]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/media/dvb/frontends/nxt6000.c
Linux-2.6.12-rc2
[thirdparty/linux.git] / drivers / media / dvb / frontends / nxt6000.c
1 /*
2 NxtWave Communications - NXT6000 demodulator driver
3
4 Copyright (C) 2002-2003 Florian Schirmer <jolt@tuxbox.org>
5 Copyright (C) 2003 Paul Andreassen <paul@andreassen.com.au>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/slab.h>
27
28 #include "dvb_frontend.h"
29 #include "nxt6000_priv.h"
30 #include "nxt6000.h"
31
32
33
34 struct nxt6000_state {
35 struct i2c_adapter* i2c;
36 struct dvb_frontend_ops ops;
37 /* configuration settings */
38 const struct nxt6000_config* config;
39 struct dvb_frontend frontend;
40 };
41
42 static int debug = 0;
43 #define dprintk if (debug) printk
44
45 static int nxt6000_writereg(struct nxt6000_state* state, u8 reg, u8 data)
46 {
47 u8 buf[] = { reg, data };
48 struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
49 int ret;
50
51 if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1)
52 dprintk("nxt6000: nxt6000_write error (reg: 0x%02X, data: 0x%02X, ret: %d)\n", reg, data, ret);
53
54 return (ret != 1) ? -EFAULT : 0;
55 }
56
57 static u8 nxt6000_readreg(struct nxt6000_state* state, u8 reg)
58 {
59 int ret;
60 u8 b0[] = { reg };
61 u8 b1[] = { 0 };
62 struct i2c_msg msgs[] = {
63 {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
64 {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
65 };
66
67 ret = i2c_transfer(state->i2c, msgs, 2);
68
69 if (ret != 2)
70 dprintk("nxt6000: nxt6000_read error (reg: 0x%02X, ret: %d)\n", reg, ret);
71
72 return b1[0];
73 }
74
75 static void nxt6000_reset(struct nxt6000_state* state)
76 {
77 u8 val;
78
79 val = nxt6000_readreg(state, OFDM_COR_CTL);
80
81 nxt6000_writereg(state, OFDM_COR_CTL, val & ~COREACT);
82 nxt6000_writereg(state, OFDM_COR_CTL, val | COREACT);
83 }
84
85 static int nxt6000_set_bandwidth(struct nxt6000_state* state, fe_bandwidth_t bandwidth)
86 {
87 u16 nominal_rate;
88 int result;
89
90 switch (bandwidth) {
91
92 case BANDWIDTH_6_MHZ:
93 nominal_rate = 0x55B7;
94 break;
95
96 case BANDWIDTH_7_MHZ:
97 nominal_rate = 0x6400;
98 break;
99
100 case BANDWIDTH_8_MHZ:
101 nominal_rate = 0x7249;
102 break;
103
104 default:
105 return -EINVAL;
106 }
107
108 if ((result = nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0)
109 return result;
110
111 return nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF);
112 }
113
114 static int nxt6000_set_guard_interval(struct nxt6000_state* state, fe_guard_interval_t guard_interval)
115 {
116 switch (guard_interval) {
117
118 case GUARD_INTERVAL_1_32:
119 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
120
121 case GUARD_INTERVAL_1_16:
122 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
123
124 case GUARD_INTERVAL_AUTO:
125 case GUARD_INTERVAL_1_8:
126 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
127
128 case GUARD_INTERVAL_1_4:
129 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
130
131 default:
132 return -EINVAL;
133 }
134 }
135
136 static int nxt6000_set_inversion(struct nxt6000_state* state, fe_spectral_inversion_t inversion)
137 {
138 switch (inversion) {
139
140 case INVERSION_OFF:
141 return nxt6000_writereg(state, OFDM_ITB_CTL, 0x00);
142
143 case INVERSION_ON:
144 return nxt6000_writereg(state, OFDM_ITB_CTL, ITBINV);
145
146 default:
147 return -EINVAL;
148
149 }
150 }
151
152 static int nxt6000_set_transmission_mode(struct nxt6000_state* state, fe_transmit_mode_t transmission_mode)
153 {
154 int result;
155
156 switch (transmission_mode) {
157
158 case TRANSMISSION_MODE_2K:
