2 * Block driver for media (i.e., flash cards)
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 * Author: Andrew Christian
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
24 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
48 #include <linux/uaccess.h>
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
64 #define MODULE_PARAM_PREFIX "mmcblk."
67 * Set a 10 second timeout for polling write request busy state. Note, mmc core
68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69 * second software timer to timeout the whole request, so 10 seconds should be
72 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
73 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
74 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
76 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
77 (rq_data_dir(req) == WRITE))
78 static DEFINE_MUTEX(block_mutex
);
81 * The defaults come from config options but can be overriden by module
84 static int perdev_minors
= CONFIG_MMC_BLOCK_MINORS
;
87 * We've only got one major, so number of mmcblk devices is
88 * limited to (1 << 20) / number of minors per device. It is also
89 * limited by the MAX_DEVICES below.
91 static int max_devices
;
93 #define MAX_DEVICES 256
95 static DEFINE_IDA(mmc_blk_ida
);
96 static DEFINE_IDA(mmc_rpmb_ida
);
99 * There is one mmc_blk_data per slot.
101 struct mmc_blk_data
{
102 struct device
*parent
;
103 struct gendisk
*disk
;
104 struct mmc_queue queue
;
105 struct list_head part
;
106 struct list_head rpmbs
;
109 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
110 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
113 unsigned int read_only
;
114 unsigned int part_type
;
115 unsigned int reset_done
;
116 #define MMC_BLK_READ BIT(0)
117 #define MMC_BLK_WRITE BIT(1)
118 #define MMC_BLK_DISCARD BIT(2)
119 #define MMC_BLK_SECDISCARD BIT(3)
120 #define MMC_BLK_CQE_RECOVERY BIT(4)
123 * Only set in main mmc_blk_data associated
124 * with mmc_card with dev_set_drvdata, and keeps
125 * track of the current selected device partition.
127 unsigned int part_curr
;
128 struct device_attribute force_ro
;
129 struct device_attribute power_ro_lock
;
132 /* debugfs files (only in main mmc_blk_data) */
133 struct dentry
*status_dentry
;
134 struct dentry
*ext_csd_dentry
;
137 /* Device type for RPMB character devices */
138 static dev_t mmc_rpmb_devt
;
140 /* Bus type for RPMB character devices */
141 static struct bus_type mmc_rpmb_bus_type
= {
146 * struct mmc_rpmb_data - special RPMB device type for these areas
147 * @dev: the device for the RPMB area
148 * @chrdev: character device for the RPMB area
149 * @id: unique device ID number
150 * @part_index: partition index (0 on first)
151 * @md: parent MMC block device
152 * @node: list item, so we can put this device on a list
154 struct mmc_rpmb_data
{
158 unsigned int part_index
;
159 struct mmc_blk_data
*md
;
160 struct list_head node
;
163 static DEFINE_MUTEX(open_lock
);
165 module_param(perdev_minors
, int, 0444);
166 MODULE_PARM_DESC(perdev_minors
, "Minors numbers to allocate per device");
168 static inline int mmc_blk_part_switch(struct mmc_card
*card
,
169 unsigned int part_type
);
170 static void mmc_blk_rw_rq_prep(struct mmc_queue_req
*mqrq
,
171 struct mmc_card
*card
,
173 struct mmc_queue
*mq
);
174 static void mmc_blk_hsq_req_done(struct mmc_request
*mrq
);
176 static struct mmc_blk_data
