]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/misc/cros_ec.c
cros_ec: Drop unused CONFIG_DM_CROS_EC
[people/ms/u-boot.git] / drivers / misc / cros_ec.c
1 /*
2 * Chromium OS cros_ec driver
3 *
4 * Copyright (c) 2012 The Chromium OS Authors.
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 */
8
9 /*
10 * This is the interface to the Chrome OS EC. It provides keyboard functions,
11 * power control and battery management. Quite a few other functions are
12 * provided to enable the EC software to be updated, talk to the EC's I2C bus
13 * and store a small amount of data in a memory which persists while the EC
14 * is not reset.
15 */
16
17 #include <common.h>
18 #include <command.h>
19 #include <dm.h>
20 #include <i2c.h>
21 #include <cros_ec.h>
22 #include <fdtdec.h>
23 #include <malloc.h>
24 #include <spi.h>
25 #include <asm/errno.h>
26 #include <asm/io.h>
27 #include <asm-generic/gpio.h>
28 #include <dm/device-internal.h>
29 #include <dm/uclass-internal.h>
30
31 #ifdef DEBUG_TRACE
32 #define debug_trace(fmt, b...) debug(fmt, #b)
33 #else
34 #define debug_trace(fmt, b...)
35 #endif
36
37 enum {
38 /* Timeout waiting for a flash erase command to complete */
39 CROS_EC_CMD_TIMEOUT_MS = 5000,
40 /* Timeout waiting for a synchronous hash to be recomputed */
41 CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
42 };
43
44 DECLARE_GLOBAL_DATA_PTR;
45
46 /* Note: depends on enum ec_current_image */
47 static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"};
48
49 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
50 {
51 #ifdef DEBUG
52 int i;
53
54 printf("%s: ", name);
55 if (cmd != -1)
56 printf("cmd=%#x: ", cmd);
57 for (i = 0; i < len; i++)
58 printf("%02x ", data[i]);
59 printf("\n");
60 #endif
61 }
62
63 /*
64 * Calculate a simple 8-bit checksum of a data block
65 *
66 * @param data Data block to checksum
67 * @param size Size of data block in bytes
68 * @return checksum value (0 to 255)
69 */
70 int cros_ec_calc_checksum(const uint8_t *data, int size)
71 {
72 int csum, i;
73
74 for (i = csum = 0; i < size; i++)
75 csum += data[i];
76 return csum & 0xff;
77 }
78
79 /**
80 * Create a request packet for protocol version 3.
81 *
82 * The packet is stored in the device's internal output buffer.
83 *
84 * @param dev CROS-EC device
85 * @param cmd Command to send (EC_CMD_...)
86 * @param cmd_version Version of command to send (EC_VER_...)
87 * @param dout Output data (may be NULL If dout_len=0)
88 * @param dout_len Size of output data in bytes
89 * @return packet size in bytes, or <0 if error.
90 */
91 static int create_proto3_request(struct cros_ec_dev *dev,
92 int cmd, int cmd_version,
93 const void *dout, int dout_len)
94 {
95 struct ec_host_request *rq = (struct ec_host_request *)dev->dout;
96 int out_bytes = dout_len + sizeof(*rq);
97
98 /* Fail if output size is too big */
99 if (out_bytes > (int)sizeof(dev->dout)) {
100 debug("%s: Cannot send %d bytes\n", __func__, dout_len);
101 return -EC_RES_REQUEST_TRUNCATED;
102 }
103
104 /* Fill in request packet */
105 rq->struct_version = EC_HOST_REQUEST_VERSION;
106 rq->checksum = 0;
107 rq->command = cmd;
108 rq->command_version = cmd_version;
109 rq->reserved = 0;
110 rq->data_len = dout_len;
111
112 /* Copy data after header */
113 memcpy(rq + 1, dout, dout_len);
114
115 /* Write checksum field so the entire packet sums to 0 */
116 rq->checksum = (uint8_t)(-cros_ec_calc_checksum(dev->dout, out_bytes));
117
118 cros_ec_dump_data("out", cmd, dev->dout, out_bytes);
119
120 /* Return size of request packet */
121 return out_bytes;
122 }
123
124 /**
125 * Prepare the device to receive a protocol version 3 response.
126 *
127 * @param dev CROS-EC device
128 * @param din_len Maximum size of response in bytes
129 * @return maximum expected number of bytes in response, or <0 if error.
130 */
131 static int prepare_proto3_response_buffer(struct cros_ec_dev *dev, int din_len)
132 {
133 int in_bytes = din_len + sizeof(struct ec_host_response);
134
135 /* Fail if input size is too big */
136 if (in_bytes > (int)sizeof(dev->din)) {
137 debug("%s: Cannot receive %d bytes\n", __func__, din_len);
138 return -EC_RES_RESPONSE_TOO_BIG;
139 }
140
141 /* Return expected size of response packet */
142 return in_bytes;
143 }
144
145 /**
146 * Handle a protocol version 3 response packet.
147 *
148 * The packet must already be stored in the device's internal input buffer.
149 *
150 * @param dev CROS-EC device
151 * @param dinp Returns pointer to response data
152 * @param din_len Maximum size of response in bytes
153 * @return number of bytes of response data, or <0 if error. Note that error
154 * codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they
155 * overlap!)
