]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/mfd/menelaus.c
Merge branch 'master' of git://blackhole.kfki.hu/nf-next
[thirdparty/kernel/stable.git] / drivers / mfd / menelaus.c
1 /*
2 * Copyright (C) 2004 Texas Instruments, Inc.
3 *
4 * Some parts based tps65010.c:
5 * Copyright (C) 2004 Texas Instruments and
6 * Copyright (C) 2004-2005 David Brownell
7 *
8 * Some parts based on tlv320aic24.c:
9 * Copyright (C) by Kai Svahn <kai.svahn@nokia.com>
10 *
11 * Changes for interrupt handling and clean-up by
12 * Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com>
13 * Cleanup and generalized support for voltage setting by
14 * Juha Yrjola
15 * Added support for controlling VCORE and regulator sleep states,
16 * Amit Kucheria <amit.kucheria@nokia.com>
17 * Copyright (C) 2005, 2006 Nokia Corporation
18 *
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 2 of the License, or
22 * (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 */
33
34 #include <linux/module.h>
35 #include <linux/i2c.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/mutex.h>
39 #include <linux/workqueue.h>
40 #include <linux/delay.h>
41 #include <linux/rtc.h>
42 #include <linux/bcd.h>
43 #include <linux/slab.h>
44 #include <linux/mfd/menelaus.h>
45 #include <linux/gpio.h>
46
47 #include <asm/mach/irq.h>
48
49
50 #define DRIVER_NAME "menelaus"
51
52 #define MENELAUS_I2C_ADDRESS 0x72
53
54 #define MENELAUS_REV 0x01
55 #define MENELAUS_VCORE_CTRL1 0x02
56 #define MENELAUS_VCORE_CTRL2 0x03
57 #define MENELAUS_VCORE_CTRL3 0x04
58 #define MENELAUS_VCORE_CTRL4 0x05
59 #define MENELAUS_VCORE_CTRL5 0x06
60 #define MENELAUS_DCDC_CTRL1 0x07
61 #define MENELAUS_DCDC_CTRL2 0x08
62 #define MENELAUS_DCDC_CTRL3 0x09
63 #define MENELAUS_LDO_CTRL1 0x0A
64 #define MENELAUS_LDO_CTRL2 0x0B
65 #define MENELAUS_LDO_CTRL3 0x0C
66 #define MENELAUS_LDO_CTRL4 0x0D
67 #define MENELAUS_LDO_CTRL5 0x0E
68 #define MENELAUS_LDO_CTRL6 0x0F
69 #define MENELAUS_LDO_CTRL7 0x10
70 #define MENELAUS_LDO_CTRL8 0x11
71 #define MENELAUS_SLEEP_CTRL1 0x12
72 #define MENELAUS_SLEEP_CTRL2 0x13
73 #define MENELAUS_DEVICE_OFF 0x14
74 #define MENELAUS_OSC_CTRL 0x15
75 #define MENELAUS_DETECT_CTRL 0x16
76 #define MENELAUS_INT_MASK1 0x17
77 #define MENELAUS_INT_MASK2 0x18
78 #define MENELAUS_INT_STATUS1 0x19
79 #define MENELAUS_INT_STATUS2 0x1A
80 #define MENELAUS_INT_ACK1 0x1B
81 #define MENELAUS_INT_ACK2 0x1C
82 #define MENELAUS_GPIO_CTRL 0x1D
83 #define MENELAUS_GPIO_IN 0x1E
84 #define MENELAUS_GPIO_OUT 0x1F
85 #define MENELAUS_BBSMS 0x20
86 #define MENELAUS_RTC_CTRL 0x21
87 #define MENELAUS_RTC_UPDATE 0x22
88 #define MENELAUS_RTC_SEC 0x23
89 #define MENELAUS_RTC_MIN 0x24
90 #define MENELAUS_RTC_HR 0x25
91 #define MENELAUS_RTC_DAY 0x26
92 #define MENELAUS_RTC_MON 0x27
93 #define MENELAUS_RTC_YR 0x28
94 #define MENELAUS_RTC_WKDAY 0x29
95 #define MENELAUS_RTC_AL_SEC 0x2A
96 #define MENELAUS_RTC_AL_MIN 0x2B
97 #define MENELAUS_RTC_AL_HR 0x2C
98 #define MENELAUS_RTC_AL_DAY 0x2D
99 #define MENELAUS_RTC_AL_MON 0x2E
100 #define MENELAUS_RTC_AL_YR 0x2F
101 #define MENELAUS_RTC_COMP_MSB 0x30
102 #define MENELAUS_RTC_COMP_LSB 0x31
103 #define MENELAUS_S1_PULL_EN 0x32
104 #define MENELAUS_S1_PULL_DIR 0x33
105 #define MENELAUS_S2_PULL_EN 0x34
106 #define MENELAUS_S2_PULL_DIR 0x35
107 #define MENELAUS_MCT_CTRL1 0x36
108 #define MENELAUS_MCT_CTRL2 0x37
109 #define MENELAUS_MCT_CTRL3 0x38
110 #define MENELAUS_MCT_PIN_ST 0x39
111 #define MENELAUS_DEBOUNCE1 0x3A
112
113 #define IH_MENELAUS_IRQS 12
114 #define MENELAUS_MMC_S1CD_IRQ 0 /* MMC slot 1 card change */
115 #define MENELAUS_MMC_S2CD_IRQ 1 /* MMC slot 2 card change */
116 #define MENELAUS_MMC_S1D1_IRQ 2 /* MMC DAT1 low in slot 1 */
117 #define MENELAUS_MMC_S2D1_IRQ 3 /* MMC DAT1 low in slot 2 */
118 #define MENELAUS_LOWBAT_IRQ 4 /* Low battery */
119 #define MENELAUS_HOTDIE_IRQ 5 /* Hot die detect */
120 #define MENELAUS_UVLO_IRQ 6 /* UVLO detect */
121 #define MENELAUS_TSHUT_IRQ 7 /* Thermal shutdown */
122 #define MENELAUS_RTCTMR_IRQ 8 /* RTC timer */
123 #define MENELAUS_RTCALM_IRQ 9 /* RTC alarm */
124 #define MENELAUS_RTCERR_IRQ 10 /* RTC error */