*mmc_blk_get(struct gendisk
*disk
)
178 struct mmc_blk_data
*md
;
180 mutex_lock(&open_lock
);
181 md
= disk
->private_data
;
182 if (md
&& md
->usage
== 0)
186 mutex_unlock(&open_lock
);
191 static inline int mmc_get_devidx(struct gendisk
*disk
)
193 int devidx
= disk
->first_minor
/ perdev_minors
;
197 static void mmc_blk_put(struct mmc_blk_data
*md
)
199 mutex_lock(&open_lock
);
201 if (md
->usage
== 0) {
202 int devidx
= mmc_get_devidx(md
->disk
);
203 blk_put_queue(md
->queue
.queue
);
204 ida_simple_remove(&mmc_blk_ida
, devidx
);
208 mutex_unlock(&open_lock
);
211 static ssize_t
power_ro_lock_show(struct device
*dev
,
212 struct device_attribute
*attr
, char *buf
)
215 struct mmc_blk_data
*md
= mmc_blk_get(dev_to_disk(dev
));
216 struct mmc_card
*card
= md
->queue
.card
;
219 if (card
->ext_csd
.boot_ro_lock
& EXT_CSD_BOOT_WP_B_PERM_WP_EN
)
221 else if (card
->ext_csd
.boot_ro_lock
& EXT_CSD_BOOT_WP_B_PWR_WP_EN
)
224 ret
= snprintf(buf
, PAGE_SIZE
, "%d\n", locked
);
231 static ssize_t
power_ro_lock_store(struct device
*dev
,
232 struct device_attribute
*attr
, const char *buf
, size_t count
)
235 struct mmc_blk_data
*md
, *part_md
;
236 struct mmc_queue
*mq
;
240 if (kstrtoul(buf
, 0, &set
))
246 md
= mmc_blk_get(dev_to_disk(dev
));
249 /* Dispatch locking to the block layer */
250 req
= blk_get_request(mq
->queue
, REQ_OP_DRV_OUT
, 0);
252 count
= PTR_ERR(req
);
255 req_to_mmc_queue_req(req
)->drv_op
= MMC_DRV_OP_BOOT_WP
;
256 blk_execute_rq(mq
->queue
, NULL
, req
, 0);
257 ret
= req_to_mmc_queue_req(req
)->drv_op_result
;
258 blk_put_request(req
);
261 pr_info("%s: Locking boot partition ro until next power on\n",
262 md
->disk
->disk_name
);
263 set_disk_ro(md
->disk
, 1);
265 list_for_each_entry(part_md
, &md
->part
, part
)
266 if (part_md
->area_type
== MMC_BLK_DATA_AREA_BOOT
) {
267 pr_info("%s: Locking boot partition ro until next power on\n", part_md
->disk
->disk_name
);
268 set_disk_ro(part_md
->disk
, 1);
276 static ssize_t
force_ro_show(struct device
*dev
, struct device_attribute
*attr
,
280 struct mmc_blk_data
*md
= mmc_blk_get(dev_to_disk(dev
));
282 ret
= snprintf(buf
, PAGE_SIZE
, "%d\n",
283 get_disk_ro(dev_to_disk(dev
)) ^
289 static ssize_t
force_ro_store(struct device
*dev
, struct device_attribute
*attr
,
290 const char *buf
, size_t count
)
294 struct mmc_blk_data
*md
= mmc_blk_get(dev_to_disk(dev
));
295 unsigned long set
= simple_strtoul(buf
, &end
, 0);
301 set_disk_ro(dev_to_disk(dev
), set
|| md
->read_only
);
308 static int mmc_blk_open(struct block_device
*bdev
, fmode_t mode
)
310 struct mmc_blk_data
*md
= mmc_blk_get(bdev
->bd_disk
);
313 mutex_lock(&block_mutex
);
316 check_disk_change(bdev
);
319 if ((mode
& FMODE_WRITE
) && md
->read_only
) {
324 mutex_unlock(&block_mutex
);
329 static void mmc_blk_release(struct gendisk
*disk
, fmode_t mode
)
331 struct mmc_blk_data
*md
= disk
->private_data
;
333 mutex_lock(&block_mutex
);
335 mutex_unlock(&block_mutex
);
339 mmc_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
341 geo
->cylinders
= get_capacity(bdev
->bd_disk
) / (4 * 16);
347 struct mmc_blk_ioc_data
{
348 struct mmc_ioc_cmd ic
;
351 struct mmc_rpmb_data
*rpmb
;
354 static struct mmc_blk_ioc_data
*mmc_blk_ioctl_copy_from_user(
355 struct mmc_ioc_cmd __user
*user
)
357 struct mmc_blk_ioc_data
*idata
;
360 idata
= kmalloc(sizeof(*idata
), GFP_KERNEL
);
