]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - drivers/md/raid5.c
Merge branch 'for-3.14/drivers' of git://git.kernel.dk/linux-block
[thirdparty/kernel/linux.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66
67 static struct workqueue_struct *raid5_wq;
68 /*
69 * Stripe cache
70 */
71
72 #define NR_STRIPES 256
73 #define STRIPE_SIZE PAGE_SIZE
74 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
76 #define IO_THRESHOLD 1
77 #define BYPASS_THRESHOLD 1
78 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK (NR_HASH - 1)
80 #define MAX_STRIPE_BATCH 8
81
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85 return &conf->stripe_hashtbl[hash];
86 }
87
88 static inline int stripe_hash_locks_hash(sector_t sect)
89 {
90 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
91 }
92
93 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
94 {
95 spin_lock_irq(conf->hash_locks + hash);
96 spin_lock(&conf->device_lock);
97 }
98
99 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
100 {
101 spin_unlock(&conf->device_lock);
102 spin_unlock_irq(conf->hash_locks + hash);
103 }
104
105 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
106 {
107 int i;
108 local_irq_disable();
109 spin_lock(conf->hash_locks);
110 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
111 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
112 spin_lock(&conf->device_lock);
113 }
114
115 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
116 {
117 int i;
118 spin_unlock(&conf->device_lock);
119 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
120 spin_unlock(conf->hash_locks + i - 1);
121 local_irq_enable();
122 }
123
124 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
125 * order without overlap. There may be several bio's per stripe+device, and
126 * a bio could span several devices.
127 * When walking this list for a particular stripe+device, we must never proceed
128 * beyond a bio that extends past this device, as the next bio might no longer
129 * be valid.
130 * This function is used to determine the 'next' bio in the list, given the sector
131 * of the current stripe+device
132 */
133 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
134 {
135 int sectors = bio_sectors(bio);
136 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
137 return bio->bi_next;
138 else
139 return NULL;
140 }
141
142 /*
143 * We maintain a biased count of active stripes in the bottom 16 bits of
144 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
145 */
146 static inline int raid5_bi_processed_stripes(struct bio *bio)
147 {
148 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
149 return (atomic_read(segments) >> 16) & 0xffff;
150 }
151
152 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
153 {
154 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
155 return atomic_sub_return(1, segments) & 0xffff;
156 }
157
158 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
159 {
160 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
161 atomic_inc(segments);
162 }
163
164 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
165 unsigned int cnt)
166 {
167 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
168 int old, new;
169
170 do {
171 old = atomic_read(segments);
172 new = (old & 0xffff) | (cnt << 16);
173 } while (atomic_cmpxchg(segments, old, new) != old);
174 }
175
176 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
177 {
178 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
179 atomic_set(segments, cnt);
180 }
181
182 /* Find first data disk in a raid6 stripe */
183 static inline int raid6_d0(struct stripe_head *sh)
184 {
185 if (sh->ddf_layout)
186 /* ddf always start from first device */
187 return 0;
188 /* md starts just after Q block */
189 if (sh->qd_idx == sh->disks - 1)
190 return 0;
191 else
192 return sh->qd_idx + 1;
193 }
194 static inline int raid6_next_disk(int disk, int raid_disks)
195 {
196 disk++;
197 return (disk < raid_disks) ? disk : 0;
198 }
199
200 /* When walking through the disks in a raid5, starting at raid6_d0,
201 * We need to map each disk to a 'slot', where the data disks are slot
202 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203 * is raid_disks-1. This help does that mapping.
204 */
205 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
206 int *count, int syndrome_disks)
207 {
208 int slot = *count;
209
210 if (sh->ddf_layout)
211 (*count)++;
212 if (idx == sh->pd_idx)
213 return syndrome_disks;
214 if (idx == sh->qd_idx)
215 return syndrome_disks + 1;
216 if (!sh->ddf_layout)
217 (*count)++;
218 return slot;
219 }
220
221 static void return_io(struct bio *return_bi)
222 {
223 struct bio *bi = return_bi;
224 while (bi) {
225
226 return_bi = bi->bi_next;
227 bi->bi_next = NULL;
228 bi->bi_iter.bi_size = 0;
229 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
230 bi, 0);
231 bio_endio(bi, 0);
232 bi = return_bi;
233 }
234 }
235
236 static void print_raid5_conf (struct r5conf *conf);
237
238 static int stripe_operations_active(struct stripe_head *sh)
239 {
240 return sh->check_state || sh->reconstruct_state ||
241 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
243 }
244
245 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
246 {
247 struct r5conf *conf = sh->raid_conf;
248 struct r5worker_group *group;
249 int thread_cnt;
250 int i, cpu = sh->cpu;
251
252 if (!cpu_online(cpu)) {
253 cpu = cpumask_any(cpu_online_mask);
254 sh->cpu = cpu;
255 }
256
257 if (list_empty(&sh->lru)) {
258 struct r5worker_group *group;
259 group = conf->worker_groups + cpu_to_group(cpu);
260 list_add_tail(&sh->lru, &group->handle_list);
261 group->stripes_cnt++;
262 sh->group = group;
263 }
264
265 if (conf->worker_cnt_per_group == 0) {
266 md_wakeup_thread(conf->mddev->thread);
267 return;
268 }
269
270 group = conf->worker_groups + cpu_to_group(sh->cpu);
271
272 group->workers[0].working = true;
273 /* at least one worker should run to avoid race */
274 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
275
276 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277 /* wakeup more workers */
278 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279 if (group->workers[i].working == false) {
280 group->workers[i].working = true;
281 queue_work_on(sh->cpu, raid5_wq,
282 &group->workers[i].work);
283 thread_cnt--;
284 }
285 }
286 }
287
288 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289 struct list_head *temp_inactive_list)
290 {
291 BUG_ON(!list_empty(&sh->lru));
292 BUG_ON(atomic_read(&conf->active_stripes)==0);
293 if (test_bit(STRIPE_HANDLE, &sh->state)) {
294 if (test_bit(STRIPE_DELAYED, &sh->state) &&
295 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
296 list_add_tail(&sh->lru, &conf->delayed_list);
297 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
298 sh->bm_seq - conf->seq_write > 0)
299 list_add_tail(&sh->lru, &conf->bitmap_list);
300 else {
301 clear_bit(STRIPE_DELAYED, &sh->state);
302 clear_bit(STRIPE_BIT_DELAY, &sh->state);
303 if (conf->worker_cnt_per_group == 0) {
304 list_add_tail(&sh->lru, &conf->handle_list);
305 } else {
306 raid5_wakeup_stripe_thread(sh);
307 return;
308 }
309 }
310 md_wakeup_thread(conf->mddev->thread);
311 } else {
312 BUG_ON(stripe_operations_active(sh));
313 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
314 if (atomic_dec_return(&conf->preread_active_stripes)
315 < IO_THRESHOLD)
316 md_wakeup_thread(conf->mddev->thread);
317 atomic_dec(&conf->active_stripes);
318 if (!test_bit(STRIPE_EXPANDING, &sh->state))
319 list_add_tail(&sh->lru, temp_inactive_list);
320 }
321 }
322
323 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
324 struct list_head *temp_inactive_list)
325 {
326 if (atomic_dec_and_test(&sh->count))
327 do_release_stripe(conf, sh, temp_inactive_list);
328 }
329
330 /*
331 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
332 *
333 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
334 * given time. Adding stripes only takes device lock, while deleting stripes
335 * only takes hash lock.
336 */
337 static void release_inactive_stripe_list(struct r5conf *conf,
338 struct list_head *temp_inactive_list,
339 int hash)
340 {
341 int size;
342 bool do_wakeup = false;
343 unsigned long flags;
344
345 if (hash == NR_STRIPE_HASH_LOCKS) {
346 size = NR_STRIPE_HASH_LOCKS;
347 hash = NR_STRIPE_HASH_LOCKS - 1;
348 } else
349 size = 1;
350 while (size) {
351 struct list_head *list = &temp_inactive_list[size - 1];
352
353 /*
354 * We don't hold any lock here yet, get_active_stripe() might
355 * remove stripes from the list
356 */
357 if (!list_empty_careful(list)) {
358 spin_lock_irqsave(conf->hash_locks + hash, flags);
359 if (list_empty(conf->inactive_list + hash) &&
360 !list_empty(list))
361 atomic_dec(&conf->empty_inactive_list_nr);
362 list_splice_tail_init(list, conf->inactive_list + hash);
363 do_wakeup = true;
364 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
365 }
366 size--;
367 hash--;
368 }
369
370 if (do_wakeup) {
371 wake_up(&conf->wait_for_stripe);
372 if (conf->retry_read_aligned)
373 md_wakeup_thread(conf->mddev->thread);
374 }
375 }
376
377 /* should hold conf->device_lock already */
378 static int release_stripe_list(struct r5conf *conf,
379 struct list_head *temp_inactive_list)
380 {
381 struct stripe_head *sh;
382 int count = 0;
383 struct llist_node *head;
384
385 head = llist_del_all(&conf->released_stripes);
386 head = llist_reverse_order(head);
387 while (head) {
388 int hash;
389
390 sh = llist_entry(head, struct stripe_head, release_list);
391 head = llist_next(head);
392 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
393 smp_mb();
394 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
395 /*
396 * Don't worry the bit is set here, because if the bit is set
397 * again, the count is always > 1. This is true for
398 * STRIPE_ON_UNPLUG_LIST bit too.
399 */
400 hash = sh->hash_lock_index;
401 __release_stripe(conf, sh, &temp_inactive_list[hash]);
402 count++;
403 }
404
405 return count;
406 }
407
408 static void release_stripe(struct stripe_head *sh)
409 {
410 struct r5conf *conf = sh->raid_conf;
411 unsigned long flags;
412 struct list_head list;
413 int hash;
414 bool wakeup;
415
416 if (unlikely(!conf->mddev->thread) ||
417 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
418 goto slow_path;
419 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
420 if (wakeup)
421 md_wakeup_thread(conf->mddev->thread);
422 return;
423 slow_path:
424 local_irq_save(flags);
425 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
426 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
427 INIT_LIST_HEAD(&list);
428 hash = sh->hash_lock_index;
429 do_release_stripe(conf, sh, &list);
430 spin_unlock(&conf->device_lock);
431 release_inactive_stripe_list(conf, &list, hash);
432 }
433 local_irq_restore(flags);
434 }
435
436 static inline void remove_hash(struct stripe_head *sh)
437 {
438 pr_debug("remove_hash(), stripe %llu\n",
439 (unsigned long long)sh->sector);
440
441 hlist_del_init(&sh->hash);
442 }
443
444 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
445 {
446 struct hlist_head *hp = stripe_hash(conf, sh->sector);
447
448 pr_debug("insert_hash(), stripe %llu\n",
449 (unsigned long long)sh->sector);
450
451 hlist_add_head(&sh->hash, hp);
452 }
453
454
455 /* find an idle stripe, make sure it is unhashed, and return it. */
456 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
457 {
458 struct stripe_head *sh = NULL;
459 struct list_head *first;
460
461 if (list_empty(conf->inactive_list + hash))
462 goto out;
463 first = (conf->inactive_list + hash)->next;
464 sh = list_entry(first, struct stripe_head, lru);
465 list_del_init(first);
466 remove_hash(sh);
467 atomic_inc(&conf->active_stripes);
468 BUG_ON(hash != sh->hash_lock_index);
469 if (list_empty(conf->inactive_list + hash))
470 atomic_inc(&conf->empty_inactive_list_nr);
471 out:
472 return sh;
473 }
474
475 static void shrink_buffers(struct stripe_head *sh)
476 {
477 struct page *p;
478 int i;
479 int num = sh->raid_conf->pool_size;
480
481 for (i = 0; i < num ; i++) {
482 p = sh->dev[i].page;
483 if (!p)
484 continue;
485 sh->dev[i].page = NULL;
486 put_page(p);
487 }
488 }
489
490 static int grow_buffers(struct stripe_head *sh)
491 {
492 int i;
493 int num = sh->raid_conf->pool_size;
494
495 for (i = 0; i < num; i++) {
496 struct page *page;
497
498 if (!(page = alloc_page(GFP_KERNEL))) {
499 return 1;
500 }
501 sh->dev[i].page = page;
502 }
503 return 0;
504 }
505
506 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
507 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
508 struct stripe_head *sh);
509
510 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
511 {
512 struct r5conf *conf = sh->raid_conf;
513 int i, seq;
514
515 BUG_ON(atomic_read(&sh->count) != 0);
516 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
517 BUG_ON(stripe_operations_active(sh));
518
519 pr_debug("init_stripe called, stripe %llu\n",
520 (unsigned long long)sh->sector);
521
522 remove_hash(sh);
523 retry:
524 seq = read_seqcount_begin(&conf->gen_lock);
525 sh->generation = conf->generation - previous;
526 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
527 sh->sector = sector;
528 stripe_set_idx(sector, conf, previous, sh);
529 sh->state = 0;
530
531
532 for (i = sh->disks; i--; ) {
533 struct r5dev *dev = &sh->dev[i];
534
535 if (dev->toread || dev->read || dev->towrite || dev->written ||
536 test_bit(R5_LOCKED, &dev->flags)) {
537 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
538 (unsigned long long)sh->sector, i, dev->toread,
539 dev->read, dev->towrite, dev->written,
540 test_bit(R5_LOCKED, &dev->flags));
541 WARN_ON(1);
542 }
543 dev->flags = 0;
544 raid5_build_block(sh, i, previous);
545 }
546 if (read_seqcount_retry(&conf->gen_lock, seq))
547 goto retry;
548 insert_hash(conf, sh);
549 sh->cpu = smp_processor_id();
550 }
551
552 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
553 short generation)
554 {
555 struct stripe_head *sh;
556
557 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
558 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
559 if (sh->sector == sector && sh->generation == generation)
560 return sh;
561 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
562 return NULL;
563 }
564
565 /*
566 * Need to check if array has failed when deciding whether to:
567 * - start an array
568 * - remove non-faulty devices
569 * - add a spare
570 * - allow a reshape
571 * This determination is simple when no reshape is happening.
572 * However if there is a reshape, we need to carefully check
573 * both the before and after sections.
574 * This is because some failed devices may only affect one
575 * of the two sections, and some non-in_sync devices may
576 * be insync in the section most affected by failed devices.
577 */
578 static int calc_degraded(struct r5conf *conf)
579 {
580 int degraded, degraded2;
581 int i;
582
583 rcu_read_lock();
584 degraded = 0;
585 for (i = 0; i < conf->previous_raid_disks; i++) {
586 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
587 if (rdev && test_bit(Faulty, &rdev->flags))
588 rdev = rcu_dereference(conf->disks[i].replacement);
589 if (!rdev || test_bit(Faulty, &rdev->flags))
590 degraded++;
591 else if (test_bit(In_sync, &rdev->flags))
592 ;
593 else
594 /* not in-sync or faulty.
595 * If the reshape increases the number of devices,
596 * this is being recovered by the reshape, so
597 * this 'previous' section is not in_sync.
598 * If the number of devices is being reduced however,
599 * the device can only be part of the array if
600 * we are reverting a reshape, so this section will
601 * be in-sync.
602 */
603 if (conf->raid_disks >= conf->previous_raid_disks)
604 degraded++;
605 }
606 rcu_read_unlock();
607 if (conf->raid_disks == conf->previous_raid_disks)
608 return degraded;
609 rcu_read_lock();
610 degraded2 = 0;
611 for (i = 0; i < conf->raid_disks; i++) {
612 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
613 if (rdev && test_bit(Faulty, &rdev->flags))
614 rdev = rcu_dereference(conf->disks[i].replacement);
615 if (!rdev || test_bit(Faulty, &rdev->flags))
616 degraded2++;
617 else if (test_bit(In_sync, &rdev->flags))
618 ;
619 else
620 /* not in-sync or faulty.
621 * If reshape increases the number of devices, this
622 * section has already been recovered, else it
623 * almost certainly hasn't.
624 */
625 if (conf->raid_disks <= conf->previous_raid_disks)
626 degraded2++;
627 }
628 rcu_read_unlock();
629 if (degraded2 > degraded)
630 return degraded2;
631 return degraded;
632 }
633
634 static int has_failed(struct r5conf *conf)
635 {
636 int degraded;
637
638 if (conf->mddev->reshape_position == MaxSector)
639 return conf->mddev->degraded > conf->max_degraded;
640
641 degraded = calc_degraded(conf);
642 if (degraded > conf->max_degraded)
643 return 1;
644 return 0;
645 }
646
647 static struct stripe_head *
648 get_active_stripe(struct r5conf *conf, sector_t sector,
649 int previous, int noblock, int noquiesce)
650 {
651 struct stripe_head *sh;
652 int hash = stripe_hash_locks_hash(sector);
653
654 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
655
656 spin_lock_irq(conf->hash_locks + hash);
657
658 do {
659 wait_event_lock_irq(conf->wait_for_stripe,
660 conf->quiesce == 0 || noquiesce,
661 *(conf->hash_locks + hash));
662 sh = __find_stripe(conf, sector, conf->generation - previous);
663 if (!sh) {
664 if (!conf->inactive_blocked)
665 sh = get_free_stripe(conf, hash);
666 if (noblock && sh == NULL)
667 break;
668 if (!sh) {
669 conf->inactive_blocked = 1;
670 wait_event_lock_irq(
671 conf->wait_for_stripe,
672 !list_empty(conf->inactive_list + hash) &&
673 (atomic_read(&conf->active_stripes)
674 < (conf->max_nr_stripes * 3 / 4)
675 || !conf->inactive_blocked),
676 *(conf->hash_locks + hash));
677 conf->inactive_blocked = 0;
678 } else {
679 init_stripe(sh, sector, previous);
680 atomic_inc(&sh->count);
681 }
682 } else {
683 spin_lock(&conf->device_lock);
684 if (atomic_read(&sh->count)) {
685 BUG_ON(!list_empty(&sh->lru)
686 && !test_bit(STRIPE_EXPANDING, &sh->state)
687 && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)
688 );
689 } else {
690 if (!test_bit(STRIPE_HANDLE, &sh->state))
691 atomic_inc(&conf->active_stripes);
692 BUG_ON(list_empty(&sh->lru) &&
693 !test_bit(STRIPE_EXPANDING, &sh->state));
694 list_del_init(&sh->lru);
695 if (sh->group) {
696 sh->group->stripes_cnt--;
697 sh->group = NULL;
698 }
699 }
700 atomic_inc(&sh->count);
701 spin_unlock(&conf->device_lock);
702 }
703 } while (sh == NULL);
704
705 spin_unlock_irq(conf->hash_locks + hash);
706 return sh;
707 }
708
709 /* Determine if 'data_offset' or 'new_data_offset' should be used
710 * in this stripe_head.
711 */
712 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
713 {
714 sector_t progress = conf->reshape_progress;
715 /* Need a memory barrier to make sure we see the value
716 * of conf->generation, or ->data_offset that was set before
717 * reshape_progress was updated.
718 */
719 smp_rmb();
720 if (progress == MaxSector)
721 return 0;
722 if (sh->generation == conf->generation - 1)
723 return 0;
724 /* We are in a reshape, and this is a new-generation stripe,
725 * so use new_data_offset.
726 */
727 return 1;
728 }
729
730 static void
731 raid5_end_read_request(struct bio *bi, int error);
732 static void
733 raid5_end_write_request(struct bio *bi, int error);
734
735 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
736 {
737 struct r5conf *conf = sh->raid_conf;
738 int i, disks = sh->disks;
739
740 might_sleep();
741
742 for (i = disks; i--; ) {
743 int rw;
744 int replace_only = 0;
745 struct bio *bi, *rbi;
746 struct md_rdev *rdev, *rrdev = NULL;
747 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
748 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
749 rw = WRITE_FUA;
750 else
751 rw = WRITE;
752 if (test_bit(R5_Discard, &sh->dev[i].flags))
753 rw |= REQ_DISCARD;
754 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
755 rw = READ;
756 else if (test_and_clear_bit(R5_WantReplace,
757 &sh->dev[i].flags)) {
758 rw = WRITE;
759 replace_only = 1;
760 } else
761 continue;
762 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
763 rw |= REQ_SYNC;
764
765 bi = &sh->dev[i].req;
766 rbi = &sh->dev[i].rreq; /* For writing to replacement */
767
768 rcu_read_lock();
769 rrdev = rcu_dereference(conf->disks[i].replacement);
770 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
771 rdev = rcu_dereference(conf->disks[i].rdev);
772 if (!rdev) {
773 rdev = rrdev;
774 rrdev = NULL;
775 }
776 if (rw & WRITE) {
777 if (replace_only)
778 rdev = NULL;
779 if (rdev == rrdev)
780 /* We raced and saw duplicates */
781 rrdev = NULL;
782 } else {
783 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
784 rdev = rrdev;
785 rrdev = NULL;
786 }
787
788 if (rdev && test_bit(Faulty, &rdev->flags))
789 rdev = NULL;
790 if (rdev)
791 atomic_inc(&rdev->nr_pending);
792 if (rrdev && test_bit(Faulty, &rrdev->flags))
793 rrdev = NULL;
794 if (rrdev)
795 atomic_inc(&rrdev->nr_pending);
796 rcu_read_unlock();
797
798 /* We have already checked bad blocks for reads. Now
799 * need to check for writes. We never accept write errors
800 * on the replacement, so we don't to check rrdev.
801 */
802 while ((rw & WRITE) && rdev &&
803 test_bit(WriteErrorSeen, &rdev->flags)) {
804 sector_t first_bad;
805 int bad_sectors;
806 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
807 &first_bad, &bad_sectors);
808 if (!bad)
809 break;
810
811 if (bad < 0) {
812 set_bit(BlockedBadBlocks, &rdev->flags);
813 if (!conf->mddev->external &&
814 conf->mddev->flags) {
815 /* It is very unlikely, but we might
816 * still need to write out the
817 * bad block log - better give it
818 * a chance*/
819 md_check_recovery(conf->mddev);
820 }
821 /*
822 * Because md_wait_for_blocked_rdev
823 * will dec nr_pending, we must
824 * increment it first.
825 */
826 atomic_inc(&rdev->nr_pending);
827 md_wait_for_blocked_rdev(rdev, conf->mddev);
828 } else {
829 /* Acknowledged bad block - skip the write */
830 rdev_dec_pending(rdev, conf->mddev);
831 rdev = NULL;
832 }
833 }
834
835 if (rdev) {
836 if (s->syncing || s->expanding || s->expanded
837 || s->replacing)
838 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
839
840 set_bit(STRIPE_IO_STARTED, &sh->state);
841
842 bio_reset(bi);
843 bi->bi_bdev = rdev->bdev;
844 bi->bi_rw = rw;
845 bi->bi_end_io = (rw & WRITE)
846 ? raid5_end_write_request
847 : raid5_end_read_request;
848 bi->bi_private = sh;
849
850 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
851 __func__, (unsigned long long)sh->sector,
852 bi->bi_rw, i);
853 atomic_inc(&sh->count);
854 if (use_new_offset(conf, sh))
855 bi->bi_iter.bi_sector = (sh->sector
856 + rdev->new_data_offset);
857 else
858 bi->bi_iter.bi_sector = (sh->sector
859 + rdev->data_offset);
860 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
861 bi->bi_rw |= REQ_NOMERGE;
862
863 bi->bi_vcnt = 1;
864 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
865 bi->bi_io_vec[0].bv_offset = 0;
866 bi->bi_iter.bi_size = STRIPE_SIZE;
867 /*
868 * If this is discard request, set bi_vcnt 0. We don't
869 * want to confuse SCSI because SCSI will replace payload
870 */
871 if (rw & REQ_DISCARD)
872 bi->bi_vcnt = 0;
873 if (rrdev)
874 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
875
876 if (conf->mddev->gendisk)
877 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
878 bi, disk_devt(conf->mddev->gendisk),
879 sh->dev[i].sector);
880 generic_make_request(bi);
881 }
882 if (rrdev) {
883 if (s->syncing || s->expanding || s->expanded
884 || s->replacing)
885 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
886
887 set_bit(STRIPE_IO_STARTED, &sh->state);
888
889 bio_reset(rbi);
890 rbi->bi_bdev = rrdev->bdev;
891 rbi->bi_rw = rw;
892 BUG_ON(!(rw & WRITE));
893 rbi->bi_end_io = raid5_end_write_request;
894 rbi->bi_private = sh;
895
896 pr_debug("%s: for %llu schedule op %ld on "
897 "replacement disc %d\n",
898 __func__, (unsigned long long)sh->sector,
899 rbi->bi_rw, i);
900 atomic_inc(&sh->count);
901 if (use_new_offset(conf, sh))
902 rbi->bi_iter.bi_sector = (sh->sector
903 + rrdev->new_data_offset);
904 else
905 rbi->bi_iter.bi_sector = (sh->sector
906 + rrdev->data_offset);
907 rbi->bi_vcnt = 1;
908 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
909 rbi->bi_io_vec[0].bv_offset = 0;
910 rbi->bi_iter.bi_size = STRIPE_SIZE;
911 /*
912 * If this is discard request, set bi_vcnt 0. We don't
913 * want to confuse SCSI because SCSI will replace payload
914 */
915 if (rw & REQ_DISCARD)
916 rbi->bi_vcnt = 0;
917 if (conf->mddev->gendisk)
918 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
919 rbi, disk_devt(conf->mddev->gendisk),
920 sh->dev[i].sector);
921 generic_make_request(rbi);
922 }
923 if (!rdev && !rrdev) {
924 if (rw & WRITE)
925 set_bit(STRIPE_DEGRADED, &sh->state);
926 pr_debug("skip op %ld on disc %d for sector %llu\n",
927 bi->bi_rw, i, (unsigned long long)sh->sector);
928 clear_bit(R5_LOCKED, &sh->dev[i].flags);
929 set_bit(STRIPE_HANDLE, &sh->state);
930 }
931 }
932 }
933
934 static struct dma_async_tx_descriptor *
935 async_copy_data(int frombio, struct bio *bio, struct page *page,
936 sector_t sector, struct dma_async_tx_descriptor *tx)
937 {
938 struct bio_vec bvl;
939 struct bvec_iter iter;
940 struct page *bio_page;
941 int page_offset;
942 struct async_submit_ctl submit;
943 enum async_tx_flags flags = 0;
944
945 if (bio->bi_iter.bi_sector >= sector)
946 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
947 else
948 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
949
950 if (frombio)
951 flags |= ASYNC_TX_FENCE;
952 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
953
954 bio_for_each_segment(bvl, bio, iter) {
955 int len = bvl.bv_len;
956 int clen;
957 int b_offset = 0;
958
959 if (page_offset < 0) {
960 b_offset = -page_offset;
961 page_offset += b_offset;
962 len -= b_offset;
963 }
964
965 if (len > 0 && page_offset + len > STRIPE_SIZE)
966 clen = STRIPE_SIZE - page_offset;
967 else
968 clen = len;
969
970 if (clen > 0) {
971 b_offset += bvl.bv_offset;
972 bio_page = bvl.bv_page;
973 if (frombio)
974 tx = async_memcpy(page, bio_page, page_offset,
975 b_offset, clen, &submit);
976 else
977 tx = async_memcpy(bio_page, page, b_offset,
978 page_offset, clen, &submit);
979 }
980 /* chain the operations */
981 submit.depend_tx = tx;
982
983 if (clen < len) /* hit end of page */
984 break;
985 page_offset += len;
986 }
987
988 return tx;
989 }
990
991 static void ops_complete_biofill(void *stripe_head_ref)
992 {
993 struct stripe_head *sh = stripe_head_ref;
994 struct bio *return_bi = NULL;
995 int i;
996
997 pr_debug("%s: stripe %llu\n", __func__,
998 (unsigned long long)sh->sector);
999
1000 /* clear completed biofills */
1001 for (i = sh->disks; i--; ) {
1002 struct r5dev *dev = &sh->dev[i];
1003
1004 /* acknowledge completion of a biofill operation */
1005 /* and check if we need to reply to a read request,
1006 * new R5_Wantfill requests are held off until
1007 * !STRIPE_BIOFILL_RUN
1008 */
1009 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1010 struct bio *rbi, *rbi2;
1011
1012 BUG_ON(!dev->read);
1013 rbi = dev->read;
1014 dev->read = NULL;
1015 while (rbi && rbi->bi_iter.bi_sector <
1016 dev->sector + STRIPE_SECTORS) {
1017 rbi2 = r5_next_bio(rbi, dev->sector);
1018 if (!raid5_dec_bi_active_stripes(rbi)) {
1019 rbi->bi_next = return_bi;
1020 return_bi = rbi;
1021 }
1022 rbi = rbi2;
1023 }
1024 }
1025 }
1026 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1027
1028 return_io(return_bi);
1029
1030 set_bit(STRIPE_HANDLE, &sh->state);
1031 release_stripe(sh);
1032 }
1033
1034 static void ops_run_biofill(struct stripe_head *sh)
1035 {
1036 struct dma_async_tx_descriptor *tx = NULL;
1037 struct async_submit_ctl submit;
1038 int i;
1039
1040 pr_debug("%s: stripe %llu\n", __func__,
1041 (unsigned long long)sh->sector);
1042
1043 for (i = sh->disks; i--; ) {
1044 struct r5dev *dev = &sh->dev[i];
1045 if (test_bit(R5_Wantfill, &dev->flags)) {
1046 struct bio *rbi;
1047 spin_lock_irq(&sh->stripe_lock);
1048 dev->read = rbi = dev->toread;
1049 dev->toread = NULL;
1050 spin_unlock_irq(&sh->stripe_lock);
1051 while (rbi && rbi->bi_iter.bi_sector <
1052 dev->sector + STRIPE_SECTORS) {
1053 tx = async_copy_data(0, rbi, dev->page,
1054 dev->sector, tx);
1055 rbi = r5_next_bio(rbi, dev->sector);
1056 }
1057 }
1058 }
1059
1060 atomic_inc(&sh->count);
1061 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1062 async_trigger_callback(&submit);
1063 }
1064
1065 static void mark_target_uptodate(struct stripe_head *sh, int target)
1066 {
1067 struct r5dev *tgt;
1068
1069 if (target < 0)
1070 return;
1071
1072 tgt = &sh->dev[target];
1073 set_bit(R5_UPTODATE, &tgt->flags);
1074 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1075 clear_bit(R5_Wantcompute, &tgt->flags);
1076 }
1077
1078 static void ops_complete_compute(void *stripe_head_ref)
1079 {
1080 struct stripe_head *sh = stripe_head_ref;
1081
1082 pr_debug("%s: stripe %llu\n", __func__,
1083 (unsigned long long)sh->sector);
1084
1085 /* mark the computed target(s) as uptodate */
1086 mark_target_uptodate(sh, sh->ops.target);
1087 mark_target_uptodate(sh, sh->ops.target2);
1088
1089 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1090 if (sh->check_state == check_state_compute_run)
1091 sh->check_state = check_state_compute_result;
1092 set_bit(STRIPE_HANDLE, &sh->state);
1093 release_stripe(sh);
1094 }
1095
1096 /* return a pointer to the address conversion region of the scribble buffer */
1097 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1098 struct raid5_percpu *percpu)
1099 {
1100 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1101 }
1102
1103 static struct dma_async_tx_descriptor *
1104 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1105 {
1106 int disks = sh->disks;
1107 struct page **xor_srcs = percpu->scribble;
1108 int target = sh->ops.target;
1109 struct r5dev *tgt = &sh->dev[target];
1110 struct page *xor_dest = tgt->page;
1111 int count = 0;
1112 struct dma_async_tx_descriptor *tx;
1113 struct async_submit_ctl submit;
1114 int i;
1115
1116 pr_debug("%s: stripe %llu block: %d\n",
1117 __func__, (unsigned long long)sh->sector, target);
1118 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1119
1120 for (i = disks; i--; )
1121 if (i != target)
1122 xor_srcs[count++] = sh->dev[i].page;
1123
1124 atomic_inc(&sh->count);
1125
1126 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1127 ops_complete_compute, sh, to_addr_conv(sh, percpu));
1128 if (unlikely(count == 1))
1129 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1130 else
1131 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1132
1133 return tx;
1134 }
1135
1136 /* set_syndrome_sources - populate source buffers for gen_syndrome
1137 * @srcs - (struct page *) array of size sh->disks
1138 * @sh - stripe_head to parse
1139 *
1140 * Populates srcs in proper layout order for the stripe and returns the
1141 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1142 * destination buffer is recorded in srcs[count] and the Q destination
1143 * is recorded in srcs[count+1]].