156 */
157 static int handle_proto3_response(struct cros_ec_dev *dev,
158 uint8_t **dinp, int din_len)
159 {
160 struct ec_host_response *rs = (struct ec_host_response *)dev->din;
161 int in_bytes;
162 int csum;
163
164 cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs));
165
166 /* Check input data */
167 if (rs->struct_version != EC_HOST_RESPONSE_VERSION) {
168 debug("%s: EC response version mismatch\n", __func__);
169 return -EC_RES_INVALID_RESPONSE;
170 }
171
172 if (rs->reserved) {
173 debug("%s: EC response reserved != 0\n", __func__);
174 return -EC_RES_INVALID_RESPONSE;
175 }
176
177 if (rs->data_len > din_len) {
178 debug("%s: EC returned too much data\n", __func__);
179 return -EC_RES_RESPONSE_TOO_BIG;
180 }
181
182 cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len);
183
184 /* Update in_bytes to actual data size */
185 in_bytes = sizeof(*rs) + rs->data_len;
186
187 /* Verify checksum */
188 csum = cros_ec_calc_checksum(dev->din, in_bytes);
189 if (csum) {
190 debug("%s: EC response checksum invalid: 0x%02x\n", __func__,
191 csum);
192 return -EC_RES_INVALID_CHECKSUM;
193 }
194
195 /* Return error result, if any */
196 if (rs->result)
197 return -(int)rs->result;
198
199 /* If we're still here, set response data pointer and return length */
200 *dinp = (uint8_t *)(rs + 1);
201
202 return rs->data_len;
203 }
204
205 static int send_command_proto3(struct cros_ec_dev *dev,
206 int cmd, int cmd_version,
207 const void *dout, int dout_len,
208 uint8_t **dinp, int din_len)
209 {
210 struct dm_cros_ec_ops *ops;
211 int out_bytes, in_bytes;
212 int rv;
213
214 /* Create request packet */
215 out_bytes = create_proto3_request(dev, cmd, cmd_version,
216 dout, dout_len);
217 if (out_bytes < 0)
218 return out_bytes;
219
220 /* Prepare response buffer */
221 in_bytes = prepare_proto3_response_buffer(dev, din_len);
222 if (in_bytes < 0)
223 return in_bytes;
224
225 ops = dm_cros_ec_get_ops(dev->dev);
226 rv = ops->packet ? ops->packet(dev->dev, out_bytes, in_bytes) : -ENOSYS;
227 if (rv < 0)
228 return rv;
229
230 /* Process the response */
231 return handle_proto3_response(dev, dinp, din_len);
232 }
233
234 static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
235 const void *dout, int dout_len,
236 uint8_t **dinp, int din_len)
237 {
238 struct dm_cros_ec_ops *ops;
239 int ret = -1;
240
241 /* Handle protocol version 3 support */
242 if (dev->protocol_version == 3) {
243 return send_command_proto3(dev, cmd, cmd_version,
244 dout, dout_len, dinp, din_len);
245 }
246
247 ops = dm_cros_ec_get_ops(dev->dev);
248 ret = ops->command(dev->dev, cmd, cmd_version,
249 (const uint8_t *)dout, dout_len, dinp, din_len);
250
251 return ret;
252 }
253
254 /**
255 * Send a command to the CROS-EC device and return the reply.
256 *
257 * The device's internal input/output buffers are used.
258 *
259 * @param dev CROS-EC device
260 * @param cmd Command to send (EC_CMD_...)
261 * @param cmd_version Version of command to send (EC_VER_...)
262 * @param dout Output data (may be NULL If dout_len=0)
263 * @param dout_len Size of output data in bytes
264 * @param dinp Response data (may be NULL If din_len=0).
265 * If not NULL, it will be updated to point to the data
266 * and will always be double word aligned (64-bits)
267 * @param din_len Maximum size of response in bytes
268 * @return number of bytes in response, or -ve on error
269 */
270 static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd,
271 int cmd_version, const void *dout, int dout_len, uint8_t **dinp,
272 int din_len)
273 {
274 uint8_t *din = NULL;
275 int len;
276
277 len = send_command(dev, cmd, cmd_version, dout, dout_len,
278 &din, din_len);
279
280 /* If the command doesn't complete, wait a while */
281 if (len == -EC_RES_IN_PROGRESS) {
282 struct ec_response_get_comms_status *resp = NULL;
283 ulong start;
284
285 /* Wait for command to complete */
286 start = get_timer(0);
287 do {
288 int ret;
289
290 mdelay(50); /* Insert some reasonable delay */
291 ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0,
292 NULL, 0,
293 (uint8_t **)&resp, sizeof(*resp));
294 if (ret < 0)
295 return ret;
296
297 if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
298 debug("%s: Command %#02x timeout\n",
299 __func__, cmd);
300 return -EC_RES_TIMEOUT;
301 }
302 } while (resp->flags & EC_COMMS_STATUS_PROCESSING);
303
304 /* OK it completed, so read the status response */
305 /* not sure why it was 0 for the last argument */
306 len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0,
307 NULL, 0, &din, din_len);
308 }
309
310 debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp,
311 dinp ? *dinp : NULL);
312 if (dinp) {
313 /* If we have any data to return, it must be 64bit-aligned */
314 assert(len <= 0 || !((uintptr_t)din & 7));
315 *dinp = din;
316 }
317
318 return len;
319 }
320
321 /**
322 * Send a command to the CROS-EC device and return the reply.
323 *
324 * The device's internal input/output buffers are used.
325 *
326 * @param dev CROS-EC device
327 * @param cmd Command to send (EC_CMD_...)
328 * @param cmd_version Version of command to send (EC_VER_...)
329 * @param dout Output data (may be NULL If dout_len=0)
330 * @param dout_len Size of output data in bytes
331 * @param din Response data (may be NULL If din_len=0).
332 * It not NULL, it is a place for ec_command() to copy the
333 * data to.
334 * @param din_len Maximum size of response in bytes
335 * @return number of bytes in response, or -ve on error
336 */
337 static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
338 const void *dout, int dout_len,
339 void *din, int din_len)
340 {
341 uint8_t *in_buffer;
342 int len;
343
344 assert((din_len == 0) || din);
345 len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
346 &in_buffer, din_len);
347 if (len > 0) {
348 /*
349 * If we were asked to put it somewhere, do so, otherwise just
350 * disregard the result.