366 if (copy_from_user(&idata
->ic
, user
, sizeof(idata
->ic
))) {
371 idata
->buf_bytes
= (u64
) idata
->ic
.blksz
* idata
->ic
.blocks
;
372 if (idata
->buf_bytes
> MMC_IOC_MAX_BYTES
) {
377 if (!idata
->buf_bytes
) {
382 idata
->buf
= memdup_user((void __user
*)(unsigned long)
383 idata
->ic
.data_ptr
, idata
->buf_bytes
);
384 if (IS_ERR(idata
->buf
)) {
385 err
= PTR_ERR(idata
->buf
);
397 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user
*ic_ptr
,
398 struct mmc_blk_ioc_data
*idata
)
400 struct mmc_ioc_cmd
*ic
= &idata
->ic
;
402 if (copy_to_user(&(ic_ptr
->response
), ic
->response
,
403 sizeof(ic
->response
)))
406 if (!idata
->ic
.write_flag
) {
407 if (copy_to_user((void __user
*)(unsigned long)ic
->data_ptr
,
408 idata
->buf
, idata
->buf_bytes
))
415 static int card_busy_detect(struct mmc_card
*card
, unsigned int timeout_ms
,
418 unsigned long timeout
= jiffies
+ msecs_to_jiffies(timeout_ms
);
423 bool done
= time_after(jiffies
, timeout
);
425 err
= __mmc_send_status(card
, &status
, 5);
427 dev_err(mmc_dev(card
->host
),
428 "error %d requesting status\n", err
);
432 /* Accumulate any response error bits seen */
434 *resp_errs
|= status
;
437 * Timeout if the device never becomes ready for data and never
438 * leaves the program state.
441 dev_err(mmc_dev(card
->host
),
442 "Card stuck in wrong state! %s status: %#x\n",
446 } while (!mmc_ready_for_data(status
));
451 static int __mmc_blk_ioctl_cmd(struct mmc_card
*card
, struct mmc_blk_data
*md
,
452 struct mmc_blk_ioc_data
*idata
)
454 struct mmc_command cmd
= {}, sbc
= {};
455 struct mmc_data data
= {};
456 struct mmc_request mrq
= {};
457 struct scatterlist sg
;
459 unsigned int target_part
;
461 if (!card
|| !md
|| !idata
)
465 * The RPMB accesses comes in from the character device, so we
466 * need to target these explicitly. Else we just target the
467 * partition type for the block device the ioctl() was issued
471 /* Support multiple RPMB partitions */
472 target_part
= idata
->rpmb
->part_index
;
473 target_part
|= EXT_CSD_PART_CONFIG_ACC_RPMB
;
475 target_part
= md
->part_type
;
478 cmd
.opcode
= idata
->ic
.opcode
;
479 cmd
.arg
= idata
->ic
.arg
;
480 cmd
.flags
= idata
->ic
.flags
;
482 if (idata
->buf_bytes
) {
485 data
.blksz
= idata
->ic
.blksz
;
486 data
.blocks
= idata
->ic
.blocks
;
488 sg_init_one(data
.sg
, idata
->buf
, idata
->buf_bytes
);
490 if (idata
->ic
.write_flag
)
491 data
.flags
= MMC_DATA_WRITE
;
493 data
.flags
= MMC_DATA_READ
;
495 /* data.flags must already be set before doing this. */
496 mmc_set_data_timeout(&data
, card
);
498 /* Allow overriding the timeout_ns for empirical tuning. */
499 if (idata
->ic
.data_timeout_ns
)
500 data
.timeout_ns
= idata
->ic
.data_timeout_ns
;
502 if ((cmd
.flags
& MMC_RSP_R1B
) == MMC_RSP_R1B
) {
504 * Pretend this is a data transfer and rely on the
505 * host driver to compute timeout. When all host
506 * drivers support cmd.cmd_timeout for R1B, this
510 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
512 data
.timeout_ns
= idata
->ic
.cmd_timeout_ms
* 1000000;
520 err
= mmc_blk_part_switch(card
, target_part
);
524 if (idata
->ic
.is_acmd
) {
525 err
= mmc_app_cmd(card
->host
, card
);
531 sbc
.opcode
= MMC_SET_BLOCK_COUNT
;
533 * We don't do any blockcount validation because the max size
534 * may be increased by a future standard. We just copy the
535 * 'Reliable Write' bit here.