1144 */
1145 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1146 {
1147 int disks = sh->disks;
1148 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1149 int d0_idx = raid6_d0(sh);
1150 int count;
1151 int i;
1152
1153 for (i = 0; i < disks; i++)
1154 srcs[i] = NULL;
1155
1156 count = 0;
1157 i = d0_idx;
1158 do {
1159 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1160
1161 srcs[slot] = sh->dev[i].page;
1162 i = raid6_next_disk(i, disks);
1163 } while (i != d0_idx);
1164
1165 return syndrome_disks;
1166 }
1167
1168 static struct dma_async_tx_descriptor *
1169 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1170 {
1171 int disks = sh->disks;
1172 struct page **blocks = percpu->scribble;
1173 int target;
1174 int qd_idx = sh->qd_idx;
1175 struct dma_async_tx_descriptor *tx;
1176 struct async_submit_ctl submit;
1177 struct r5dev *tgt;
1178 struct page *dest;
1179 int i;
1180 int count;
1181
1182 if (sh->ops.target < 0)
1183 target = sh->ops.target2;
1184 else if (sh->ops.target2 < 0)
1185 target = sh->ops.target;
1186 else
1187 /* we should only have one valid target */
1188 BUG();
1189 BUG_ON(target < 0);
1190 pr_debug("%s: stripe %llu block: %d\n",
1191 __func__, (unsigned long long)sh->sector, target);
1192
1193 tgt = &sh->dev[target];
1194 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1195 dest = tgt->page;
1196
1197 atomic_inc(&sh->count);
1198
1199 if (target == qd_idx) {
1200 count = set_syndrome_sources(blocks, sh);
1201 blocks[count] = NULL; /* regenerating p is not necessary */
1202 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1203 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1204 ops_complete_compute, sh,
1205 to_addr_conv(sh, percpu));
1206 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1207 } else {
1208 /* Compute any data- or p-drive using XOR */
1209 count = 0;
1210 for (i = disks; i-- ; ) {
1211 if (i == target || i == qd_idx)
1212 continue;
1213 blocks[count++] = sh->dev[i].page;
1214 }
1215
1216 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1217 NULL, ops_complete_compute, sh,
1218 to_addr_conv(sh, percpu));
1219 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1220 }
1221
1222 return tx;
1223 }
1224
1225 static struct dma_async_tx_descriptor *
1226 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1227 {
1228 int i, count, disks = sh->disks;
1229 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1230 int d0_idx = raid6_d0(sh);
1231 int faila = -1, failb = -1;
1232 int target = sh->ops.target;
1233 int target2 = sh->ops.target2;
1234 struct r5dev *tgt = &sh->dev[target];
1235 struct r5dev *tgt2 = &sh->dev[target2];
1236 struct dma_async_tx_descriptor *tx;
1237 struct page **blocks = percpu->scribble;
1238 struct async_submit_ctl submit;
1239
1240 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1241 __func__, (unsigned long long)sh->sector, target, target2);
1242 BUG_ON(target < 0 || target2 < 0);
1243 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1244 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1245
1246 /* we need to open-code set_syndrome_sources to handle the
1247 * slot number conversion for 'faila' and 'failb'
1248 */
1249 for (i = 0; i < disks ; i++)
1250 blocks[i] = NULL;
1251 count = 0;
1252 i = d0_idx;
1253 do {
1254 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1255
1256 blocks[slot] = sh->dev[i].page;
1257
1258 if (i == target)
1259 faila = slot;
1260 if (i == target2)
1261 failb = slot;
1262 i = raid6_next_disk(i, disks);
1263 } while (i != d0_idx);
1264
1265 BUG_ON(faila == failb);
1266 if (failb < faila)
1267 swap(faila, failb);
1268 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1269 __func__, (unsigned long long)sh->sector, faila, failb);
1270
1271 atomic_inc(&sh->count);
1272
1273 if (failb == syndrome_disks+1) {
1274 /* Q disk is one of the missing disks */
1275 if (faila == syndrome_disks) {
1276 /* Missing P+Q, just recompute */
1277 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1278 ops_complete_compute, sh,
1279 to_addr_conv(sh, percpu));
1280 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1281 STRIPE_SIZE, &submit);
1282 } else {
1283 struct page *dest;
1284 int data_target;
1285 int qd_idx = sh->qd_idx;
1286
1287 /* Missing D+Q: recompute D from P, then recompute Q */
1288 if (target == qd_idx)
1289 data_target = target2;
1290 else
1291 data_target = target;
1292
1293 count = 0;
1294 for (i = disks; i-- ; ) {
1295 if (i == data_target || i == qd_idx)
1296 continue;
1297 blocks[count++] = sh->dev[i].page;
1298 }
1299 dest = sh->dev[data_target].page;
1300 init_async_submit(&submit,
1301 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1302 NULL, NULL, NULL,
1303 to_addr_conv(sh, percpu));
1304 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1305 &submit);
1306
1307 count = set_syndrome_sources(blocks, sh);
1308 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1309 ops_complete_compute, sh,
1310 to_addr_conv(sh, percpu));
1311 return async_gen_syndrome(blocks, 0, count+2,
1312 STRIPE_SIZE, &submit);
1313 }
1314 } else {
1315 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1316 ops_complete_compute, sh,
1317 to_addr_conv(sh, percpu));
1318 if (failb == syndrome_disks) {
1319 /* We're missing D+P. */
1320 return async_raid6_datap_recov(syndrome_disks+2,
1321 STRIPE_SIZE, faila,
1322 blocks, &submit);
1323 } else {
1324 /* We're missing D+D. */
1325 return async_raid6_2data_recov(syndrome_disks+2,
1326 STRIPE_SIZE, faila, failb,
1327 blocks, &submit);
1328 }
1329 }
1330 }
1331
1332
1333 static void ops_complete_prexor(void *stripe_head_ref)
1334 {
1335 struct stripe_head *sh = stripe_head_ref;
1336
1337 pr_debug("%s: stripe %llu\n", __func__,
1338 (unsigned long long)sh->sector);
1339 }
1340
1341 static struct dma_async_tx_descriptor *
1342 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1343 struct dma_async_tx_descriptor *tx)
1344 {
1345 int disks = sh->disks;
1346 struct page **xor_srcs = percpu->scribble;
1347 int count = 0, pd_idx = sh->pd_idx, i;
1348 struct async_submit_ctl submit;
1349
1350 /* existing parity data subtracted */
1351 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1352
1353 pr_debug("%s: stripe %llu\n", __func__,
1354 (unsigned long long)sh->sector);
1355
1356 for (i = disks; i--; ) {
1357 struct r5dev *dev = &sh->dev[i];
1358 /* Only process blocks that are known to be uptodate */
1359 if (test_bit(R5_Wantdrain, &dev->flags))
1360 xor_srcs[count++] = dev->page;
1361 }
1362
1363 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1364 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1365 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1366
1367 return tx;
1368 }
1369
1370 static struct dma_async_tx_descriptor *
1371 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1372 {
1373 int disks = sh->disks;
1374 int i;
1375
1376 pr_debug("%s: stripe %llu\n", __func__,
1377 (unsigned long long)sh->sector);
1378
1379 for (i = disks; i--; ) {
1380 struct r5dev *dev = &sh->dev[i];
1381 struct bio *chosen;
1382
1383 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1384 struct bio *wbi;
1385
1386 spin_lock_irq(&sh->stripe_lock);
1387 chosen = dev->towrite;
1388 dev->towrite = NULL;
1389 BUG_ON(dev->written);
1390 wbi = dev->written = chosen;
1391 spin_unlock_irq(&sh->stripe_lock);
1392
1393 while (wbi && wbi->bi_iter.bi_sector <
1394 dev->sector + STRIPE_SECTORS) {
1395 if (wbi->bi_rw & REQ_FUA)
1396 set_bit(R5_WantFUA, &dev->flags);
1397 if (wbi->bi_rw & REQ_SYNC)
1398 set_bit(R5_SyncIO, &dev->flags);
1399 if (wbi->bi_rw & REQ_DISCARD)
1400 set_bit(R5_Discard, &dev->flags);
1401 else
1402 tx = async_copy_data(1, wbi, dev->page,
1403 dev->sector, tx);
1404 wbi = r5_next_bio(wbi, dev->sector);
1405 }
1406 }
1407 }
1408
1409 return tx;
1410 }
1411
1412 static void ops_complete_reconstruct(void *stripe_head_ref)
1413 {
1414 struct stripe_head *sh = stripe_head_ref;
1415 int disks = sh->disks;
1416 int pd_idx = sh->pd_idx;
1417 int qd_idx = sh->qd_idx;
1418 int i;
1419 bool fua = false, sync = false, discard = false;
1420
1421 pr_debug("%s: stripe %llu\n", __func__,
1422 (unsigned long long)sh->sector);
1423
1424 for (i = disks; i--; ) {
1425 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1426 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1427 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1428 }
1429
1430 for (i = disks; i--; ) {
1431 struct r5dev *dev = &sh->dev[i];
1432
1433 if (dev->written || i == pd_idx || i == qd_idx) {
1434 if (!discard)
1435 set_bit(R5_UPTODATE, &dev->flags);
1436 if (fua)
1437 set_bit(R5_WantFUA, &dev->flags);
1438 if (sync)
1439 set_bit(R5_SyncIO, &dev->flags);
1440 }
1441 }
1442
1443 if (sh->reconstruct_state == reconstruct_state_drain_run)
1444 sh->reconstruct_state = reconstruct_state_drain_result;
1445 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1446 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1447 else {
1448 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1449 sh->reconstruct_state = reconstruct_state_result;
1450 }
1451
1452 set_bit(STRIPE_HANDLE, &sh->state);
1453 release_stripe(sh);
1454 }
1455
1456 static void
1457 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1458 struct dma_async_tx_descriptor *tx)
1459 {
1460 int disks = sh->disks;
1461 struct page **xor_srcs = percpu->scribble;
1462 struct async_submit_ctl submit;
1463 int count = 0, pd_idx = sh->pd_idx, i;
1464 struct page *xor_dest;
1465 int prexor = 0;
1466 unsigned long flags;
1467
1468 pr_debug("%s: stripe %llu\n", __func__,
1469 (unsigned long long)sh->sector);
1470
1471 for (i = 0; i < sh->disks; i++) {
1472 if (pd_idx == i)
1473 continue;
1474 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1475 break;
1476 }
1477 if (i >= sh->disks) {
1478 atomic_inc(&sh->count);
1479 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1480 ops_complete_reconstruct(sh);
1481 return;
1482 }
1483 /* check if prexor is active which means only process blocks
1484 * that are part of a read-modify-write (written)
1485 */
1486 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1487 prexor = 1;
1488 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1489 for (i = disks; i--; ) {
1490 struct r5dev *dev = &sh->dev[i];
1491 if (dev->written)
1492 xor_srcs[count++] = dev->page;
1493 }
1494 } else {
1495 xor_dest = sh->dev[pd_idx].page;
1496 for (i = disks; i--; ) {
1497 struct r5dev *dev = &sh->dev[i];
1498 if (i != pd_idx)
1499 xor_srcs[count++] = dev->page;
1500 }
1501 }
1502
1503 /* 1/ if we prexor'd then the dest is reused as a source
1504 * 2/ if we did not prexor then we are redoing the parity
1505 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1506 * for the synchronous xor case
1507 */
1508 flags = ASYNC_TX_ACK |
1509 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1510
1511 atomic_inc(&sh->count);
1512
1513 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1514 to_addr_conv(sh, percpu));
1515 if (unlikely(count == 1))
1516 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1517 else
1518 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1519 }
1520
1521 static void
1522 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1523 struct dma_async_tx_descriptor *tx)
1524 {
1525 struct async_submit_ctl submit;
1526 struct page **blocks = percpu->scribble;
1527 int count, i;
1528
1529 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1530
1531 for (i = 0; i < sh->disks; i++) {
1532 if (sh->pd_idx == i || sh->qd_idx == i)
1533 continue;
1534 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1535 break;
1536 }
1537 if (i >= sh->disks) {
1538 atomic_inc(&sh->count);
1539 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1540 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1541 ops_complete_reconstruct(sh);
1542 return;
1543 }
1544
1545 count = set_syndrome_sources(blocks, sh);
1546
1547 atomic_inc(&sh->count);
1548
1549 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1550 sh, to_addr_conv(sh, percpu));
1551 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1552 }
1553
1554 static void ops_complete_check(void *stripe_head_ref)
1555 {
1556 struct stripe_head *sh = stripe_head_ref;
1557
1558 pr_debug("%s: stripe %llu\n", __func__,
1559 (unsigned long long)sh->sector);
1560
1561 sh->check_state = check_state_check_result;
1562 set_bit(STRIPE_HANDLE, &sh->state);
1563 release_stripe(sh);
1564 }
1565
1566 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1567 {
1568 int disks = sh->disks;
1569 int pd_idx = sh->pd_idx;
1570 int qd_idx = sh->qd_idx;
1571 struct page *xor_dest;
1572 struct page **xor_srcs = percpu->scribble;
1573 struct dma_async_tx_descriptor *tx;
1574 struct async_submit_ctl submit;
1575 int count;
1576 int i;
1577
1578 pr_debug("%s: stripe %llu\n", __func__,
1579 (unsigned long long)sh->sector);
1580
1581 count = 0;
1582 xor_dest = sh->dev[pd_idx].page;
1583 xor_srcs[count++] = xor_dest;
1584 for (i = disks; i--; ) {
1585 if (i == pd_idx || i == qd_idx)
1586 continue;
1587 xor_srcs[count++] = sh->dev[i].page;
1588 }
1589
1590 init_async_submit(&submit, 0, NULL, NULL, NULL,
1591 to_addr_conv(sh, percpu));
1592 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1593 &sh->ops.zero_sum_result, &submit);
1594
1595 atomic_inc(&sh->count);
1596 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1597 tx = async_trigger_callback(&submit);
1598 }
1599
1600 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1601 {
1602 struct page **srcs = percpu->scribble;
1603 struct async_submit_ctl submit;
1604 int count;
1605
1606 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1607 (unsigned long long)sh->sector, checkp);
1608
1609 count = set_syndrome_sources(srcs, sh);
1610 if (!checkp)
1611 srcs[count] = NULL;
1612
1613 atomic_inc(&sh->count);
1614 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1615 sh, to_addr_conv(sh, percpu));
1616 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1617 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1618 }
1619
1620 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1621 {
1622 int overlap_clear = 0, i, disks = sh->disks;
1623 struct dma_async_tx_descriptor *tx = NULL;
1624 struct r5conf *conf = sh->raid_conf;
1625 int level = conf->level;
1626 struct raid5_percpu *percpu;
1627 unsigned long cpu;
1628
1629 cpu = get_cpu();
1630 percpu = per_cpu_ptr(conf->percpu, cpu);
1631 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1632 ops_run_biofill(sh);
1633 overlap_clear++;
1634 }
1635
1636 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1637 if (level < 6)
1638 tx = ops_run_compute5(sh, percpu);
1639 else {
1640 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1641 tx = ops_run_compute6_1(sh, percpu);
1642 else
1643 tx = ops_run_compute6_2(sh, percpu);
1644 }
1645 /* terminate the chain if reconstruct is not set to be run */
1646 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1647 async_tx_ack(tx);
1648 }
1649
1650 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1651 tx = ops_run_prexor(sh, percpu, tx);
1652
1653 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1654 tx = ops_run_biodrain(sh, tx);
1655 overlap_clear++;
1656 }
1657
1658 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1659 if (level < 6)
1660 ops_run_reconstruct5(sh, percpu, tx);
1661 else
1662 ops_run_reconstruct6(sh, percpu, tx);
1663 }
1664
1665 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1666 if (sh->check_state == check_state_run)
1667 ops_run_check_p(sh, percpu);
1668 else if (sh->check_state == check_state_run_q)
1669 ops_run_check_pq(sh, percpu, 0);
1670 else if (sh->check_state == check_state_run_pq)
1671 ops_run_check_pq(sh, percpu, 1);
1672 else
1673 BUG();
1674 }
1675
1676 if (overlap_clear)
1677 for (i = disks; i--; ) {
1678 struct r5dev *dev = &sh->dev[i];
1679 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1680 wake_up(&sh->raid_conf->wait_for_overlap);
1681 }
1682 put_cpu();
1683 }
1684
1685 static int grow_one_stripe(struct r5conf *conf, int hash)
1686 {
1687 struct stripe_head *sh;
1688 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1689 if (!sh)
1690 return 0;
1691
1692 sh->raid_conf = conf;
1693
1694 spin_lock_init(&sh->stripe_lock);
1695
1696 if (grow_buffers(sh)) {
1697 shrink_buffers(sh);
1698 kmem_cache_free(conf->slab_cache, sh);
1699 return 0;
1700 }
1701 sh->hash_lock_index = hash;
1702 /* we just created an active stripe so... */
1703 atomic_set(&sh->count, 1);
1704 atomic_inc(&conf->active_stripes);
1705 INIT_LIST_HEAD(&sh->lru);
1706 release_stripe(sh);
1707 return 1;
1708 }
1709
1710 static int grow_stripes(struct r5conf *conf, int num)
1711 {
1712 struct kmem_cache *sc;
1713 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1714 int hash;
1715
1716 if (conf->mddev->gendisk)
1717 sprintf(conf->cache_name[0],
1718 "raid%d-%s", conf->level, mdname(conf->mddev));
1719 else
1720 sprintf(conf->cache_name[0],
1721 "raid%d-%p", conf->level, conf->mddev);
1722 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1723
1724 conf->active_name = 0;
1725 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1726 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1727 0, 0, NULL);
1728 if (!sc)
1729 return 1;
1730 conf->slab_cache = sc;
1731 conf->pool_size = devs;
1732 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1733 while (num--) {
1734 if (!grow_one_stripe(conf, hash))
1735 return 1;
1736 conf->max_nr_stripes++;
1737 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1738 }
1739 return 0;
1740 }
1741
1742 /**
1743 * scribble_len - return the required size of the scribble region
1744 * @num - total number of disks in the array
1745 *
1746 * The size must be enough to contain:
1747 * 1/ a struct page pointer for each device in the array +2
1748 * 2/ room to convert each entry in (1) to its corresponding dma
1749 * (dma_map_page()) or page (page_address()) address.
1750 *
1751 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1752 * calculate over all devices (not just the data blocks), using zeros in place
1753 * of the P and Q blocks.
1754 */
1755 static size_t scribble_len(int num)
1756 {
1757 size_t len;
1758
1759 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1760
1761 return len;
1762 }
1763
1764 static int resize_stripes(struct r5conf *conf, int newsize)
1765 {
1766 /* Make all the stripes able to hold 'newsize' devices.
1767 * New slots in each stripe get 'page' set to a new page.
1768 *
1769 * This happens in stages:
1770 * 1/ create a new kmem_cache and allocate the required number of
1771 * stripe_heads.
1772 * 2/ gather all the old stripe_heads and transfer the pages across
1773 * to the new stripe_heads. This will have the side effect of
1774 * freezing the array as once all stripe_heads have been collected,
1775 * no IO will be possible. Old stripe heads are freed once their
1776 * pages have been transferred over, and the old kmem_cache is
1777 * freed when all stripes are done.
1778 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1779 * we simple return a failre status - no need to clean anything up.
1780 * 4/ allocate new pages for the new slots in the new stripe_heads.
1781 * If this fails, we don't bother trying the shrink the
1782 * stripe_heads down again, we just leave them as they are.
1783 * As each stripe_head is processed the new one is released into
1784 * active service.
1785 *
1786 * Once step2 is started, we cannot afford to wait for a write,
1787 * so we use GFP_NOIO allocations.
1788 */
1789 struct stripe_head *osh, *nsh;
1790 LIST_HEAD(newstripes);
1791 struct disk_info *ndisks;
1792 unsigned long cpu;
1793 int err;
1794 struct kmem_cache *sc;
1795 int i;
1796 int hash, cnt;
1797
1798 if (newsize <= conf->pool_size)
1799 return 0; /* never bother to shrink */
1800
1801 err = md_allow_write(conf->mddev);
1802 if (err)
1803 return err;
1804
1805 /* Step 1 */
1806 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1807 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1808 0, 0, NULL);
1809 if (!sc)
1810 return -ENOMEM;
1811
1812 for (i = conf->max_nr_stripes; i; i--) {
1813 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1814 if (!nsh)
1815 break;
1816
1817 nsh->raid_conf = conf;
1818 spin_lock_init(&nsh->stripe_lock);
1819
1820 list_add(&nsh->lru, &newstripes);
1821 }
1822 if (i) {
1823 /* didn't get enough, give up */
1824 while (!list_empty(&newstripes)) {
1825 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1826 list_del(&nsh->lru);
1827 kmem_cache_free(sc, nsh);
1828 }
1829 kmem_cache_destroy(sc);
1830 return -ENOMEM;
1831 }
1832 /* Step 2 - Must use GFP_NOIO now.
1833 * OK, we have enough stripes, start collecting inactive
1834 * stripes and copying them over
1835 */
1836 hash = 0;
1837 cnt = 0;
1838 list_for_each_entry(nsh, &newstripes, lru) {
1839 lock_device_hash_lock(conf, hash);
1840 wait_event_cmd(conf->wait_for_stripe,
1841 !list_empty(conf->inactive_list + hash),
1842 unlock_device_hash_lock(conf, hash),
1843 lock_device_hash_lock(conf, hash));
1844 osh = get_free_stripe(conf, hash);
1845 unlock_device_hash_lock(conf, hash);
1846 atomic_set(&nsh->count, 1);
1847 for(i=0; i<conf->pool_size; i++)
1848 nsh->dev[i].page = osh->dev[i].page;
1849 for( ; i<newsize; i++)
1850 nsh->dev[i].page = NULL;
1851 nsh->hash_lock_index = hash;
1852 kmem_cache_free(conf->slab_cache, osh);
1853 cnt++;
1854 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1855 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1856 hash++;
1857 cnt = 0;
1858 }
1859 }
1860 kmem_cache_destroy(conf->slab_cache);
1861
1862 /* Step 3.
1863 * At this point, we are holding all the stripes so the array
1864 * is completely stalled, so now is a good time to resize
1865 * conf->disks and the scribble region
1866 */
1867 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1868 if (ndisks) {
1869 for (i=0; i<conf->raid_disks; i++)
1870 ndisks[i] = conf->disks[i];
1871 kfree(conf->disks);
1872 conf->disks = ndisks;
1873 } else
1874 err = -ENOMEM;
1875
1876 get_online_cpus();
1877 conf->scribble_len = scribble_len(newsize);
1878 for_each_present_cpu(cpu) {
1879 struct raid5_percpu *percpu;
1880 void *scribble;
1881
1882 percpu = per_cpu_ptr(conf->percpu, cpu);
1883 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1884
1885 if (scribble) {
1886 kfree(percpu->scribble);
1887 percpu->scribble = scribble;
1888 } else {
1889 err = -ENOMEM;
1890 break;
1891 }
1892 }
1893 put_online_cpus();
1894
1895 /* Step 4, return new stripes to service */
1896 while(!list_empty(&newstripes)) {
1897 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1898 list_del_init(&nsh->lru);
1899
1900 for (i=conf->raid_disks; i < newsize; i++)
1901 if (nsh->dev[i].page == NULL) {
1902 struct page *p = alloc_page(GFP_NOIO);
1903 nsh->dev[i].page = p;
1904 if (!p)
1905 err = -ENOMEM;
1906 }
1907 release_stripe(nsh);
1908 }
1909 /* critical section pass, GFP_NOIO no longer needed */
1910
1911 conf->slab_cache = sc;
1912 conf->active_name = 1-conf->active_name;
1913 conf->pool_size = newsize;
1914 return err;
1915 }
1916
1917 static int drop_one_stripe(struct r5conf *conf, int hash)
1918 {
1919 struct stripe_head *sh;
1920
1921 spin_lock_irq(conf->hash_locks + hash);
1922 sh = get_free_stripe(conf, hash);
1923 spin_unlock_irq(conf->hash_locks + hash);
1924 if (!sh)
1925 return 0;
1926 BUG_ON(atomic_read(&sh->count));
1927 shrink_buffers(sh);
1928 kmem_cache_free(conf->slab_cache, sh);
1929 atomic_dec(&conf->active_stripes);
1930 return 1;
1931 }
1932
1933 static void shrink_stripes(struct r5conf *conf)
1934 {
1935 int hash;
1936 for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1937 while (drop_one_stripe(conf, hash))
1938 ;
1939
1940 if (conf->slab_cache)
1941 kmem_cache_destroy(conf->slab_cache);
1942 conf->slab_cache = NULL;
1943 }
1944
1945 static void raid5_end_read_request(struct bio * bi, int error)
1946 {
1947 struct stripe_head *sh = bi->bi_private;
1948 struct r5conf *conf = sh->raid_conf;
1949 int disks = sh->disks, i;
1950 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1951 char b[BDEVNAME_SIZE];
1952 struct md_rdev *rdev = NULL;
1953 sector_t s;
1954
1955 for (i=0 ; i<disks; i++)
1956 if (bi == &sh->dev[i].req)
1957 break;
1958
1959 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1960 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1961 uptodate);
1962 if (i == disks) {
1963 BUG();
1964 return;
1965 }
1966 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1967 /* If replacement finished while this request was outstanding,
1968 * 'replacement' might be NULL already.