351 */
352 if (din && in_buffer) {
353 assert(len <= din_len);
354 memmove(din, in_buffer, len);
355 }
356 }
357 return len;
358 }
359
360 int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan)
361 {
362 if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan,
363 sizeof(scan->data)) != sizeof(scan->data))
364 return -1;
365
366 return 0;
367 }
368
369 int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen)
370 {
371 struct ec_response_get_version *r;
372
373 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
374 (uint8_t **)&r, sizeof(*r)) != sizeof(*r))
375 return -1;
376
377 if (maxlen > (int)sizeof(r->version_string_ro))
378 maxlen = sizeof(r->version_string_ro);
379
380 switch (r->current_image) {
381 case EC_IMAGE_RO:
382 memcpy(id, r->version_string_ro, maxlen);
383 break;
384 case EC_IMAGE_RW:
385 memcpy(id, r->version_string_rw, maxlen);
386 break;
387 default:
388 return -1;
389 }
390
391 id[maxlen - 1] = '\0';
392 return 0;
393 }
394
395 int cros_ec_read_version(struct cros_ec_dev *dev,
396 struct ec_response_get_version **versionp)
397 {
398 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
399 (uint8_t **)versionp, sizeof(**versionp))
400 != sizeof(**versionp))
401 return -1;
402
403 return 0;
404 }
405
406 int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp)
407 {
408 if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
409 (uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0)
410 return -1;
411
412 return 0;
413 }
414
415 int cros_ec_read_current_image(struct cros_ec_dev *dev,
416 enum ec_current_image *image)
417 {
418 struct ec_response_get_version *r;
419
420 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
421 (uint8_t **)&r, sizeof(*r)) != sizeof(*r))
422 return -1;
423
424 *image = r->current_image;
425 return 0;
426 }
427
428 static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev,
429 struct ec_response_vboot_hash *hash)
430 {
431 struct ec_params_vboot_hash p;
432 ulong start;
433
434 start = get_timer(0);
435 while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
436 mdelay(50); /* Insert some reasonable delay */
437
438 p.cmd = EC_VBOOT_HASH_GET;
439 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
440 hash, sizeof(*hash)) < 0)
441 return -1;
442
443 if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
444 debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
445 return -EC_RES_TIMEOUT;
446 }
447 }
448 return 0;
449 }
450
451
452 int cros_ec_read_hash(struct cros_ec_dev *dev,
453 struct ec_response_vboot_hash *hash)
454 {
455 struct ec_params_vboot_hash p;
456 int rv;
457
458 p.cmd = EC_VBOOT_HASH_GET;
459 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
460 hash, sizeof(*hash)) < 0)
461 return -1;
462
463 /* If the EC is busy calculating the hash, fidget until it's done. */
464 rv = cros_ec_wait_on_hash_done(dev, hash);
465 if (rv)
466 return rv;
467
468 /* If the hash is valid, we're done. Otherwise, we have to kick it off
469 * again and wait for it to complete. Note that we explicitly assume
470 * that hashing zero bytes is always wrong, even though that would
471 * produce a valid hash value. */
472 if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
473 return 0;
474
475 debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
476 __func__, hash->status, hash->size);
477
478 p.cmd = EC_VBOOT_HASH_START;
479 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
480 p.nonce_size = 0;
481 p.offset = EC_VBOOT_HASH_OFFSET_RW;
482
483 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
484 hash, sizeof(*hash)) < 0)
485 return -1;
486
487 rv = cros_ec_wait_on_hash_done(dev, hash);
488 if (rv)
489 return rv;
490
491 debug("%s: hash done\n", __func__);
492
493 return 0;
494 }
495
496 static int cros_ec_invalidate_hash(struct cros_ec_dev *dev)
497 {
498 struct ec_params_vboot_hash p;
499 struct ec_response_vboot_hash *hash;
500
501 /* We don't have an explict command for the EC to discard its current
502 * hash value, so we'll just tell it to calculate one that we know is
503 * wrong (we claim that hashing zero bytes is always invalid).
504 */
505 p.cmd = EC_VBOOT_HASH_RECALC;
506 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
507 p.nonce_size = 0;
508 p.offset = 0;
509 p.size = 0;
510
511 debug("%s:\n", __func__);
512
513 if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
514 (uint8_t **)&hash, sizeof(*hash)) < 0)
515 return -1;
516
517 /* No need to wait for it to finish */
518 return 0;
519 }
520
521 int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd,
522 uint8_t flags)
523 {
524 struct ec_params_reboot_ec p;
525
526 p.cmd = cmd;
527 p.flags = flags;
528
529 if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
530 < 0)
531 return -1;
532
533 if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
534 /*
535 * EC reboot will take place immediately so delay to allow it
536 * to complete. Note that some reboot types (EC_REBOOT_COLD)
537 * will reboot the AP as well, in which case we won't actually
538 * get to this point.
539 */
540 /*
541 * TODO(rspangler@chromium.org): Would be nice if we had a
542 * better way to determine when the reboot is complete. Could
543 * we poll a memory-mapped LPC value?
544 */
545 udelay(50000);
546 }
547
548 return 0;
549 }
550
551 int cros_ec_interrupt_pending(struct cros_ec_dev *dev)
552 {
553 /* no interrupt support : always poll */
554 if (!dm_gpio_is_valid(&dev->ec_int))
555 return -ENOENT;
556
557 return dm_gpio_get_value(&dev->ec_int);
558 }
559
560 int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_mkbp_info *info)
561 {
562 if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info,
563 sizeof(*info)) != sizeof(*info))
564 return -1;
565
566 return 0;
567 }
568
569 int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr)
570 {
571 struct ec_response_host_event_mask *resp;
572
573 /*
574 * Use the B copy of the event flags, because the main copy is already
575 * used by ACPI/SMI.
576 */
577 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
578 (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp))
579 return -1;
580
581 if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
582 return -1;
583
584 *events_ptr = resp->mask;
585 return 0;
586 }
587
588 int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events)
589 {
590 struct ec_params_host_event_mask params;
591
592 params.mask = events;
593
594 /*
595 * Use the B copy of the event flags, so it affects the data returned
596 * by cros_ec_get_host_events().
597 */
598 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
599 &params, sizeof(params), NULL, 0) < 0)
600 return -1;
601
602 return 0;
603 }
604
605 int cros_ec_flash_protect(struct cros_ec_dev *dev,
606 uint32_t set_mask, uint32_t set_flags,
607 struct ec_response_flash_protect *resp)
608 {
609 struct ec_params_flash_protect params;
610
611 params.mask = set_mask;
612 params.flags = set_flags;
613
614 if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
615 &params, sizeof(params),
616 resp, sizeof(*resp)) != sizeof(*resp))
617 return -1;
618
619 return 0;
620 }
621
622 static int cros_ec_check_version(struct cros_ec_dev *dev)
623 {
624 struct ec_params_hello req;
625 struct ec_response_hello *resp;
626
627 struct dm_cros_ec_ops *ops;
628 int ret;
629
630 ops = dm_cros_ec_get_ops(dev->dev);
631 if (ops->check_version) {
632 ret = ops->check_version(dev->dev);
633 if (ret)
634 return ret;
635 }
636
637 /*
638 * TODO(sjg@chromium.org).
639 * There is a strange oddity here with the EC. We could just ignore
640 * the response, i.e. pass the last two parameters as NULL and 0.
641 * In this case we won't read back very many bytes from the EC.
642 * On the I2C bus the EC gets upset about this and will try to send
643 * the bytes anyway. This means that we will have to wait for that
644 * to complete before continuing with a new EC command.
645 *
646 * This problem is probably unique to the I2C bus.
647 *
648 * So for now, just read all the data anyway.
649 */
650
651 /* Try sending a version 3 packet */
652 dev->protocol_version = 3;
653 req.in_data = 0;
654 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
655 (uint8_t **)&resp, sizeof(*resp)) > 0) {
656 return 0;
657 }
658
659 /* Try sending a version 2 packet */
660 dev->protocol_version = 2;
661 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
662 (uint8_t **)&resp, sizeof(*resp)) > 0) {
663 return 0;
664 }
665
666 /*
667 * Fail if we're still here, since the EC doesn't understand any
668 * protcol version we speak. Version 1 interface without command
669 * version is no longer supported, and we don't know about any new
670 * protocol versions.