125 #define MENELAUS_PSHBTN_IRQ 11 /* Push button */
126 #define MENELAUS_RESERVED12_IRQ 12 /* Reserved */
127 #define MENELAUS_RESERVED13_IRQ 13 /* Reserved */
128 #define MENELAUS_RESERVED14_IRQ 14 /* Reserved */
129 #define MENELAUS_RESERVED15_IRQ 15 /* Reserved */
130
131 /* VCORE_CTRL1 register */
132 #define VCORE_CTRL1_BYP_COMP (1 << 5)
133 #define VCORE_CTRL1_HW_NSW (1 << 7)
134
135 /* GPIO_CTRL register */
136 #define GPIO_CTRL_SLOTSELEN (1 << 5)
137 #define GPIO_CTRL_SLPCTLEN (1 << 6)
138 #define GPIO1_DIR_INPUT (1 << 0)
139 #define GPIO2_DIR_INPUT (1 << 1)
140 #define GPIO3_DIR_INPUT (1 << 2)
141
142 /* MCT_CTRL1 register */
143 #define MCT_CTRL1_S1_CMD_OD (1 << 2)
144 #define MCT_CTRL1_S2_CMD_OD (1 << 3)
145
146 /* MCT_CTRL2 register */
147 #define MCT_CTRL2_VS2_SEL_D0 (1 << 0)
148 #define MCT_CTRL2_VS2_SEL_D1 (1 << 1)
149 #define MCT_CTRL2_S1CD_BUFEN (1 << 4)
150 #define MCT_CTRL2_S2CD_BUFEN (1 << 5)
151 #define MCT_CTRL2_S1CD_DBEN (1 << 6)
152 #define MCT_CTRL2_S2CD_BEN (1 << 7)
153
154 /* MCT_CTRL3 register */
155 #define MCT_CTRL3_SLOT1_EN (1 << 0)
156 #define MCT_CTRL3_SLOT2_EN (1 << 1)
157 #define MCT_CTRL3_S1_AUTO_EN (1 << 2)
158 #define MCT_CTRL3_S2_AUTO_EN (1 << 3)
159
160 /* MCT_PIN_ST register */
161 #define MCT_PIN_ST_S1_CD_ST (1 << 0)
162 #define MCT_PIN_ST_S2_CD_ST (1 << 1)
163
164 static void menelaus_work(struct work_struct *_menelaus);
165
166 struct menelaus_chip {
167 struct mutex lock;
168 struct i2c_client *client;
169 struct work_struct work;
170 #ifdef CONFIG_RTC_DRV_TWL92330
171 struct rtc_device *rtc;
172 u8 rtc_control;
173 unsigned uie:1;
174 #endif
175 unsigned vcore_hw_mode:1;
176 u8 mask1, mask2;
177 void (*handlers[16])(struct menelaus_chip *);
178 void (*mmc_callback)(void *data, u8 mask);
179 void *mmc_callback_data;
180 };
181
182 static struct menelaus_chip *the_menelaus;
183
184 static int menelaus_write_reg(int reg, u8 value)
185 {
186 int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value);
187
188 if (val < 0) {
189 pr_err(DRIVER_NAME ": write error");
190 return val;
191 }
192
193 return 0;
194 }
195
196 static int menelaus_read_reg(int reg)
197 {
198 int val = i2c_smbus_read_byte_data(the_menelaus->client, reg);
199
200 if (val < 0)
201 pr_err(DRIVER_NAME ": read error");
202
203 return val;
204 }
205
206 static int menelaus_enable_irq(int irq)
207 {
208 if (irq > 7) {
209 irq -= 8;
210 the_menelaus->mask2 &= ~(1 << irq);
211 return menelaus_write_reg(MENELAUS_INT_MASK2,
212 the_menelaus->mask2);
213 } else {
214 the_menelaus->mask1 &= ~(1 << irq);
215 return menelaus_write_reg(MENELAUS_INT_MASK1,
216 the_menelaus->mask1);
217 }
218 }
219
220 static int menelaus_disable_irq(int irq)
221 {
222 if (irq > 7) {
223 irq -= 8;
224 the_menelaus->mask2 |= (1 << irq);
225 return menelaus_write_reg(MENELAUS_INT_MASK2,
226 the_menelaus->mask2);
227 } else {
228 the_menelaus->mask1 |= (1 << irq);
229 return menelaus_write_reg(MENELAUS_INT_MASK1,
230 the_menelaus->mask1);
231 }
232 }
233
234 static int menelaus_ack_irq(int irq)
235 {
236 if (irq > 7)
237 return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8));
238 else
239 return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq);
240 }
241
242 /* Adds a handler for an interrupt. Does not run in interrupt context */
243 static int menelaus_add_irq_work(int irq,
244 void (*handler)(struct menelaus_chip *))
245 {
246 int ret = 0;
247
248 mutex_lock(&the_menelaus->lock);
249 the_menelaus->handlers[irq] = handler;
250 ret = menelaus_enable_irq(irq);
251 mutex_unlock(&the_menelaus->lock);
252
253 return ret;
254 }
255
256 /* Removes handler for an interrupt */
257 static int menelaus_remove_irq_work(int irq)
258 {
259 int ret = 0;
260
261 mutex_lock(&the_menelaus->lock);
262 ret = menelaus_disable_irq(irq);
263 the_menelaus->handlers[irq] = NULL;
264 mutex_unlock(&the_menelaus->lock);
265
266 return ret;
267 }
268
269 /*
270 * Gets scheduled when a card detect interrupt happens. Note that in some cases
271 * this line is wired to card cover switch rather than the card detect switch
272 * in each slot. In this case the cards are not seen by menelaus.