1969 * In that case it moved down to 'rdev'.
1970 * rdev is not removed until all requests are finished.
1971 */
1972 rdev = conf->disks[i].replacement;
1973 if (!rdev)
1974 rdev = conf->disks[i].rdev;
1975
1976 if (use_new_offset(conf, sh))
1977 s = sh->sector + rdev->new_data_offset;
1978 else
1979 s = sh->sector + rdev->data_offset;
1980 if (uptodate) {
1981 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1982 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1983 /* Note that this cannot happen on a
1984 * replacement device. We just fail those on
1985 * any error
1986 */
1987 printk_ratelimited(
1988 KERN_INFO
1989 "md/raid:%s: read error corrected"
1990 " (%lu sectors at %llu on %s)\n",
1991 mdname(conf->mddev), STRIPE_SECTORS,
1992 (unsigned long long)s,
1993 bdevname(rdev->bdev, b));
1994 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1995 clear_bit(R5_ReadError, &sh->dev[i].flags);
1996 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1997 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1998 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1999
2000 if (atomic_read(&rdev->read_errors))
2001 atomic_set(&rdev->read_errors, 0);
2002 } else {
2003 const char *bdn = bdevname(rdev->bdev, b);
2004 int retry = 0;
2005 int set_bad = 0;
2006
2007 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2008 atomic_inc(&rdev->read_errors);
2009 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2010 printk_ratelimited(
2011 KERN_WARNING
2012 "md/raid:%s: read error on replacement device "
2013 "(sector %llu on %s).\n",
2014 mdname(conf->mddev),
2015 (unsigned long long)s,
2016 bdn);
2017 else if (conf->mddev->degraded >= conf->max_degraded) {
2018 set_bad = 1;
2019 printk_ratelimited(
2020 KERN_WARNING
2021 "md/raid:%s: read error not correctable "
2022 "(sector %llu on %s).\n",
2023 mdname(conf->mddev),
2024 (unsigned long long)s,
2025 bdn);
2026 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2027 /* Oh, no!!! */
2028 set_bad = 1;
2029 printk_ratelimited(
2030 KERN_WARNING
2031 "md/raid:%s: read error NOT corrected!! "
2032 "(sector %llu on %s).\n",
2033 mdname(conf->mddev),
2034 (unsigned long long)s,
2035 bdn);
2036 } else if (atomic_read(&rdev->read_errors)
2037 > conf->max_nr_stripes)
2038 printk(KERN_WARNING
2039 "md/raid:%s: Too many read errors, failing device %s.\n",
2040 mdname(conf->mddev), bdn);
2041 else
2042 retry = 1;
2043 if (set_bad && test_bit(In_sync, &rdev->flags)
2044 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2045 retry = 1;
2046 if (retry)
2047 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2048 set_bit(R5_ReadError, &sh->dev[i].flags);
2049 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2050 } else
2051 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2052 else {
2053 clear_bit(R5_ReadError, &sh->dev[i].flags);
2054 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2055 if (!(set_bad
2056 && test_bit(In_sync, &rdev->flags)
2057 && rdev_set_badblocks(
2058 rdev, sh->sector, STRIPE_SECTORS, 0)))
2059 md_error(conf->mddev, rdev);
2060 }
2061 }
2062 rdev_dec_pending(rdev, conf->mddev);
2063 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2064 set_bit(STRIPE_HANDLE, &sh->state);
2065 release_stripe(sh);
2066 }
2067
2068 static void raid5_end_write_request(struct bio *bi, int error)
2069 {
2070 struct stripe_head *sh = bi->bi_private;
2071 struct r5conf *conf = sh->raid_conf;
2072 int disks = sh->disks, i;
2073 struct md_rdev *uninitialized_var(rdev);
2074 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2075 sector_t first_bad;
2076 int bad_sectors;
2077 int replacement = 0;
2078
2079 for (i = 0 ; i < disks; i++) {
2080 if (bi == &sh->dev[i].req) {
2081 rdev = conf->disks[i].rdev;
2082 break;
2083 }
2084 if (bi == &sh->dev[i].rreq) {
2085 rdev = conf->disks[i].replacement;
2086 if (rdev)
2087 replacement = 1;
2088 else
2089 /* rdev was removed and 'replacement'
2090 * replaced it. rdev is not removed
2091 * until all requests are finished.
2092 */
2093 rdev = conf->disks[i].rdev;
2094 break;
2095 }
2096 }
2097 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2098 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2099 uptodate);
2100 if (i == disks) {
2101 BUG();
2102 return;
2103 }
2104
2105 if (replacement) {
2106 if (!uptodate)
2107 md_error(conf->mddev, rdev);
2108 else if (is_badblock(rdev, sh->sector,
2109 STRIPE_SECTORS,
2110 &first_bad, &bad_sectors))
2111 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2112 } else {
2113 if (!uptodate) {
2114 set_bit(STRIPE_DEGRADED, &sh->state);
2115 set_bit(WriteErrorSeen, &rdev->flags);
2116 set_bit(R5_WriteError, &sh->dev[i].flags);
2117 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2118 set_bit(MD_RECOVERY_NEEDED,
2119 &rdev->mddev->recovery);
2120 } else if (is_badblock(rdev, sh->sector,
2121 STRIPE_SECTORS,
2122 &first_bad, &bad_sectors)) {
2123 set_bit(R5_MadeGood, &sh->dev[i].flags);
2124 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2125 /* That was a successful write so make
2126 * sure it looks like we already did
2127 * a re-write.
2128 */
2129 set_bit(R5_ReWrite, &sh->dev[i].flags);
2130 }
2131 }
2132 rdev_dec_pending(rdev, conf->mddev);
2133
2134 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2135 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2136 set_bit(STRIPE_HANDLE, &sh->state);
2137 release_stripe(sh);
2138 }
2139
2140 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2141
2142 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2143 {
2144 struct r5dev *dev = &sh->dev[i];
2145
2146 bio_init(&dev->req);
2147 dev->req.bi_io_vec = &dev->vec;
2148 dev->req.bi_vcnt++;
2149 dev->req.bi_max_vecs++;
2150 dev->req.bi_private = sh;
2151 dev->vec.bv_page = dev->page;
2152
2153 bio_init(&dev->rreq);
2154 dev->rreq.bi_io_vec = &dev->rvec;
2155 dev->rreq.bi_vcnt++;
2156 dev->rreq.bi_max_vecs++;
2157 dev->rreq.bi_private = sh;
2158 dev->rvec.bv_page = dev->page;
2159
2160 dev->flags = 0;
2161 dev->sector = compute_blocknr(sh, i, previous);
2162 }
2163
2164 static void error(struct mddev *mddev, struct md_rdev *rdev)
2165 {
2166 char b[BDEVNAME_SIZE];
2167 struct r5conf *conf = mddev->private;
2168 unsigned long flags;
2169 pr_debug("raid456: error called\n");
2170
2171 spin_lock_irqsave(&conf->device_lock, flags);
2172 clear_bit(In_sync, &rdev->flags);
2173 mddev->degraded = calc_degraded(conf);
2174 spin_unlock_irqrestore(&conf->device_lock, flags);
2175 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2176
2177 set_bit(Blocked, &rdev->flags);
2178 set_bit(Faulty, &rdev->flags);
2179 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2180 printk(KERN_ALERT
2181 "md/raid:%s: Disk failure on %s, disabling device.\n"
2182 "md/raid:%s: Operation continuing on %d devices.\n",
2183 mdname(mddev),
2184 bdevname(rdev->bdev, b),
2185 mdname(mddev),
2186 conf->raid_disks - mddev->degraded);
2187 }
2188
2189 /*
2190 * Input: a 'big' sector number,
2191 * Output: index of the data and parity disk, and the sector # in them.
2192 */
2193 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2194 int previous, int *dd_idx,
2195 struct stripe_head *sh)
2196 {
2197 sector_t stripe, stripe2;
2198 sector_t chunk_number;
2199 unsigned int chunk_offset;
2200 int pd_idx, qd_idx;
2201 int ddf_layout = 0;
2202 sector_t new_sector;
2203 int algorithm = previous ? conf->prev_algo
2204 : conf->algorithm;
2205 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2206 : conf->chunk_sectors;
2207 int raid_disks = previous ? conf->previous_raid_disks
2208 : conf->raid_disks;
2209 int data_disks = raid_disks - conf->max_degraded;
2210
2211 /* First compute the information on this sector */
2212
2213 /*
2214 * Compute the chunk number and the sector offset inside the chunk
2215 */
2216 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2217 chunk_number = r_sector;
2218
2219 /*
2220 * Compute the stripe number
2221 */
2222 stripe = chunk_number;
2223 *dd_idx = sector_div(stripe, data_disks);
2224 stripe2 = stripe;
2225 /*
2226 * Select the parity disk based on the user selected algorithm.
2227 */
2228 pd_idx = qd_idx = -1;
2229 switch(conf->level) {
2230 case 4:
2231 pd_idx = data_disks;
2232 break;
2233 case 5:
2234 switch (algorithm) {
2235 case ALGORITHM_LEFT_ASYMMETRIC:
2236 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2237 if (*dd_idx >= pd_idx)
2238 (*dd_idx)++;
2239 break;
2240 case ALGORITHM_RIGHT_ASYMMETRIC:
2241 pd_idx = sector_div(stripe2, raid_disks);
2242 if (*dd_idx >= pd_idx)
2243 (*dd_idx)++;
2244 break;
2245 case ALGORITHM_LEFT_SYMMETRIC:
2246 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2247 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2248 break;
2249 case ALGORITHM_RIGHT_SYMMETRIC:
2250 pd_idx = sector_div(stripe2, raid_disks);
2251 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2252 break;
2253 case ALGORITHM_PARITY_0:
2254 pd_idx = 0;
2255 (*dd_idx)++;
2256 break;
2257 case ALGORITHM_PARITY_N:
2258 pd_idx = data_disks;
2259 break;
2260 default:
2261 BUG();
2262 }
2263 break;
2264 case 6:
2265
2266 switch (algorithm) {
2267 case ALGORITHM_LEFT_ASYMMETRIC:
2268 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2269 qd_idx = pd_idx + 1;
2270 if (pd_idx == raid_disks-1) {
2271 (*dd_idx)++; /* Q D D D P */
2272 qd_idx = 0;
2273 } else if (*dd_idx >= pd_idx)
2274 (*dd_idx) += 2; /* D D P Q D */
2275 break;
2276 case ALGORITHM_RIGHT_ASYMMETRIC:
2277 pd_idx = sector_div(stripe2, raid_disks);
2278 qd_idx = pd_idx + 1;
2279 if (pd_idx == raid_disks-1) {
2280 (*dd_idx)++; /* Q D D D P */
2281 qd_idx = 0;
2282 } else if (*dd_idx >= pd_idx)
2283 (*dd_idx) += 2; /* D D P Q D */
2284 break;
2285 case ALGORITHM_LEFT_SYMMETRIC:
2286 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2287 qd_idx = (pd_idx + 1) % raid_disks;
2288 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2289 break;
2290 case ALGORITHM_RIGHT_SYMMETRIC:
2291 pd_idx = sector_div(stripe2, raid_disks);
2292 qd_idx = (pd_idx + 1) % raid_disks;
2293 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2294 break;
2295
2296 case ALGORITHM_PARITY_0:
2297 pd_idx = 0;
2298 qd_idx = 1;
2299 (*dd_idx) += 2;
2300 break;
2301 case ALGORITHM_PARITY_N:
2302 pd_idx = data_disks;
2303 qd_idx = data_disks + 1;
2304 break;
2305
2306 case ALGORITHM_ROTATING_ZERO_RESTART:
2307 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2308 * of blocks for computing Q is different.
2309 */
2310 pd_idx = sector_div(stripe2, raid_disks);
2311 qd_idx = pd_idx + 1;
2312 if (pd_idx == raid_disks-1) {
2313 (*dd_idx)++; /* Q D D D P */
2314 qd_idx = 0;
2315 } else if (*dd_idx >= pd_idx)
2316 (*dd_idx) += 2; /* D D P Q D */
2317 ddf_layout = 1;
2318 break;
2319
2320 case ALGORITHM_ROTATING_N_RESTART:
2321 /* Same a left_asymmetric, by first stripe is
2322 * D D D P Q rather than
2323 * Q D D D P
2324 */
2325 stripe2 += 1;
2326 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2327 qd_idx = pd_idx + 1;
2328 if (pd_idx == raid_disks-1) {
2329 (*dd_idx)++; /* Q D D D P */
2330 qd_idx = 0;
2331 } else if (*dd_idx >= pd_idx)
2332 (*dd_idx) += 2; /* D D P Q D */
2333 ddf_layout = 1;
2334 break;
2335
2336 case ALGORITHM_ROTATING_N_CONTINUE:
2337 /* Same as left_symmetric but Q is before P */
2338 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2339 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2340 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2341 ddf_layout = 1;
2342 break;
2343
2344 case ALGORITHM_LEFT_ASYMMETRIC_6:
2345 /* RAID5 left_asymmetric, with Q on last device */
2346 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2347 if (*dd_idx >= pd_idx)
2348 (*dd_idx)++;
2349 qd_idx = raid_disks - 1;
2350 break;
2351
2352 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2353 pd_idx = sector_div(stripe2, raid_disks-1);
2354 if (*dd_idx >= pd_idx)
2355 (*dd_idx)++;
2356 qd_idx = raid_disks - 1;
2357 break;
2358
2359 case ALGORITHM_LEFT_SYMMETRIC_6:
2360 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2361 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2362 qd_idx = raid_disks - 1;
2363 break;
2364
2365 case ALGORITHM_RIGHT_SYMMETRIC_6:
2366 pd_idx = sector_div(stripe2, raid_disks-1);
2367 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2368 qd_idx = raid_disks - 1;
2369 break;
2370
2371 case ALGORITHM_PARITY_0_6:
2372 pd_idx = 0;
2373 (*dd_idx)++;
2374 qd_idx = raid_disks - 1;
2375 break;
2376
2377 default:
2378 BUG();
2379 }
2380 break;
2381 }
2382
2383 if (sh) {
2384 sh->pd_idx = pd_idx;
2385 sh->qd_idx = qd_idx;
2386 sh->ddf_layout = ddf_layout;
2387 }
2388 /*
2389 * Finally, compute the new sector number
2390 */
2391 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2392 return new_sector;
2393 }
2394
2395
2396 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2397 {
2398 struct r5conf *conf = sh->raid_conf;
2399 int raid_disks = sh->disks;
2400 int data_disks = raid_disks - conf->max_degraded;
2401 sector_t new_sector = sh->sector, check;
2402 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2403 : conf->chunk_sectors;
2404 int algorithm = previous ? conf->prev_algo
2405 : conf->algorithm;
2406 sector_t stripe;
2407 int chunk_offset;
2408 sector_t chunk_number;
2409 int dummy1, dd_idx = i;
2410 sector_t r_sector;
2411 struct stripe_head sh2;
2412
2413
2414 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2415 stripe = new_sector;
2416
2417 if (i == sh->pd_idx)
2418 return 0;
2419 switch(conf->level) {
2420 case 4: break;
2421 case 5:
2422 switch (algorithm) {
2423 case ALGORITHM_LEFT_ASYMMETRIC:
2424 case ALGORITHM_RIGHT_ASYMMETRIC:
2425 if (i > sh->pd_idx)
2426 i--;
2427 break;
2428 case ALGORITHM_LEFT_SYMMETRIC:
2429 case ALGORITHM_RIGHT_SYMMETRIC:
2430 if (i < sh->pd_idx)
2431 i += raid_disks;
2432 i -= (sh->pd_idx + 1);
2433 break;
2434 case ALGORITHM_PARITY_0:
2435 i -= 1;
2436 break;
2437 case ALGORITHM_PARITY_N:
2438 break;
2439 default:
2440 BUG();
2441 }
2442 break;
2443 case 6:
2444 if (i == sh->qd_idx)
2445 return 0; /* It is the Q disk */
2446 switch (algorithm) {
2447 case ALGORITHM_LEFT_ASYMMETRIC:
2448 case ALGORITHM_RIGHT_ASYMMETRIC:
2449 case ALGORITHM_ROTATING_ZERO_RESTART:
2450 case ALGORITHM_ROTATING_N_RESTART:
2451 if (sh->pd_idx == raid_disks-1)
2452 i--; /* Q D D D P */
2453 else if (i > sh->pd_idx)
2454 i -= 2; /* D D P Q D */
2455 break;
2456 case ALGORITHM_LEFT_SYMMETRIC:
2457 case ALGORITHM_RIGHT_SYMMETRIC:
2458 if (sh->pd_idx == raid_disks-1)
2459 i--; /* Q D D D P */
2460 else {
2461 /* D D P Q D */
2462 if (i < sh->pd_idx)
2463 i += raid_disks;
2464 i -= (sh->pd_idx + 2);
2465 }
2466 break;
2467 case ALGORITHM_PARITY_0:
2468 i -= 2;
2469 break;
2470 case ALGORITHM_PARITY_N:
2471 break;
2472 case ALGORITHM_ROTATING_N_CONTINUE:
2473 /* Like left_symmetric, but P is before Q */
2474 if (sh->pd_idx == 0)
2475 i--; /* P D D D Q */
2476 else {
2477 /* D D Q P D */
2478 if (i < sh->pd_idx)
2479 i += raid_disks;
2480 i -= (sh->pd_idx + 1);
2481 }
2482 break;
2483 case ALGORITHM_LEFT_ASYMMETRIC_6:
2484 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2485 if (i > sh->pd_idx)
2486 i--;
2487 break;
2488 case ALGORITHM_LEFT_SYMMETRIC_6:
2489 case ALGORITHM_RIGHT_SYMMETRIC_6:
2490 if (i < sh->pd_idx)
2491 i += data_disks + 1;
2492 i -= (sh->pd_idx + 1);
2493 break;
2494 case ALGORITHM_PARITY_0_6:
2495 i -= 1;
2496 break;
2497 default:
2498 BUG();
2499 }
2500 break;
2501 }
2502
2503 chunk_number = stripe * data_disks + i;
2504 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2505
2506 check = raid5_compute_sector(conf, r_sector,
2507 previous, &dummy1, &sh2);
2508 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2509 || sh2.qd_idx != sh->qd_idx) {
2510 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2511 mdname(conf->mddev));
2512 return 0;
2513 }
2514 return r_sector;
2515 }
2516
2517
2518 static void
2519 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2520 int rcw, int expand)
2521 {
2522 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2523 struct r5conf *conf = sh->raid_conf;
2524 int level = conf->level;
2525
2526 if (rcw) {
2527
2528 for (i = disks; i--; ) {
2529 struct r5dev *dev = &sh->dev[i];
2530
2531 if (dev->towrite) {
2532 set_bit(R5_LOCKED, &dev->flags);
2533 set_bit(R5_Wantdrain, &dev->flags);
2534 if (!expand)
2535 clear_bit(R5_UPTODATE, &dev->flags);
2536 s->locked++;
2537 }
2538 }
2539 /* if we are not expanding this is a proper write request, and
2540 * there will be bios with new data to be drained into the
2541 * stripe cache
2542 */
2543 if (!expand) {
2544 if (!s->locked)
2545 /* False alarm, nothing to do */
2546 return;
2547 sh->reconstruct_state = reconstruct_state_drain_run;
2548 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2549 } else
2550 sh->reconstruct_state = reconstruct_state_run;
2551
2552 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2553
2554 if (s->locked + conf->max_degraded == disks)
2555 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2556 atomic_inc(&conf->pending_full_writes);
2557 } else {
2558 BUG_ON(level == 6);
2559 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2560 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2561
2562 for (i = disks; i--; ) {
2563 struct r5dev *dev = &sh->dev[i];
2564 if (i == pd_idx)
2565 continue;
2566
2567 if (dev->towrite &&
2568 (test_bit(R5_UPTODATE, &dev->flags) ||
2569 test_bit(R5_Wantcompute, &dev->flags))) {
2570 set_bit(R5_Wantdrain, &dev->flags);
2571 set_bit(R5_LOCKED, &dev->flags);
2572 clear_bit(R5_UPTODATE, &dev->flags);
2573 s->locked++;
2574 }
2575 }
2576 if (!s->locked)
2577 /* False alarm - nothing to do */
2578 return;
2579 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2580 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2581 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2582 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2583 }
2584
2585 /* keep the parity disk(s) locked while asynchronous operations
2586 * are in flight
2587 */
2588 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2589 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2590 s->locked++;
2591
2592 if (level == 6) {
2593 int qd_idx = sh->qd_idx;
2594 struct r5dev *dev = &sh->dev[qd_idx];
2595
2596 set_bit(R5_LOCKED, &dev->flags);
2597 clear_bit(R5_UPTODATE, &dev->flags);
2598 s->locked++;
2599 }
2600
2601 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2602 __func__, (unsigned long long)sh->sector,
2603 s->locked, s->ops_request);
2604 }
2605
2606 /*
2607 * Each stripe/dev can have one or more bion attached.
2608 * toread/towrite point to the first in a chain.
2609 * The bi_next chain must be in order.
2610 */
2611 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2612 {
2613 struct bio **bip;
2614 struct r5conf *conf = sh->raid_conf;
2615 int firstwrite=0;
2616
2617 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2618 (unsigned long long)bi->bi_iter.bi_sector,
2619 (unsigned long long)sh->sector);
2620
2621 /*
2622 * If several bio share a stripe. The bio bi_phys_segments acts as a
2623 * reference count to avoid race. The reference count should already be
2624 * increased before this function is called (for example, in
2625 * make_request()), so other bio sharing this stripe will not free the
2626 * stripe. If a stripe is owned by one stripe, the stripe lock will
2627 * protect it.
2628 */
2629 spin_lock_irq(&sh->stripe_lock);
2630 if (forwrite) {
2631 bip = &sh->dev[dd_idx].towrite;
2632 if (*bip == NULL)
2633 firstwrite = 1;
2634 } else
2635 bip = &sh->dev[dd_idx].toread;
2636 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2637 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2638 goto overlap;
2639 bip = & (*bip)->bi_next;
2640 }
2641 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2642 goto overlap;
2643
2644 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2645 if (*bip)
2646 bi->bi_next = *bip;
2647 *bip = bi;
2648 raid5_inc_bi_active_stripes(bi);
2649
2650 if (forwrite) {
2651 /* check if page is covered */
2652 sector_t sector = sh->dev[dd_idx].sector;
2653 for (bi=sh->dev[dd_idx].towrite;
2654 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2655 bi && bi->bi_iter.bi_sector <= sector;
2656 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2657 if (bio_end_sector(bi) >= sector)
2658 sector = bio_end_sector(bi);
2659 }
2660 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2661 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2662 }
2663
2664 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2665 (unsigned long long)(*bip)->bi_iter.bi_sector,
2666 (unsigned long long)sh->sector, dd_idx);
2667 spin_unlock_irq(&sh->stripe_lock);
2668
2669 if (conf->mddev->bitmap && firstwrite) {
2670 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2671 STRIPE_SECTORS, 0);
2672 sh->bm_seq = conf->seq_flush+1;
2673 set_bit(STRIPE_BIT_DELAY, &sh->state);
2674 }
2675 return 1;
2676
2677 overlap:
2678 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2679 spin_unlock_irq(&sh->stripe_lock);
2680 return 0;
2681 }
2682
2683 static void end_reshape(struct r5conf *conf);
2684
2685 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2686 struct stripe_head *sh)
2687 {
2688 int sectors_per_chunk =
2689 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2690 int dd_idx;
2691 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2692 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2693
2694 raid5_compute_sector(conf,
2695 stripe * (disks - conf->max_degraded)
2696 *sectors_per_chunk + chunk_offset,
2697 previous,
2698 &dd_idx, sh);
2699 }
2700
2701 static void
2702 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2703 struct stripe_head_state *s, int disks,
2704 struct bio **return_bi)
2705 {
2706 int i;
2707 for (i = disks; i--; ) {
2708 struct bio *bi;
2709 int bitmap_end = 0;
2710
2711 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2712 struct md_rdev *rdev;
2713 rcu_read_lock();
2714 rdev = rcu_dereference(conf->disks[i].rdev);
2715 if (rdev && test_bit(In_sync, &rdev->flags))
2716 atomic_inc(&rdev->nr_pending);
2717 else
2718 rdev = NULL;
2719 rcu_read_unlock();
2720 if (rdev) {
2721 if (!rdev_set_badblocks(
2722 rdev,
2723 sh->sector,
2724 STRIPE_SECTORS, 0))
2725 md_error(conf->mddev, rdev);
2726 rdev_dec_pending(rdev, conf->mddev);
2727 }
2728 }
2729 spin_lock_irq(&sh->stripe_lock);
2730 /* fail all writes first */
2731 bi = sh->dev[i].towrite;
2732 sh->dev[i].towrite = NULL;
2733 spin_unlock_irq(&sh->stripe_lock);
2734 if (bi)
2735 bitmap_end = 1;
2736
2737 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2738 wake_up(&conf->wait_for_overlap);
2739
2740 while (bi && bi->bi_iter.bi_sector <
2741 sh->dev[i].sector + STRIPE_SECTORS) {
2742 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2743 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2744 if (!raid5_dec_bi_active_stripes(bi)) {
2745 md_write_end(conf->mddev);
2746 bi->bi_next = *return_bi;
2747 *return_bi = bi;
2748 }
2749 bi = nextbi;
2750 }
2751 if (bitmap_end)
2752 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2753 STRIPE_SECTORS, 0, 0);
2754 bitmap_end = 0;
2755 /* and fail all 'written' */
2756 bi = sh->dev[i].written;
2757 sh->dev[i].written = NULL;
2758 if (bi) bitmap_end = 1;
2759 while (bi && bi->bi_iter.bi_sector <
2760 sh->dev[i].sector + STRIPE_SECTORS) {
2761 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2762 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2763 if (!raid5_dec_bi_active_stripes(bi)) {
2764 md_write_end(conf->mddev);
2765 bi->bi_next = *return_bi;
2766 *return_bi = bi;
2767 }
2768 bi = bi2;
2769 }
2770
2771 /* fail any reads if this device is non-operational and
2772 * the data has not reached the cache yet.
2773 */
2774 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2775 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2776 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2777 spin_lock_irq(&sh->stripe_lock);
2778 bi = sh->dev[i].toread;
2779 sh->dev[i].toread = NULL;
2780 spin_unlock_irq(&sh->stripe_lock);
2781 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2782 wake_up(&conf->wait_for_overlap);
2783 while (bi && bi->bi_iter.bi_sector <
2784 sh->dev[i].sector + STRIPE_SECTORS) {
2785 struct bio *nextbi =
2786 r5_next_bio(bi, sh->dev[i].sector);
2787 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2788 if (!raid5_dec_bi_active_stripes(bi)) {
2789 bi->bi_next = *return_bi;
2790 *return_bi = bi;
2791 }
2792 bi = nextbi;
2793 }
2794 }
2795 if (bitmap_end)
2796 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2797 STRIPE_SECTORS, 0, 0);
2798 /* If we were in the middle of a write the parity block might
2799 * still be locked - so just clear all R5_LOCKED flags
2800 */
2801 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2802 }
2803
2804 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2805 if (atomic_dec_and_test(&conf->pending_full_writes))
2806 md_wakeup_thread(conf->mddev->thread);
2807 }
2808
2809 static void
2810 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2811 struct stripe_head_state *s)
2812 {
2813 int abort = 0;
2814 int i;
2815
2816 clear_bit(STRIPE_SYNCING, &sh->state);
2817 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2818 wake_up(&conf->wait_for_overlap);
2819 s->syncing = 0;
2820 s->replacing = 0;
2821 /* There is nothing more to do for sync/check/repair.