671 */
672 dev->protocol_version = 0;
673 printf("%s: ERROR: old EC interface not supported\n", __func__);
674 return -1;
675 }
676
677 int cros_ec_test(struct cros_ec_dev *dev)
678 {
679 struct ec_params_hello req;
680 struct ec_response_hello *resp;
681
682 req.in_data = 0x12345678;
683 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
684 (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) {
685 printf("ec_command_inptr() returned error\n");
686 return -1;
687 }
688 if (resp->out_data != req.in_data + 0x01020304) {
689 printf("Received invalid handshake %x\n", resp->out_data);
690 return -1;
691 }
692
693 return 0;
694 }
695
696 int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region,
697 uint32_t *offset, uint32_t *size)
698 {
699 struct ec_params_flash_region_info p;
700 struct ec_response_flash_region_info *r;
701 int ret;
702
703 p.region = region;
704 ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
705 EC_VER_FLASH_REGION_INFO,
706 &p, sizeof(p), (uint8_t **)&r, sizeof(*r));
707 if (ret != sizeof(*r))
708 return -1;
709
710 if (offset)
711 *offset = r->offset;
712 if (size)
713 *size = r->size;
714
715 return 0;
716 }
717
718 int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size)
719 {
720 struct ec_params_flash_erase p;
721
722 p.offset = offset;
723 p.size = size;
724 return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
725 NULL, 0);
726 }
727
728 /**
729 * Write a single block to the flash
730 *
731 * Write a block of data to the EC flash. The size must not exceed the flash
732 * write block size which you can obtain from cros_ec_flash_write_burst_size().
733 *
734 * The offset starts at 0. You can obtain the region information from
735 * cros_ec_flash_offset() to find out where to write for a particular region.
736 *
737 * Attempting to write to the region where the EC is currently running from
738 * will result in an error.
739 *
740 * @param dev CROS-EC device
741 * @param data Pointer to data buffer to write
742 * @param offset Offset within flash to write to.
743 * @param size Number of bytes to write
744 * @return 0 if ok, -1 on error
745 */
746 static int cros_ec_flash_write_block(struct cros_ec_dev *dev,
747 const uint8_t *data, uint32_t offset, uint32_t size)
748 {
749 struct ec_params_flash_write p;
750
751 p.offset = offset;
752 p.size = size;
753 assert(data && p.size <= EC_FLASH_WRITE_VER0_SIZE);
754 memcpy(&p + 1, data, p.size);
755
756 return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
757 &p, sizeof(p), NULL, 0) >= 0 ? 0 : -1;
758 }
759
760 /**
761 * Return optimal flash write burst size
762 */
763 static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev)
764 {
765 return EC_FLASH_WRITE_VER0_SIZE;
766 }
767
768 /**
769 * Check if a block of data is erased (all 0xff)
770 *
771 * This function is useful when dealing with flash, for checking whether a
772 * data block is erased and thus does not need to be programmed.
773 *
774 * @param data Pointer to data to check (must be word-aligned)
775 * @param size Number of bytes to check (must be word-aligned)
776 * @return 0 if erased, non-zero if any word is not erased
777 */
778 static int cros_ec_data_is_erased(const uint32_t *data, int size)
779 {
780 assert(!(size & 3));
781 size /= sizeof(uint32_t);
782 for (; size > 0; size -= 4, data++)
783 if (*data != -1U)
784 return 0;
785
786 return 1;
787 }
788
789 int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data,
790 uint32_t offset, uint32_t size)
791 {
792 uint32_t burst = cros_ec_flash_write_burst_size(dev);
793 uint32_t end, off;
794 int ret;
795
796 /*
797 * TODO: round up to the nearest multiple of write size. Can get away
798 * without that on link right now because its write size is 4 bytes.
799 */
800 end = offset + size;
801 for (off = offset; off < end; off += burst, data += burst) {
802 uint32_t todo;
803
804 /* If the data is empty, there is no point in programming it */
805 todo = min(end - off, burst);
806 if (dev->optimise_flash_write &&
807 cros_ec_data_is_erased((uint32_t *)data, todo))
808 continue;
809
810 ret = cros_ec_flash_write_block(dev, data, off, todo);
811 if (ret)
812 return ret;
813 }
814
815 return 0;
816 }
817
818 /**
819 * Read a single block from the flash
820 *
821 * Read a block of data from the EC flash. The size must not exceed the flash
822 * write block size which you can obtain from cros_ec_flash_write_burst_size().
823 *
824 * The offset starts at 0. You can obtain the region information from
825 * cros_ec_flash_offset() to find out where to read for a particular region.
826 *
827 * @param dev CROS-EC device
828 * @param data Pointer to data buffer to read into
829 * @param offset Offset within flash to read from
830 * @param size Number of bytes to read
831 * @return 0 if ok, -1 on error
832 */
833 static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data,
834 uint32_t offset, uint32_t size)
835 {
836 struct ec_params_flash_read p;
837
838 p.offset = offset;
839 p.size = size;
840
841 return ec_command(dev, EC_CMD_FLASH_READ, 0,
842 &p, sizeof(p), data, size) >= 0 ? 0 : -1;
843 }
844
845 int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset,
846 uint32_t size)
847 {
848 uint32_t burst = cros_ec_flash_write_burst_size(dev);
849 uint32_t end, off;
850 int ret;
851
852 end = offset + size;
853 for (off = offset; off < end; off += burst, data += burst) {
854 ret = cros_ec_flash_read_block(dev, data, off,
855 min(end - off, burst));
856 if (ret)
857 return ret;
858 }
859
860 return 0;
861 }
862
863 int cros_ec_flash_update_rw(struct cros_ec_dev *dev,
864 const uint8_t *image, int image_size)
865 {
866 uint32_t rw_offset, rw_size;
867 int ret;
868
869 if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size))
870 return -1;
871 if (image_size > (int)rw_size)
872 return -1;
873
874 /* Invalidate the existing hash, just in case the AP reboots
875 * unexpectedly during the update. If that happened, the EC RW firmware
876 * would be invalid, but the EC would still have the original hash.
877 */
878 ret = cros_ec_invalidate_hash(dev);
879 if (ret)
880 return ret;
881
882 /*
883 * Erase the entire RW section, so that the EC doesn't see any garbage
884 * past the new image if it's smaller than the current image.