537 sbc
.arg
= data
.blocks
| (idata
->ic
.write_flag
& BIT(31));
538 sbc
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
542 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd
.arg
) == EXT_CSD_SANITIZE_START
) &&
543 (cmd
.opcode
== MMC_SWITCH
))
544 return mmc_sanitize(card
);
546 mmc_wait_for_req(card
->host
, &mrq
);
549 dev_err(mmc_dev(card
->host
), "%s: cmd error %d\n",
550 __func__
, cmd
.error
);
554 dev_err(mmc_dev(card
->host
), "%s: data error %d\n",
555 __func__
, data
.error
);
560 * Make sure the cache of the PARTITION_CONFIG register and
561 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
562 * changed it successfully.
564 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd
.arg
) == EXT_CSD_PART_CONFIG
) &&
565 (cmd
.opcode
== MMC_SWITCH
)) {
566 struct mmc_blk_data
*main_md
= dev_get_drvdata(&card
->dev
);
567 u8 value
= MMC_EXTRACT_VALUE_FROM_ARG(cmd
.arg
);
570 * Update cache so the next mmc_blk_part_switch call operates
571 * on up-to-date data.
573 card
->ext_csd
.part_config
= value
;
574 main_md
->part_curr
= value
& EXT_CSD_PART_CONFIG_ACC_MASK
;
578 * According to the SD specs, some commands require a delay after
579 * issuing the command.
581 if (idata
->ic
.postsleep_min_us
)
582 usleep_range(idata
->ic
.postsleep_min_us
, idata
->ic
.postsleep_max_us
);
584 memcpy(&(idata
->ic
.response
), cmd
.resp
, sizeof(cmd
.resp
));
586 if (idata
->rpmb
|| (cmd
.flags
& MMC_RSP_R1B
)) {
588 * Ensure RPMB/R1B command has completed by polling CMD13
591 err
= card_busy_detect(card
, MMC_BLK_TIMEOUT_MS
, NULL
);
597 static int mmc_blk_ioctl_cmd(struct mmc_blk_data
*md
,
598 struct mmc_ioc_cmd __user
*ic_ptr
,
599 struct mmc_rpmb_data
*rpmb
)
601 struct mmc_blk_ioc_data
*idata
;
602 struct mmc_blk_ioc_data
*idatas
[1];
603 struct mmc_queue
*mq
;
604 struct mmc_card
*card
;
605 int err
= 0, ioc_err
= 0;
608 idata
= mmc_blk_ioctl_copy_from_user(ic_ptr
);
610 return PTR_ERR(idata
);
611 /* This will be NULL on non-RPMB ioctl():s */
614 card
= md
->queue
.card
;
621 * Dispatch the ioctl() into the block request queue.