2822 * Don't even need to abort as that is handled elsewhere
2823 * if needed, and not always wanted e.g. if there is a known
2824 * bad block here.
2825 * For recover/replace we need to record a bad block on all
2826 * non-sync devices, or abort the recovery
2827 */
2828 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2829 /* During recovery devices cannot be removed, so
2830 * locking and refcounting of rdevs is not needed
2831 */
2832 for (i = 0; i < conf->raid_disks; i++) {
2833 struct md_rdev *rdev = conf->disks[i].rdev;
2834 if (rdev
2835 && !test_bit(Faulty, &rdev->flags)
2836 && !test_bit(In_sync, &rdev->flags)
2837 && !rdev_set_badblocks(rdev, sh->sector,
2838 STRIPE_SECTORS, 0))
2839 abort = 1;
2840 rdev = conf->disks[i].replacement;
2841 if (rdev
2842 && !test_bit(Faulty, &rdev->flags)
2843 && !test_bit(In_sync, &rdev->flags)
2844 && !rdev_set_badblocks(rdev, sh->sector,
2845 STRIPE_SECTORS, 0))
2846 abort = 1;
2847 }
2848 if (abort)
2849 conf->recovery_disabled =
2850 conf->mddev->recovery_disabled;
2851 }
2852 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2853 }
2854
2855 static int want_replace(struct stripe_head *sh, int disk_idx)
2856 {
2857 struct md_rdev *rdev;
2858 int rv = 0;
2859 /* Doing recovery so rcu locking not required */
2860 rdev = sh->raid_conf->disks[disk_idx].replacement;
2861 if (rdev
2862 && !test_bit(Faulty, &rdev->flags)
2863 && !test_bit(In_sync, &rdev->flags)
2864 && (rdev->recovery_offset <= sh->sector
2865 || rdev->mddev->recovery_cp <= sh->sector))
2866 rv = 1;
2867
2868 return rv;
2869 }
2870
2871 /* fetch_block - checks the given member device to see if its data needs
2872 * to be read or computed to satisfy a request.
2873 *
2874 * Returns 1 when no more member devices need to be checked, otherwise returns
2875 * 0 to tell the loop in handle_stripe_fill to continue
2876 */
2877 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2878 int disk_idx, int disks)
2879 {
2880 struct r5dev *dev = &sh->dev[disk_idx];
2881 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2882 &sh->dev[s->failed_num[1]] };
2883
2884 /* is the data in this block needed, and can we get it? */
2885 if (!test_bit(R5_LOCKED, &dev->flags) &&
2886 !test_bit(R5_UPTODATE, &dev->flags) &&
2887 (dev->toread ||
2888 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2889 s->syncing || s->expanding ||
2890 (s->replacing && want_replace(sh, disk_idx)) ||
2891 (s->failed >= 1 && fdev[0]->toread) ||
2892 (s->failed >= 2 && fdev[1]->toread) ||
2893 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2894 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2895 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2896 /* we would like to get this block, possibly by computing it,
2897 * otherwise read it if the backing disk is insync
2898 */
2899 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2900 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2901 if ((s->uptodate == disks - 1) &&
2902 (s->failed && (disk_idx == s->failed_num[0] ||
2903 disk_idx == s->failed_num[1]))) {
2904 /* have disk failed, and we're requested to fetch it;
2905 * do compute it
2906 */
2907 pr_debug("Computing stripe %llu block %d\n",
2908 (unsigned long long)sh->sector, disk_idx);
2909 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2910 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2911 set_bit(R5_Wantcompute, &dev->flags);
2912 sh->ops.target = disk_idx;
2913 sh->ops.target2 = -1; /* no 2nd target */
2914 s->req_compute = 1;
2915 /* Careful: from this point on 'uptodate' is in the eye
2916 * of raid_run_ops which services 'compute' operations
2917 * before writes. R5_Wantcompute flags a block that will
2918 * be R5_UPTODATE by the time it is needed for a
2919 * subsequent operation.
2920 */
2921 s->uptodate++;
2922 return 1;
2923 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2924 /* Computing 2-failure is *very* expensive; only
2925 * do it if failed >= 2
2926 */
2927 int other;
2928 for (other = disks; other--; ) {
2929 if (other == disk_idx)
2930 continue;
2931 if (!test_bit(R5_UPTODATE,
2932 &sh->dev[other].flags))
2933 break;
2934 }
2935 BUG_ON(other < 0);
2936 pr_debug("Computing stripe %llu blocks %d,%d\n",
2937 (unsigned long long)sh->sector,
2938 disk_idx, other);
2939 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2940 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2941 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2942 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2943 sh->ops.target = disk_idx;
2944 sh->ops.target2 = other;
2945 s->uptodate += 2;
2946 s->req_compute = 1;
2947 return 1;
2948 } else if (test_bit(R5_Insync, &dev->flags)) {
2949 set_bit(R5_LOCKED, &dev->flags);
2950 set_bit(R5_Wantread, &dev->flags);
2951 s->locked++;
2952 pr_debug("Reading block %d (sync=%d)\n",
2953 disk_idx, s->syncing);
2954 }
2955 }
2956
2957 return 0;
2958 }
2959
2960 /**
2961 * handle_stripe_fill - read or compute data to satisfy pending requests.
2962 */
2963 static void handle_stripe_fill(struct stripe_head *sh,
2964 struct stripe_head_state *s,
2965 int disks)
2966 {
2967 int i;
2968
2969 /* look for blocks to read/compute, skip this if a compute
2970 * is already in flight, or if the stripe contents are in the
2971 * midst of changing due to a write
2972 */
2973 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2974 !sh->reconstruct_state)
2975 for (i = disks; i--; )
2976 if (fetch_block(sh, s, i, disks))
2977 break;
2978 set_bit(STRIPE_HANDLE, &sh->state);
2979 }
2980
2981
2982 /* handle_stripe_clean_event
2983 * any written block on an uptodate or failed drive can be returned.
2984 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2985 * never LOCKED, so we don't need to test 'failed' directly.
2986 */
2987 static void handle_stripe_clean_event(struct r5conf *conf,
2988 struct stripe_head *sh, int disks, struct bio **return_bi)
2989 {
2990 int i;
2991 struct r5dev *dev;
2992 int discard_pending = 0;
2993
2994 for (i = disks; i--; )
2995 if (sh->dev[i].written) {
2996 dev = &sh->dev[i];
2997 if (!test_bit(R5_LOCKED, &dev->flags) &&
2998 (test_bit(R5_UPTODATE, &dev->flags) ||
2999 test_bit(R5_Discard, &dev->flags))) {
3000 /* We can return any write requests */
3001 struct bio *wbi, *wbi2;
3002 pr_debug("Return write for disc %d\n", i);
3003 if (test_and_clear_bit(R5_Discard, &dev->flags))
3004 clear_bit(R5_UPTODATE, &dev->flags);
3005 wbi = dev->written;
3006 dev->written = NULL;
3007 while (wbi && wbi->bi_iter.bi_sector <
3008 dev->sector + STRIPE_SECTORS) {
3009 wbi2 = r5_next_bio(wbi, dev->sector);
3010 if (!raid5_dec_bi_active_stripes(wbi)) {
3011 md_write_end(conf->mddev);
3012 wbi->bi_next = *return_bi;
3013 *return_bi = wbi;
3014 }
3015 wbi = wbi2;
3016 }
3017 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3018 STRIPE_SECTORS,
3019 !test_bit(STRIPE_DEGRADED, &sh->state),
3020 0);
3021 } else if (test_bit(R5_Discard, &dev->flags))
3022 discard_pending = 1;
3023 }
3024 if (!discard_pending &&
3025 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3026 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3027 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3028 if (sh->qd_idx >= 0) {
3029 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3030 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3031 }
3032 /* now that discard is done we can proceed with any sync */
3033 clear_bit(STRIPE_DISCARD, &sh->state);
3034 /*
3035 * SCSI discard will change some bio fields and the stripe has
3036 * no updated data, so remove it from hash list and the stripe
3037 * will be reinitialized
3038 */
3039 spin_lock_irq(&conf->device_lock);
3040 remove_hash(sh);
3041 spin_unlock_irq(&conf->device_lock);
3042 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3043 set_bit(STRIPE_HANDLE, &sh->state);
3044
3045 }
3046
3047 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3048 if (atomic_dec_and_test(&conf->pending_full_writes))
3049 md_wakeup_thread(conf->mddev->thread);
3050 }
3051
3052 static void handle_stripe_dirtying(struct r5conf *conf,
3053 struct stripe_head *sh,
3054 struct stripe_head_state *s,
3055 int disks)
3056 {
3057 int rmw = 0, rcw = 0, i;
3058 sector_t recovery_cp = conf->mddev->recovery_cp;
3059
3060 /* RAID6 requires 'rcw' in current implementation.
3061 * Otherwise, check whether resync is now happening or should start.
3062 * If yes, then the array is dirty (after unclean shutdown or
3063 * initial creation), so parity in some stripes might be inconsistent.
3064 * In this case, we need to always do reconstruct-write, to ensure
3065 * that in case of drive failure or read-error correction, we
3066 * generate correct data from the parity.
3067 */
3068 if (conf->max_degraded == 2 ||
3069 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3070 /* Calculate the real rcw later - for now make it
3071 * look like rcw is cheaper
3072 */
3073 rcw = 1; rmw = 2;
3074 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3075 conf->max_degraded, (unsigned long long)recovery_cp,
3076 (unsigned long long)sh->sector);
3077 } else for (i = disks; i--; ) {
3078 /* would I have to read this buffer for read_modify_write */
3079 struct r5dev *dev = &sh->dev[i];
3080 if ((dev->towrite || i == sh->pd_idx) &&
3081 !test_bit(R5_LOCKED, &dev->flags) &&
3082 !(test_bit(R5_UPTODATE, &dev->flags) ||
3083 test_bit(R5_Wantcompute, &dev->flags))) {
3084 if (test_bit(R5_Insync, &dev->flags))
3085 rmw++;
3086 else
3087 rmw += 2*disks; /* cannot read it */
3088 }
3089 /* Would I have to read this buffer for reconstruct_write */
3090 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3091 !test_bit(R5_LOCKED, &dev->flags) &&
3092 !(test_bit(R5_UPTODATE, &dev->flags) ||
3093 test_bit(R5_Wantcompute, &dev->flags))) {
3094 if (test_bit(R5_Insync, &dev->flags)) rcw++;
3095 else
3096 rcw += 2*disks;
3097 }
3098 }
3099 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3100 (unsigned long long)sh->sector, rmw, rcw);
3101 set_bit(STRIPE_HANDLE, &sh->state);
3102 if (rmw < rcw && rmw > 0) {
3103 /* prefer read-modify-write, but need to get some data */
3104 if (conf->mddev->queue)
3105 blk_add_trace_msg(conf->mddev->queue,
3106 "raid5 rmw %llu %d",
3107 (unsigned long long)sh->sector, rmw);
3108 for (i = disks; i--; ) {
3109 struct r5dev *dev = &sh->dev[i];
3110 if ((dev->towrite || i == sh->pd_idx) &&
3111 !test_bit(R5_LOCKED, &dev->flags) &&
3112 !(test_bit(R5_UPTODATE, &dev->flags) ||
3113 test_bit(R5_Wantcompute, &dev->flags)) &&
3114 test_bit(R5_Insync, &dev->flags)) {
3115 if (
3116 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3117 pr_debug("Read_old block "
3118 "%d for r-m-w\n", i);
3119 set_bit(R5_LOCKED, &dev->flags);
3120 set_bit(R5_Wantread, &dev->flags);
3121 s->locked++;
3122 } else {
3123 set_bit(STRIPE_DELAYED, &sh->state);
3124 set_bit(STRIPE_HANDLE, &sh->state);
3125 }
3126 }
3127 }
3128 }
3129 if (rcw <= rmw && rcw > 0) {
3130 /* want reconstruct write, but need to get some data */
3131 int qread =0;
3132 rcw = 0;
3133 for (i = disks; i--; ) {
3134 struct r5dev *dev = &sh->dev[i];
3135 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3136 i != sh->pd_idx && i != sh->qd_idx &&
3137 !test_bit(R5_LOCKED, &dev->flags) &&
3138 !(test_bit(R5_UPTODATE, &dev->flags) ||
3139 test_bit(R5_Wantcompute, &dev->flags))) {
3140 rcw++;
3141 if (!test_bit(R5_Insync, &dev->flags))
3142 continue; /* it's a failed drive */
3143 if (
3144 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3145 pr_debug("Read_old block "
3146 "%d for Reconstruct\n", i);
3147 set_bit(R5_LOCKED, &dev->flags);
3148 set_bit(R5_Wantread, &dev->flags);
3149 s->locked++;
3150 qread++;
3151 } else {
3152 set_bit(STRIPE_DELAYED, &sh->state);
3153 set_bit(STRIPE_HANDLE, &sh->state);
3154 }
3155 }
3156 }
3157 if (rcw && conf->mddev->queue)
3158 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3159 (unsigned long long)sh->sector,
3160 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3161 }
3162 /* now if nothing is locked, and if we have enough data,
3163 * we can start a write request
3164 */
3165 /* since handle_stripe can be called at any time we need to handle the
3166 * case where a compute block operation has been submitted and then a
3167 * subsequent call wants to start a write request. raid_run_ops only
3168 * handles the case where compute block and reconstruct are requested
3169 * simultaneously. If this is not the case then new writes need to be
3170 * held off until the compute completes.
3171 */
3172 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3173 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3174 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3175 schedule_reconstruction(sh, s, rcw == 0, 0);
3176 }
3177
3178 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3179 struct stripe_head_state *s, int disks)
3180 {
3181 struct r5dev *dev = NULL;
3182
3183 set_bit(STRIPE_HANDLE, &sh->state);
3184
3185 switch (sh->check_state) {
3186 case check_state_idle:
3187 /* start a new check operation if there are no failures */
3188 if (s->failed == 0) {
3189 BUG_ON(s->uptodate != disks);
3190 sh->check_state = check_state_run;
3191 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3192 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3193 s->uptodate--;
3194 break;
3195 }
3196 dev = &sh->dev[s->failed_num[0]];
3197 /* fall through */
3198 case check_state_compute_result:
3199 sh->check_state = check_state_idle;
3200 if (!dev)
3201 dev = &sh->dev[sh->pd_idx];
3202
3203 /* check that a write has not made the stripe insync */
3204 if (test_bit(STRIPE_INSYNC, &sh->state))
3205 break;
3206
3207 /* either failed parity check, or recovery is happening */
3208 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3209 BUG_ON(s->uptodate != disks);
3210
3211 set_bit(R5_LOCKED, &dev->flags);
3212 s->locked++;
3213 set_bit(R5_Wantwrite, &dev->flags);
3214
3215 clear_bit(STRIPE_DEGRADED, &sh->state);
3216 set_bit(STRIPE_INSYNC, &sh->state);
3217 break;
3218 case check_state_run:
3219 break; /* we will be called again upon completion */
3220 case check_state_check_result:
3221 sh->check_state = check_state_idle;
3222
3223 /* if a failure occurred during the check operation, leave
3224 * STRIPE_INSYNC not set and let the stripe be handled again
3225 */
3226 if (s->failed)
3227 break;
3228
3229 /* handle a successful check operation, if parity is correct
3230 * we are done. Otherwise update the mismatch count and repair
3231 * parity if !MD_RECOVERY_CHECK
3232 */
3233 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3234 /* parity is correct (on disc,
3235 * not in buffer any more)
3236 */
3237 set_bit(STRIPE_INSYNC, &sh->state);
3238 else {
3239 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3240 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3241 /* don't try to repair!! */
3242 set_bit(STRIPE_INSYNC, &sh->state);
3243 else {
3244 sh->check_state = check_state_compute_run;
3245 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3246 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3247 set_bit(R5_Wantcompute,
3248 &sh->dev[sh->pd_idx].flags);
3249 sh->ops.target = sh->pd_idx;
3250 sh->ops.target2 = -1;
3251 s->uptodate++;
3252 }
3253 }
3254 break;
3255 case check_state_compute_run:
3256 break;
3257 default:
3258 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3259 __func__, sh->check_state,
3260 (unsigned long long) sh->sector);
3261 BUG();
3262 }
3263 }
3264
3265
3266 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3267 struct stripe_head_state *s,
3268 int disks)
3269 {
3270 int pd_idx = sh->pd_idx;
3271 int qd_idx = sh->qd_idx;
3272 struct r5dev *dev;
3273
3274 set_bit(STRIPE_HANDLE, &sh->state);
3275
3276 BUG_ON(s->failed > 2);
3277
3278 /* Want to check and possibly repair P and Q.
3279 * However there could be one 'failed' device, in which
3280 * case we can only check one of them, possibly using the
3281 * other to generate missing data
3282 */
3283
3284 switch (sh->check_state) {
3285 case check_state_idle:
3286 /* start a new check operation if there are < 2 failures */
3287 if (s->failed == s->q_failed) {
3288 /* The only possible failed device holds Q, so it
3289 * makes sense to check P (If anything else were failed,
3290 * we would have used P to recreate it).
3291 */
3292 sh->check_state = check_state_run;
3293 }
3294 if (!s->q_failed && s->failed < 2) {
3295 /* Q is not failed, and we didn't use it to generate
3296 * anything, so it makes sense to check it
3297 */
3298 if (sh->check_state == check_state_run)
3299 sh->check_state = check_state_run_pq;
3300 else
3301 sh->check_state = check_state_run_q;
3302 }
3303
3304 /* discard potentially stale zero_sum_result */
3305 sh->ops.zero_sum_result = 0;
3306
3307 if (sh->check_state == check_state_run) {
3308 /* async_xor_zero_sum destroys the contents of P */
3309 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3310 s->uptodate--;
3311 }
3312 if (sh->check_state >= check_state_run &&
3313 sh->check_state <= check_state_run_pq) {
3314 /* async_syndrome_zero_sum preserves P and Q, so
3315 * no need to mark them !uptodate here
3316 */
3317 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3318 break;
3319 }
3320
3321 /* we have 2-disk failure */
3322 BUG_ON(s->failed != 2);
3323 /* fall through */
3324 case check_state_compute_result:
3325 sh->check_state = check_state_idle;
3326
3327 /* check that a write has not made the stripe insync */
3328 if (test_bit(STRIPE_INSYNC, &sh->state))
3329 break;
3330
3331 /* now write out any block on a failed drive,
3332 * or P or Q if they were recomputed
3333 */
3334 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3335 if (s->failed == 2) {
3336 dev = &sh->dev[s->failed_num[1]];
3337 s->locked++;
3338 set_bit(R5_LOCKED, &dev->flags);
3339 set_bit(R5_Wantwrite, &dev->flags);
3340 }
3341 if (s->failed >= 1) {
3342 dev = &sh->dev[s->failed_num[0]];
3343 s->locked++;
3344 set_bit(R5_LOCKED, &dev->flags);
3345 set_bit(R5_Wantwrite, &dev->flags);
3346 }
3347 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3348 dev = &sh->dev[pd_idx];
3349 s->locked++;
3350 set_bit(R5_LOCKED, &dev->flags);
3351 set_bit(R5_Wantwrite, &dev->flags);
3352 }
3353 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3354 dev = &sh->dev[qd_idx];
3355 s->locked++;
3356 set_bit(R5_LOCKED, &dev->flags);
3357 set_bit(R5_Wantwrite, &dev->flags);
3358 }
3359 clear_bit(STRIPE_DEGRADED, &sh->state);
3360
3361 set_bit(STRIPE_INSYNC, &sh->state);
3362 break;
3363 case check_state_run:
3364 case check_state_run_q:
3365 case check_state_run_pq:
3366 break; /* we will be called again upon completion */
3367 case check_state_check_result:
3368 sh->check_state = check_state_idle;
3369
3370 /* handle a successful check operation, if parity is correct
3371 * we are done. Otherwise update the mismatch count and repair
3372 * parity if !MD_RECOVERY_CHECK
3373 */
3374 if (sh->ops.zero_sum_result == 0) {
3375 /* both parities are correct */
3376 if (!s->failed)
3377 set_bit(STRIPE_INSYNC, &sh->state);
3378 else {
3379 /* in contrast to the raid5 case we can validate
3380 * parity, but still have a failure to write
3381 * back
3382 */
3383 sh->check_state = check_state_compute_result;
3384 /* Returning at this point means that we may go
3385 * off and bring p and/or q uptodate again so
3386 * we make sure to check zero_sum_result again
3387 * to verify if p or q need writeback
3388 */
3389 }
3390 } else {
3391 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3392 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3393 /* don't try to repair!! */
3394 set_bit(STRIPE_INSYNC, &sh->state);
3395 else {
3396 int *target = &sh->ops.target;
3397
3398 sh->ops.target = -1;
3399 sh->ops.target2 = -1;
3400 sh->check_state = check_state_compute_run;
3401 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3402 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3403 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3404 set_bit(R5_Wantcompute,
3405 &sh->dev[pd_idx].flags);
3406 *target = pd_idx;
3407 target = &sh->ops.target2;
3408 s->uptodate++;
3409 }
3410 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3411 set_bit(R5_Wantcompute,
3412 &sh->dev[qd_idx].flags);
3413 *target = qd_idx;
3414 s->uptodate++;
3415 }
3416 }
3417 }
3418 break;
3419 case check_state_compute_run:
3420 break;
3421 default:
3422 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3423 __func__, sh->check_state,
3424 (unsigned long long) sh->sector);
3425 BUG();
3426 }
3427 }
3428
3429 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3430 {
3431 int i;
3432
3433 /* We have read all the blocks in this stripe and now we need to
3434 * copy some of them into a target stripe for expand.
3435 */
3436 struct dma_async_tx_descriptor *tx = NULL;
3437 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3438 for (i = 0; i < sh->disks; i++)
3439 if (i != sh->pd_idx && i != sh->qd_idx) {
3440 int dd_idx, j;
3441 struct stripe_head *sh2;
3442 struct async_submit_ctl submit;
3443
3444 sector_t bn = compute_blocknr(sh, i, 1);
3445 sector_t s = raid5_compute_sector(conf, bn, 0,
3446 &dd_idx, NULL);
3447 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3448 if (sh2 == NULL)
3449 /* so far only the early blocks of this stripe
3450 * have been requested. When later blocks
3451 * get requested, we will try again
3452 */
3453 continue;
3454 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3455 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3456 /* must have already done this block */
3457 release_stripe(sh2);
3458 continue;
3459 }
3460
3461 /* place all the copies on one channel */
3462 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3463 tx = async_memcpy(sh2->dev[dd_idx].page,
3464 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3465 &submit);
3466
3467 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3468 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3469 for (j = 0; j < conf->raid_disks; j++)
3470 if (j != sh2->pd_idx &&
3471 j != sh2->qd_idx &&
3472 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3473 break;
3474 if (j == conf->raid_disks) {
3475 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3476 set_bit(STRIPE_HANDLE, &sh2->state);
3477 }
3478 release_stripe(sh2);
3479
3480 }
3481 /* done submitting copies, wait for them to complete */
3482 async_tx_quiesce(&tx);
3483 }
3484
3485 /*
3486 * handle_stripe - do things to a stripe.
3487 *
3488 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3489 * state of various bits to see what needs to be done.
3490 * Possible results:
3491 * return some read requests which now have data
3492 * return some write requests which are safely on storage
3493 * schedule a read on some buffers
3494 * schedule a write of some buffers
3495 * return confirmation of parity correctness
3496 *
3497 */
3498
3499 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3500 {
3501 struct r5conf *conf = sh->raid_conf;
3502 int disks = sh->disks;
3503 struct r5dev *dev;
3504 int i;
3505 int do_recovery = 0;
3506
3507 memset(s, 0, sizeof(*s));
3508
3509 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3510 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3511 s->failed_num[0] = -1;
3512 s->failed_num[1] = -1;
3513
3514 /* Now to look around and see what can be done */
3515 rcu_read_lock();
3516 for (i=disks; i--; ) {
3517 struct md_rdev *rdev;
3518 sector_t first_bad;
3519 int bad_sectors;
3520 int is_bad = 0;
3521
3522 dev = &sh->dev[i];
3523
3524 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3525 i, dev->flags,
3526 dev->toread, dev->towrite, dev->written);
3527 /* maybe we can reply to a read
3528 *
3529 * new wantfill requests are only permitted while
3530 * ops_complete_biofill is guaranteed to be inactive
3531 */
3532 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3533 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3534 set_bit(R5_Wantfill, &dev->flags);
3535
3536 /* now count some things */
3537 if (test_bit(R5_LOCKED, &dev->flags))
3538 s->locked++;
3539 if (test_bit(R5_UPTODATE, &dev->flags))
3540 s->uptodate++;
3541 if (test_bit(R5_Wantcompute, &dev->flags)) {
3542 s->compute++;
3543 BUG_ON(s->compute > 2);
3544 }
3545
3546 if (test_bit(R5_Wantfill, &dev->flags))
3547 s->to_fill++;
3548 else if (dev->toread)
3549 s->to_read++;
3550 if (dev->towrite) {
3551 s->to_write++;
3552 if (!test_bit(R5_OVERWRITE, &dev->flags))
3553 s->non_overwrite++;
3554 }
3555 if (dev->written)
3556 s->written++;
3557 /* Prefer to use the replacement for reads, but only
3558 * if it is recovered enough and has no bad blocks.
3559 */
3560 rdev = rcu_dereference(conf->disks[i].replacement);
3561 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3562 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3563 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3564 &first_bad, &bad_sectors))
3565 set_bit(R5_ReadRepl, &dev->flags);
3566 else {
3567 if (rdev)
3568 set_bit(R5_NeedReplace, &dev->flags);
3569 rdev = rcu_dereference(conf->disks[i].rdev);
3570 clear_bit(R5_ReadRepl, &dev->flags);
3571 }
3572 if (rdev && test_bit(Faulty, &rdev->flags))
3573 rdev = NULL;
3574 if (rdev) {
3575 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3576 &first_bad, &bad_sectors);
3577 if (s->blocked_rdev == NULL
3578 && (test_bit(Blocked, &rdev->flags)
3579 || is_bad < 0)) {
3580 if (is_bad < 0)
3581 set_bit(BlockedBadBlocks,
3582 &rdev->flags);
3583 s->blocked_rdev = rdev;
3584 atomic_inc(&rdev->nr_pending);
3585 }
3586 }
3587 clear_bit(R5_Insync, &dev->flags);
3588 if (!rdev)
3589 /* Not in-sync */;
3590 else if (is_bad) {
3591 /* also not in-sync */
3592 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3593 test_bit(R5_UPTODATE, &dev->flags)) {
3594 /* treat as in-sync, but with a read error
3595 * which we can now try to correct
3596 */
3597 set_bit(R5_Insync, &dev->flags);
3598 set_bit(R5_ReadError, &dev->flags);
3599 }
3600 } else if (test_bit(In_sync, &rdev->flags))
3601 set_bit(R5_Insync, &dev->flags);
3602 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3603 /* in sync if before recovery_offset */
3604 set_bit(R5_Insync, &dev->flags);
3605 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3606 test_bit(R5_Expanded, &dev->flags))
3607 /* If we've reshaped into here, we assume it is Insync.
3608 * We will shortly update recovery_offset to make
3609 * it official.
3610 */
3611 set_bit(R5_Insync, &dev->flags);
3612
3613 if (test_bit(R5_WriteError, &dev->flags)) {
3614 /* This flag does not apply to '.replacement'
3615 * only to .rdev, so make sure to check that*/
3616 struct md_rdev *rdev2 = rcu_dereference(
3617 conf->disks[i].rdev);
3618 if (rdev2 == rdev)
3619 clear_bit(R5_Insync, &dev->flags);
3620 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3621 s->handle_bad_blocks = 1;
3622 atomic_inc(&rdev2->nr_pending);
3623 } else
3624 clear_bit(R5_WriteError, &dev->flags);
3625 }
3626 if (test_bit(R5_MadeGood, &dev->flags)) {
3627 /* This flag does not apply to '.replacement'
3628 * only to .rdev, so make sure to check that*/
3629 struct md_rdev *rdev2 = rcu_dereference(
3630 conf->disks[i].rdev);
3631 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3632 s->handle_bad_blocks = 1;
3633 atomic_inc(&rdev2->nr_pending);
3634 } else
3635 clear_bit(R5_MadeGood, &dev->flags);
3636 }
3637 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3638 struct md_rdev *rdev2 = rcu_dereference(
3639 conf->disks[i].replacement);
3640 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3641 s->handle_bad_blocks = 1;
3642 atomic_inc(&rdev2->nr_pending);
3643 } else
3644 clear_bit(R5_MadeGoodRepl, &dev->flags);
3645 }
3646 if (!test_bit(R5_Insync, &dev->flags)) {
3647 /* The ReadError flag will just be confusing now */
3648 clear_bit(R5_ReadError, &dev->flags);
3649 clear_bit(R5_ReWrite, &dev->flags);
3650 }
3651 if (test_bit(R5_ReadError, &dev->flags))
3652 clear_bit(R5_Insync, &dev->flags);
3653 if (!test_bit(R5_Insync, &dev->flags)) {
3654 if (s->failed < 2)
3655 s->failed_num[s->failed] = i;
3656 s->failed++;
3657 if (rdev && !test_bit(Faulty, &rdev->flags))
3658 do_recovery = 1;
3659 }
3660 }
3661 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3662 /* If there is a failed device being replaced,
3663 * we must be recovering.