885 *
886 * TODO: could optimize this to erase just the current image, since
887 * presumably everything past that is 0xff's. But would still need to
888 * round up to the nearest multiple of erase size.
889 */
890 ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
891 if (ret)
892 return ret;
893
894 /* Write the image */
895 ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
896 if (ret)
897 return ret;
898
899 return 0;
900 }
901
902 int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block)
903 {
904 struct ec_params_vbnvcontext p;
905 int len;
906
907 p.op = EC_VBNV_CONTEXT_OP_READ;
908
909 len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
910 &p, sizeof(p), block, EC_VBNV_BLOCK_SIZE);
911 if (len < EC_VBNV_BLOCK_SIZE)
912 return -1;
913
914 return 0;
915 }
916
917 int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block)
918 {
919 struct ec_params_vbnvcontext p;
920 int len;
921
922 p.op = EC_VBNV_CONTEXT_OP_WRITE;
923 memcpy(p.block, block, sizeof(p.block));
924
925 len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
926 &p, sizeof(p), NULL, 0);
927 if (len < 0)
928 return -1;
929
930 return 0;
931 }
932
933 int cros_ec_set_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t state)
934 {
935 struct ec_params_ldo_set params;
936
937 params.index = index;
938 params.state = state;
939
940 if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0,
941 &params, sizeof(params),
942 NULL, 0))
943 return -1;
944
945 return 0;
946 }
947
948 int cros_ec_get_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t *state)
949 {
950 struct ec_params_ldo_get params;
951 struct ec_response_ldo_get *resp;
952
953 params.index = index;
954
955 if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0,
956 &params, sizeof(params),
957 (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
958 return -1;
959
960 *state = resp->state;
961
962 return 0;
963 }
964
965 int cros_ec_register(struct udevice *dev)
966 {
967 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
968 const void *blob = gd->fdt_blob;
969 int node = dev->of_offset;
970 char id[MSG_BYTES];
971
972 cdev->dev = dev;
973 gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int,
974 GPIOD_IS_IN);
975 cdev->optimise_flash_write = fdtdec_get_bool(blob, node,
976 "optimise-flash-write");
977
978 if (cros_ec_check_version(cdev)) {
979 debug("%s: Could not detect CROS-EC version\n", __func__);
980 return -CROS_EC_ERR_CHECK_VERSION;
981 }
982
983 if (cros_ec_read_id(cdev, id, sizeof(id))) {
984 debug("%s: Could not read KBC ID\n", __func__);
985 return -CROS_EC_ERR_READ_ID;
986 }
987
988 /* Remember this device for use by the cros_ec command */
989 debug("Google Chrome EC CROS-EC driver ready, id '%s'\n", id);
990
991 return 0;
992 }
993
994 int cros_ec_decode_region(int argc, char * const argv[])
995 {
996 if (argc > 0) {
997 if (0 == strcmp(*argv, "rw"))
998 return EC_FLASH_REGION_RW;
999 else if (0 == strcmp(*argv, "ro"))
1000 return EC_FLASH_REGION_RO;
1001
1002 debug("%s: Invalid region '%s'\n", __func__, *argv);
1003 } else {
1004 debug("%s: Missing region parameter\n", __func__);
1005 }
1006
1007 return -1;
1008 }
1009
1010 int cros_ec_decode_ec_flash(const void *blob, int node,
1011 struct fdt_cros_ec *config)
1012 {
1013 int flash_node;
1014
1015 flash_node = fdt_subnode_offset(blob, node, "flash");
1016 if (flash_node < 0) {
1017 debug("Failed to find flash node\n");
1018 return -1;
1019 }
1020
1021 if (fdtdec_read_fmap_entry(blob, flash_node, "flash",
1022 &config->flash)) {
1023 debug("Failed to decode flash node in chrome-ec'\n");
1024 return -1;
1025 }
1026
1027 config->flash_erase_value = fdtdec_get_int(blob, flash_node,
1028 "erase-value", -1);
1029 for (node = fdt_first_subnode(blob, flash_node); node >= 0;
1030 node = fdt_next_subnode(blob, node)) {
1031 const char *name = fdt_get_name(blob, node, NULL);
1032 enum ec_flash_region region;
1033
1034 if (0 == strcmp(name, "ro")) {
1035 region = EC_FLASH_REGION_RO;
1036 } else if (0 == strcmp(name, "rw")) {
1037 region = EC_FLASH_REGION_RW;
1038 } else if (0 == strcmp(name, "wp-ro")) {
1039 region = EC_FLASH_REGION_WP_RO;
1040 } else {
1041 debug("Unknown EC flash region name '%s'\n", name);
1042 return -1;
1043 }
1044
1045 if (fdtdec_read_fmap_entry(blob, node, "reg",
1046 &config->region[region])) {
1047 debug("Failed to decode flash region in chrome-ec'\n");
1048 return -1;
1049 }
1050 }
1051
1052 return 0;
1053 }
1054
1055 int cros_ec_i2c_xfer(struct cros_ec_dev *dev, uchar chip, uint addr,
1056 int alen, uchar *buffer, int len, int is_read)
1057 {
1058 union {
1059 struct ec_params_i2c_passthru p;
1060 uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE];
1061 } params;
1062 union {
1063 struct ec_response_i2c_passthru r;
1064 uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE];
1065 } response;
1066 struct ec_params_i2c_passthru *p = &params.p;
1067 struct ec_response_i2c_passthru *r = &response.r;
1068 struct ec_params_i2c_passthru_msg *msg = p->msg;
1069 uint8_t *pdata;
1070 int read_len, write_len;
1071 int size;
1072 int rv;
1073
1074 p->port = 0;
1075
1076 if (alen != 1) {
1077 printf("Unsupported address length %d\n", alen);
1078 return -1;
1079 }
1080 if (is_read) {
1081 read_len = len;
1082 write_len = alen;
1083 p->num_msgs = 2;
1084 } else {
1085 read_len = 0;
1086 write_len = alen + len;
1087 p->num_msgs = 1;
1088 }
1089
1090 size = sizeof(*p) + p->num_msgs * sizeof(*msg);
1091 if (size + write_len > sizeof(params)) {
1092 puts("Params too large for buffer\n");
1093 return -1;
1094 }
1095 if (sizeof(*r) + read_len > sizeof(response)) {
1096 puts("Read length too big for buffer\n");
1097 return -1;
1098 }
1099
1100 /* Create a message to write the register address and optional data */
1101 pdata = (uint8_t *)p + size;
1102 msg->addr_flags = chip;
1103 msg->len = write_len;
1104 pdata[0] = addr;
1105 if (!is_read)
1106 memcpy(pdata + 1, buffer, len);
1107 msg++;
1108
1109 if (read_len) {
1110 msg->addr_flags = chip | EC_I2C_FLAG_READ;
1111 msg->len = read_len;
1112 }
1113
1114 rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, size + write_len,
1115 r, sizeof(*r) + read_len);
1116 if (rv < 0)
1117 return rv;
1118
1119 /* Parse response */
1120 if (r->i2c_status & EC_I2C_STATUS_ERROR) {
1121 printf("Transfer failed with status=0x%x\n", r->i2c_status);
1122 return -1;
1123 }
1124
1125 if (rv < sizeof(*r) + read_len) {
1126 puts("Truncated read response\n");
1127 return -1;
1128 }
1129
1130 if (read_len)
1131 memcpy(buffer, r->data, read_len);
1132
1133 return 0;
1134 }
1135
1136 #ifdef CONFIG_CMD_CROS_EC
1137
1138 /**
1139 * Perform a flash read or write command
1140 *
1141 * @param dev CROS-EC device to read/write
1142 * @param is_write 1 do to a write, 0 to do a read
1143 * @param argc Number of arguments
1144 * @param argv Arguments (2 is region, 3 is address)
1145 * @return 0 for ok, 1 for a usage error or -ve for ec command error
1146 * (negative EC_RES_...)