624 req
= blk_get_request(mq
->queue
,
625 idata
->ic
.write_flag
? REQ_OP_DRV_OUT
: REQ_OP_DRV_IN
, 0);
631 req_to_mmc_queue_req(req
)->drv_op
=
632 rpmb
? MMC_DRV_OP_IOCTL_RPMB
: MMC_DRV_OP_IOCTL
;
633 req_to_mmc_queue_req(req
)->drv_op_data
= idatas
;
634 req_to_mmc_queue_req(req
)->ioc_count
= 1;
635 blk_execute_rq(mq
->queue
, NULL
, req
, 0);
636 ioc_err
= req_to_mmc_queue_req(req
)->drv_op_result
;
637 err
= mmc_blk_ioctl_copy_to_user(ic_ptr
, idata
);
638 blk_put_request(req
);
643 return ioc_err
? ioc_err
: err
;
646 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data
*md
,
647 struct mmc_ioc_multi_cmd __user
*user
,
648 struct mmc_rpmb_data
*rpmb
)
650 struct mmc_blk_ioc_data
**idata
= NULL
;
651 struct mmc_ioc_cmd __user
*cmds
= user
->cmds
;
652 struct mmc_card
*card
;
653 struct mmc_queue
*mq
;
654 int i
, err
= 0, ioc_err
= 0;
658 if (copy_from_user(&num_of_cmds
, &user
->num_of_cmds
,
659 sizeof(num_of_cmds
)))
665 if (num_of_cmds
> MMC_IOC_MAX_CMDS
)
668 idata
= kcalloc(num_of_cmds
, sizeof(*idata
), GFP_KERNEL
);
672 for (i
= 0; i
< num_of_cmds
; i
++) {
673 idata
[i
] = mmc_blk_ioctl_copy_from_user(&cmds
[i
]);
674 if (IS_ERR(idata
[i
])) {
675 err
= PTR_ERR(idata
[i
]);
679 /* This will be NULL on non-RPMB ioctl():s */
680 idata
[i
]->rpmb
= rpmb
;
683 card
= md
->queue
.card
;
691 * Dispatch the ioctl()s into the block request queue.
694 req
= blk_get_request(mq
->queue
,
695 idata
[0]->ic
.write_flag
? REQ_OP_DRV_OUT
: REQ_OP_DRV_IN
, 0);
700 req_to_mmc_queue_req(req
)->drv_op
=
701 rpmb
? MMC_DRV_OP_IOCTL_RPMB
: MMC_DRV_OP_IOCTL
;
702 req_to_mmc_queue_req(req
)->drv_op_data
= idata
;
703 req_to_mmc_queue_req(req
)->ioc_count
= num_of_cmds
;
704 blk_execute_rq(mq
->queue
, NULL
, req
, 0);
705 ioc_err
= req_to_mmc_queue_req(req
)->drv_op_result
;
707 /* copy to user if data and response */
708 for (i
= 0; i
< num_of_cmds
&& !err
; i
++)
709 err
= mmc_blk_ioctl_copy_to_user(&cmds
[i
], idata
[i
]);
711 blk_put_request(req
);
714 for (i
= 0; i
< num_of_cmds
; i
++) {
715 kfree(idata
[i
]->buf
);
719 return ioc_err
? ioc_err
: err
;
722 static int mmc_blk_check_blkdev(struct block_device
*bdev
)
725 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
726 * whole block device, not on a partition. This prevents overspray
727 * between sibling partitions.
729 if ((!capable(CAP_SYS_RAWIO
)) || (bdev
!= bdev
->bd_contains
))
734 static int mmc_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
735 unsigned int cmd
, unsigned long arg
)
737 struct mmc_blk_data
*md
;
742 ret
= mmc_blk_check_blkdev(bdev
);
745 md
= mmc_blk_get(bdev
->bd_disk
);
748 ret
= mmc_blk_ioctl_cmd(md
,
749 (struct mmc_ioc_cmd __user
*)arg
,
753 case MMC_IOC_MULTI_CMD
:
754 ret
= mmc_blk_check_blkdev(bdev
);
757 md
= mmc_blk_get(bdev
->bd_disk
);
760 ret
= mmc_blk_ioctl_multi_cmd(md
,
761 (struct mmc_ioc_multi_cmd __user
*)arg
,
771 static int mmc_blk_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
772 unsigned int cmd
, unsigned long arg
)
774 return mmc_blk_ioctl(bdev
, mode
, cmd
, (unsigned long) compat_ptr(arg
));
778 static const struct block_device_operations mmc_bdops
= {
779 .open
= mmc_blk_open
,
780 .release
= mmc_blk_release
,
781 .getgeo
= mmc_blk_getgeo
,
782 .owner
= THIS_MODULE
,
783 .ioctl
= mmc_blk_ioctl
,
785 .compat_ioctl
= mmc_blk_compat_ioctl
,