3664 * else if we are after recovery_cp, we must be syncing
3665 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3666 * else we can only be replacing
3667 * sync and recovery both need to read all devices, and so
3668 * use the same flag.
3669 */
3670 if (do_recovery ||
3671 sh->sector >= conf->mddev->recovery_cp ||
3672 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3673 s->syncing = 1;
3674 else
3675 s->replacing = 1;
3676 }
3677 rcu_read_unlock();
3678 }
3679
3680 static void handle_stripe(struct stripe_head *sh)
3681 {
3682 struct stripe_head_state s;
3683 struct r5conf *conf = sh->raid_conf;
3684 int i;
3685 int prexor;
3686 int disks = sh->disks;
3687 struct r5dev *pdev, *qdev;
3688
3689 clear_bit(STRIPE_HANDLE, &sh->state);
3690 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3691 /* already being handled, ensure it gets handled
3692 * again when current action finishes */
3693 set_bit(STRIPE_HANDLE, &sh->state);
3694 return;
3695 }
3696
3697 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3698 spin_lock(&sh->stripe_lock);
3699 /* Cannot process 'sync' concurrently with 'discard' */
3700 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3701 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3702 set_bit(STRIPE_SYNCING, &sh->state);
3703 clear_bit(STRIPE_INSYNC, &sh->state);
3704 clear_bit(STRIPE_REPLACED, &sh->state);
3705 }
3706 spin_unlock(&sh->stripe_lock);
3707 }
3708 clear_bit(STRIPE_DELAYED, &sh->state);
3709
3710 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3711 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3712 (unsigned long long)sh->sector, sh->state,
3713 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3714 sh->check_state, sh->reconstruct_state);
3715
3716 analyse_stripe(sh, &s);
3717
3718 if (s.handle_bad_blocks) {
3719 set_bit(STRIPE_HANDLE, &sh->state);
3720 goto finish;
3721 }
3722
3723 if (unlikely(s.blocked_rdev)) {
3724 if (s.syncing || s.expanding || s.expanded ||
3725 s.replacing || s.to_write || s.written) {
3726 set_bit(STRIPE_HANDLE, &sh->state);
3727 goto finish;
3728 }
3729 /* There is nothing for the blocked_rdev to block */
3730 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3731 s.blocked_rdev = NULL;
3732 }
3733
3734 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3735 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3736 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3737 }
3738
3739 pr_debug("locked=%d uptodate=%d to_read=%d"
3740 " to_write=%d failed=%d failed_num=%d,%d\n",
3741 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3742 s.failed_num[0], s.failed_num[1]);
3743 /* check if the array has lost more than max_degraded devices and,
3744 * if so, some requests might need to be failed.
3745 */
3746 if (s.failed > conf->max_degraded) {
3747 sh->check_state = 0;
3748 sh->reconstruct_state = 0;
3749 if (s.to_read+s.to_write+s.written)
3750 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3751 if (s.syncing + s.replacing)
3752 handle_failed_sync(conf, sh, &s);
3753 }
3754
3755 /* Now we check to see if any write operations have recently
3756 * completed
3757 */
3758 prexor = 0;
3759 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3760 prexor = 1;
3761 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3762 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3763 sh->reconstruct_state = reconstruct_state_idle;
3764
3765 /* All the 'written' buffers and the parity block are ready to
3766 * be written back to disk
3767 */
3768 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3769 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3770 BUG_ON(sh->qd_idx >= 0 &&
3771 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3772 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3773 for (i = disks; i--; ) {
3774 struct r5dev *dev = &sh->dev[i];
3775 if (test_bit(R5_LOCKED, &dev->flags) &&
3776 (i == sh->pd_idx || i == sh->qd_idx ||
3777 dev->written)) {
3778 pr_debug("Writing block %d\n", i);
3779 set_bit(R5_Wantwrite, &dev->flags);
3780 if (prexor)
3781 continue;
3782 if (!test_bit(R5_Insync, &dev->flags) ||
3783 ((i == sh->pd_idx || i == sh->qd_idx) &&
3784 s.failed == 0))
3785 set_bit(STRIPE_INSYNC, &sh->state);
3786 }
3787 }
3788 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3789 s.dec_preread_active = 1;
3790 }
3791
3792 /*
3793 * might be able to return some write requests if the parity blocks
3794 * are safe, or on a failed drive
3795 */
3796 pdev = &sh->dev[sh->pd_idx];
3797 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3798 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3799 qdev = &sh->dev[sh->qd_idx];
3800 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3801 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3802 || conf->level < 6;
3803
3804 if (s.written &&
3805 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3806 && !test_bit(R5_LOCKED, &pdev->flags)
3807 && (test_bit(R5_UPTODATE, &pdev->flags) ||
3808 test_bit(R5_Discard, &pdev->flags))))) &&
3809 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3810 && !test_bit(R5_LOCKED, &qdev->flags)
3811 && (test_bit(R5_UPTODATE, &qdev->flags) ||
3812 test_bit(R5_Discard, &qdev->flags))))))
3813 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3814
3815 /* Now we might consider reading some blocks, either to check/generate
3816 * parity, or to satisfy requests
3817 * or to load a block that is being partially written.
3818 */
3819 if (s.to_read || s.non_overwrite
3820 || (conf->level == 6 && s.to_write && s.failed)
3821 || (s.syncing && (s.uptodate + s.compute < disks))
3822 || s.replacing
3823 || s.expanding)
3824 handle_stripe_fill(sh, &s, disks);
3825
3826 /* Now to consider new write requests and what else, if anything
3827 * should be read. We do not handle new writes when:
3828 * 1/ A 'write' operation (copy+xor) is already in flight.
3829 * 2/ A 'check' operation is in flight, as it may clobber the parity
3830 * block.
3831 */
3832 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3833 handle_stripe_dirtying(conf, sh, &s, disks);
3834
3835 /* maybe we need to check and possibly fix the parity for this stripe
3836 * Any reads will already have been scheduled, so we just see if enough
3837 * data is available. The parity check is held off while parity
3838 * dependent operations are in flight.
3839 */
3840 if (sh->check_state ||
3841 (s.syncing && s.locked == 0 &&
3842 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3843 !test_bit(STRIPE_INSYNC, &sh->state))) {
3844 if (conf->level == 6)
3845 handle_parity_checks6(conf, sh, &s, disks);
3846 else
3847 handle_parity_checks5(conf, sh, &s, disks);
3848 }
3849
3850 if ((s.replacing || s.syncing) && s.locked == 0
3851 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3852 && !test_bit(STRIPE_REPLACED, &sh->state)) {
3853 /* Write out to replacement devices where possible */
3854 for (i = 0; i < conf->raid_disks; i++)
3855 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3856 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3857 set_bit(R5_WantReplace, &sh->dev[i].flags);
3858 set_bit(R5_LOCKED, &sh->dev[i].flags);
3859 s.locked++;
3860 }
3861 if (s.replacing)
3862 set_bit(STRIPE_INSYNC, &sh->state);
3863 set_bit(STRIPE_REPLACED, &sh->state);
3864 }
3865 if ((s.syncing || s.replacing) && s.locked == 0 &&
3866 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3867 test_bit(STRIPE_INSYNC, &sh->state)) {
3868 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3869 clear_bit(STRIPE_SYNCING, &sh->state);
3870 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3871 wake_up(&conf->wait_for_overlap);
3872 }
3873
3874 /* If the failed drives are just a ReadError, then we might need
3875 * to progress the repair/check process
3876 */
3877 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3878 for (i = 0; i < s.failed; i++) {
3879 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3880 if (test_bit(R5_ReadError, &dev->flags)
3881 && !test_bit(R5_LOCKED, &dev->flags)
3882 && test_bit(R5_UPTODATE, &dev->flags)
3883 ) {
3884 if (!test_bit(R5_ReWrite, &dev->flags)) {
3885 set_bit(R5_Wantwrite, &dev->flags);
3886 set_bit(R5_ReWrite, &dev->flags);
3887 set_bit(R5_LOCKED, &dev->flags);
3888 s.locked++;
3889 } else {
3890 /* let's read it back */
3891 set_bit(R5_Wantread, &dev->flags);
3892 set_bit(R5_LOCKED, &dev->flags);
3893 s.locked++;
3894 }
3895 }
3896 }
3897
3898
3899 /* Finish reconstruct operations initiated by the expansion process */
3900 if (sh->reconstruct_state == reconstruct_state_result) {
3901 struct stripe_head *sh_src
3902 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3903 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3904 /* sh cannot be written until sh_src has been read.
3905 * so arrange for sh to be delayed a little
3906 */
3907 set_bit(STRIPE_DELAYED, &sh->state);
3908 set_bit(STRIPE_HANDLE, &sh->state);
3909 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3910 &sh_src->state))
3911 atomic_inc(&conf->preread_active_stripes);
3912 release_stripe(sh_src);
3913 goto finish;
3914 }
3915 if (sh_src)
3916 release_stripe(sh_src);
3917
3918 sh->reconstruct_state = reconstruct_state_idle;
3919 clear_bit(STRIPE_EXPANDING, &sh->state);
3920 for (i = conf->raid_disks; i--; ) {
3921 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3922 set_bit(R5_LOCKED, &sh->dev[i].flags);
3923 s.locked++;
3924 }
3925 }
3926
3927 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3928 !sh->reconstruct_state) {
3929 /* Need to write out all blocks after computing parity */
3930 sh->disks = conf->raid_disks;
3931 stripe_set_idx(sh->sector, conf, 0, sh);
3932 schedule_reconstruction(sh, &s, 1, 1);
3933 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3934 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3935 atomic_dec(&conf->reshape_stripes);
3936 wake_up(&conf->wait_for_overlap);
3937 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3938 }
3939
3940 if (s.expanding && s.locked == 0 &&
3941 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3942 handle_stripe_expansion(conf, sh);
3943
3944 finish:
3945 /* wait for this device to become unblocked */
3946 if (unlikely(s.blocked_rdev)) {
3947 if (conf->mddev->external)
3948 md_wait_for_blocked_rdev(s.blocked_rdev,
3949 conf->mddev);
3950 else
3951 /* Internal metadata will immediately
3952 * be written by raid5d, so we don't
3953 * need to wait here.
3954 */
3955 rdev_dec_pending(s.blocked_rdev,
3956 conf->mddev);
3957 }
3958
3959 if (s.handle_bad_blocks)
3960 for (i = disks; i--; ) {
3961 struct md_rdev *rdev;
3962 struct r5dev *dev = &sh->dev[i];
3963 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3964 /* We own a safe reference to the rdev */
3965 rdev = conf->disks[i].rdev;
3966 if (!rdev_set_badblocks(rdev, sh->sector,
3967 STRIPE_SECTORS, 0))
3968 md_error(conf->mddev, rdev);
3969 rdev_dec_pending(rdev, conf->mddev);
3970 }
3971 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3972 rdev = conf->disks[i].rdev;
3973 rdev_clear_badblocks(rdev, sh->sector,
3974 STRIPE_SECTORS, 0);
3975 rdev_dec_pending(rdev, conf->mddev);
3976 }
3977 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3978 rdev = conf->disks[i].replacement;
3979 if (!rdev)
3980 /* rdev have been moved down */
3981 rdev = conf->disks[i].rdev;
3982 rdev_clear_badblocks(rdev, sh->sector,
3983 STRIPE_SECTORS, 0);
3984 rdev_dec_pending(rdev, conf->mddev);
3985 }
3986 }
3987
3988 if (s.ops_request)
3989 raid_run_ops(sh, s.ops_request);
3990
3991 ops_run_io(sh, &s);
3992
3993 if (s.dec_preread_active) {
3994 /* We delay this until after ops_run_io so that if make_request
3995 * is waiting on a flush, it won't continue until the writes
3996 * have actually been submitted.
3997 */
3998 atomic_dec(&conf->preread_active_stripes);
3999 if (atomic_read(&conf->preread_active_stripes) <
4000 IO_THRESHOLD)
4001 md_wakeup_thread(conf->mddev->thread);
4002 }
4003
4004 return_io(s.return_bi);
4005
4006 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4007 }
4008
4009 static void raid5_activate_delayed(struct r5conf *conf)
4010 {
4011 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4012 while (!list_empty(&conf->delayed_list)) {
4013 struct list_head *l = conf->delayed_list.next;
4014 struct stripe_head *sh;
4015 sh = list_entry(l, struct stripe_head, lru);
4016 list_del_init(l);
4017 clear_bit(STRIPE_DELAYED, &sh->state);
4018 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4019 atomic_inc(&conf->preread_active_stripes);
4020 list_add_tail(&sh->lru, &conf->hold_list);
4021 raid5_wakeup_stripe_thread(sh);
4022 }
4023 }
4024 }
4025
4026 static void activate_bit_delay(struct r5conf *conf,
4027 struct list_head *temp_inactive_list)
4028 {
4029 /* device_lock is held */
4030 struct list_head head;
4031 list_add(&head, &conf->bitmap_list);
4032 list_del_init(&conf->bitmap_list);
4033 while (!list_empty(&head)) {
4034 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4035 int hash;
4036 list_del_init(&sh->lru);
4037 atomic_inc(&sh->count);
4038 hash = sh->hash_lock_index;
4039 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4040 }
4041 }
4042
4043 int md_raid5_congested(struct mddev *mddev, int bits)
4044 {
4045 struct r5conf *conf = mddev->private;
4046
4047 /* No difference between reads and writes. Just check
4048 * how busy the stripe_cache is
4049 */
4050
4051 if (conf->inactive_blocked)
4052 return 1;
4053 if (conf->quiesce)
4054 return 1;
4055 if (atomic_read(&conf->empty_inactive_list_nr))
4056 return 1;
4057
4058 return 0;
4059 }
4060 EXPORT_SYMBOL_GPL(md_raid5_congested);
4061
4062 static int raid5_congested(void *data, int bits)
4063 {
4064 struct mddev *mddev = data;
4065
4066 return mddev_congested(mddev, bits) ||
4067 md_raid5_congested(mddev, bits);
4068 }
4069
4070 /* We want read requests to align with chunks where possible,
4071 * but write requests don't need to.
4072 */
4073 static int raid5_mergeable_bvec(struct request_queue *q,
4074 struct bvec_merge_data *bvm,
4075 struct bio_vec *biovec)
4076 {
4077 struct mddev *mddev = q->queuedata;
4078 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4079 int max;
4080 unsigned int chunk_sectors = mddev->chunk_sectors;
4081 unsigned int bio_sectors = bvm->bi_size >> 9;
4082
4083 if ((bvm->bi_rw & 1) == WRITE)
4084 return biovec->bv_len; /* always allow writes to be mergeable */
4085
4086 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4087 chunk_sectors = mddev->new_chunk_sectors;
4088 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4089 if (max < 0) max = 0;
4090 if (max <= biovec->bv_len && bio_sectors == 0)
4091 return biovec->bv_len;
4092 else
4093 return max;
4094 }
4095
4096
4097 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4098 {
4099 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4100 unsigned int chunk_sectors = mddev->chunk_sectors;
4101 unsigned int bio_sectors = bio_sectors(bio);
4102
4103 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4104 chunk_sectors = mddev->new_chunk_sectors;
4105 return chunk_sectors >=
4106 ((sector & (chunk_sectors - 1)) + bio_sectors);
4107 }
4108
4109 /*
4110 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4111 * later sampled by raid5d.
4112 */
4113 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4114 {
4115 unsigned long flags;
4116
4117 spin_lock_irqsave(&conf->device_lock, flags);
4118
4119 bi->bi_next = conf->retry_read_aligned_list;
4120 conf->retry_read_aligned_list = bi;
4121
4122 spin_unlock_irqrestore(&conf->device_lock, flags);
4123 md_wakeup_thread(conf->mddev->thread);
4124 }
4125
4126
4127 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4128 {
4129 struct bio *bi;
4130
4131 bi = conf->retry_read_aligned;
4132 if (bi) {
4133 conf->retry_read_aligned = NULL;
4134 return bi;
4135 }
4136 bi = conf->retry_read_aligned_list;
4137 if(bi) {
4138 conf->retry_read_aligned_list = bi->bi_next;
4139 bi->bi_next = NULL;
4140 /*
4141 * this sets the active strip count to 1 and the processed
4142 * strip count to zero (upper 8 bits)
4143 */
4144 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4145 }
4146
4147 return bi;
4148 }
4149
4150
4151 /*
4152 * The "raid5_align_endio" should check if the read succeeded and if it
4153 * did, call bio_endio on the original bio (having bio_put the new bio
4154 * first).
4155 * If the read failed..
4156 */
4157 static void raid5_align_endio(struct bio *bi, int error)
4158 {
4159 struct bio* raid_bi = bi->bi_private;
4160 struct mddev *mddev;
4161 struct r5conf *conf;
4162 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4163 struct md_rdev *rdev;
4164
4165 bio_put(bi);
4166
4167 rdev = (void*)raid_bi->bi_next;
4168 raid_bi->bi_next = NULL;
4169 mddev = rdev->mddev;
4170 conf = mddev->private;
4171
4172 rdev_dec_pending(rdev, conf->mddev);
4173
4174 if (!error && uptodate) {
4175 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4176 raid_bi, 0);
4177 bio_endio(raid_bi, 0);
4178 if (atomic_dec_and_test(&conf->active_aligned_reads))
4179 wake_up(&conf->wait_for_stripe);
4180 return;
4181 }
4182
4183
4184 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4185
4186 add_bio_to_retry(raid_bi, conf);
4187 }
4188
4189 static int bio_fits_rdev(struct bio *bi)
4190 {
4191 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4192
4193 if (bio_sectors(bi) > queue_max_sectors(q))
4194 return 0;
4195 blk_recount_segments(q, bi);
4196 if (bi->bi_phys_segments > queue_max_segments(q))
4197 return 0;
4198
4199 if (q->merge_bvec_fn)
4200 /* it's too hard to apply the merge_bvec_fn at this stage,
4201 * just just give up
4202 */
4203 return 0;
4204
4205 return 1;
4206 }
4207
4208
4209 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4210 {
4211 struct r5conf *conf = mddev->private;
4212 int dd_idx;
4213 struct bio* align_bi;
4214 struct md_rdev *rdev;
4215 sector_t end_sector;
4216
4217 if (!in_chunk_boundary(mddev, raid_bio)) {
4218 pr_debug("chunk_aligned_read : non aligned\n");
4219 return 0;
4220 }
4221 /*
4222 * use bio_clone_mddev to make a copy of the bio
4223 */
4224 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4225 if (!align_bi)
4226 return 0;
4227 /*
4228 * set bi_end_io to a new function, and set bi_private to the
4229 * original bio.
4230 */
4231 align_bi->bi_end_io = raid5_align_endio;
4232 align_bi->bi_private = raid_bio;
4233 /*
4234 * compute position
4235 */
4236 align_bi->bi_iter.bi_sector =
4237 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4238 0, &dd_idx, NULL);
4239
4240 end_sector = bio_end_sector(align_bi);
4241 rcu_read_lock();
4242 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4243 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4244 rdev->recovery_offset < end_sector) {
4245 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4246 if (rdev &&
4247 (test_bit(Faulty, &rdev->flags) ||
4248 !(test_bit(In_sync, &rdev->flags) ||
4249 rdev->recovery_offset >= end_sector)))
4250 rdev = NULL;
4251 }
4252 if (rdev) {
4253 sector_t first_bad;
4254 int bad_sectors;
4255
4256 atomic_inc(&rdev->nr_pending);
4257 rcu_read_unlock();
4258 raid_bio->bi_next = (void*)rdev;
4259 align_bi->bi_bdev = rdev->bdev;
4260 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4261
4262 if (!bio_fits_rdev(align_bi) ||
4263 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4264 bio_sectors(align_bi),
4265 &first_bad, &bad_sectors)) {
4266 /* too big in some way, or has a known bad block */
4267 bio_put(align_bi);
4268 rdev_dec_pending(rdev, mddev);
4269 return 0;
4270 }
4271
4272 /* No reshape active, so we can trust rdev->data_offset */
4273 align_bi->bi_iter.bi_sector += rdev->data_offset;
4274
4275 spin_lock_irq(&conf->device_lock);
4276 wait_event_lock_irq(conf->wait_for_stripe,
4277 conf->quiesce == 0,
4278 conf->device_lock);
4279 atomic_inc(&conf->active_aligned_reads);
4280 spin_unlock_irq(&conf->device_lock);
4281
4282 if (mddev->gendisk)
4283 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4284 align_bi, disk_devt(mddev->gendisk),
4285 raid_bio->bi_iter.bi_sector);
4286 generic_make_request(align_bi);
4287 return 1;
4288 } else {
4289 rcu_read_unlock();
4290 bio_put(align_bi);
4291 return 0;
4292 }
4293 }
4294
4295 /* __get_priority_stripe - get the next stripe to process
4296 *
4297 * Full stripe writes are allowed to pass preread active stripes up until
4298 * the bypass_threshold is exceeded. In general the bypass_count
4299 * increments when the handle_list is handled before the hold_list; however, it
4300 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4301 * stripe with in flight i/o. The bypass_count will be reset when the
4302 * head of the hold_list has changed, i.e. the head was promoted to the
4303 * handle_list.
4304 */
4305 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4306 {
4307 struct stripe_head *sh = NULL, *tmp;
4308 struct list_head *handle_list = NULL;
4309 struct r5worker_group *wg = NULL;
4310
4311 if (conf->worker_cnt_per_group == 0) {
4312 handle_list = &conf->handle_list;
4313 } else if (group != ANY_GROUP) {
4314 handle_list = &conf->worker_groups[group].handle_list;
4315 wg = &conf->worker_groups[group];
4316 } else {
4317 int i;
4318 for (i = 0; i < conf->group_cnt; i++) {
4319 handle_list = &conf->worker_groups[i].handle_list;
4320 wg = &conf->worker_groups[i];
4321 if (!list_empty(handle_list))
4322 break;
4323 }
4324 }
4325
4326 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4327 __func__,
4328 list_empty(handle_list) ? "empty" : "busy",
4329 list_empty(&conf->hold_list) ? "empty" : "busy",
4330 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4331
4332 if (!list_empty(handle_list)) {
4333 sh = list_entry(handle_list->next, typeof(*sh), lru);
4334
4335 if (list_empty(&conf->hold_list))
4336 conf->bypass_count = 0;
4337 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4338 if (conf->hold_list.next == conf->last_hold)
4339 conf->bypass_count++;
4340 else {
4341 conf->last_hold = conf->hold_list.next;
4342 conf->bypass_count -= conf->bypass_threshold;
4343 if (conf->bypass_count < 0)
4344 conf->bypass_count = 0;
4345 }
4346 }
4347 } else if (!list_empty(&conf->hold_list) &&
4348 ((conf->bypass_threshold &&
4349 conf->bypass_count > conf->bypass_threshold) ||
4350 atomic_read(&conf->pending_full_writes) == 0)) {
4351
4352 list_for_each_entry(tmp, &conf->hold_list, lru) {
4353 if (conf->worker_cnt_per_group == 0 ||
4354 group == ANY_GROUP ||
4355 !cpu_online(tmp->cpu) ||
4356 cpu_to_group(tmp->cpu) == group) {
4357 sh = tmp;
4358 break;
4359 }
4360 }
4361
4362 if (sh) {
4363 conf->bypass_count -= conf->bypass_threshold;
4364 if (conf->bypass_count < 0)
4365 conf->bypass_count = 0;
4366 }
4367 wg = NULL;
4368 }
4369
4370 if (!sh)
4371 return NULL;
4372
4373 if (wg) {
4374 wg->stripes_cnt--;
4375 sh->group = NULL;
4376 }
4377 list_del_init(&sh->lru);
4378 atomic_inc(&sh->count);
4379 BUG_ON(atomic_read(&sh->count) != 1);
4380 return sh;
4381 }
4382
4383 struct raid5_plug_cb {
4384 struct blk_plug_cb cb;
4385 struct list_head list;
4386 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4387 };
4388
4389 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4390 {
4391 struct raid5_plug_cb *cb = container_of(
4392 blk_cb, struct raid5_plug_cb, cb);
4393 struct stripe_head *sh;
4394 struct mddev *mddev = cb->cb.data;
4395 struct r5conf *conf = mddev->private;
4396 int cnt = 0;
4397 int hash;
4398
4399 if (cb->list.next && !list_empty(&cb->list)) {
4400 spin_lock_irq(&conf->device_lock);
4401 while (!list_empty(&cb->list)) {
4402 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4403 list_del_init(&sh->lru);
4404 /*
4405 * avoid race release_stripe_plug() sees
4406 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4407 * is still in our list
4408 */
4409 smp_mb__before_clear_bit();
4410 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4411 /*
4412 * STRIPE_ON_RELEASE_LIST could be set here. In that
4413 * case, the count is always > 1 here
4414 */
4415 hash = sh->hash_lock_index;
4416 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4417 cnt++;
4418 }
4419 spin_unlock_irq(&conf->device_lock);
4420 }
4421 release_inactive_stripe_list(conf, cb->temp_inactive_list,
4422 NR_STRIPE_HASH_LOCKS);
4423 if (mddev->queue)
4424 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4425 kfree(cb);
4426 }
4427
4428 static void release_stripe_plug(struct mddev *mddev,
4429 struct stripe_head *sh)
4430 {
4431 struct blk_plug_cb *blk_cb = blk_check_plugged(
4432 raid5_unplug, mddev,
4433 sizeof(struct raid5_plug_cb));
4434 struct raid5_plug_cb *cb;
4435
4436 if (!blk_cb) {
4437 release_stripe(sh);
4438 return;
4439 }
4440
4441 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4442
4443 if (cb->list.next == NULL) {
4444 int i;
4445 INIT_LIST_HEAD(&cb->list);
4446 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4447 INIT_LIST_HEAD(cb->temp_inactive_list + i);
4448 }
4449
4450 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4451 list_add_tail(&sh->lru, &cb->list);
4452 else
4453 release_stripe(sh);
4454 }
4455
4456 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4457 {
4458 struct r5conf *conf = mddev->private;
4459 sector_t logical_sector, last_sector;
4460 struct stripe_head *sh;
4461 int remaining;
4462 int stripe_sectors;
4463
4464 if (mddev->reshape_position != MaxSector)
4465 /* Skip discard while reshape is happening */
4466 return;
4467
4468 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4469 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4470
4471 bi->bi_next = NULL;
4472 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4473
4474 stripe_sectors = conf->chunk_sectors *
4475 (conf->raid_disks - conf->max_degraded);
4476 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4477 stripe_sectors);
4478 sector_div(last_sector, stripe_sectors);
4479
4480 logical_sector *= conf->chunk_sectors;
4481 last_sector *= conf->chunk_sectors;
4482
4483 for (; logical_sector < last_sector;
4484 logical_sector += STRIPE_SECTORS) {
4485 DEFINE_WAIT(w);
4486 int d;
4487 again:
4488 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4489 prepare_to_wait(&conf->wait_for_overlap, &w,
4490 TASK_UNINTERRUPTIBLE);
4491 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4492 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4493 release_stripe(sh);
4494 schedule();
4495 goto again;
4496 }
4497 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4498 spin_lock_irq(&sh->stripe_lock);
4499 for (d = 0; d < conf->raid_disks; d++) {
4500 if (d == sh->pd_idx || d == sh->qd_idx)
4501 continue;
4502 if (sh->dev[d].towrite || sh->dev[d].toread) {
4503 set_bit(R5_Overlap, &sh->dev[d].flags);
4504 spin_unlock_irq(&sh->stripe_lock);
4505 release_stripe(sh);
4506 schedule();
4507 goto again;
4508 }
4509 }
4510 set_bit(STRIPE_DISCARD, &sh->state);
4511 finish_wait(&conf->wait_for_overlap, &w);
4512 for (d = 0; d < conf->raid_disks; d++) {
4513 if (d == sh->pd_idx || d == sh->qd_idx)
4514 continue;
4515 sh->dev[d].towrite = bi;
4516 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4517 raid5_inc_bi_active_stripes(bi);
4518 }
4519 spin_unlock_irq(&sh->stripe_lock);
4520 if (conf->mddev->bitmap) {
4521 for (d = 0;
4522 d < conf->raid_disks - conf->max_degraded;
4523 d++)
4524 bitmap_startwrite(mddev->bitmap,
4525 sh->sector,
4526 STRIPE_SECTORS,
4527 0);
4528 sh->bm_seq = conf->seq_flush + 1;
4529 set_bit(STRIPE_BIT_DELAY, &sh->state);
4530 }
4531
4532 set_bit(STRIPE_HANDLE, &sh->state);
4533 clear_bit(STRIPE_DELAYED, &sh->state);
4534 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4535 atomic_inc(&conf->preread_active_stripes);
4536 release_stripe_plug(mddev, sh);
4537 }
4538
4539 remaining = raid5_dec_bi_active_stripes(bi);
4540 if (remaining == 0) {
4541 md_write_end(mddev);
4542 bio_endio(bi, 0);
4543 }
4544 }
4545
4546 static void make_request(struct mddev *mddev, struct bio * bi)
4547 {
4548 struct r5conf *conf = mddev->private;
4549 int dd_idx;
4550 sector_t new_sector;
4551 sector_t logical_sector, last_sector;
4552 struct stripe_head *sh;
4553 const int rw = bio_data_dir(bi);
4554 int remaining;
4555
4556 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4557 md_flush_request(mddev, bi);
4558 return;
4559 }
4560
4561 md_write_start(mddev, bi);
4562
4563 if (rw == READ &&
4564 mddev->reshape_position == MaxSector &&
4565 chunk_aligned_read(mddev,bi))
4566 return;
4567
4568 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4569 make_discard_request(mddev, bi);
4570 return;
4571 }
4572
4573 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4574 last_sector = bio_end_sector(bi);
4575 bi->bi_next = NULL;
4576 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4577
4578 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4579 DEFINE_WAIT(w);
4580 int previous;
4581 int seq;
4582
4583 retry:
4584 seq = read_seqcount_begin(&conf->gen_lock);
4585 previous = 0;
4586 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4587 if (unlikely(conf->reshape_progress != MaxSector)) {
4588 /* spinlock is needed as reshape_progress may be
4589 * 64bit on a 32bit platform, and so it might be
4590 * possible to see a half-updated value
4591 * Of course reshape_progress could change after
4592 * the lock is dropped, so once we get a reference
4593 * to the stripe that we think it is, we will have
4594 * to check again.