159 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
160 return result;
161
162 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
163
164 case TRANSMISSION_MODE_8K:
165 case TRANSMISSION_MODE_AUTO:
166 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
167 return result;
168
169 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
170
171 default:
172 return -EINVAL;
173
174 }
175 }
176
177 static void nxt6000_setup(struct dvb_frontend* fe)
178 {
179 struct nxt6000_state* state = (struct nxt6000_state*) fe->demodulator_priv;
180
181 nxt6000_writereg(state, RS_COR_SYNC_PARAM, SYNC_PARAM);
182 nxt6000_writereg(state, BER_CTRL, /*(1 << 2) | */ (0x01 << 1) | 0x01);
183 nxt6000_writereg(state, VIT_COR_CTL, VIT_COR_RESYNC);
184 nxt6000_writereg(state, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(state, OFDM_COR_CTL) & 0x0F));
185 nxt6000_writereg(state, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02);
186 nxt6000_writereg(state, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW);
187 nxt6000_writereg(state, OFDM_ITB_FREQ_1, 0x06);
188 nxt6000_writereg(state, OFDM_ITB_FREQ_2, 0x31);
189 nxt6000_writereg(state, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04);
190 nxt6000_writereg(state, CAS_FREQ, 0xBB); /* CHECKME */
191 nxt6000_writereg(state, OFDM_SYR_CTL, 1 << 2);
192 nxt6000_writereg(state, OFDM_PPM_CTL_1, PPM256);
193 nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, 0x49);
194 nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, 0x72);
195 nxt6000_writereg(state, ANALOG_CONTROL_0, 1 << 5);
196 nxt6000_writereg(state, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2);
197 nxt6000_writereg(state, DIAG_CONFIG, TB_SET);
198
199 if (state->config->clock_inversion)
200 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, CLKINVERSION);
201 else
202 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, 0);
203
204 nxt6000_writereg(state, TS_FORMAT, 0);
205
206 if (state->config->pll_init) {
207 nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01); /* open i2c bus switch */
208 state->config->pll_init(fe);
209 nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00); /* close i2c bus switch */
210 }
211 }
212
213 static void nxt6000_dump_status(struct nxt6000_state *state)
214 {
215 u8 val;
216
217 /*
218 printk("RS_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, RS_COR_STAT));
219 printk("VIT_SYNC_STATUS: 0x%02X\n", nxt6000_readreg(fe, VIT_SYNC_STATUS));
220 printk("OFDM_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_COR_STAT));
221 printk("OFDM_SYR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_SYR_STAT));
222 printk("OFDM_TPS_RCVD_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_1));
223 printk("OFDM_TPS_RCVD_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_2));
224 printk("OFDM_TPS_RCVD_3: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_3));
225 printk("OFDM_TPS_RCVD_4: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_4));
226 printk("OFDM_TPS_RESERVED_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_1));
227 printk("OFDM_TPS_RESERVED_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_2));
228 */
229 printk("NXT6000 status:");
230
231 val = nxt6000_readreg(state, RS_COR_STAT);
232
233 printk(" DATA DESCR LOCK: %d,", val & 0x01);
234 printk(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01);
235
236 val = nxt6000_readreg(state, VIT_SYNC_STATUS);
237
238 printk(" VITERBI LOCK: %d,", (val >> 7) & 0x01);
239
240 switch ((val >> 4) & 0x07) {
241
242 case 0x00:
243 printk(" VITERBI CODERATE: 1/2,");
244 break;
245