789 static int mmc_blk_part_switch_pre(struct mmc_card
*card
,
790 unsigned int part_type
)
794 if (part_type
== EXT_CSD_PART_CONFIG_ACC_RPMB
) {
795 if (card
->ext_csd
.cmdq_en
) {
796 ret
= mmc_cmdq_disable(card
);
800 mmc_retune_pause(card
->host
);
806 static int mmc_blk_part_switch_post(struct mmc_card
*card
,
807 unsigned int part_type
)
811 if (part_type
== EXT_CSD_PART_CONFIG_ACC_RPMB
) {
812 mmc_retune_unpause(card
->host
);
813 if (card
->reenable_cmdq
&& !card
->ext_csd
.cmdq_en
)
814 ret
= mmc_cmdq_enable(card
);
820 static inline int mmc_blk_part_switch(struct mmc_card
*card
,
821 unsigned int part_type
)
824 struct mmc_blk_data
*main_md
= dev_get_drvdata(&card
->dev
);
826 if (main_md
->part_curr
== part_type
)
829 if (mmc_card_mmc(card
)) {
830 u8 part_config
= card
->ext_csd
.part_config
;
832 ret
= mmc_blk_part_switch_pre(card
, part_type
);
836 part_config
&= ~EXT_CSD_PART_CONFIG_ACC_MASK
;
837 part_config
|= part_type
;
839 ret
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
840 EXT_CSD_PART_CONFIG
, part_config
,
841 card
->ext_csd
.part_time
);
843 mmc_blk_part_switch_post(card
, part_type
);
847 card
->ext_csd
.part_config
= part_config
;
849 ret
= mmc_blk_part_switch_post(card
, main_md
->part_curr
);
852 main_md
->part_curr
= part_type
;
856 static int mmc_sd_num_wr_blocks(struct mmc_card
*card
, u32
*written_blocks
)
862 struct mmc_request mrq
= {};
863 struct mmc_command cmd
= {};
864 struct mmc_data data
= {};
866 struct scatterlist sg
;
868 cmd
.opcode
= MMC_APP_CMD
;
869 cmd
.arg
= card
->rca
<< 16;
870 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
872 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
875 if (!mmc_host_is_spi(card
->host
) && !(cmd
.resp
[0] & R1_APP_CMD
))
878 memset(&cmd
, 0, sizeof(struct mmc_command
));
880 cmd
.opcode
= SD_APP_SEND_NUM_WR_BLKS
;
882 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_ADTC
;
886 data
.flags
= MMC_DATA_READ
;
889 mmc_set_data_timeout(&data
, card
);
894 blocks
= kmalloc(4, GFP_KERNEL
);
898 sg_init_one(&sg
, blocks
, 4);
900 mmc_wait_for_req(card
->host
, &mrq
);
902 result
= ntohl(*blocks
);
905 if (cmd
.error
|| data
.error
)
908 *written_blocks
= result
;
913 static unsigned int mmc_blk_clock_khz(struct mmc_host
*host
)
915 if (host
->actual_clock
)
916 return host
->actual_clock
/ 1000;
918 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
920 return host
->ios
.clock
/ 2000;
922 /* How can there be no clock */
924 return 100; /* 100 kHz is minimum possible value */
927 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host
*host
,
928 struct mmc_data
*data
)
930 unsigned int ms
= DIV_ROUND_UP(data
->timeout_ns
, 1000000);
933 if (data
->timeout_clks
) {
934 khz
= mmc_blk_clock_khz(host
);
935 ms
+= DIV_ROUND_UP(data
->timeout_clks
, khz
);
941 static int mmc_blk_reset(struct mmc_blk_data
*md
, struct mmc_host
*host
,
946 if (md
->reset_done
& type
)
949 md
->reset_done
|= type
;
950 err
= mmc_hw_reset(host
);
951 /* Ensure we switch back to the correct partition */
952 if (err
!= -EOPNOTSUPP
) {
953 struct mmc_blk_data
*main_md
=
954 dev_get_drvdata(&host
->card
->dev
);
957 main_md
->part_curr
= main_md
->part_type
;
958 part_err
= mmc_blk_part_switch(host
->card
, md
->part_type
);
961 * We have failed to get back into the correct
962 * partition, so we need to abort the whole request.