4595 */
4596 spin_lock_irq(&conf->device_lock);
4597 if (mddev->reshape_backwards
4598 ? logical_sector < conf->reshape_progress
4599 : logical_sector >= conf->reshape_progress) {
4600 previous = 1;
4601 } else {
4602 if (mddev->reshape_backwards
4603 ? logical_sector < conf->reshape_safe
4604 : logical_sector >= conf->reshape_safe) {
4605 spin_unlock_irq(&conf->device_lock);
4606 schedule();
4607 goto retry;
4608 }
4609 }
4610 spin_unlock_irq(&conf->device_lock);
4611 }
4612
4613 new_sector = raid5_compute_sector(conf, logical_sector,
4614 previous,
4615 &dd_idx, NULL);
4616 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4617 (unsigned long long)new_sector,
4618 (unsigned long long)logical_sector);
4619
4620 sh = get_active_stripe(conf, new_sector, previous,
4621 (bi->bi_rw&RWA_MASK), 0);
4622 if (sh) {
4623 if (unlikely(previous)) {
4624 /* expansion might have moved on while waiting for a
4625 * stripe, so we must do the range check again.
4626 * Expansion could still move past after this
4627 * test, but as we are holding a reference to
4628 * 'sh', we know that if that happens,
4629 * STRIPE_EXPANDING will get set and the expansion
4630 * won't proceed until we finish with the stripe.
4631 */
4632 int must_retry = 0;
4633 spin_lock_irq(&conf->device_lock);
4634 if (mddev->reshape_backwards
4635 ? logical_sector >= conf->reshape_progress
4636 : logical_sector < conf->reshape_progress)
4637 /* mismatch, need to try again */
4638 must_retry = 1;
4639 spin_unlock_irq(&conf->device_lock);
4640 if (must_retry) {
4641 release_stripe(sh);
4642 schedule();
4643 goto retry;
4644 }
4645 }
4646 if (read_seqcount_retry(&conf->gen_lock, seq)) {
4647 /* Might have got the wrong stripe_head
4648 * by accident
4649 */
4650 release_stripe(sh);
4651 goto retry;
4652 }
4653
4654 if (rw == WRITE &&
4655 logical_sector >= mddev->suspend_lo &&
4656 logical_sector < mddev->suspend_hi) {
4657 release_stripe(sh);
4658 /* As the suspend_* range is controlled by
4659 * userspace, we want an interruptible
4660 * wait.
4661 */
4662 flush_signals(current);
4663 prepare_to_wait(&conf->wait_for_overlap,
4664 &w, TASK_INTERRUPTIBLE);
4665 if (logical_sector >= mddev->suspend_lo &&
4666 logical_sector < mddev->suspend_hi)
4667 schedule();
4668 goto retry;
4669 }
4670
4671 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4672 !add_stripe_bio(sh, bi, dd_idx, rw)) {
4673 /* Stripe is busy expanding or
4674 * add failed due to overlap. Flush everything
4675 * and wait a while
4676 */
4677 md_wakeup_thread(mddev->thread);
4678 release_stripe(sh);
4679 schedule();
4680 goto retry;
4681 }
4682 finish_wait(&conf->wait_for_overlap, &w);
4683 set_bit(STRIPE_HANDLE, &sh->state);
4684 clear_bit(STRIPE_DELAYED, &sh->state);
4685 if ((bi->bi_rw & REQ_SYNC) &&
4686 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4687 atomic_inc(&conf->preread_active_stripes);
4688 release_stripe_plug(mddev, sh);
4689 } else {
4690 /* cannot get stripe for read-ahead, just give-up */
4691 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4692 finish_wait(&conf->wait_for_overlap, &w);
4693 break;
4694 }
4695 }
4696
4697 remaining = raid5_dec_bi_active_stripes(bi);
4698 if (remaining == 0) {
4699
4700 if ( rw == WRITE )
4701 md_write_end(mddev);
4702
4703 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4704 bi, 0);
4705 bio_endio(bi, 0);
4706 }
4707 }
4708
4709 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4710
4711 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4712 {
4713 /* reshaping is quite different to recovery/resync so it is
4714 * handled quite separately ... here.
4715 *
4716 * On each call to sync_request, we gather one chunk worth of
4717 * destination stripes and flag them as expanding.
4718 * Then we find all the source stripes and request reads.
4719 * As the reads complete, handle_stripe will copy the data
4720 * into the destination stripe and release that stripe.
4721 */
4722 struct r5conf *conf = mddev->private;
4723 struct stripe_head *sh;
4724 sector_t first_sector, last_sector;
4725 int raid_disks = conf->previous_raid_disks;
4726 int data_disks = raid_disks - conf->max_degraded;
4727 int new_data_disks = conf->raid_disks - conf->max_degraded;
4728 int i;
4729 int dd_idx;
4730 sector_t writepos, readpos, safepos;
4731 sector_t stripe_addr;
4732 int reshape_sectors;
4733 struct list_head stripes;
4734
4735 if (sector_nr == 0) {
4736 /* If restarting in the middle, skip the initial sectors */
4737 if (mddev->reshape_backwards &&
4738 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4739 sector_nr = raid5_size(mddev, 0, 0)
4740 - conf->reshape_progress;
4741 } else if (!mddev->reshape_backwards &&
4742 conf->reshape_progress > 0)
4743 sector_nr = conf->reshape_progress;
4744 sector_div(sector_nr, new_data_disks);
4745 if (sector_nr) {
4746 mddev->curr_resync_completed = sector_nr;
4747 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4748 *skipped = 1;
4749 return sector_nr;
4750 }
4751 }
4752
4753 /* We need to process a full chunk at a time.
4754 * If old and new chunk sizes differ, we need to process the
4755 * largest of these
4756 */
4757 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4758 reshape_sectors = mddev->new_chunk_sectors;
4759 else
4760 reshape_sectors = mddev->chunk_sectors;
4761
4762 /* We update the metadata at least every 10 seconds, or when
4763 * the data about to be copied would over-write the source of
4764 * the data at the front of the range. i.e. one new_stripe
4765 * along from reshape_progress new_maps to after where
4766 * reshape_safe old_maps to
4767 */
4768 writepos = conf->reshape_progress;
4769 sector_div(writepos, new_data_disks);
4770 readpos = conf->reshape_progress;
4771 sector_div(readpos, data_disks);
4772 safepos = conf->reshape_safe;
4773 sector_div(safepos, data_disks);
4774 if (mddev->reshape_backwards) {
4775 writepos -= min_t(sector_t, reshape_sectors, writepos);
4776 readpos += reshape_sectors;
4777 safepos += reshape_sectors;
4778 } else {
4779 writepos += reshape_sectors;
4780 readpos -= min_t(sector_t, reshape_sectors, readpos);
4781 safepos -= min_t(sector_t, reshape_sectors, safepos);
4782 }
4783
4784 /* Having calculated the 'writepos' possibly use it
4785 * to set 'stripe_addr' which is where we will write to.
4786 */
4787 if (mddev->reshape_backwards) {
4788 BUG_ON(conf->reshape_progress == 0);
4789 stripe_addr = writepos;
4790 BUG_ON((mddev->dev_sectors &
4791 ~((sector_t)reshape_sectors - 1))
4792 - reshape_sectors - stripe_addr
4793 != sector_nr);
4794 } else {
4795 BUG_ON(writepos != sector_nr + reshape_sectors);
4796 stripe_addr = sector_nr;
4797 }
4798
4799 /* 'writepos' is the most advanced device address we might write.
4800 * 'readpos' is the least advanced device address we might read.
4801 * 'safepos' is the least address recorded in the metadata as having
4802 * been reshaped.
4803 * If there is a min_offset_diff, these are adjusted either by
4804 * increasing the safepos/readpos if diff is negative, or
4805 * increasing writepos if diff is positive.
4806 * If 'readpos' is then behind 'writepos', there is no way that we can
4807 * ensure safety in the face of a crash - that must be done by userspace
4808 * making a backup of the data. So in that case there is no particular
4809 * rush to update metadata.
4810 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4811 * update the metadata to advance 'safepos' to match 'readpos' so that
4812 * we can be safe in the event of a crash.
4813 * So we insist on updating metadata if safepos is behind writepos and
4814 * readpos is beyond writepos.
4815 * In any case, update the metadata every 10 seconds.
4816 * Maybe that number should be configurable, but I'm not sure it is
4817 * worth it.... maybe it could be a multiple of safemode_delay???
4818 */
4819 if (conf->min_offset_diff < 0) {
4820 safepos += -conf->min_offset_diff;
4821 readpos += -conf->min_offset_diff;
4822 } else
4823 writepos += conf->min_offset_diff;
4824
4825 if ((mddev->reshape_backwards
4826 ? (safepos > writepos && readpos < writepos)
4827 : (safepos < writepos && readpos > writepos)) ||
4828 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4829 /* Cannot proceed until we've updated the superblock... */
4830 wait_event(conf->wait_for_overlap,
4831 atomic_read(&conf->reshape_stripes)==0
4832 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4833 if (atomic_read(&conf->reshape_stripes) != 0)
4834 return 0;
4835 mddev->reshape_position = conf->reshape_progress;
4836 mddev->curr_resync_completed = sector_nr;
4837 conf->reshape_checkpoint = jiffies;
4838 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4839 md_wakeup_thread(mddev->thread);
4840 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4841 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4842 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4843 return 0;
4844 spin_lock_irq(&conf->device_lock);
4845 conf->reshape_safe = mddev->reshape_position;
4846 spin_unlock_irq(&conf->device_lock);
4847 wake_up(&conf->wait_for_overlap);
4848 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4849 }
4850
4851 INIT_LIST_HEAD(&stripes);
4852 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4853 int j;
4854 int skipped_disk = 0;
4855 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4856 set_bit(STRIPE_EXPANDING, &sh->state);
4857 atomic_inc(&conf->reshape_stripes);
4858 /* If any of this stripe is beyond the end of the old
4859 * array, then we need to zero those blocks
4860 */
4861 for (j=sh->disks; j--;) {
4862 sector_t s;
4863 if (j == sh->pd_idx)
4864 continue;
4865 if (conf->level == 6 &&
4866 j == sh->qd_idx)
4867 continue;
4868 s = compute_blocknr(sh, j, 0);
4869 if (s < raid5_size(mddev, 0, 0)) {
4870 skipped_disk = 1;
4871 continue;
4872 }
4873 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4874 set_bit(R5_Expanded, &sh->dev[j].flags);
4875 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4876 }
4877 if (!skipped_disk) {
4878 set_bit(STRIPE_EXPAND_READY, &sh->state);
4879 set_bit(STRIPE_HANDLE, &sh->state);
4880 }
4881 list_add(&sh->lru, &stripes);
4882 }
4883 spin_lock_irq(&conf->device_lock);
4884 if (mddev->reshape_backwards)
4885 conf->reshape_progress -= reshape_sectors * new_data_disks;
4886 else
4887 conf->reshape_progress += reshape_sectors * new_data_disks;
4888 spin_unlock_irq(&conf->device_lock);
4889 /* Ok, those stripe are ready. We can start scheduling
4890 * reads on the source stripes.
4891 * The source stripes are determined by mapping the first and last
4892 * block on the destination stripes.
4893 */
4894 first_sector =
4895 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4896 1, &dd_idx, NULL);
4897 last_sector =
4898 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4899 * new_data_disks - 1),
4900 1, &dd_idx, NULL);
4901 if (last_sector >= mddev->dev_sectors)
4902 last_sector = mddev->dev_sectors - 1;
4903 while (first_sector <= last_sector) {
4904 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4905 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4906 set_bit(STRIPE_HANDLE, &sh->state);
4907 release_stripe(sh);
4908 first_sector += STRIPE_SECTORS;
4909 }
4910 /* Now that the sources are clearly marked, we can release
4911 * the destination stripes
4912 */
4913 while (!list_empty(&stripes)) {
4914 sh = list_entry(stripes.next, struct stripe_head, lru);
4915 list_del_init(&sh->lru);
4916 release_stripe(sh);
4917 }
4918 /* If this takes us to the resync_max point where we have to pause,
4919 * then we need to write out the superblock.
4920 */
4921 sector_nr += reshape_sectors;
4922 if ((sector_nr - mddev->curr_resync_completed) * 2
4923 >= mddev->resync_max - mddev->curr_resync_completed) {
4924 /* Cannot proceed until we've updated the superblock... */
4925 wait_event(conf->wait_for_overlap,
4926 atomic_read(&conf->reshape_stripes) == 0
4927 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4928 if (atomic_read(&conf->reshape_stripes) != 0)
4929 goto ret;
4930 mddev->reshape_position = conf->reshape_progress;
4931 mddev->curr_resync_completed = sector_nr;
4932 conf->reshape_checkpoint = jiffies;
4933 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4934 md_wakeup_thread(mddev->thread);
4935 wait_event(mddev->sb_wait,
4936 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4937 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4938 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4939 goto ret;
4940 spin_lock_irq(&conf->device_lock);
4941 conf->reshape_safe = mddev->reshape_position;
4942 spin_unlock_irq(&conf->device_lock);
4943 wake_up(&conf->wait_for_overlap);
4944 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4945 }
4946 ret:
4947 return reshape_sectors;
4948 }
4949
4950 /* FIXME go_faster isn't used */
4951 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4952 {
4953 struct r5conf *conf = mddev->private;
4954 struct stripe_head *sh;
4955 sector_t max_sector = mddev->dev_sectors;
4956 sector_t sync_blocks;
4957 int still_degraded = 0;
4958 int i;
4959
4960 if (sector_nr >= max_sector) {
4961 /* just being told to finish up .. nothing much to do */
4962
4963 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4964 end_reshape(conf);
4965 return 0;
4966 }
4967
4968 if (mddev->curr_resync < max_sector) /* aborted */
4969 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4970 &sync_blocks, 1);
4971 else /* completed sync */
4972 conf->fullsync = 0;
4973 bitmap_close_sync(mddev->bitmap);
4974
4975 return 0;
4976 }
4977
4978 /* Allow raid5_quiesce to complete */
4979 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4980
4981 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4982 return reshape_request(mddev, sector_nr, skipped);
4983
4984 /* No need to check resync_max as we never do more than one
4985 * stripe, and as resync_max will always be on a chunk boundary,
4986 * if the check in md_do_sync didn't fire, there is no chance
4987 * of overstepping resync_max here
4988 */
4989
4990 /* if there is too many failed drives and we are trying
4991 * to resync, then assert that we are finished, because there is
4992 * nothing we can do.
4993 */
4994 if (mddev->degraded >= conf->max_degraded &&
4995 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4996 sector_t rv = mddev->dev_sectors - sector_nr;
4997 *skipped = 1;
4998 return rv;
4999 }
5000 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5001 !conf->fullsync &&
5002 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5003 sync_blocks >= STRIPE_SECTORS) {
5004 /* we can skip this block, and probably more */
5005 sync_blocks /= STRIPE_SECTORS;
5006 *skipped = 1;
5007 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5008 }
5009
5010 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5011
5012 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5013 if (sh == NULL) {
5014 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5015 /* make sure we don't swamp the stripe cache if someone else
5016 * is trying to get access
5017 */
5018 schedule_timeout_uninterruptible(1);
5019 }
5020 /* Need to check if array will still be degraded after recovery/resync
5021 * We don't need to check the 'failed' flag as when that gets set,
5022 * recovery aborts.
5023 */
5024 for (i = 0; i < conf->raid_disks; i++)
5025 if (conf->disks[i].rdev == NULL)
5026 still_degraded = 1;
5027
5028 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5029
5030 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5031
5032 handle_stripe(sh);
5033 release_stripe(sh);
5034
5035 return STRIPE_SECTORS;
5036 }
5037
5038 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5039 {
5040 /* We may not be able to submit a whole bio at once as there
5041 * may not be enough stripe_heads available.
5042 * We cannot pre-allocate enough stripe_heads as we may need
5043 * more than exist in the cache (if we allow ever large chunks).
5044 * So we do one stripe head at a time and record in
5045 * ->bi_hw_segments how many have been done.
5046 *
5047 * We *know* that this entire raid_bio is in one chunk, so
5048 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5049 */
5050 struct stripe_head *sh;
5051 int dd_idx;
5052 sector_t sector, logical_sector, last_sector;
5053 int scnt = 0;
5054 int remaining;
5055 int handled = 0;
5056
5057 logical_sector = raid_bio->bi_iter.bi_sector &
5058 ~((sector_t)STRIPE_SECTORS-1);
5059 sector = raid5_compute_sector(conf, logical_sector,
5060 0, &dd_idx, NULL);
5061 last_sector = bio_end_sector(raid_bio);
5062
5063 for (; logical_sector < last_sector;
5064 logical_sector += STRIPE_SECTORS,
5065 sector += STRIPE_SECTORS,
5066 scnt++) {
5067
5068 if (scnt < raid5_bi_processed_stripes(raid_bio))
5069 /* already done this stripe */
5070 continue;
5071
5072 sh = get_active_stripe(conf, sector, 0, 1, 0);
5073
5074 if (!sh) {
5075 /* failed to get a stripe - must wait */
5076 raid5_set_bi_processed_stripes(raid_bio, scnt);
5077 conf->retry_read_aligned = raid_bio;
5078 return handled;
5079 }
5080
5081 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5082 release_stripe(sh);
5083 raid5_set_bi_processed_stripes(raid_bio, scnt);
5084 conf->retry_read_aligned = raid_bio;
5085 return handled;
5086 }
5087
5088 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5089 handle_stripe(sh);
5090 release_stripe(sh);
5091 handled++;
5092 }
5093 remaining = raid5_dec_bi_active_stripes(raid_bio);
5094 if (remaining == 0) {
5095 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5096 raid_bio, 0);
5097 bio_endio(raid_bio, 0);
5098 }
5099 if (atomic_dec_and_test(&conf->active_aligned_reads))
5100 wake_up(&conf->wait_for_stripe);
5101 return handled;
5102 }
5103
5104 static int handle_active_stripes(struct r5conf *conf, int group,
5105 struct r5worker *worker,
5106 struct list_head *temp_inactive_list)
5107 {
5108 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5109 int i, batch_size = 0, hash;
5110 bool release_inactive = false;
5111
5112 while (batch_size < MAX_STRIPE_BATCH &&
5113 (sh = __get_priority_stripe(conf, group)) != NULL)
5114 batch[batch_size++] = sh;
5115
5116 if (batch_size == 0) {
5117 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5118 if (!list_empty(temp_inactive_list + i))
5119 break;
5120 if (i == NR_STRIPE_HASH_LOCKS)
5121 return batch_size;
5122 release_inactive = true;
5123 }
5124 spin_unlock_irq(&conf->device_lock);
5125
5126 release_inactive_stripe_list(conf, temp_inactive_list,
5127 NR_STRIPE_HASH_LOCKS);
5128
5129 if (release_inactive) {
5130 spin_lock_irq(&conf->device_lock);
5131 return 0;
5132 }
5133
5134 for (i = 0; i < batch_size; i++)
5135 handle_stripe(batch[i]);
5136
5137 cond_resched();
5138
5139 spin_lock_irq(&conf->device_lock);
5140 for (i = 0; i < batch_size; i++) {
5141 hash = batch[i]->hash_lock_index;
5142 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5143 }
5144 return batch_size;
5145 }
5146
5147 static void raid5_do_work(struct work_struct *work)
5148 {
5149 struct r5worker *worker = container_of(work, struct r5worker, work);
5150 struct r5worker_group *group = worker->group;
5151 struct r5conf *conf = group->conf;
5152 int group_id = group - conf->worker_groups;
5153 int handled;
5154 struct blk_plug plug;
5155
5156 pr_debug("+++ raid5worker active\n");
5157
5158 blk_start_plug(&plug);
5159 handled = 0;
5160 spin_lock_irq(&conf->device_lock);
5161 while (1) {
5162 int batch_size, released;
5163
5164 released = release_stripe_list(conf, worker->temp_inactive_list);
5165
5166 batch_size = handle_active_stripes(conf, group_id, worker,
5167 worker->temp_inactive_list);
5168 worker->working = false;
5169 if (!batch_size && !released)
5170 break;
5171 handled += batch_size;
5172 }
5173 pr_debug("%d stripes handled\n", handled);
5174
5175 spin_unlock_irq(&conf->device_lock);
5176 blk_finish_plug(&plug);
5177
5178 pr_debug("--- raid5worker inactive\n");
5179 }
5180
5181 /*
5182 * This is our raid5 kernel thread.
5183 *
5184 * We scan the hash table for stripes which can be handled now.
5185 * During the scan, completed stripes are saved for us by the interrupt
5186 * handler, so that they will not have to wait for our next wakeup.