1147 */
1148 static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc,
1149 char * const argv[])
1150 {
1151 uint32_t offset, size = -1U, region_size;
1152 unsigned long addr;
1153 char *endp;
1154 int region;
1155 int ret;
1156
1157 region = cros_ec_decode_region(argc - 2, argv + 2);
1158 if (region == -1)
1159 return 1;
1160 if (argc < 4)
1161 return 1;
1162 addr = simple_strtoul(argv[3], &endp, 16);
1163 if (*argv[3] == 0 || *endp != 0)
1164 return 1;
1165 if (argc > 4) {
1166 size = simple_strtoul(argv[4], &endp, 16);
1167 if (*argv[4] == 0 || *endp != 0)
1168 return 1;
1169 }
1170
1171 ret = cros_ec_flash_offset(dev, region, &offset, &region_size);
1172 if (ret) {
1173 debug("%s: Could not read region info\n", __func__);
1174 return ret;
1175 }
1176 if (size == -1U)
1177 size = region_size;
1178
1179 ret = is_write ?
1180 cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) :
1181 cros_ec_flash_read(dev, (uint8_t *)addr, offset, size);
1182 if (ret) {
1183 debug("%s: Could not %s region\n", __func__,
1184 is_write ? "write" : "read");
1185 return ret;
1186 }
1187
1188 return 0;
1189 }
1190
1191 /**
1192 * get_alen() - Small parser helper function to get address length
1193 *
1194 * Returns the address length.
1195 */
1196 static uint get_alen(char *arg)
1197 {
1198 int j;
1199 int alen;
1200
1201 alen = 1;
1202 for (j = 0; j < 8; j++) {
1203 if (arg[j] == '.') {
1204 alen = arg[j+1] - '0';
1205 break;
1206 } else if (arg[j] == '\0') {
1207 break;
1208 }
1209 }
1210 return alen;
1211 }
1212
1213 #define DISP_LINE_LEN 16
1214
1215 /*
1216 * TODO(sjg@chromium.org): This code copied almost verbatim from cmd_i2c.c
1217 * so we can remove it later.
1218 */
1219 static int cros_ec_i2c_md(struct cros_ec_dev *dev, int flag, int argc,
1220 char * const argv[])
1221 {
1222 u_char chip;
1223 uint addr, alen, length = 0x10;
1224 int j, nbytes, linebytes;
1225
1226 if (argc < 2)
1227 return CMD_RET_USAGE;
1228
1229 if (1 || (flag & CMD_FLAG_REPEAT) == 0) {
1230 /*
1231 * New command specified.
1232 */
1233
1234 /*
1235 * I2C chip address
1236 */
1237 chip = simple_strtoul(argv[0], NULL, 16);
1238
1239 /*
1240 * I2C data address within the chip. This can be 1 or
1241 * 2 bytes long. Some day it might be 3 bytes long :-).
1242 */
1243 addr = simple_strtoul(argv[1], NULL, 16);
1244 alen = get_alen(argv[1]);
1245 if (alen > 3)
1246 return CMD_RET_USAGE;
1247
1248 /*
1249 * If another parameter, it is the length to display.
1250 * Length is the number of objects, not number of bytes.
1251 */
1252 if (argc > 2)
1253 length = simple_strtoul(argv[2], NULL, 16);
1254 }
1255
1256 /*
1257 * Print the lines.
1258 *
1259 * We buffer all read data, so we can make sure data is read only
1260 * once.
1261 */
1262 nbytes = length;
1263 do {
1264 unsigned char linebuf[DISP_LINE_LEN];
1265 unsigned char *cp;
1266
1267 linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
1268
1269 if (cros_ec_i2c_xfer(dev, chip, addr, alen, linebuf, linebytes,
1270 1))
1271 puts("Error reading the chip.\n");
1272 else {
1273 printf("%04x:", addr);
1274 cp = linebuf;
1275 for (j = 0; j < linebytes; j++) {
1276 printf(" %02x", *cp++);
1277 addr++;
1278 }
1279 puts(" ");
1280 cp = linebuf;
1281 for (j = 0; j < linebytes; j++) {
1282 if ((*cp < 0x20) || (*cp > 0x7e))
1283 puts(".");
1284 else
1285 printf("%c", *cp);
1286 cp++;
1287 }
1288 putc('\n');
1289 }
1290 nbytes -= linebytes;
1291 } while (nbytes > 0);
1292
1293 return 0;
1294 }
1295
1296 static int cros_ec_i2c_mw(struct cros_ec_dev *dev, int flag, int argc,
1297 char * const argv[])
1298 {
1299 uchar chip;
1300 ulong addr;
1301 uint alen;
1302 uchar byte;
1303 int count;
1304
1305 if ((argc < 3) || (argc > 4))
1306 return CMD_RET_USAGE;
1307
1308 /*
1309 * Chip is always specified.
1310 */
1311 chip = simple_strtoul(argv[0], NULL, 16);
1312
1313 /*
1314 * Address is always specified.
1315 */
1316 addr = simple_strtoul(argv[1], NULL, 16);
1317 alen = get_alen(argv[1]);
1318 if (alen > 3)
1319 return CMD_RET_USAGE;
1320
1321 /*
1322 * Value to write is always specified.