246 case 0x01:
247 printk(" VITERBI CODERATE: 2/3,");
248 break;
249
250 case 0x02:
251 printk(" VITERBI CODERATE: 3/4,");
252 break;
253
254 case 0x03:
255 printk(" VITERBI CODERATE: 5/6,");
256 break;
257
258 case 0x04:
259 printk(" VITERBI CODERATE: 7/8,");
260 break;
261
262 default:
263 printk(" VITERBI CODERATE: Reserved,");
264
265 }
266
267 val = nxt6000_readreg(state, OFDM_COR_STAT);
268
269 printk(" CHCTrack: %d,", (val >> 7) & 0x01);
270 printk(" TPSLock: %d,", (val >> 6) & 0x01);
271 printk(" SYRLock: %d,", (val >> 5) & 0x01);
272 printk(" AGCLock: %d,", (val >> 4) & 0x01);
273
274 switch (val & 0x0F) {
275
276 case 0x00:
277 printk(" CoreState: IDLE,");
278 break;
279
280 case 0x02:
281 printk(" CoreState: WAIT_AGC,");
282 break;
283
284 case 0x03:
285 printk(" CoreState: WAIT_SYR,");
286 break;
287
288 case 0x04:
289 printk(" CoreState: WAIT_PPM,");
290 break;
291
292 case 0x01:
293 printk(" CoreState: WAIT_TRL,");
294 break;
295
296 case 0x05:
297 printk(" CoreState: WAIT_TPS,");
298 break;
299
300 case 0x06:
301 printk(" CoreState: MONITOR_TPS,");
302 break;
303
304 default:
305 printk(" CoreState: Reserved,");
306
307 }
308
309 val = nxt6000_readreg(state, OFDM_SYR_STAT);
310
311 printk(" SYRLock: %d,", (val >> 4) & 0x01);
312 printk(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K");
313
314 switch ((val >> 4) & 0x03) {
315
316 case 0x00:
317 printk(" SYRGuard: 1/32,");
318 break;
319
320 case 0x01:
321 printk(" SYRGuard: 1/16,");
322 break;
323
324 case 0x02:
325 printk(" SYRGuard: 1/8,");
326 break;
327
328 case 0x03:
329 printk(" SYRGuard: 1/4,");
330 break;
331 }
332
333 val = nxt6000_readreg(state, OFDM_TPS_RCVD_3);
334
335 switch ((val >> 4) & 0x07) {
336
337 case 0x00:
338 printk(" TPSLP: 1/2,");
339 break;
340
341 case 0x01:
342 printk(" TPSLP: 2/3,");
343 break;
344
345 case 0x02:
346 printk(" TPSLP: 3/4,");
347 break;
348
349 case 0x03:
350 printk(" TPSLP: 5/6,");
351 break;
352
353 case 0x04:
354 printk(" TPSLP: 7/8,");
355 break;
356
357 default:
358 printk(" TPSLP: Reserved,");
359
360 }
361
362 switch (val & 0x07) {
363
364 case 0x00:
365 printk(" TPSHP: 1/2,");
366 break;
367
368 case 0x01:
369 printk(" TPSHP: 2/3,");
370 break;
371
372 case 0x02:
373 printk(" TPSHP: 3/4,");
374 break;
375
376 case 0x03:
377 printk(" TPSHP: 5/6,");
378 break;
379
380 case 0x04:
381 printk(" TPSHP: 7/8,");
382 break;
383
384 default:
385 printk(" TPSHP: Reserved,");
386
387 }
388
389 val = nxt6000_readreg(state, OFDM_TPS_RCVD_4);
390
391 printk(" TPSMode: %s,", val & 0x01 ? "8K" : "2K");
392
393 switch ((val >> 4) & 0x03) {
394
395 case 0x00:
396 printk(" TPSGuard: 1/32,");
397 break;
398
399 case 0x01:
400 printk(" TPSGuard: 1/16,");
401 break;
402
403 case 0x02:
404 printk(" TPSGuard: 1/8,");
405 break;
406
407 case 0x03:
408 printk(" TPSGuard: 1/4,");
409 break;
410
411 }
412
413 /* Strange magic required to gain access to RF_AGC_STATUS */
414 nxt6000_readreg(state, RF_AGC_VAL_1);
415 val = nxt6000_readreg(state, RF_AGC_STATUS);
416 val = nxt6000_readreg(state, RF_AGC_STATUS);
417
418 printk(" RF AGC LOCK: %d,", (val >> 4) & 0x01);
419 printk("\n");
420 }
421
422 static int nxt6000_read_status(struct dvb_frontend* fe, fe_status_t* status)
423 {
424 u8 core_status;
425 struct nxt6000_state* state = (struct nxt6000_state*) fe->demodulator_priv;
426
427 *status = 0;
428
429 core_status = nxt6000_readreg(state, OFDM_COR_STAT);
430
431 if (core_status & AGCLOCKED)
432 *status |= FE_HAS_SIGNAL;
433
434 if (nxt6000_readreg(state, OFDM_SYR_STAT) & GI14_SYR_LOCK)
435 *status |= FE_HAS_CARRIER;
436