5187 */
5188 static void raid5d(struct md_thread *thread)
5189 {
5190 struct mddev *mddev = thread->mddev;
5191 struct r5conf *conf = mddev->private;
5192 int handled;
5193 struct blk_plug plug;
5194
5195 pr_debug("+++ raid5d active\n");
5196
5197 md_check_recovery(mddev);
5198
5199 blk_start_plug(&plug);
5200 handled = 0;
5201 spin_lock_irq(&conf->device_lock);
5202 while (1) {
5203 struct bio *bio;
5204 int batch_size, released;
5205
5206 released = release_stripe_list(conf, conf->temp_inactive_list);
5207
5208 if (
5209 !list_empty(&conf->bitmap_list)) {
5210 /* Now is a good time to flush some bitmap updates */
5211 conf->seq_flush++;
5212 spin_unlock_irq(&conf->device_lock);
5213 bitmap_unplug(mddev->bitmap);
5214 spin_lock_irq(&conf->device_lock);
5215 conf->seq_write = conf->seq_flush;
5216 activate_bit_delay(conf, conf->temp_inactive_list);
5217 }
5218 raid5_activate_delayed(conf);
5219
5220 while ((bio = remove_bio_from_retry(conf))) {
5221 int ok;
5222 spin_unlock_irq(&conf->device_lock);
5223 ok = retry_aligned_read(conf, bio);
5224 spin_lock_irq(&conf->device_lock);
5225 if (!ok)
5226 break;
5227 handled++;
5228 }
5229
5230 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5231 conf->temp_inactive_list);
5232 if (!batch_size && !released)
5233 break;
5234 handled += batch_size;
5235
5236 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5237 spin_unlock_irq(&conf->device_lock);
5238 md_check_recovery(mddev);
5239 spin_lock_irq(&conf->device_lock);
5240 }
5241 }
5242 pr_debug("%d stripes handled\n", handled);
5243
5244 spin_unlock_irq(&conf->device_lock);
5245
5246 async_tx_issue_pending_all();
5247 blk_finish_plug(&plug);
5248
5249 pr_debug("--- raid5d inactive\n");
5250 }
5251
5252 static ssize_t
5253 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5254 {
5255 struct r5conf *conf = mddev->private;
5256 if (conf)
5257 return sprintf(page, "%d\n", conf->max_nr_stripes);
5258 else
5259 return 0;
5260 }
5261
5262 int
5263 raid5_set_cache_size(struct mddev *mddev, int size)
5264 {
5265 struct r5conf *conf = mddev->private;
5266 int err;
5267 int hash;
5268
5269 if (size <= 16 || size > 32768)
5270 return -EINVAL;
5271 hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5272 while (size < conf->max_nr_stripes) {
5273 if (drop_one_stripe(conf, hash))
5274 conf->max_nr_stripes--;
5275 else
5276 break;
5277 hash--;
5278 if (hash < 0)
5279 hash = NR_STRIPE_HASH_LOCKS - 1;
5280 }
5281 err = md_allow_write(mddev);
5282 if (err)
5283 return err;
5284 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5285 while (size > conf->max_nr_stripes) {
5286 if (grow_one_stripe(conf, hash))
5287 conf->max_nr_stripes++;
5288 else break;
5289 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5290 }
5291 return 0;
5292 }
5293 EXPORT_SYMBOL(raid5_set_cache_size);
5294
5295 static ssize_t
5296 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5297 {
5298 struct r5conf *conf = mddev->private;
5299 unsigned long new;
5300 int err;
5301
5302 if (len >= PAGE_SIZE)
5303 return -EINVAL;
5304 if (!conf)
5305 return -ENODEV;
5306
5307 if (kstrtoul(page, 10, &new))
5308 return -EINVAL;
5309 err = raid5_set_cache_size(mddev, new);
5310 if (err)
5311 return err;
5312 return len;
5313 }
5314
5315 static struct md_sysfs_entry
5316 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5317 raid5_show_stripe_cache_size,
5318 raid5_store_stripe_cache_size);
5319
5320 static ssize_t
5321 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5322 {
5323 struct r5conf *conf = mddev->private;
5324 if (conf)
5325 return sprintf(page, "%d\n", conf->bypass_threshold);
5326 else
5327 return 0;
5328 }
5329
5330 static ssize_t
5331 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5332 {
5333 struct r5conf *conf = mddev->private;
5334 unsigned long new;
5335 if (len >= PAGE_SIZE)
5336 return -EINVAL;
5337 if (!conf)
5338 return -ENODEV;
5339
5340 if (kstrtoul(page, 10, &new))
5341 return -EINVAL;
5342 if (new > conf->max_nr_stripes)
5343 return -EINVAL;
5344 conf->bypass_threshold = new;
5345 return len;
5346 }
5347
5348 static struct md_sysfs_entry
5349 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5350 S_IRUGO | S_IWUSR,
5351 raid5_show_preread_threshold,
5352 raid5_store_preread_threshold);
5353
5354 static ssize_t
5355 stripe_cache_active_show(struct mddev *mddev, char *page)
5356 {
5357 struct r5conf *conf = mddev->private;
5358 if (conf)
5359 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5360 else
5361 return 0;
5362 }
5363
5364 static struct md_sysfs_entry
5365 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5366
5367 static ssize_t
5368 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5369 {
5370 struct r5conf *conf = mddev->private;
5371 if (conf)
5372 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5373 else
5374 return 0;
5375 }
5376
5377 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5378 int *group_cnt,
5379 int *worker_cnt_per_group,
5380 struct r5worker_group **worker_groups);
5381 static ssize_t
5382 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5383 {
5384 struct r5conf *conf = mddev->private;
5385 unsigned long new;
5386 int err;
5387 struct r5worker_group *new_groups, *old_groups;
5388 int group_cnt, worker_cnt_per_group;
5389
5390 if (len >= PAGE_SIZE)
5391 return -EINVAL;
5392 if (!conf)
5393 return -ENODEV;
5394
5395 if (kstrtoul(page, 10, &new))
5396 return -EINVAL;
5397
5398 if (new == conf->worker_cnt_per_group)
5399 return len;
5400
5401 mddev_suspend(mddev);
5402
5403 old_groups = conf->worker_groups;
5404 if (old_groups)
5405 flush_workqueue(raid5_wq);
5406
5407 err = alloc_thread_groups(conf, new,
5408 &group_cnt, &worker_cnt_per_group,
5409 &new_groups);
5410 if (!err) {
5411 spin_lock_irq(&conf->device_lock);
5412 conf->group_cnt = group_cnt;
5413 conf->worker_cnt_per_group = worker_cnt_per_group;
5414 conf->worker_groups = new_groups;
5415 spin_unlock_irq(&conf->device_lock);
5416
5417 if (old_groups)
5418 kfree(old_groups[0].workers);
5419 kfree(old_groups);
5420 }
5421
5422 mddev_resume(mddev);
5423
5424 if (err)
5425 return err;
5426 return len;
5427 }
5428
5429 static struct md_sysfs_entry
5430 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5431 raid5_show_group_thread_cnt,
5432 raid5_store_group_thread_cnt);
5433
5434 static struct attribute *raid5_attrs[] = {
5435 &raid5_stripecache_size.attr,
5436 &raid5_stripecache_active.attr,
5437 &raid5_preread_bypass_threshold.attr,
5438 &raid5_group_thread_cnt.attr,
5439 NULL,
5440 };
5441 static struct attribute_group raid5_attrs_group = {
5442 .name = NULL,
5443 .attrs = raid5_attrs,
5444 };
5445
5446 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5447 int *group_cnt,
5448 int *worker_cnt_per_group,
5449 struct r5worker_group **worker_groups)
5450 {
5451 int i, j, k;
5452 ssize_t size;
5453 struct r5worker *workers;
5454
5455 *worker_cnt_per_group = cnt;
5456 if (cnt == 0) {
5457 *group_cnt = 0;
5458 *worker_groups = NULL;
5459 return 0;
5460 }
5461 *group_cnt = num_possible_nodes();
5462 size = sizeof(struct r5worker) * cnt;
5463 workers = kzalloc(size * *group_cnt, GFP_NOIO);
5464 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5465 *group_cnt, GFP_NOIO);
5466 if (!*worker_groups || !workers) {
5467 kfree(workers);
5468 kfree(*worker_groups);
5469 return -ENOMEM;
5470 }
5471
5472 for (i = 0; i < *group_cnt; i++) {
5473 struct r5worker_group *group;
5474
5475 group = &(*worker_groups)[i];
5476 INIT_LIST_HEAD(&group->handle_list);
5477 group->conf = conf;
5478 group->workers = workers + i * cnt;
5479
5480 for (j = 0; j < cnt; j++) {
5481 struct r5worker *worker = group->workers + j;
5482 worker->group = group;
5483 INIT_WORK(&worker->work, raid5_do_work);
5484
5485 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5486 INIT_LIST_HEAD(worker->temp_inactive_list + k);
5487 }
5488 }
5489
5490 return 0;
5491 }
5492
5493 static void free_thread_groups(struct r5conf *conf)
5494 {
5495 if (conf->worker_groups)
5496 kfree(conf->worker_groups[0].workers);
5497 kfree(conf->worker_groups);
5498 conf->worker_groups = NULL;
5499 }
5500
5501 static sector_t
5502 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5503 {
5504 struct r5conf *conf = mddev->private;
5505
5506 if (!sectors)
5507 sectors = mddev->dev_sectors;
5508 if (!raid_disks)
5509 /* size is defined by the smallest of previous and new size */
5510 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5511
5512 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5513 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5514 return sectors * (raid_disks - conf->max_degraded);
5515 }
5516
5517 static void raid5_free_percpu(struct r5conf *conf)
5518 {
5519 struct raid5_percpu *percpu;
5520 unsigned long cpu;
5521
5522 if (!conf->percpu)
5523 return;
5524
5525 get_online_cpus();
5526 for_each_possible_cpu(cpu) {
5527 percpu = per_cpu_ptr(conf->percpu, cpu);
5528 safe_put_page(percpu->spare_page);
5529 kfree(percpu->scribble);
5530 }
5531 #ifdef CONFIG_HOTPLUG_CPU
5532 unregister_cpu_notifier(&conf->cpu_notify);
5533 #endif
5534 put_online_cpus();
5535
5536 free_percpu(conf->percpu);
5537 }
5538
5539 static void free_conf(struct r5conf *conf)
5540 {
5541 free_thread_groups(conf);
5542 shrink_stripes(conf);
5543 raid5_free_percpu(conf);
5544 kfree(conf->disks);
5545 kfree(conf->stripe_hashtbl);
5546 kfree(conf);
5547 }
5548
5549 #ifdef CONFIG_HOTPLUG_CPU
5550 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5551 void *hcpu)
5552 {
5553 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5554 long cpu = (long)hcpu;
5555 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5556
5557 switch (action) {
5558 case CPU_UP_PREPARE:
5559 case CPU_UP_PREPARE_FROZEN:
5560 if (conf->level == 6 && !percpu->spare_page)
5561 percpu->spare_page = alloc_page(GFP_KERNEL);
5562 if (!percpu->scribble)
5563 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5564
5565 if (!percpu->scribble ||
5566 (conf->level == 6 && !percpu->spare_page)) {
5567 safe_put_page(percpu->spare_page);
5568 kfree(percpu->scribble);
5569 pr_err("%s: failed memory allocation for cpu%ld\n",
5570 __func__, cpu);
5571 return notifier_from_errno(-ENOMEM);
5572 }
5573 break;
5574 case CPU_DEAD:
5575 case CPU_DEAD_FROZEN:
5576 safe_put_page(percpu->spare_page);
5577 kfree(percpu->scribble);
5578 percpu->spare_page = NULL;
5579 percpu->scribble = NULL;
5580 break;
5581 default:
5582 break;
5583 }
5584 return NOTIFY_OK;
5585 }
5586 #endif
5587
5588 static int raid5_alloc_percpu(struct r5conf *conf)
5589 {
5590 unsigned long cpu;
5591 struct page *spare_page;
5592 struct raid5_percpu __percpu *allcpus;
5593 void *scribble;
5594 int err;
5595
5596 allcpus = alloc_percpu(struct raid5_percpu);
5597 if (!allcpus)
5598 return -ENOMEM;
5599 conf->percpu = allcpus;
5600
5601 get_online_cpus();
5602 err = 0;
5603 for_each_present_cpu(cpu) {
5604 if (conf->level == 6) {
5605 spare_page = alloc_page(GFP_KERNEL);
5606 if (!spare_page) {
5607 err = -ENOMEM;
5608 break;
5609 }
5610 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5611 }
5612 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5613 if (!scribble) {
5614 err = -ENOMEM;
5615 break;
5616 }
5617 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5618 }
5619 #ifdef CONFIG_HOTPLUG_CPU
5620 conf->cpu_notify.notifier_call = raid456_cpu_notify;
5621 conf->cpu_notify.priority = 0;
5622 if (err == 0)
5623 err = register_cpu_notifier(&conf->cpu_notify);
5624 #endif
5625 put_online_cpus();
5626
5627 return err;
5628 }
5629
5630 static struct r5conf *setup_conf(struct mddev *mddev)
5631 {
5632 struct r5conf *conf;
5633 int raid_disk, memory, max_disks;
5634 struct md_rdev *rdev;
5635 struct disk_info *disk;
5636 char pers_name[6];
5637 int i;
5638 int group_cnt, worker_cnt_per_group;
5639 struct r5worker_group *new_group;
5640
5641 if (mddev->new_level != 5
5642 && mddev->new_level != 4
5643 && mddev->new_level != 6) {
5644 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5645 mdname(mddev), mddev->new_level);
5646 return ERR_PTR(-EIO);
5647 }
5648 if ((mddev->new_level == 5
5649 && !algorithm_valid_raid5(mddev->new_layout)) ||
5650 (mddev->new_level == 6
5651 && !algorithm_valid_raid6(mddev->new_layout))) {
5652 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5653 mdname(mddev), mddev->new_layout);
5654 return ERR_PTR(-EIO);
5655 }
5656 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5657 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5658 mdname(mddev), mddev->raid_disks);
5659 return ERR_PTR(-EINVAL);
5660 }
5661
5662 if (!mddev->new_chunk_sectors ||
5663 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5664 !is_power_of_2(mddev->new_chunk_sectors)) {
5665 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5666 mdname(mddev), mddev->new_chunk_sectors << 9);
5667 return ERR_PTR(-EINVAL);
5668 }
5669
5670 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5671 if (conf == NULL)
5672 goto abort;
5673 /* Don't enable multi-threading by default*/
5674 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5675 &new_group)) {
5676 conf->group_cnt = group_cnt;
5677 conf->worker_cnt_per_group = worker_cnt_per_group;
5678 conf->worker_groups = new_group;
5679 } else
5680 goto abort;
5681 spin_lock_init(&conf->device_lock);
5682 seqcount_init(&conf->gen_lock);
5683 init_waitqueue_head(&conf->wait_for_stripe);
5684 init_waitqueue_head(&conf->wait_for_overlap);
5685 INIT_LIST_HEAD(&conf->handle_list);
5686 INIT_LIST_HEAD(&conf->hold_list);
5687 INIT_LIST_HEAD(&conf->delayed_list);
5688 INIT_LIST_HEAD(&conf->bitmap_list);
5689 init_llist_head(&conf->released_stripes);
5690 atomic_set(&conf->active_stripes, 0);
5691 atomic_set(&conf->preread_active_stripes, 0);
5692 atomic_set(&conf->active_aligned_reads, 0);
5693 conf->bypass_threshold = BYPASS_THRESHOLD;
5694 conf->recovery_disabled = mddev->recovery_disabled - 1;
5695
5696 conf->raid_disks = mddev->raid_disks;
5697 if (mddev->reshape_position == MaxSector)
5698 conf->previous_raid_disks = mddev->raid_disks;
5699 else
5700 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5701 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5702 conf->scribble_len = scribble_len(max_disks);
5703
5704 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5705 GFP_KERNEL);
5706 if (!conf->disks)
5707 goto abort;
5708
5709 conf->mddev = mddev;
5710
5711 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5712 goto abort;
5713
5714 /* We init hash_locks[0] separately to that it can be used
5715 * as the reference lock in the spin_lock_nest_lock() call
5716 * in lock_all_device_hash_locks_irq in order to convince
5717 * lockdep that we know what we are doing.
5718 */
5719 spin_lock_init(conf->hash_locks);
5720 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5721 spin_lock_init(conf->hash_locks + i);
5722
5723 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5724 INIT_LIST_HEAD(conf->inactive_list + i);
5725
5726 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5727 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5728
5729 conf->level = mddev->new_level;
5730 if (raid5_alloc_percpu(conf) != 0)
5731 goto abort;
5732
5733 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5734
5735 rdev_for_each(rdev, mddev) {
5736 raid_disk = rdev->raid_disk;
5737 if (raid_disk >= max_disks
5738 || raid_disk < 0)
5739 continue;
5740 disk = conf->disks + raid_disk;
5741
5742 if (test_bit(Replacement, &rdev->flags)) {
5743 if (disk->replacement)
5744 goto abort;
5745 disk->replacement = rdev;
5746 } else {
5747 if (disk->rdev)
5748 goto abort;
5749 disk->rdev = rdev;
5750 }
5751
5752 if (test_bit(In_sync, &rdev->flags)) {
5753 char b[BDEVNAME_SIZE];
5754 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5755 " disk %d\n",
5756 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5757 } else if (rdev->saved_raid_disk != raid_disk)
5758 /* Cannot rely on bitmap to complete recovery */
5759 conf->fullsync = 1;
5760 }
5761
5762 conf->chunk_sectors = mddev->new_chunk_sectors;
5763 conf->level = mddev->new_level;
5764 if (conf->level == 6)
5765 conf->max_degraded = 2;
5766 else
5767 conf->max_degraded = 1;
5768 conf->algorithm = mddev->new_layout;
5769 conf->reshape_progress = mddev->reshape_position;
5770 if (conf->reshape_progress != MaxSector) {
5771 conf->prev_chunk_sectors = mddev->chunk_sectors;
5772 conf->prev_algo = mddev->layout;
5773 }
5774
5775 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5776 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5777 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5778 if (grow_stripes(conf, NR_STRIPES)) {
5779 printk(KERN_ERR
5780 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5781 mdname(mddev), memory);
5782 goto abort;
5783 } else
5784 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5785 mdname(mddev), memory);
5786
5787 sprintf(pers_name, "raid%d", mddev->new_level);
5788 conf->thread = md_register_thread(raid5d, mddev, pers_name);
5789 if (!conf->thread) {
5790 printk(KERN_ERR
5791 "md/raid:%s: couldn't allocate thread.\n",
5792 mdname(mddev));
5793 goto abort;
5794 }
5795
5796 return conf;
5797
5798 abort:
5799 if (conf) {
5800 free_conf(conf);
5801 return ERR_PTR(-EIO);
5802 } else
5803 return ERR_PTR(-ENOMEM);
5804 }
5805
5806
5807 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5808 {
5809 switch (algo) {
5810 case ALGORITHM_PARITY_0:
5811 if (raid_disk < max_degraded)
5812 return 1;
5813 break;
5814 case ALGORITHM_PARITY_N:
5815 if (raid_disk >= raid_disks - max_degraded)
5816 return 1;
5817 break;
5818 case ALGORITHM_PARITY_0_6:
5819 if (raid_disk == 0 ||
5820 raid_disk == raid_disks - 1)
5821 return 1;
5822 break;
5823 case ALGORITHM_LEFT_ASYMMETRIC_6:
5824 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5825 case ALGORITHM_LEFT_SYMMETRIC_6:
5826 case ALGORITHM_RIGHT_SYMMETRIC_6:
5827 if (raid_disk == raid_disks - 1)
5828 return 1;
5829 }
5830 return 0;
5831 }
5832
5833 static int run(struct mddev *mddev)
5834 {
5835 struct r5conf *conf;
5836 int working_disks = 0;
5837 int dirty_parity_disks = 0;
5838 struct md_rdev *rdev;
5839 sector_t reshape_offset = 0;
5840 int i;
5841 long long min_offset_diff = 0;
5842 int first = 1;
5843
5844 if (mddev->recovery_cp != MaxSector)
5845 printk(KERN_NOTICE "md/raid:%s: not clean"
5846 " -- starting background reconstruction\n",
5847 mdname(mddev));
5848
5849 rdev_for_each(rdev, mddev) {
5850 long long diff;
5851 if (rdev->raid_disk < 0)
5852 continue;
5853 diff = (rdev->new_data_offset - rdev->data_offset);
5854 if (first) {
5855 min_offset_diff = diff;
5856 first = 0;
5857 } else if (mddev->reshape_backwards &&
5858 diff < min_offset_diff)
5859 min_offset_diff = diff;
5860 else if (!mddev->reshape_backwards &&
5861 diff > min_offset_diff)
5862 min_offset_diff = diff;
5863 }
5864
5865 if (mddev->reshape_position != MaxSector) {
5866 /* Check that we can continue the reshape.
5867 * Difficulties arise if the stripe we would write to
5868 * next is at or after the stripe we would read from next.
5869 * For a reshape that changes the number of devices, this
5870 * is only possible for a very short time, and mdadm makes
5871 * sure that time appears to have past before assembling
5872 * the array. So we fail if that time hasn't passed.
5873 * For a reshape that keeps the number of devices the same
5874 * mdadm must be monitoring the reshape can keeping the
5875 * critical areas read-only and backed up. It will start
5876 * the array in read-only mode, so we check for that.
5877 */
5878 sector_t here_new, here_old;
5879 int old_disks;
5880 int max_degraded = (mddev->level == 6 ? 2 : 1);
5881
5882 if (mddev->new_level != mddev->level) {
5883 printk(KERN_ERR "md/raid:%s: unsupported reshape "
5884 "required - aborting.\n",
5885 mdname(mddev));
5886 return -EINVAL;
5887 }
5888 old_disks = mddev->raid_disks - mddev->delta_disks;
5889 /* reshape_position must be on a new-stripe boundary, and one
5890 * further up in new geometry must map after here in old
5891 * geometry.
5892 */
5893 here_new = mddev->reshape_position;
5894 if (sector_div(here_new, mddev->new_chunk_sectors *
5895 (mddev->raid_disks - max_degraded))) {
5896 printk(KERN_ERR "md/raid:%s: reshape_position not "
5897 "on a stripe boundary\n", mdname(mddev));
5898 return -EINVAL;
5899 }
5900 reshape_offset = here_new * mddev->new_chunk_sectors;
5901 /* here_new is the stripe we will write to */
5902 here_old = mddev->reshape_position;
5903 sector_div(here_old, mddev->chunk_sectors *
5904 (old_disks-max_degraded));
5905 /* here_old is the first stripe that we might need to read
5906 * from */
5907 if (mddev->delta_disks == 0) {
5908 if ((here_new * mddev->new_chunk_sectors !=
5909 here_old * mddev->chunk_sectors)) {
5910 printk(KERN_ERR "md/raid:%s: reshape position is"
5911 " confused - aborting\n", mdname(mddev));
5912 return -EINVAL;
5913 }
5914 /* We cannot be sure it is safe to start an in-place
5915 * reshape. It is only safe if user-space is monitoring
5916 * and taking constant backups.
5917 * mdadm always starts a situation like this in
5918 * readonly mode so it can take control before
5919 * allowing any writes. So just check for that.
5920 */
5921 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5922 abs(min_offset_diff) >= mddev->new_chunk_sectors)
5923 /* not really in-place - so OK */;
5924 else if (mddev->ro == 0) {
5925 printk(KERN_ERR "md/raid:%s: in-place reshape "
5926 "must be started in read-only mode "
5927 "- aborting\n",
5928 mdname(mddev));
5929 return -EINVAL;
5930 }
5931 } else if (mddev->reshape_backwards
5932 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5933 here_old * mddev->chunk_sectors)
5934 : (here_new * mddev->new_chunk_sectors >=
5935 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5936 /* Reading from the same stripe as writing to - bad */
5937 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5938 "auto-recovery - aborting.\n",
5939 mdname(mddev));
5940 return -EINVAL;
5941 }
5942 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5943 mdname(mddev));
5944 /* OK, we should be able to continue; */
5945 } else {
5946 BUG_ON(mddev->level != mddev->new_level);
5947 BUG_ON(mddev->layout != mddev->new_layout);
5948 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5949 BUG_ON(mddev->delta_disks != 0);
5950 }
5951
5952 if (mddev->private == NULL)
5953 conf = setup_conf(mddev);
5954 else
5955 conf = mddev->private;
5956
5957 if (IS_ERR(conf))
5958 return PTR_ERR(conf);
5959
5960 conf->min_offset_diff = min_offset_diff;
5961 mddev->thread = conf->thread;
5962 conf->thread = NULL;
5963 mddev->private = conf;
5964
5965 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5966 i++) {
5967 rdev = conf->disks[i].rdev;
5968 if (!rdev && conf->disks[i].replacement) {
5969 /* The replacement is all we have yet */
5970 rdev = conf->disks[i].replacement;
5971 conf->disks[i].replacement = NULL;
5972 clear_bit(Replacement, &rdev->flags);
5973 conf->disks[i].rdev = rdev;
5974 }
5975 if (!rdev)
5976 continue;
5977 if (conf->disks[i].replacement &&
5978 conf->reshape_progress != MaxSector) {
5979 /* replacements and reshape simply do not mix. */
5980 printk(KERN_ERR "md: cannot handle concurrent "
5981 "replacement and reshape.\n");
5982 goto abort;
5983 }
5984 if (test_bit(In_sync, &rdev->flags)) {
5985 working_disks++;
5986 continue;
5987 }
5988 /* This disc is not fully in-sync. However if it
5989 * just stored parity (beyond the recovery_offset),
5990 * when we don't need to be concerned about the
5991 * array being dirty.
5992 * When reshape goes 'backwards', we never have
5993 * partially completed devices, so we only need
5994 * to worry about reshape going forwards.
5995 */
5996 /* Hack because v0.91 doesn't store recovery_offset properly. */
5997 if (mddev->major_version == 0 &&
5998 mddev->minor_version > 90)
5999 rdev->recovery_offset = reshape_offset;
6000
6001 if (rdev->recovery_offset < reshape_offset) {
6002 /* We need to check old and new layout */
6003 if (!only_parity(rdev->raid_disk,
6004 conf->algorithm,
6005 conf->raid_disks,
6006 conf->max_degraded))
6007 continue;
6008 }
6009 if (!only_parity(rdev->raid_disk,
6010 conf->prev_algo,
6011 conf->previous_raid_disks,
6012 conf->max_degraded))
6013 continue;
6014 dirty_parity_disks++;
6015 }
6016
6017 /*
6018 * 0 for a fully functional array, 1 or 2 for a degraded array.
6019 */
6020 mddev->degraded = calc_degraded(conf);
6021
6022 if (has_failed(conf)) {
6023 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6024 " (%d/%d failed)\n",
6025 mdname(mddev), mddev->degraded, conf->raid_disks);
6026 goto abort;
6027 }
6028
6029 /* device size must be a multiple of chunk size */
6030 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6031 mddev->resync_max_sectors = mddev->dev_sectors;
6032
6033 if (mddev->degraded > dirty_parity_disks &&
6034 mddev->recovery_cp != MaxSector) {
6035 if (mddev->ok_start_degraded)
6036 printk(KERN_WARNING
6037 "md/raid:%s: starting dirty degraded array"
6038 " - data corruption possible.\n",
6039 mdname(mddev));
6040 else {
6041 printk(KERN_ERR
6042 "md/raid:%s: cannot start dirty degraded array.\n",
6043 mdname(mddev));
6044 goto abort;
6045 }
6046 }
6047
6048 if (mddev->degraded == 0)
6049 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6050 " devices, algorithm %d\n", mdname(mddev), conf->level,
6051 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6052 mddev->new_layout);
6053 else
6054 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6055 " out of %d devices, algorithm %d\n",
6056 mdname(mddev), conf->level,
6057 mddev->raid_disks - mddev->degraded,
6058 mddev->raid_disks, mddev->new_layout);
6059
6060 print_raid5_conf(conf);
6061
6062 if (conf->reshape_progress != MaxSector) {
6063 conf->reshape_safe = conf->reshape_progress;
6064 atomic_set(&conf->reshape_stripes, 0);
6065 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6066 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6067 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6068 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6069 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6070 "reshape");
6071 }
6072
6073
6074 /* Ok, everything is just fine now */
6075 if (mddev->to_remove == &raid5_attrs_group)
6076 mddev->to_remove = NULL;
6077 else if (mddev->kobj.sd &&
6078 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6079 printk(KERN_WARNING
6080 "raid5: failed to create sysfs attributes for %s\n",
6081 mdname(mddev));
6082 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6083
6084 if (mddev->queue) {
6085 int chunk_size;
6086 bool discard_supported = true;
6087 /* read-ahead size must cover two whole stripes, which
6088 * is 2 * (datadisks) * chunksize where 'n' is the
6089 * number of raid devices
6090 */
6091 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6092 int stripe = data_disks *
6093 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6094 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6095 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6096
6097 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6098
6099 mddev->queue->backing_dev_info.congested_data = mddev;
6100 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6101
6102 chunk_size = mddev->chunk_sectors << 9;
6103 blk_queue_io_min(mddev->queue, chunk_size);
6104 blk_queue_io_opt(mddev->queue, chunk_size *
6105 (conf->raid_disks - conf->max_degraded));
6106 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6107 /*
6108 * We can only discard a whole stripe. It doesn't make sense to
6109 * discard data disk but write parity disk
6110 */
6111 stripe = stripe * PAGE_SIZE;
6112 /* Round up to power of 2, as discard handling
6113 * currently assumes that */
6114 while ((stripe-1) & stripe)
6115 stripe = (stripe | (stripe-1)) + 1;
6116 mddev->queue->limits.discard_alignment = stripe;
6117 mddev->queue->limits.discard_granularity = stripe;
6118 /*
6119 * unaligned part of discard request will be ignored, so can't
6120 * guarantee discard_zerors_data
6121 */
6122 mddev->queue->limits.discard_zeroes_data = 0;
6123
6124 blk_queue_max_write_same_sectors(mddev->queue, 0);
6125
6126 rdev_for_each(rdev, mddev) {
6127 disk_stack_limits(mddev->gendisk, rdev->bdev,
6128 rdev->data_offset << 9);
6129 disk_stack_limits(mddev->gendisk, rdev->bdev,
6130 rdev->new_data_offset << 9);
6131 /*
6132 * discard_zeroes_data is required, otherwise data
6133 * could be lost. Consider a scenario: discard a stripe
6134 * (the stripe could be inconsistent if
6135 * discard_zeroes_data is 0); write one disk of the
6136 * stripe (the stripe could be inconsistent again
6137 * depending on which disks are used to calculate
6138 * parity); the disk is broken; The stripe data of this
6139 * disk is lost.
6140 */
6141 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6142 !bdev_get_queue(rdev->bdev)->
6143 limits.discard_zeroes_data)
6144 discard_supported = false;
6145 }
6146
6147 if (discard_supported &&
6148 mddev->queue->limits.max_discard_sectors >= stripe &&
6149 mddev->queue->limits.discard_granularity >= stripe)
6150 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6151 mddev->queue);
6152 else
6153 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6154 mddev->queue);
6155 }
6156
6157 return 0;
6158 abort:
6159 md_unregister_thread(&mddev->thread);
6160 print_raid5_conf(conf);
6161 free_conf(conf);
6162 mddev->private = NULL;
6163 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6164 return -EIO;
6165 }
6166
6167 static int stop(struct mddev *mddev)
6168 {
6169 struct r5conf *conf = mddev->private;
6170
6171 md_unregister_thread(&mddev->thread);
6172 if (mddev->queue)
6173 mddev->queue->backing_dev_info.congested_fn = NULL;
6174 free_conf(conf);
6175 mddev->private = NULL;
6176 mddev->to_remove = &raid5_attrs_group;
6177 return 0;
6178 }
6179
6180 static void status(struct seq_file *seq, struct mddev *mddev)
6181 {
6182 struct r5conf *conf = mddev->private;
6183 int i;
6184
6185 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6186 mddev->chunk_sectors / 2, mddev->layout);
6187 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6188 for (i = 0; i < conf->raid_disks; i++)
6189 seq_printf (seq, "%s",
6190 conf->disks[i].rdev &&
6191 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6192 seq_printf (seq, "]");
6193 }
6194
6195 static void print_raid5_conf (struct r5conf *conf)
6196 {
6197 int i;
6198 struct disk_info *tmp;
6199
6200 printk(KERN_DEBUG "RAID conf printout:\n");
6201 if (!conf) {
6202 printk("(conf==NULL)\n");
6203 return;
6204 }
6205 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6206 conf->raid_disks,
6207 conf->raid_disks - conf->mddev->degraded);
6208
6209 for (i = 0; i < conf->raid_disks; i++) {
6210 char b[BDEVNAME_SIZE];
6211 tmp = conf->disks + i;
6212 if (tmp->rdev)
6213 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6214 i, !test_bit(Faulty, &tmp->rdev->flags),
6215 bdevname(tmp->rdev->bdev, b));
6216 }
6217 }
6218
6219 static int raid5_spare_active(struct mddev *mddev)
6220 {
6221 int i;
6222 struct r5conf *conf = mddev->private;
6223 struct disk_info *tmp;
6224 int count = 0;
6225 unsigned long flags;
6226
6227 for (i = 0; i < conf->raid_disks; i++) {
6228 tmp = conf->disks + i;
6229 if (tmp->replacement
6230 && tmp->replacement->recovery_offset == MaxSector
6231 && !test_bit(Faulty, &tmp->replacement->flags)
6232 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6233 /* Replacement has just become active. */
6234 if (!tmp->rdev
6235 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6236 count++;
6237 if (tmp->rdev) {
6238 /* Replaced device not technically faulty,
6239 * but we need to be sure it gets removed
6240 * and never re-added.