1323 */
1324 byte = simple_strtoul(argv[2], NULL, 16);
1325
1326 /*
1327 * Optional count
1328 */
1329 if (argc == 4)
1330 count = simple_strtoul(argv[3], NULL, 16);
1331 else
1332 count = 1;
1333
1334 while (count-- > 0) {
1335 if (cros_ec_i2c_xfer(dev, chip, addr++, alen, &byte, 1, 0))
1336 puts("Error writing the chip.\n");
1337 /*
1338 * Wait for the write to complete. The write can take
1339 * up to 10mSec (we allow a little more time).
1340 */
1341 /*
1342 * No write delay with FRAM devices.
1343 */
1344 #if !defined(CONFIG_SYS_I2C_FRAM)
1345 udelay(11000);
1346 #endif
1347 }
1348
1349 return 0;
1350 }
1351
1352 /* Temporary code until we have driver model and can use the i2c command */
1353 static int cros_ec_i2c_passthrough(struct cros_ec_dev *dev, int flag,
1354 int argc, char * const argv[])
1355 {
1356 const char *cmd;
1357
1358 if (argc < 1)
1359 return CMD_RET_USAGE;
1360 cmd = *argv++;
1361 argc--;
1362 if (0 == strcmp("md", cmd))
1363 cros_ec_i2c_md(dev, flag, argc, argv);
1364 else if (0 == strcmp("mw", cmd))
1365 cros_ec_i2c_mw(dev, flag, argc, argv);
1366 else
1367 return CMD_RET_USAGE;
1368
1369 return 0;
1370 }
1371
1372 static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1373 {
1374 struct cros_ec_dev *dev;
1375 struct udevice *udev;
1376 const char *cmd;
1377 int ret = 0;
1378
1379 if (argc < 2)
1380 return CMD_RET_USAGE;
1381
1382 cmd = argv[1];
1383 if (0 == strcmp("init", cmd)) {
1384 /* Remove any existing device */
1385 ret = uclass_find_device(UCLASS_CROS_EC, 0, &udev);
1386 if (!ret)
1387 device_remove(udev);
1388 ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev);
1389 if (ret) {
1390 printf("Could not init cros_ec device (err %d)\n", ret);
1391 return 1;
1392 }
1393 return 0;
1394 }
1395
1396 ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev);
1397 if (ret) {
1398 printf("Cannot get cros-ec device (err=%d)\n", ret);
1399 return 1;
1400 }
1401 dev = dev_get_uclass_priv(udev);
1402 if (0 == strcmp("id", cmd)) {
1403 char id[MSG_BYTES];
1404
1405 if (cros_ec_read_id(dev, id, sizeof(id))) {
1406 debug("%s: Could not read KBC ID\n", __func__);
1407 return 1;
1408 }
1409 printf("%s\n", id);
1410 } else if (0 == strcmp("info", cmd)) {
1411 struct ec_response_mkbp_info info;
1412
1413 if (cros_ec_info(dev, &info)) {
1414 debug("%s: Could not read KBC info\n", __func__);
1415 return 1;
1416 }
1417 printf("rows = %u\n", info.rows);
1418 printf("cols = %u\n", info.cols);
1419 printf("switches = %#x\n", info.switches);
1420 } else if (0 == strcmp("curimage", cmd)) {
1421 enum ec_current_image image;
1422
1423 if (cros_ec_read_current_image(dev, &image)) {
1424 debug("%s: Could not read KBC image\n", __func__);
1425 return 1;
1426 }
1427 printf("%d\n", image);
1428 } else if (0 == strcmp("hash", cmd)) {
1429 struct ec_response_vboot_hash hash;
1430 int i;
1431
1432 if (cros_ec_read_hash(dev, &hash)) {
1433 debug("%s: Could not read KBC hash\n", __func__);
1434 return 1;
1435 }
1436
1437 if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256)
1438 printf("type: SHA-256\n");
1439 else
1440 printf("type: %d\n", hash.hash_type);
1441
1442 printf("offset: 0x%08x\n", hash.offset);
1443 printf("size: 0x%08x\n", hash.size);
1444
1445 printf("digest: ");
1446 for (i = 0; i < hash.digest_size; i++)
1447 printf("%02x", hash.hash_digest[i]);
1448 printf("\n");
1449 } else if (0 == strcmp("reboot", cmd)) {
1450 int region;
1451 enum ec_reboot_cmd cmd;
1452
1453 if (argc >= 3 && !strcmp(argv[2], "cold"))
1454 cmd = EC_REBOOT_COLD;
1455 else {
1456 region = cros_ec_decode_region(argc - 2, argv + 2);
1457 if (region == EC_FLASH_REGION_RO)
1458 cmd = EC_REBOOT_JUMP_RO;
1459 else if (region == EC_FLASH_REGION_RW)
1460 cmd = EC_REBOOT_JUMP_RW;
1461 else
1462 return CMD_RET_USAGE;
1463 }
1464
1465 if (cros_ec_reboot(dev, cmd, 0)) {
1466 debug("%s: Could not reboot KBC\n", __func__);
1467 return 1;
1468 }
1469 } else if (0 == strcmp("events", cmd)) {
1470 uint32_t events;
1471
1472 if (cros_ec_get_host_events(dev, &events)) {
1473 debug("%s: Could not read host events\n", __func__);
1474 return 1;
1475 }
1476 printf("0x%08x\n", events);
1477 } else if (0 == strcmp("clrevents", cmd)) {
1478 uint32_t events = 0x7fffffff;
1479
1480 if (argc >= 3)
1481 events = simple_strtol(argv[2], NULL, 0);
1482
1483 if (cros_ec_clear_host_events(dev, events)) {
1484 debug("%s: Could not clear host events\n", __func__);
1485 return 1;
1486 }
1487 } else if (0 == strcmp("read", cmd)) {
1488 ret = do_read_write(dev, 0, argc, argv);
1489 if (ret > 0)
1490 return CMD_RET_USAGE;
1491 } else if (0 == strcmp("write", cmd)) {
1492 ret = do_read_write(dev, 1, argc, argv);
1493 if (ret > 0)
1494 return CMD_RET_USAGE;
1495 } else if (0 == strcmp("erase", cmd)) {
1496 int region = cros_ec_decode_region(argc - 2, argv + 2);
1497 uint32_t offset, size;
1498
1499 if (region == -1)
1500 return CMD_RET_USAGE;
1501 if (cros_ec_flash_offset(dev, region, &offset, &size)) {
1502 debug("%s: Could not read region info\n", __func__);
1503 ret = -1;
1504 } else {
1505 ret = cros_ec_flash_erase(dev, offset, size);
1506 if (ret) {
1507 debug("%s: Could not erase region\n",
1508 __func__);
1509 }
1510 }
1511 } else if (0 == strcmp("regioninfo", cmd)) {
1512 int region = cros_ec_decode_region(argc - 2, argv + 2);
1513 uint32_t offset, size;
1514
1515 if (region == -1)
1516 return CMD_RET_USAGE;
1517 ret = cros_ec_flash_offset(dev, region, &offset, &size);
1518 if (ret) {
1519 debug("%s: Could not read region info\n", __func__);
1520 } else {
1521 printf("Region: %s\n", region == EC_FLASH_REGION_RO ?