273 * FIXME: Add handling for D1 too
274 */
275 static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw)
276 {
277 int reg;
278 unsigned char card_mask = 0;
279
280 reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST);
281 if (reg < 0)
282 return;
283
284 if (!(reg & 0x1))
285 card_mask |= MCT_PIN_ST_S1_CD_ST;
286
287 if (!(reg & 0x2))
288 card_mask |= MCT_PIN_ST_S2_CD_ST;
289
290 if (menelaus_hw->mmc_callback)
291 menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data,
292 card_mask);
293 }
294
295 /*
296 * Toggles the MMC slots between open-drain and push-pull mode.
297 */
298 int menelaus_set_mmc_opendrain(int slot, int enable)
299 {
300 int ret, val;
301
302 if (slot != 1 && slot != 2)
303 return -EINVAL;
304 mutex_lock(&the_menelaus->lock);
305 ret = menelaus_read_reg(MENELAUS_MCT_CTRL1);
306 if (ret < 0) {
307 mutex_unlock(&the_menelaus->lock);
308 return ret;
309 }
310 val = ret;
311 if (slot == 1) {
312 if (enable)
313 val |= MCT_CTRL1_S1_CMD_OD;
314 else
315 val &= ~MCT_CTRL1_S1_CMD_OD;
316 } else {
317 if (enable)
318 val |= MCT_CTRL1_S2_CMD_OD;
319 else
320 val &= ~MCT_CTRL1_S2_CMD_OD;
321 }
322 ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val);
323 mutex_unlock(&the_menelaus->lock);
324
325 return ret;
326 }
327 EXPORT_SYMBOL(menelaus_set_mmc_opendrain);
328
329 int menelaus_set_slot_sel(int enable)
330 {
331 int ret;
332
333 mutex_lock(&the_menelaus->lock);
334 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
335 if (ret < 0)
336 goto out;
337 ret |= GPIO2_DIR_INPUT;
338 if (enable)
339 ret |= GPIO_CTRL_SLOTSELEN;
340 else
341 ret &= ~GPIO_CTRL_SLOTSELEN;
342 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
343 out:
344 mutex_unlock(&the_menelaus->lock);
345 return ret;
346 }
347 EXPORT_SYMBOL(menelaus_set_slot_sel);
348
349 int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en)
350 {
351 int ret, val;
352
353 if (slot != 1 && slot != 2)
354 return -EINVAL;
355 if (power >= 3)
356 return -EINVAL;
357
358 mutex_lock(&the_menelaus->lock);
359
360 ret = menelaus_read_reg(MENELAUS_MCT_CTRL2);
361 if (ret < 0)
362 goto out;
363 val = ret;
364 if (slot == 1) {
365 if (cd_en)
366 val |= MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN;
367 else
368 val &= ~(MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN);
369 } else {
370 if (cd_en)
371 val |= MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN;
372 else
373 val &= ~(MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN);
374 }
375 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val);
376 if (ret < 0)
377 goto out;
378
379 ret = menelaus_read_reg(MENELAUS_MCT_CTRL3);
380 if (ret < 0)
381 goto out;
382 val = ret;
383 if (slot == 1) {
384 if (enable)
385 val |= MCT_CTRL3_SLOT1_EN;
386 else
387 val &= ~MCT_CTRL3_SLOT1_EN;
388 } else {
389 int b;
390
391 if (enable)
392 val |= MCT_CTRL3_SLOT2_EN;
393 else
394 val &= ~MCT_CTRL3_SLOT2_EN;
395 b = menelaus_read_reg(MENELAUS_MCT_CTRL2);
396 b &= ~(MCT_CTRL2_VS2_SEL_D0 | MCT_CTRL2_VS2_SEL_D1);
397 b |= power;
398 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b);
399 if (ret < 0)
400 goto out;
401 }
402 /* Disable autonomous shutdown */
403 val &= ~(MCT_CTRL3_S1_AUTO_EN | MCT_CTRL3_S2_AUTO_EN);
404 ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val);
405 out:
406 mutex_unlock(&the_menelaus->lock);
407 return ret;
408 }
409 EXPORT_SYMBOL(menelaus_set_mmc_slot);
410
411 int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask),
412 void *data)
413 {
414 int ret = 0;
415
416 the_menelaus->mmc_callback_data = data;
417 the_menelaus->mmc_callback = callback;
418 ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ,
419 menelaus_mmc_cd_work);
420 if (ret < 0)
421 return ret;
422 ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ,
423 menelaus_mmc_cd_work);
424 if (ret < 0)
425 return ret;
426 ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ,
427 menelaus_mmc_cd_work);
428 if (ret < 0)
429 return ret;
430 ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ,
431 menelaus_mmc_cd_work);
432
433 return ret;
434 }
435 EXPORT_SYMBOL(menelaus_register_mmc_callback);
436
437 void menelaus_unregister_mmc_callback(void)
438 {
439 menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ);
440 menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ);
441 menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ);
442 menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ);
443
