 if (rdev->recovery_offset == MaxSector &&
9768 !test_bit(In_sync, &rdev->flags) &&
9769 mddev->pers->spare_active(mddev))
9770 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9771
9772 put_page(swapout);
9773 return 0;
9774 }
9775
9776 void md_reload_sb(struct mddev *mddev, int nr)
9777 {
9778 struct md_rdev *rdev = NULL, *iter;
9779 int err;
9780
9781 /* Find the rdev */
9782 rdev_for_each_rcu(iter, mddev) {
9783 if (iter->desc_nr == nr) {
9784 rdev = iter;
9785 break;
9786 }
9787 }
9788
9789 if (!rdev) {
9790 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9791 return;
9792 }
9793
9794 err = read_rdev(mddev, rdev);
9795 if (err < 0)
9796 return;
9797
9798 check_sb_changes(mddev, rdev);
9799
9800 /* Read all rdev's to update recovery_offset */
9801 rdev_for_each_rcu(rdev, mddev) {
9802 if (!test_bit(Faulty, &rdev->flags))
9803 read_rdev(mddev, rdev);
9804 }
9805 }
9806 EXPORT_SYMBOL(md_reload_sb);
9807
9808 #ifndef MODULE
9809
9810 /*
9811 * Searches all registered partitions for autorun RAID arrays
9812 * at boot time.
9813 */
9814
9815 static DEFINE_MUTEX(detected_devices_mutex);
9816 static LIST_HEAD(all_detected_devices);
9817 struct detected_devices_node {
9818 struct list_head list;
9819 dev_t dev;
9820 };
9821
9822 void md_autodetect_dev(dev_t dev)
9823 {
9824 struct detected_devices_node *node_detected_dev;
9825
9826 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9827 if (node_detected_dev) {
9828 node_detected_dev->dev = dev;
9829 mutex_lock(&detected_devices_mutex);
9830 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9831 mutex_unlock(&detected_devices_mutex);
9832 }
9833 }
9834
9835 void md_autostart_arrays(int part)
9836 {
9837 struct md_rdev *rdev;
9838 struct detected_devices_node *node_detected_dev;
9839 dev_t dev;
9840 int i_scanned, i_passed;
9841
9842 i_scanned = 0;
9843 i_passed = 0;
9844
9845 pr_info("md: Autodetecting RAID arrays.\n");
9846
9847 mutex_lock(&detected_devices_mutex);
9848 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9849 i_scanned++;
9850 node_detected_dev = list_entry(all_detected_devices.next,
9851 struct detected_devices_node, list);
9852 list_del(&node_detected_dev->list);
9853 dev = node_detected_dev->dev;
9854 kfree(node_detected_dev);
9855 mutex_unlock(&detected_devices_mutex);
9856 rdev = md_import_device(dev,0, 90);
9857 mutex_lock(&detected_devices_mutex);
9858 if (IS_ERR(rdev))
9859 continue;
9860
9861 if (test_bit(Faulty, &rdev->flags))
9862 continue;
9863
9864 set_bit(AutoDetected, &rdev->flags);
9865 list_add(&rdev->same_set, &pending_raid_disks);
9866 i_passed++;
9867 }
9868 mutex_unlock(&detected_devices_mutex);
9869
9870 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9871
9872 autorun_devices(part);
9873 }
9874
9875 #endif /* !MODULE */
9876
9877 static __exit void md_exit(void)
9878 {
9879 struct mddev *mddev;
9880 struct list_head *tmp;
9881 int delay = 1;
9882
9883 unregister_blkdev(MD_MAJOR,"md");
9884 unregister_blkdev(mdp_major, "mdp");
9885 unregister_reboot_notifier(&md_notifier);
9886 unregister_sysctl_table(raid_table_header);
9887
9888 /* We cannot unload the modules while some process is
9889 * waiting for us in select() or poll() - wake them up
9890 */
9891 md_unloading = 1;
9892 while (waitqueue_active(&md_event_waiters)) {
9893 /* not safe to leave yet */
9894 wake_up(&md_event_waiters);
9895 msleep(delay);
9896 delay += delay;
9897 }
9898 remove_proc_entry("mdstat", NULL);
9899
9900 for_each_mddev(mddev, tmp) {
9901 export_array(mddev);
9902 mddev->ctime = 0;
9903 mddev->hold_active = 0;
9904 /*
9905 * for_each_mddev() will call mddev_put() at the end of each
9906 * iteration. As the mddev is now fully clear, this will
9907 * schedule the mddev for destruction by a workqueue, and the
9908 * destroy_workqueue() below will wait for that to complete.
9909 */
9910 }
9911 destroy_workqueue(md_rdev_misc_wq);
9912 destroy_workqueue(md_misc_wq);
9913 destroy_workqueue(md_wq);
9914 }
9915
9916 subsys_initcall(md_init);
9917 module_exit(md_exit)
9918
9919 static int get_ro(char *buffer, const struct kernel_param *kp)
9920 {
9921 return sprintf(buffer, "%d\n", start_readonly);
9922 }
9923 static int set_ro(const char *val, const struct kernel_param *kp)
9924 {
9925 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9926 }
9927
9928 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9929 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9930 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9931 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9932
9933 MODULE_LICENSE("GPL");
9934 MODULE_DESCRIPTION("MD RAID framework");
9935 MODULE_ALIAS("md");
9936 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);