1522 "RO" : "RW");
1523 printf("Offset: %x\n", offset);
1524 printf("Size: %x\n", size);
1525 }
1526 } else if (0 == strcmp("vbnvcontext", cmd)) {
1527 uint8_t block[EC_VBNV_BLOCK_SIZE];
1528 char buf[3];
1529 int i, len;
1530 unsigned long result;
1531
1532 if (argc <= 2) {
1533 ret = cros_ec_read_vbnvcontext(dev, block);
1534 if (!ret) {
1535 printf("vbnv_block: ");
1536 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++)
1537 printf("%02x", block[i]);
1538 putc('\n');
1539 }
1540 } else {
1541 /*
1542 * TODO(clchiou): Move this to a utility function as
1543 * cmd_spi might want to call it.
1544 */
1545 memset(block, 0, EC_VBNV_BLOCK_SIZE);
1546 len = strlen(argv[2]);
1547 buf[2] = '\0';
1548 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) {
1549 if (i * 2 >= len)
1550 break;
1551 buf[0] = argv[2][i * 2];
1552 if (i * 2 + 1 >= len)
1553 buf[1] = '0';
1554 else
1555 buf[1] = argv[2][i * 2 + 1];
1556 strict_strtoul(buf, 16, &result);
1557 block[i] = result;
1558 }
1559 ret = cros_ec_write_vbnvcontext(dev, block);
1560 }
1561 if (ret) {
1562 debug("%s: Could not %s VbNvContext\n", __func__,
1563 argc <= 2 ? "read" : "write");
1564 }
1565 } else if (0 == strcmp("test", cmd)) {
1566 int result = cros_ec_test(dev);
1567
1568 if (result)
1569 printf("Test failed with error %d\n", result);
1570 else
1571 puts("Test passed\n");
1572 } else if (0 == strcmp("version", cmd)) {
1573 struct ec_response_get_version *p;
1574 char *build_string;
1575
1576 ret = cros_ec_read_version(dev, &p);
1577 if (!ret) {
1578 /* Print versions */
1579 printf("RO version: %1.*s\n",
1580 (int)sizeof(p->version_string_ro),
1581 p->version_string_ro);
1582 printf("RW version: %1.*s\n",
1583 (int)sizeof(p->version_string_rw),
1584 p->version_string_rw);
1585 printf("Firmware copy: %s\n",
1586 (p->current_image <
1587 ARRAY_SIZE(ec_current_image_name) ?
1588 ec_current_image_name[p->current_image] :
1589 "?"));
1590 ret = cros_ec_read_build_info(dev, &build_string);
1591 if (!ret)
1592 printf("Build info: %s\n", build_string);
1593 }
1594 } else if (0 == strcmp("ldo", cmd)) {
1595 uint8_t index, state;
1596 char *endp;
1597
1598 if (argc < 3)
1599 return CMD_RET_USAGE;
1600 index = simple_strtoul(argv[2], &endp, 10);
1601 if (*argv[2] == 0 || *endp != 0)
1602 return CMD_RET_USAGE;
1603 if (argc > 3) {
1604 state = simple_strtoul(argv[3], &endp, 10);
1605 if (*argv[3] == 0 || *endp != 0)
1606 return CMD_RET_USAGE;
1607 ret = cros_ec_set_ldo(dev, index, state);
1608 } else {
1609 ret = cros_ec_get_ldo(dev, index, &state);
1610 if (!ret) {
1611 printf("LDO%d: %s\n", index,
1612 state == EC_LDO_STATE_ON ?
1613 "on" : "off");
1614 }
1615 }
1616
1617 if (ret) {
1618 debug("%s: Could not access LDO%d\n", __func__, index);
1619 return ret;
1620 }
1621 } else if (0 == strcmp("i2c", cmd)) {
1622 ret = cros_ec_i2c_passthrough(dev, flag, argc - 2, argv + 2);
1623 } else {
1624 return CMD_RET_USAGE;
1625 }
1626
1627 if (ret < 0) {
1628 printf("Error: CROS-EC command failed (error %d)\n", ret);
1629 ret = 1;
1630 }
1631
1632 return ret;
1633 }
1634
1635 U_BOOT_CMD(
1636 crosec, 6, 1, do_cros_ec,
1637 "CROS-EC utility command",
1638 "init Re-init CROS-EC (done on startup automatically)\n"
1639 "crosec id Read CROS-EC ID\n"
1640 "crosec info Read CROS-EC info\n"
1641 "crosec curimage Read CROS-EC current image\n"
1642 "crosec hash Read CROS-EC hash\n"
1643 "crosec reboot [rw | ro | cold] Reboot CROS-EC\n"
1644 "crosec events Read CROS-EC host events\n"
1645 "crosec clrevents [mask] Clear CROS-EC host events\n"
1646 "crosec regioninfo <ro|rw> Read image info\n"
1647 "crosec erase <ro|rw> Erase EC image\n"
1648 "crosec read <ro|rw> <addr> [<size>] Read EC image\n"
1649 "crosec write <ro|rw> <addr> [<size>] Write EC image\n"
1650 "crosec vbnvcontext [hexstring] Read [write] VbNvContext from EC\n"
1651 "crosec ldo <idx> [<state>] Switch/Read LDO state\n"
1652 "crosec test run tests on cros_ec\n"
1653 "crosec version Read CROS-EC version\n"
1654 "crosec i2c md chip address[.0, .1, .2] [# of objects] - read from I2C passthru\n"
1655 "crosec i2c mw chip address[.0, .1, .2] value [count] - write to I2C passthru (fill)"
1656 );
1657 #endif
1658
1659 UCLASS_DRIVER(cros_ec) = {
1660 .id = UCLASS_CROS_EC,
1661 .name = "cros_ec",
1662 .per_device_auto_alloc_size = sizeof(struct cros_ec_dev),
1663 };