444 the_menelaus->mmc_callback = NULL;
445 the_menelaus->mmc_callback_data = NULL;
446 }
447 EXPORT_SYMBOL(menelaus_unregister_mmc_callback);
448
449 struct menelaus_vtg {
450 const char *name;
451 u8 vtg_reg;
452 u8 vtg_shift;
453 u8 vtg_bits;
454 u8 mode_reg;
455 };
456
457 struct menelaus_vtg_value {
458 u16 vtg;
459 u16 val;
460 };
461
462 static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV,
463 int vtg_val, int mode)
464 {
465 int val, ret;
466 struct i2c_client *c = the_menelaus->client;
467
468 mutex_lock(&the_menelaus->lock);
469
470 ret = menelaus_read_reg(vtg->vtg_reg);
471 if (ret < 0)
472 goto out;
473 val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift);
474 val |= vtg_val << vtg->vtg_shift;
475
476 dev_dbg(&c->dev, "Setting voltage '%s'"
477 "to %d mV (reg 0x%02x, val 0x%02x)\n",
478 vtg->name, mV, vtg->vtg_reg, val);
479
480 ret = menelaus_write_reg(vtg->vtg_reg, val);
481 if (ret < 0)
482 goto out;
483 ret = menelaus_write_reg(vtg->mode_reg, mode);
484 out:
485 mutex_unlock(&the_menelaus->lock);
486 if (ret == 0) {
487 /* Wait for voltage to stabilize */
488 msleep(1);
489 }
490 return ret;
491 }
492
493 static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl,
494 int n)
495 {
496 int i;
497
498 for (i = 0; i < n; i++, tbl++)
499 if (tbl->vtg == vtg)
500 return tbl->val;
501 return -EINVAL;
502 }
503
504 /*
505 * Vcore can be programmed in two ways:
506 * SW-controlled: Required voltage is programmed into VCORE_CTRL1
507 * HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3
508 * and VCORE_CTRL4
509 *
510 * Call correct 'set' function accordingly
511 */
512
513 static const struct menelaus_vtg_value vcore_values[] = {
514 { 1000, 0 },
515 { 1025, 1 },
516 { 1050, 2 },
517 { 1075, 3 },
518 { 1100, 4 },
519 { 1125, 5 },
520 { 1150, 6 },
521 { 1175, 7 },
522 { 1200, 8 },
523 { 1225, 9 },
524 { 1250, 10 },
525 { 1275, 11 },
526 { 1300, 12 },
527 { 1325, 13 },
528 { 1350, 14 },
529 { 1375, 15 },
530 { 1400, 16 },
531 { 1425, 17 },
532 { 1450, 18 },
533 };
534
535 int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV)
536 {
537 int fval, rval, val, ret;
538 struct i2c_client *c = the_menelaus->client;
539
540 rval = menelaus_get_vtg_value(roof_mV, vcore_values,
541 ARRAY_SIZE(vcore_values));
542 if (rval < 0)
543 return -EINVAL;
544 fval = menelaus_get_vtg_value(floor_mV, vcore_values,
545 ARRAY_SIZE(vcore_values));
546 if (fval < 0)
547 return -EINVAL;
548
549 dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n",
550 floor_mV, roof_mV);
551
552 mutex_lock(&the_menelaus->lock);
553 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval);
554 if (ret < 0)
555 goto out;
556 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval);
557 if (ret < 0)
558 goto out;
559 if (!the_menelaus->vcore_hw_mode) {
560 val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
561 /* HW mode, turn OFF byte comparator */
562 val |= (VCORE_CTRL1_HW_NSW | VCORE_CTRL1_BYP_COMP);
563 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
564 the_menelaus->vcore_hw_mode = 1;
565 }
566 msleep(1);
567 out:
568 mutex_unlock(&the_menelaus->lock);
569 return ret;
570 }
571
572 static const struct menelaus_vtg vmem_vtg = {
573 .name = "VMEM",
574 .vtg_reg = MENELAUS_LDO_CTRL1,
575 .vtg_shift = 0,
576 .vtg_bits = 2,
577 .mode_reg = MENELAUS_LDO_CTRL3,
578 };
579
580 static const struct menelaus_vtg_value vmem_values[] = {
581 { 1500, 0 },
582 { 1800, 1 },
583 { 1900, 2 },
584 { 2500, 3 },
585 };
586
587 int menelaus_set_vmem(unsigned int mV)
588 {
589 int val;
590
591 if (mV == 0)
592 return menelaus_set_voltage(&vmem_vtg, 0, 0, 0);
593
594 val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values));
595 if (val < 0)
596 return -EINVAL;
597 return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02);
598 }
599 EXPORT_SYMBOL(menelaus_set_vmem);
600
601 static const struct menelaus_vtg vio_vtg = {
602 .name = "VIO",
603 .vtg_reg = MENELAUS_LDO_CTRL1,
604 .vtg_shift = 2,
605 .vtg_bits = 2,
606 .mode_reg = MENELAUS_LDO_CTRL4,
607 };
608
609 static const struct menelaus_vtg_value vio_values[] = {
610 { 1500, 0 },
611 { 1800, 1 },
612 { 2500, 2 },
613 { 2800, 3 },
614 };
615
616 int menelaus_set_vio(unsigned int mV)
617 {
618 int val;
619
620 if (mV == 0)
621 return menelaus_set_voltage(&vio_vtg, 0, 0, 0);
622
623 val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values));
624 if (val < 0)
625 return -EINVAL;
626 return menelaus_set_voltage(&vio_vtg, mV, val, 0x02);