6241 */
6242 set_bit(Faulty, &tmp->rdev->flags);
6243 sysfs_notify_dirent_safe(
6244 tmp->rdev->sysfs_state);
6245 }
6246 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6247 } else if (tmp->rdev
6248 && tmp->rdev->recovery_offset == MaxSector
6249 && !test_bit(Faulty, &tmp->rdev->flags)
6250 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6251 count++;
6252 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6253 }
6254 }
6255 spin_lock_irqsave(&conf->device_lock, flags);
6256 mddev->degraded = calc_degraded(conf);
6257 spin_unlock_irqrestore(&conf->device_lock, flags);
6258 print_raid5_conf(conf);
6259 return count;
6260 }
6261
6262 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6263 {
6264 struct r5conf *conf = mddev->private;
6265 int err = 0;
6266 int number = rdev->raid_disk;
6267 struct md_rdev **rdevp;
6268 struct disk_info *p = conf->disks + number;
6269
6270 print_raid5_conf(conf);
6271 if (rdev == p->rdev)
6272 rdevp = &p->rdev;
6273 else if (rdev == p->replacement)
6274 rdevp = &p->replacement;
6275 else
6276 return 0;
6277
6278 if (number >= conf->raid_disks &&
6279 conf->reshape_progress == MaxSector)
6280 clear_bit(In_sync, &rdev->flags);
6281
6282 if (test_bit(In_sync, &rdev->flags) ||
6283 atomic_read(&rdev->nr_pending)) {
6284 err = -EBUSY;
6285 goto abort;
6286 }
6287 /* Only remove non-faulty devices if recovery
6288 * isn't possible.
6289 */
6290 if (!test_bit(Faulty, &rdev->flags) &&
6291 mddev->recovery_disabled != conf->recovery_disabled &&
6292 !has_failed(conf) &&
6293 (!p->replacement || p->replacement == rdev) &&
6294 number < conf->raid_disks) {
6295 err = -EBUSY;
6296 goto abort;
6297 }
6298 *rdevp = NULL;
6299 synchronize_rcu();
6300 if (atomic_read(&rdev->nr_pending)) {
6301 /* lost the race, try later */
6302 err = -EBUSY;
6303 *rdevp = rdev;
6304 } else if (p->replacement) {
6305 /* We must have just cleared 'rdev' */
6306 p->rdev = p->replacement;
6307 clear_bit(Replacement, &p->replacement->flags);
6308 smp_mb(); /* Make sure other CPUs may see both as identical
6309 * but will never see neither - if they are careful
6310 */
6311 p->replacement = NULL;
6312 clear_bit(WantReplacement, &rdev->flags);
6313 } else
6314 /* We might have just removed the Replacement as faulty-
6315 * clear the bit just in case
6316 */
6317 clear_bit(WantReplacement, &rdev->flags);
6318 abort:
6319
6320 print_raid5_conf(conf);
6321 return err;
6322 }
6323
6324 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6325 {
6326 struct r5conf *conf = mddev->private;
6327 int err = -EEXIST;
6328 int disk;
6329 struct disk_info *p;
6330 int first = 0;
6331 int last = conf->raid_disks - 1;
6332
6333 if (mddev->recovery_disabled == conf->recovery_disabled)
6334 return -EBUSY;
6335
6336 if (rdev->saved_raid_disk < 0 && has_failed(conf))
6337 /* no point adding a device */
6338 return -EINVAL;
6339
6340 if (rdev->raid_disk >= 0)
6341 first = last = rdev->raid_disk;
6342
6343 /*
6344 * find the disk ... but prefer rdev->saved_raid_disk
6345 * if possible.
6346 */
6347 if (rdev->saved_raid_disk >= 0 &&
6348 rdev->saved_raid_disk >= first &&
6349 conf->disks[rdev->saved_raid_disk].rdev == NULL)
6350 first = rdev->saved_raid_disk;
6351
6352 for (disk = first; disk <= last; disk++) {
6353 p = conf->disks + disk;
6354 if (p->rdev == NULL) {
6355 clear_bit(In_sync, &rdev->flags);
6356 rdev->raid_disk = disk;
6357 err = 0;
6358 if (rdev->saved_raid_disk != disk)
6359 conf->fullsync = 1;
6360 rcu_assign_pointer(p->rdev, rdev);
6361 goto out;
6362 }
6363 }
6364 for (disk = first; disk <= last; disk++) {
6365 p = conf->disks + disk;
6366 if (test_bit(WantReplacement, &p->rdev->flags) &&
6367 p->replacement == NULL) {
6368 clear_bit(In_sync, &rdev->flags);
6369 set_bit(Replacement, &rdev->flags);
6370 rdev->raid_disk = disk;
6371 err = 0;
6372 conf->fullsync = 1;
6373 rcu_assign_pointer(p->replacement, rdev);
6374 break;
6375 }
6376 }
6377 out:
6378 print_raid5_conf(conf);
6379 return err;
6380 }
6381
6382 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6383 {
6384 /* no resync is happening, and there is enough space
6385 * on all devices, so we can resize.
6386 * We need to make sure resync covers any new space.
6387 * If the array is shrinking we should possibly wait until
6388 * any io in the removed space completes, but it hardly seems
6389 * worth it.
6390 */
6391 sector_t newsize;
6392 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6393 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6394 if (mddev->external_size &&
6395 mddev->array_sectors > newsize)
6396 return -EINVAL;
6397 if (mddev->bitmap) {
6398 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6399 if (ret)
6400 return ret;
6401 }
6402 md_set_array_sectors(mddev, newsize);
6403 set_capacity(mddev->gendisk, mddev->array_sectors);
6404 revalidate_disk(mddev->gendisk);
6405 if (sectors > mddev->dev_sectors &&
6406 mddev->recovery_cp > mddev->dev_sectors) {
6407 mddev->recovery_cp = mddev->dev_sectors;
6408 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6409 }
6410 mddev->dev_sectors = sectors;
6411 mddev->resync_max_sectors = sectors;
6412 return 0;
6413 }
6414
6415 static int check_stripe_cache(struct mddev *mddev)
6416 {
6417 /* Can only proceed if there are plenty of stripe_heads.
6418 * We need a minimum of one full stripe,, and for sensible progress
6419 * it is best to have about 4 times that.
6420 * If we require 4 times, then the default 256 4K stripe_heads will
6421 * allow for chunk sizes up to 256K, which is probably OK.
6422 * If the chunk size is greater, user-space should request more
6423 * stripe_heads first.
6424 */
6425 struct r5conf *conf = mddev->private;
6426 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6427 > conf->max_nr_stripes ||
6428 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6429 > conf->max_nr_stripes) {
6430 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
6431 mdname(mddev),
6432 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6433 / STRIPE_SIZE)*4);
6434 return 0;
6435 }
6436 return 1;
6437 }
6438
6439 static int check_reshape(struct mddev *mddev)
6440 {
6441 struct r5conf *conf = mddev->private;
6442
6443 if (mddev->delta_disks == 0 &&
6444 mddev->new_layout == mddev->layout &&
6445 mddev->new_chunk_sectors == mddev->chunk_sectors)
6446 return 0; /* nothing to do */
6447 if (has_failed(conf))
6448 return -EINVAL;
6449 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6450 /* We might be able to shrink, but the devices must
6451 * be made bigger first.
6452 * For raid6, 4 is the minimum size.
6453 * Otherwise 2 is the minimum
6454 */
6455 int min = 2;
6456 if (mddev->level == 6)
6457 min = 4;
6458 if (mddev->raid_disks + mddev->delta_disks < min)
6459 return -EINVAL;
6460 }
6461
6462 if (!check_stripe_cache(mddev))
6463 return -ENOSPC;
6464
6465 return resize_stripes(conf, (conf->previous_raid_disks
6466 + mddev->delta_disks));
6467 }
6468
6469 static int raid5_start_reshape(struct mddev *mddev)
6470 {
6471 struct r5conf *conf = mddev->private;
6472 struct md_rdev *rdev;
6473 int spares = 0;
6474 unsigned long flags;
6475
6476 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6477 return -EBUSY;
6478
6479 if (!check_stripe_cache(mddev))
6480 return -ENOSPC;
6481
6482 if (has_failed(conf))
6483 return -EINVAL;
6484
6485 rdev_for_each(rdev, mddev) {
6486 if (!test_bit(In_sync, &rdev->flags)
6487 && !test_bit(Faulty, &rdev->flags))
6488 spares++;
6489 }
6490
6491 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6492 /* Not enough devices even to make a degraded array
6493 * of that size
6494 */
6495 return -EINVAL;
6496
6497 /* Refuse to reduce size of the array. Any reductions in
6498 * array size must be through explicit setting of array_size
6499 * attribute.
6500 */
6501 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6502 < mddev->array_sectors) {
6503 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6504 "before number of disks\n", mdname(mddev));
6505 return -EINVAL;
6506 }
6507
6508 atomic_set(&conf->reshape_stripes, 0);
6509 spin_lock_irq(&conf->device_lock);
6510 write_seqcount_begin(&conf->gen_lock);
6511 conf->previous_raid_disks = conf->raid_disks;
6512 conf->raid_disks += mddev->delta_disks;
6513 conf->prev_chunk_sectors = conf->chunk_sectors;
6514 conf->chunk_sectors = mddev->new_chunk_sectors;
6515 conf->prev_algo = conf->algorithm;
6516 conf->algorithm = mddev->new_layout;
6517 conf->generation++;
6518 /* Code that selects data_offset needs to see the generation update
6519 * if reshape_progress has been set - so a memory barrier needed.
6520 */
6521 smp_mb();
6522 if (mddev->reshape_backwards)
6523 conf->reshape_progress = raid5_size(mddev, 0, 0);
6524 else
6525 conf->reshape_progress = 0;
6526 conf->reshape_safe = conf->reshape_progress;
6527 write_seqcount_end(&conf->gen_lock);
6528 spin_unlock_irq(&conf->device_lock);
6529
6530 /* Now make sure any requests that proceeded on the assumption
6531 * the reshape wasn't running - like Discard or Read - have
6532 * completed.
6533 */
6534 mddev_suspend(mddev);
6535 mddev_resume(mddev);
6536
6537 /* Add some new drives, as many as will fit.
6538 * We know there are enough to make the newly sized array work.
6539 * Don't add devices if we are reducing the number of
6540 * devices in the array. This is because it is not possible
6541 * to correctly record the "partially reconstructed" state of
6542 * such devices during the reshape and confusion could result.
6543 */
6544 if (mddev->delta_disks >= 0) {
6545 rdev_for_each(rdev, mddev)
6546 if (rdev->raid_disk < 0 &&
6547 !test_bit(Faulty, &rdev->flags)) {
6548 if (raid5_add_disk(mddev, rdev) == 0) {
6549 if (rdev->raid_disk
6550 >= conf->previous_raid_disks)
6551 set_bit(In_sync, &rdev->flags);
6552 else
6553 rdev->recovery_offset = 0;
6554
6555 if (sysfs_link_rdev(mddev, rdev))
6556 /* Failure here is OK */;
6557 }
6558 } else if (rdev->raid_disk >= conf->previous_raid_disks
6559 && !test_bit(Faulty, &rdev->flags)) {
6560 /* This is a spare that was manually added */
6561 set_bit(In_sync, &rdev->flags);
6562 }
6563
6564 /* When a reshape changes the number of devices,
6565 * ->degraded is measured against the larger of the
6566 * pre and post number of devices.
6567 */
6568 spin_lock_irqsave(&conf->device_lock, flags);
6569 mddev->degraded = calc_degraded(conf);
6570 spin_unlock_irqrestore(&conf->device_lock, flags);
6571 }
6572 mddev->raid_disks = conf->raid_disks;
6573 mddev->reshape_position = conf->reshape_progress;
6574 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6575
6576 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6577 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6578 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6579 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6580 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6581 "reshape");
6582 if (!mddev->sync_thread) {
6583 mddev->recovery = 0;
6584 spin_lock_irq(&conf->device_lock);
6585 write_seqcount_begin(&conf->gen_lock);
6586 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6587 mddev->new_chunk_sectors =
6588 conf->chunk_sectors = conf->prev_chunk_sectors;
6589 mddev->new_layout = conf->algorithm = conf->prev_algo;
6590 rdev_for_each(rdev, mddev)
6591 rdev->new_data_offset = rdev->data_offset;
6592 smp_wmb();
6593 conf->generation --;
6594 conf->reshape_progress = MaxSector;
6595 mddev->reshape_position = MaxSector;
6596 write_seqcount_end(&conf->gen_lock);
6597 spin_unlock_irq(&conf->device_lock);
6598 return -EAGAIN;
6599 }
6600 conf->reshape_checkpoint = jiffies;
6601 md_wakeup_thread(mddev->sync_thread);
6602 md_new_event(mddev);
6603 return 0;
6604 }
6605
6606 /* This is called from the reshape thread and should make any
6607 * changes needed in 'conf'
6608 */
6609 static void end_reshape(struct r5conf *conf)
6610 {
6611
6612 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6613 struct md_rdev *rdev;
6614
6615 spin_lock_irq(&conf->device_lock);
6616 conf->previous_raid_disks = conf->raid_disks;
6617 rdev_for_each(rdev, conf->mddev)
6618 rdev->data_offset = rdev->new_data_offset;
6619 smp_wmb();
6620 conf->reshape_progress = MaxSector;
6621 spin_unlock_irq(&conf->device_lock);
6622 wake_up(&conf->wait_for_overlap);
6623
6624 /* read-ahead size must cover two whole stripes, which is
6625 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6626 */
6627 if (conf->mddev->queue) {
6628 int data_disks = conf->raid_disks - conf->max_degraded;
6629 int stripe = data_disks * ((conf->chunk_sectors << 9)
6630 / PAGE_SIZE);
6631 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6632 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6633 }
6634 }
6635 }
6636
6637 /* This is called from the raid5d thread with mddev_lock held.
6638 * It makes config changes to the device.
6639 */
6640 static void raid5_finish_reshape(struct mddev *mddev)
6641 {
6642 struct r5conf *conf = mddev->private;
6643
6644 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6645
6646 if (mddev->delta_disks > 0) {
6647 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6648 set_capacity(mddev->gendisk, mddev->array_sectors);
6649 revalidate_disk(mddev->gendisk);
6650 } else {
6651 int d;
6652 spin_lock_irq(&conf->device_lock);
6653 mddev->degraded = calc_degraded(conf);
6654 spin_unlock_irq(&conf->device_lock);
6655 for (d = conf->raid_disks ;
6656 d < conf->raid_disks - mddev->delta_disks;
6657 d++) {
6658 struct md_rdev *rdev = conf->disks[d].rdev;
6659 if (rdev)
6660 clear_bit(In_sync, &rdev->flags);
6661 rdev = conf->disks[d].replacement;
6662 if (rdev)
6663 clear_bit(In_sync, &rdev->flags);
6664 }
6665 }
6666 mddev->layout = conf->algorithm;
6667 mddev->chunk_sectors = conf->chunk_sectors;
6668 mddev->reshape_position = MaxSector;
6669 mddev->delta_disks = 0;
6670 mddev->reshape_backwards = 0;
6671 }
6672 }
6673
6674 static void raid5_quiesce(struct mddev *mddev, int state)
6675 {
6676 struct r5conf *conf = mddev->private;
6677
6678 switch(state) {
6679 case 2: /* resume for a suspend */
6680 wake_up(&conf->wait_for_overlap);
6681 break;
6682
6683 case 1: /* stop all writes */
6684 lock_all_device_hash_locks_irq(conf);
6685 /* '2' tells resync/reshape to pause so that all
6686 * active stripes can drain
6687 */
6688 conf->quiesce = 2;
6689 wait_event_cmd(conf->wait_for_stripe,
6690 atomic_read(&conf->active_stripes) == 0 &&
6691 atomic_read(&conf->active_aligned_reads) == 0,
6692 unlock_all_device_hash_locks_irq(conf),
6693 lock_all_device_hash_locks_irq(conf));
6694 conf->quiesce = 1;
6695 unlock_all_device_hash_locks_irq(conf);
6696 /* allow reshape to continue */
6697 wake_up(&conf->wait_for_overlap);
6698 break;
6699
6700 case 0: /* re-enable writes */
6701 lock_all_device_hash_locks_irq(conf);
6702 conf->quiesce = 0;
6703 wake_up(&conf->wait_for_stripe);
6704 wake_up(&conf->wait_for_overlap);
6705 unlock_all_device_hash_locks_irq(conf);
6706 break;
6707 }
6708 }
6709
6710
6711 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6712 {
6713 struct r0conf *raid0_conf = mddev->private;
6714 sector_t sectors;
6715
6716 /* for raid0 takeover only one zone is supported */
6717 if (raid0_conf->nr_strip_zones > 1) {
6718 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6719 mdname(mddev));
6720 return ERR_PTR(-EINVAL);
6721 }
6722
6723 sectors = raid0_conf->strip_zone[0].zone_end;
6724 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6725 mddev->dev_sectors = sectors;
6726 mddev->new_level = level;
6727 mddev->new_layout = ALGORITHM_PARITY_N;
6728 mddev->new_chunk_sectors = mddev->chunk_sectors;
6729 mddev->raid_disks += 1;
6730 mddev->delta_disks = 1;
6731 /* make sure it will be not marked as dirty */
6732 mddev->recovery_cp = MaxSector;
6733
6734 return setup_conf(mddev);
6735 }
6736
6737
6738 static void *raid5_takeover_raid1(struct mddev *mddev)
6739 {
6740 int chunksect;
6741
6742 if (mddev->raid_disks != 2 ||
6743 mddev->degraded > 1)
6744 return ERR_PTR(-EINVAL);
6745
6746 /* Should check if there are write-behind devices? */
6747
6748 chunksect = 64*2; /* 64K by default */
6749
6750 /* The array must be an exact multiple of chunksize */
6751 while (chunksect && (mddev->array_sectors & (chunksect-1)))
6752 chunksect >>= 1;
6753
6754 if ((chunksect<<9) < STRIPE_SIZE)
6755 /* array size does not allow a suitable chunk size */
6756 return ERR_PTR(-EINVAL);
6757
6758 mddev->new_level = 5;
6759 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6760 mddev->new_chunk_sectors = chunksect;
6761
6762 return setup_conf(mddev);
6763 }
6764
6765 static void *raid5_takeover_raid6(struct mddev *mddev)
6766 {
6767 int new_layout;
6768
6769 switch (mddev->layout) {
6770 case ALGORITHM_LEFT_ASYMMETRIC_6:
6771 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6772 break;
6773 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6774 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6775 break;
6776 case ALGORITHM_LEFT_SYMMETRIC_6:
6777 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6778 break;
6779 case ALGORITHM_RIGHT_SYMMETRIC_6:
6780 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6781 break;
6782 case ALGORITHM_PARITY_0_6:
6783 new_layout = ALGORITHM_PARITY_0;
6784 break;
6785 case ALGORITHM_PARITY_N:
6786 new_layout = ALGORITHM_PARITY_N;
6787 break;
6788 default:
6789 return ERR_PTR(-EINVAL);
6790 }
6791 mddev->new_level = 5;
6792 mddev->new_layout = new_layout;
6793 mddev->delta_disks = -1;
6794 mddev->raid_disks -= 1;
6795 return setup_conf(mddev);
6796 }
6797
6798
6799 static int raid5_check_reshape(struct mddev *mddev)
6800 {
6801 /* For a 2-drive array, the layout and chunk size can be changed
6802 * immediately as not restriping is needed.
6803 * For larger arrays we record the new value - after validation
6804 * to be used by a reshape pass.
6805 */
6806 struct r5conf *conf = mddev->private;
6807 int new_chunk = mddev->new_chunk_sectors;
6808
6809 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6810 return -EINVAL;
6811 if (new_chunk > 0) {
6812 if (!is_power_of_2(new_chunk))
6813 return -EINVAL;
6814 if (new_chunk < (PAGE_SIZE>>9))
6815 return -EINVAL;
6816 if (mddev->array_sectors & (new_chunk-1))
6817 /* not factor of array size */
6818 return -EINVAL;
6819 }
6820
6821 /* They look valid */
6822
6823 if (mddev->raid_disks == 2) {
6824 /* can make the change immediately */
6825 if (mddev->new_layout >= 0) {
6826 conf->algorithm = mddev->new_layout;
6827 mddev->layout = mddev->new_layout;
6828 }
6829 if (new_chunk > 0) {
6830 conf->chunk_sectors = new_chunk ;
6831 mddev->chunk_sectors = new_chunk;
6832 }
6833 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6834 md_wakeup_thread(mddev->thread);
6835 }
6836 return check_reshape(mddev);
6837 }
6838
6839 static int raid6_check_reshape(struct mddev *mddev)
6840 {
6841 int new_chunk = mddev->new_chunk_sectors;
6842
6843 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6844 return -EINVAL;
6845 if (new_chunk > 0) {
6846 if (!is_power_of_2(new_chunk))
6847 return -EINVAL;
6848 if (new_chunk < (PAGE_SIZE >> 9))
6849 return -EINVAL;
6850 if (mddev->array_sectors & (new_chunk-1))
6851 /* not factor of array size */
6852 return -EINVAL;
6853 }
6854
6855 /* They look valid */
6856 return check_reshape(mddev);
6857 }
6858
6859 static void *raid5_takeover(struct mddev *mddev)
6860 {
6861 /* raid5 can take over:
6862 * raid0 - if there is only one strip zone - make it a raid4 layout
6863 * raid1 - if there are two drives. We need to know the chunk size
6864 * raid4 - trivial - just use a raid4 layout.
6865 * raid6 - Providing it is a *_6 layout
6866 */
6867 if (mddev->level == 0)
6868 return raid45_takeover_raid0(mddev, 5);
6869 if (mddev->level == 1)
6870 return raid5_takeover_raid1(mddev);
6871 if (mddev->level == 4) {
6872 mddev->new_layout = ALGORITHM_PARITY_N;
6873 mddev->new_level = 5;
6874 return setup_conf(mddev);
6875 }
6876 if (mddev->level == 6)
6877 return raid5_takeover_raid6(mddev);
6878
6879 return ERR_PTR(-EINVAL);
6880 }
6881
6882 static void *raid4_takeover(struct mddev *mddev)
6883 {
6884 /* raid4 can take over:
6885 * raid0 - if there is only one strip zone
6886 * raid5 - if layout is right
6887 */
6888 if (mddev->level == 0)
6889 return raid45_takeover_raid0(mddev, 4);
6890 if (mddev->level == 5 &&
6891 mddev->layout == ALGORITHM_PARITY_N) {
6892 mddev->new_layout = 0;
6893 mddev->new_level = 4;
6894 return setup_conf(mddev);
6895 }
6896 return ERR_PTR(-EINVAL);
6897 }
6898
6899 static struct md_personality raid5_personality;
6900
6901 static void *raid6_takeover(struct mddev *mddev)
6902 {
6903 /* Currently can only take over a raid5. We map the
6904 * personality to an equivalent raid6 personality
6905 * with the Q block at the end.
6906 */
6907 int new_layout;
6908
6909 if (mddev->pers != &raid5_personality)
6910 return ERR_PTR(-EINVAL);
6911 if (mddev->degraded > 1)
6912 return ERR_PTR(-EINVAL);
6913 if (mddev->raid_disks > 253)
6914 return ERR_PTR(-EINVAL);
6915 if (mddev->raid_disks < 3)
6916 return ERR_PTR(-EINVAL);
6917
6918 switch (mddev->layout) {
6919 case ALGORITHM_LEFT_ASYMMETRIC:
6920 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6921 break;
6922 case ALGORITHM_RIGHT_ASYMMETRIC:
6923 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6924 break;
6925 case ALGORITHM_LEFT_SYMMETRIC:
6926 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6927 break;
6928 case ALGORITHM_RIGHT_SYMMETRIC:
6929 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6930 break;
6931 case ALGORITHM_PARITY_0:
6932 new_layout = ALGORITHM_PARITY_0_6;
6933 break;
6934 case ALGORITHM_PARITY_N:
6935 new_layout = ALGORITHM_PARITY_N;
6936 break;
6937 default:
6938 return ERR_PTR(-EINVAL);
6939 }
6940 mddev->new_level = 6;
6941 mddev->new_layout = new_layout;
6942 mddev->delta_disks = 1;
6943 mddev->raid_disks += 1;
6944 return setup_conf(mddev);
6945 }
6946
6947
6948 static struct md_personality raid6_personality =
6949 {
6950 .name = "raid6",
6951 .level = 6,
6952 .owner = THIS_MODULE,
6953 .make_request = make_request,
6954 .run = run,
6955 .stop = stop,
6956 .status = status,
6957 .error_handler = error,
6958 .hot_add_disk = raid5_add_disk,
6959 .hot_remove_disk= raid5_remove_disk,
6960 .spare_active = raid5_spare_active,
6961 .sync_request = sync_request,
6962 .resize = raid5_resize,
6963 .size = raid5_size,
6964 .check_reshape = raid6_check_reshape,
6965 .start_reshape = raid5_start_reshape,
6966 .finish_reshape = raid5_finish_reshape,
6967 .quiesce = raid5_quiesce,
6968 .takeover = raid6_takeover,
6969 };
6970 static struct md_personality raid5_personality =
6971 {
6972 .name = "raid5",
6973 .level = 5,
6974 .owner = THIS_MODULE,
6975 .make_request = make_request,
6976 .run = run,
6977 .stop = stop,
6978 .status = status,
6979 .error_handler = error,
6980 .hot_add_disk = raid5_add_disk,
6981 .hot_remove_disk= raid5_remove_disk,
6982 .spare_active = raid5_spare_active,
6983 .sync_request = sync_request,
6984 .resize = raid5_resize,
6985 .size = raid5_size,
6986 .check_reshape = raid5_check_reshape,
6987 .start_reshape = raid5_start_reshape,
6988 .finish_reshape = raid5_finish_reshape,
6989 .quiesce = raid5_quiesce,
6990 .takeover = raid5_takeover,
6991 };
6992
6993 static struct md_personality raid4_personality =
6994 {
6995 .name = "raid4",
6996 .level = 4,
6997 .owner = THIS_MODULE,
6998 .make_request = make_request,
6999 .run = run,
7000 .stop = stop,
7001 .status = status,
7002 .error_handler = error,
7003 .hot_add_disk = raid5_add_disk,
7004 .hot_remove_disk= raid5_remove_disk,
7005 .spare_active = raid5_spare_active,
7006 .sync_request = sync_request,
7007 .resize = raid5_resize,
7008 .size = raid5_size,
7009 .check_reshape = raid5_check_reshape,
7010 .start_reshape = raid5_start_reshape,
7011 .finish_reshape = raid5_finish_reshape,
7012 .quiesce = raid5_quiesce,
7013 .takeover = raid4_takeover,
7014 };
7015
7016 static int __init raid5_init(void)
7017 {
7018 raid5_wq = alloc_workqueue("raid5wq",
7019 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7020 if (!raid5_wq)
7021 return -ENOMEM;
7022 register_md_personality(&raid6_personality);
7023 register_md_personality(&raid5_personality);
7024 register_md_personality(&raid4_personality);
7025 return 0;
7026 }
7027
7028 static void raid5_exit(void)
7029 {
7030 unregister_md_personality(&raid6_personality);
7031 unregister_md_personality(&raid5_personality);
7032 unregister_md_personality(&raid4_personality);
7033 destroy_workqueue(raid5_wq);
7034 }
7035
7036 module_init(raid5_init);
7037 module_exit(raid5_exit);
7038 MODULE_LICENSE("GPL");
7039 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7040 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7041 MODULE_ALIAS("md-raid5");
7042 MODULE_ALIAS("md-raid4");
7043 MODULE_ALIAS("md-level-5");
7044 MODULE_ALIAS("md-level-4");
7045 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7046 MODULE_ALIAS("md-raid6");
7047 MODULE_ALIAS("md-level-6");
7048
7049 /* This used to be two separate modules, they were: */
7050 MODULE_ALIAS("raid5");
7051 MODULE_ALIAS("raid6");