437 if (nxt6000_readreg(state, VIT_SYNC_STATUS) & VITINSYNC)
438 *status |= FE_HAS_VITERBI;
439
440 if (nxt6000_readreg(state, RS_COR_STAT) & RSCORESTATUS)
441 *status |= FE_HAS_SYNC;
442
443 if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)))
444 *status |= FE_HAS_LOCK;
445
446 if (debug)
447 nxt6000_dump_status(state);
448
449 return 0;
450 }
451
452 static int nxt6000_init(struct dvb_frontend* fe)
453 {
454 struct nxt6000_state* state = (struct nxt6000_state*) fe->demodulator_priv;
455
456 nxt6000_reset(state);
457 nxt6000_setup(fe);
458
459 return 0;
460 }
461
462 static int nxt6000_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *param)
463 {
464 struct nxt6000_state* state = (struct nxt6000_state*) fe->demodulator_priv;
465 int result;
466
467 nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01); /* open i2c bus switch */
468 state->config->pll_set(fe, param);
469 nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00); /* close i2c bus switch */
470
471 if ((result = nxt6000_set_bandwidth(state, param->u.ofdm.bandwidth)) < 0)
472 return result;
473 if ((result = nxt6000_set_guard_interval(state, param->u.ofdm.guard_interval)) < 0)
474 return result;
475 if ((result = nxt6000_set_transmission_mode(state, param->u.ofdm.transmission_mode)) < 0)
476 return result;
477 if ((result = nxt6000_set_inversion(state, param->inversion)) < 0)
478 return result;
479
480 return 0;
481 }
482
483 static void nxt6000_release(struct dvb_frontend* fe)
484 {
485 struct nxt6000_state* state = (struct nxt6000_state*) fe->demodulator_priv;
486 kfree(state);
487 }
488
489 static struct dvb_frontend_ops nxt6000_ops;
490
491 struct dvb_frontend* nxt6000_attach(const struct nxt6000_config* config,
492 struct i2c_adapter* i2c)
493 {
494 struct nxt6000_state* state = NULL;
495
496 /* allocate memory for the internal state */
497 state = (struct nxt6000_state*) kmalloc(sizeof(struct nxt6000_state), GFP_KERNEL);
498 if (state == NULL) goto error;
499
500 /* setup the state */
501 state->config = config;
502 state->i2c = i2c;
503 memcpy(&state->ops, &nxt6000_ops, sizeof(struct dvb_frontend_ops));
504
505 /* check if the demod is there */
506 if (nxt6000_readreg(state, OFDM_MSC_REV) != NXT6000ASICDEVICE) goto error;
507
508 /* create dvb_frontend */
509 state->frontend.ops = &state->ops;
510 state->frontend.demodulator_priv = state;
511 return &state->frontend;
512
513 error:
514 kfree(state);
515 return NULL;
516 }
517
518 static struct dvb_frontend_ops nxt6000_ops = {
519
520 .info = {
521 .name = "NxtWave NXT6000 DVB-T",
522 .type = FE_OFDM,
523 .frequency_min = 0,
524 .frequency_max = 863250000,
525 .frequency_stepsize = 62500,
526 /*.frequency_tolerance = *//* FIXME: 12% of SR */
527 .symbol_rate_min = 0, /* FIXME */
528 .symbol_rate_max = 9360000, /* FIXME */
529 .symbol_rate_tolerance = 4000,
530 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
531 FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
532 FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO |
533 FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
534 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
535 FE_CAN_HIERARCHY_AUTO,
536 },
537
538 .release = nxt6000_release,
539
540 .init = nxt6000_init,
541
542 .set_frontend = nxt6000_set_frontend,
543
544 .read_status = nxt6000_read_status,
545 };
546
547 module_param(debug, int, 0644);
548 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
549
550 MODULE_DESCRIPTION("NxtWave NXT6000 DVB-T demodulator driver");
551 MODULE_AUTHOR("Florian Schirmer");
552 MODULE_LICENSE("GPL");
553
554 EXPORT_SYMBOL(nxt6000_attach);