627 }
628 EXPORT_SYMBOL(menelaus_set_vio);
629
630 static const struct menelaus_vtg_value vdcdc_values[] = {
631 { 1500, 0 },
632 { 1800, 1 },
633 { 2000, 2 },
634 { 2200, 3 },
635 { 2400, 4 },
636 { 2800, 5 },
637 { 3000, 6 },
638 { 3300, 7 },
639 };
640
641 static const struct menelaus_vtg vdcdc2_vtg = {
642 .name = "VDCDC2",
643 .vtg_reg = MENELAUS_DCDC_CTRL1,
644 .vtg_shift = 0,
645 .vtg_bits = 3,
646 .mode_reg = MENELAUS_DCDC_CTRL2,
647 };
648
649 static const struct menelaus_vtg vdcdc3_vtg = {
650 .name = "VDCDC3",
651 .vtg_reg = MENELAUS_DCDC_CTRL1,
652 .vtg_shift = 3,
653 .vtg_bits = 3,
654 .mode_reg = MENELAUS_DCDC_CTRL3,
655 };
656
657 int menelaus_set_vdcdc(int dcdc, unsigned int mV)
658 {
659 const struct menelaus_vtg *vtg;
660 int val;
661
662 if (dcdc != 2 && dcdc != 3)
663 return -EINVAL;
664 if (dcdc == 2)
665 vtg = &vdcdc2_vtg;
666 else
667 vtg = &vdcdc3_vtg;
668
669 if (mV == 0)
670 return menelaus_set_voltage(vtg, 0, 0, 0);
671
672 val = menelaus_get_vtg_value(mV, vdcdc_values,
673 ARRAY_SIZE(vdcdc_values));
674 if (val < 0)
675 return -EINVAL;
676 return menelaus_set_voltage(vtg, mV, val, 0x03);
677 }
678
679 static const struct menelaus_vtg_value vmmc_values[] = {
680 { 1850, 0 },
681 { 2800, 1 },
682 { 3000, 2 },
683 { 3100, 3 },
684 };
685
686 static const struct menelaus_vtg vmmc_vtg = {
687 .name = "VMMC",
688 .vtg_reg = MENELAUS_LDO_CTRL1,
689 .vtg_shift = 6,
690 .vtg_bits = 2,
691 .mode_reg = MENELAUS_LDO_CTRL7,
692 };
693
694 int menelaus_set_vmmc(unsigned int mV)
695 {
696 int val;
697
698 if (mV == 0)
699 return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0);
700
701 val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values));
702 if (val < 0)
703 return -EINVAL;
704 return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02);
705 }
706 EXPORT_SYMBOL(menelaus_set_vmmc);
707
708
709 static const struct menelaus_vtg_value vaux_values[] = {
710 { 1500, 0 },
711 { 1800, 1 },
712 { 2500, 2 },
713 { 2800, 3 },
714 };
715
716 static const struct menelaus_vtg vaux_vtg = {
717 .name = "VAUX",
718 .vtg_reg = MENELAUS_LDO_CTRL1,
719 .vtg_shift = 4,
720 .vtg_bits = 2,
721 .mode_reg = MENELAUS_LDO_CTRL6,
722 };
723
724 int menelaus_set_vaux(unsigned int mV)
725 {
726 int val;
727
728 if (mV == 0)
729 return menelaus_set_voltage(&vaux_vtg, 0, 0, 0);
730
731 val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values));
732 if (val < 0)
733 return -EINVAL;
734 return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02);
735 }
736 EXPORT_SYMBOL(menelaus_set_vaux);
737
738 int menelaus_get_slot_pin_states(void)
739 {
740 return menelaus_read_reg(MENELAUS_MCT_PIN_ST);
741 }
742 EXPORT_SYMBOL(menelaus_get_slot_pin_states);
743
744 int menelaus_set_regulator_sleep(int enable, u32 val)
745 {
746 int t, ret;
747 struct i2c_client *c = the_menelaus->client;
748
749 mutex_lock(&the_menelaus->lock);
750 ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val);
751 if (ret < 0)
752 goto out;
753
754 dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val);
755
756 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
757 if (ret < 0)
758 goto out;
759 t = (GPIO_CTRL_SLPCTLEN | GPIO3_DIR_INPUT);
760 if (enable)
761 ret |= t;
762 else
763 ret &= ~t;
764 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
765 out:
766 mutex_unlock(&the_menelaus->lock);
767 return ret;
768 }
769
770 /*-----------------------------------------------------------------------*/
771
772 /* Handles Menelaus interrupts. Does not run in interrupt context */
773 static void menelaus_work(struct work_struct *_menelaus)
774 {
775 struct menelaus_chip *menelaus =
776 container_of(_menelaus, struct menelaus_chip, work);
777 void (*handler)(struct menelaus_chip *menelaus);
778
779 while (1) {
780 unsigned isr;
781
782 isr = (menelaus_read_reg(MENELAUS_INT_STATUS2)
783 & ~menelaus->mask2) << 8;
784 isr |= menelaus_read_reg(MENELAUS_INT_STATUS1)
785 & ~menelaus->mask1;
786 if (!isr)
787 break;
788
789 while (isr) {
790 int irq = fls(isr) - 1;
791 isr &= ~(1 << irq);
792
793 mutex_lock(&menelaus->lock);
794 menelaus_disable_irq(irq);
795 menelaus_ack_irq(irq);
796 handler = menelaus->handlers[irq];
797 if (handler)
798 handler(menelaus);
799 menelaus_enable_irq(irq);
800 mutex_unlock(&menelaus->lock);
801 }
802 }
803 enable_irq(menelaus->client->irq);
804 }
805
806 /*
807 * We cannot use I2C in interrupt context, so we just schedule work.
808 */
809 static irqreturn_t menelaus_irq(int irq, void *_menelaus)
810 {
811 struct menelaus_chip *menelaus = _menelaus;
812
813 disable_irq_nosync(irq);
814 (void)schedule_work(&menelaus->work);
815
816 return IRQ_HANDLED;
817 }
818
819 /*-----------------------------------------------------------------------*/
820
821 /*
822 * The RTC needs to be set once, then it runs on backup battery power.
823 * It supports alarms, including system wake alarms (from some modes);
824 * and 1/second IRQs if requested.
825 */
826 #ifdef CONFIG_RTC_DRV_TWL92330
827
828 #define RTC_CTRL_RTC_EN (1 << 0)
829 #define RTC_CTRL_AL_EN (1 << 1)
830 #define RTC_CTRL_MODE12 (1 << 2)
831 #define RTC_CTRL_EVERY_MASK (3 << 3)
832 #define RTC_CTRL_EVERY_SEC (0 << 3)
833 #define RTC_CTRL_EVERY_MIN (1 << 3)
834 #define RTC_CTRL_EVERY_HR (2 << 3)
835 #define RTC_CTRL_EVERY_DAY (3 << 3)
836
837 #define RTC_UPDATE_EVERY 0x08
838
839 #define RTC_HR_PM (1 << 7)
840
841 static void menelaus_to_time(char *regs, struct rtc_time *t)
842 {
843 t->tm_sec = bcd2bin(regs[0]);
844 t->tm_min = bcd2bin(regs[1]);
845 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
846 t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1;
847 if (regs[2] & RTC_HR_PM)
848 t->tm_hour += 12;
849 } else
850 t->tm_hour = bcd2bin(regs[2] & 0x3f);
851 t->tm_mday = bcd2bin(regs[3]);
852 t->tm_mon = bcd2bin(regs[4]) - 1;
853 t->tm_year = bcd2bin(regs[5]) + 100;
854 }
855
856 static int time_to_menelaus(struct rtc_time *t, int regnum)
857 {
858 int hour, status;
859
860 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec));
861 if (status < 0)
862 goto fail;
863
864 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min));
865 if (status < 0)
866 goto fail;
867
868 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
869 hour = t->tm_hour + 1;
870 if (hour > 12)
871 hour = RTC_HR_PM | bin2bcd(hour - 12);
872 else
873 hour = bin2bcd(hour);
874 } else
875 hour = bin2bcd(t->tm_hour);
876 status = menelaus_write_reg(regnum++, hour);
877 if (status < 0)
878 goto fail;
879
880 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday));
881 if (status < 0)
882 goto fail;
883
884 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1));
885 if (status < 0)
886 goto fail;
887
888 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100));
889 if (status < 0)
890 goto fail;
891
892 return 0;
893 fail:
894 dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n",
895 --regnum, status);
896 return status;
897 }
898
899 static int menelaus_read_time(struct device *dev, struct rtc_time *t)
900 {
901 struct i2c_msg msg[2];
902 char regs[7];
903 int status;
904
905 /* block read date and time registers */
906 regs[0] = MENELAUS_RTC_SEC;
907
908 msg[0].addr = MENELAUS_I2C_ADDRESS;
909 msg[0].flags = 0;
910 msg[0].len = 1;
911 msg[0].buf = regs;
912
913 msg[1].addr = MENELAUS_I2C_ADDRESS;
914 msg[1].flags = I2C_M_RD;
915 msg[1].len = sizeof(regs);
916 msg[1].buf = regs;
917
918 status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
919 if (status != 2) {
920 dev_err(dev, "%s error %d\n", "read", status);
921 return -EIO;
922 }
923
924 menelaus_to_time(regs, t);
925 t->tm_wday = bcd2bin(regs[6]);
926
927 return 0;
928 }
929
930 static int menelaus_set_time(struct device *dev, struct rtc_time *t)
931 {
932 int status;
933
934 /* write date and time registers */
935 status = time_to_menelaus(t, MENELAUS_RTC_SEC);
936 if (status < 0)
937 return status;
938 status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday));
939 if (status < 0) {
940 dev_err(&the_menelaus->client->dev, "rtc write reg %02x "
941 "err %d\n", MENELAUS_RTC_WKDAY, status);
942 return status;
943 }
944
945 /* now commit the write */
946 status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY);
947 if (status < 0)
948 dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n",
949 status);
950
951 return 0;
952 }
953
954 static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w)
955 {
956 struct i2c_msg msg[2];
957 char regs[6];
958 int status;
959
960 /* block read alarm registers */
961 regs[0] = MENELAUS_RTC_AL_SEC;
962
963 msg[0].addr = MENELAUS_I2C_ADDRESS;
964 msg[0].flags = 0;
965 msg[0].len = 1;
966 msg[0].buf = regs;
967
968 msg[1].addr = MENELAUS_I2C_ADDRESS;
969 msg[1].flags = I2C_M_RD;
970 msg[1].len = sizeof(regs);
971 msg[1].buf = regs;
972
973 status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
974 if (status != 2) {
975 dev_err(dev, "%s error %d\n", "alarm read", status);
976 return -EIO;
977 }
978
979 menelaus_to_time(regs, &w->time);
980
981 w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN);
982
983 /* NOTE we *could* check if actually pending... */
984 w->pending = 0;
985
986 return 0;
987 }
988
989 static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w)
990 {
991 int status;
992
993 if (the_menelaus->client->irq <= 0 && w->enabled)
994 return -ENODEV;
995
996 /* clear previous alarm enable */
997 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) {
998 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
999 status = menelaus_write_reg(MENELAUS_RTC_CTRL,
1000 the_menelaus->rtc_control);
1001 if (status < 0)
1002 return status;
1003 }
1004
1005 /* write alarm registers */
1006 status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC);
1007 if (status < 0)
1008 return status;
1009
1010 /* enable alarm if requested */
1011 if (w->enabled) {
1012 the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1013 status = menelaus_write_reg(MENELAUS_RTC_CTRL,
1014 the_menelaus->rtc_control);
1015 }
1016
1017 return status;
1018 }
1019
1020 #ifdef CONFIG_RTC_INTF_DEV
1021
1022 static void menelaus_rtc_update_work(struct menelaus_chip *m)
1023 {
1024 /* report 1/sec update */
1025 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF);
1026 }
1027
1028 static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg)
1029 {
1030 int status;
1031
1032 if (the_menelaus->client->irq <= 0)
1033 return -ENOIOCTLCMD;
1034
1035 switch (cmd) {
1036 /* alarm IRQ */
1037 case RTC_AIE_ON:
1038 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN)
1039 return 0;
1040 the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1041 break;
1042 case RTC_AIE_OFF:
1043 if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN))
1044 return 0;
1045 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1046 break;
1047 /* 1/second "update" IRQ */
1048 case RTC_UIE_ON:
1049 if (the_menelaus->uie)
1050 return 0;
1051 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1052 status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ,
1053 menelaus_rtc_update_work);
1054 if (status == 0)
1055 the_menelaus->uie = 1;
1056 return status;
1057 case RTC_UIE_OFF:
1058 if (!the_menelaus->uie)
1059 return 0;
1060 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1061 if (status == 0)
1062 the_menelaus->uie = 0;
1063 return status;
1064 default:
1065 return -ENOIOCTLCMD;
1066 }
1067 return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1068 }
1069
1070 #else
1071 #define menelaus_ioctl NULL
1072 #endif
1073
1074 /* REVISIT no compensation register support ... */
1075
1076 static const struct rtc_class_ops menelaus_rtc_ops = {
1077 .ioctl = menelaus_ioctl,
1078 .read_time = menelaus_read_time,
1079 .set_time = menelaus_set_time,
1080 .read_alarm = menelaus_read_alarm,
1081 .set_alarm = menelaus_set_alarm,
1082 };
1083
1084 static void menelaus_rtc_alarm_work(struct menelaus_chip *m)
1085 {
1086 /* report alarm */
1087 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF);
1088
1089 /* then disable it; alarms are oneshot */
1090 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1091 menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1092 }
1093
1094 static inline void menelaus_rtc_init(struct menelaus_chip *m)
1095 {
1096 int alarm = (m->client->irq > 0);
1097 int err;
1098
1099 /* assume 32KDETEN pin is pulled high */
1100 if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) {
1101 dev_dbg(&m->client->dev, "no 32k oscillator\n");
1102 return;
1103 }
1104
1105 m->rtc = devm_rtc_allocate_device(&m->client->dev);
1106 if (IS_ERR(m->rtc))
1107 return;
1108
1109 m->rtc->ops = &menelaus_rtc_ops;
1110
1111 /* support RTC alarm; it can issue wakeups */
1112 if (alarm) {
1113 if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ,
1114 menelaus_rtc_alarm_work) < 0) {
1115 dev_err(&m->client->dev, "can't handle RTC alarm\n");
1116 return;
1117 }
1118 device_init_wakeup(&m->client->dev, 1);
1119 }
1120
1121 /* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */
1122 m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL);
1123 if (!(m->rtc_control & RTC_CTRL_RTC_EN)
1124 || (m->rtc_control & RTC_CTRL_AL_EN)
1125 || (m->rtc_control & RTC_CTRL_EVERY_MASK)) {
1126 if (!(m->rtc_control & RTC_CTRL_RTC_EN)) {
1127 dev_warn(&m->client->dev, "rtc clock needs setting\n");
1128 m->rtc_control |= RTC_CTRL_RTC_EN;
1129 }
1130 m->rtc_control &= ~RTC_CTRL_EVERY_MASK;
1131 m->rtc_control &= ~RTC_CTRL_AL_EN;
1132 menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control);
1133 }
1134
1135 err = rtc_register_device(m->rtc);
1136 if (err) {
1137 if (alarm) {
1138 menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ);
1139 device_init_wakeup(&m->client->dev, 0);
1140 }
1141 dev_err(&m->client->dev, "can't register RTC: %d\n",
1142 (int) PTR_ERR(m->rtc));
1143 the_menelaus->rtc = NULL;
1144 }
1145 }
1146
1147 #else
1148
1149 static inline void menelaus_rtc_init(struct menelaus_chip *m)
1150 {
1151 /* nothing */
1152 }
1153
1154 #endif
1155
1156 /*-----------------------------------------------------------------------*/
1157
1158 static struct i2c_driver menelaus_i2c_driver;
1159
1160 static int menelaus_probe(struct i2c_client *client,
1161 const struct i2c_device_id *id)
1162 {
1163 struct menelaus_chip *menelaus;
1164 int rev = 0;
1165 int err = 0;
1166 struct menelaus_platform_data *menelaus_pdata =
1167 dev_get_platdata(&client->dev);
1168
1169 if (the_menelaus) {
1170 dev_dbg(&client->dev, "only one %s for now\n",
1171 DRIVER_NAME);
1172 return -ENODEV;
1173 }
1174
1175 menelaus = devm_kzalloc(&client->dev, sizeof(*menelaus), GFP_KERNEL);
1176 if (!menelaus)
1177 return -ENOMEM;
1178
1179 i2c_set_clientdata(client, menelaus);
1180
1181 the_menelaus = menelaus;
1182 menelaus->client = client;
1183
1184 /* If a true probe check the device */
1185 rev = menelaus_read_reg(MENELAUS_REV);
1186 if (rev < 0) {
1187 pr_err(DRIVER_NAME ": device not found");
1188 return -ENODEV;
1189 }
1190
1191 /* Ack and disable all Menelaus interrupts */
1192 menelaus_write_reg(MENELAUS_INT_ACK1, 0xff);
1193 menelaus_write_reg(MENELAUS_INT_ACK2, 0xff);
1194 menelaus_write_reg(MENELAUS_INT_MASK1, 0xff);
1195 menelaus_write_reg(MENELAUS_INT_MASK2, 0xff);
1196 menelaus->mask1 = 0xff;
1197 menelaus->mask2 = 0xff;
1198
1199 /* Set output buffer strengths */
1200 menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73);
1201
1202 if (client->irq > 0) {
1203 err = request_irq(client->irq, menelaus_irq, 0,
1204 DRIVER_NAME, menelaus);
1205 if (err) {
1206 dev_dbg(&client->dev, "can't get IRQ %d, err %d\n",
1207 client->irq, err);
1208 return err;
1209 }
1210 }
1211
1212 mutex_init(&menelaus->lock);
1213 INIT_WORK(&menelaus->work, menelaus_work);
1214
1215 pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f);
1216
1217 err = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
1218 if (err < 0)
1219 goto fail;
1220 if (err & VCORE_CTRL1_HW_NSW)
1221 menelaus->vcore_hw_mode = 1;
1222 else
1223 menelaus->vcore_hw_mode = 0;
1224
1225 if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) {
1226 err = menelaus_pdata->late_init(&client->dev);
1227 if (err < 0)
1228 goto fail;
1229 }
1230
1231 menelaus_rtc_init(menelaus);
1232
1233 return 0;
1234 fail:
1235 free_irq(client->irq, menelaus);
1236 flush_work(&menelaus->work);
1237 return err;
1238 }
1239
1240 static int menelaus_remove(struct i2c_client *client)
1241 {
1242 struct menelaus_chip *menelaus = i2c_get_clientdata(client);
1243
1244 free_irq(client->irq, menelaus);
1245 flush_work(&menelaus->work);
1246 the_menelaus = NULL;
1247 return 0;
1248 }
1249
1250 static const struct i2c_device_id menelaus_id[] = {
1251 { "menelaus", 0 },
1252 { }
1253 };
1254 MODULE_DEVICE_TABLE(i2c, menelaus_id);
1255
1256 static struct i2c_driver menelaus_i2c_driver = {
1257 .driver = {
1258 .name = DRIVER_NAME,
1259 },
1260 .probe = menelaus_probe,
1261 .remove = menelaus_remove,
1262 .id_table = menelaus_id,
1263 };
1264
1265 module_i2c_driver(menelaus_i2c_driver);
1266
1267 MODULE_AUTHOR("Texas Instruments, Inc. (and others)");
1268 MODULE_DESCRIPTION("I2C interface for Menelaus.");
1269 MODULE_LICENSE("GPL");