970 static inline void mmc_blk_reset_success(struct mmc_blk_data
*md
, int type
)
972 md
->reset_done
&= ~type
;
976 * The non-block commands come back from the block layer after it queued it and
977 * processed it with all other requests and then they get issued in this
980 static void mmc_blk_issue_drv_op(struct mmc_queue
*mq
, struct request
*req
)
982 struct mmc_queue_req
*mq_rq
;
983 struct mmc_card
*card
= mq
->card
;
984 struct mmc_blk_data
*md
= mq
->blkdata
;
985 struct mmc_blk_ioc_data
**idata
;
992 mq_rq
= req_to_mmc_queue_req(req
);
993 rpmb_ioctl
= (mq_rq
->drv_op
== MMC_DRV_OP_IOCTL_RPMB
);
995 switch (mq_rq
->drv_op
) {
996 case MMC_DRV_OP_IOCTL
:
997 case MMC_DRV_OP_IOCTL_RPMB
:
998 idata
= mq_rq
->drv_op_data
;
999 for (i
= 0, ret
= 0; i
< mq_rq
->ioc_count
; i
++) {
1000 ret
= __mmc_blk_ioctl_cmd(card
, md
, idata
[i
]);
1004 /* Always switch back to main area after RPMB access */
1006 mmc_blk_part_switch(card
, 0);
1008 case MMC_DRV_OP_BOOT_WP
:
1009 ret
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
, EXT_CSD_BOOT_WP
,
1010 card
->ext_csd
.boot_ro_lock
|
1011 EXT_CSD_BOOT_WP_B_PWR_WP_EN
,
1012 card
->ext_csd
.part_time
);
1014 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1015 md
->disk
->disk_name
, ret
);
1017 card
->ext_csd
.boot_ro_lock
|=
1018 EXT_CSD_BOOT_WP_B_PWR_WP_EN
;
1020 case MMC_DRV_OP_GET_CARD_STATUS
:
1021 ret
= mmc_send_status(card
, &status
);
1025 case MMC_DRV_OP_GET_EXT_CSD
:
1026 ext_csd
= mq_rq
->drv_op_data
;
1027 ret
= mmc_get_ext_csd(card
, ext_csd
);
1030 pr_err("%s: unknown driver specific operation\n",
1031 md
->disk
->disk_name
);
1035 mq_rq
->drv_op_result
= ret
;
1036 blk_mq_end_request(req
, ret
? BLK_STS_IOERR
: BLK_STS_OK
);
1039 static void mmc_blk_issue_discard_rq(struct mmc_queue
*mq
, struct request
*req
)
1041 struct mmc_blk_data
*md
= mq
->blkdata
;
1042 struct mmc_card
*card
= md
->queue
.card
;
1043 unsigned int from
, nr
;
1044 int err
= 0, type
= MMC_BLK_DISCARD
;
1045 blk_status_t status
= BLK_STS_OK
;
1047 if (!mmc_can_erase(card
)) {
1048 status
= BLK_STS_NOTSUPP
;
1052 from
= blk_rq_pos(req
);
1053 nr
= blk_rq_sectors(req
);
1057 if (card
->quirks
& MMC_QUIRK_INAND_CMD38
) {
1058 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1059 INAND_CMD38_ARG_EXT_CSD
,
1060 card
->erase_arg
== MMC_TRIM_ARG
?
1061 INAND_CMD38_ARG_TRIM
:
1062 INAND_CMD38_ARG_ERASE
,
1063 card
->ext_csd
.generic_cmd6_time
);
1066 err
= mmc_erase(card
, from
, nr
, card
->erase_arg
);
1067 } while (err
== -EIO
&& !mmc_blk_reset(md
, card
->host
, type
));
1069 status
= BLK_STS_IOERR
;
1071 mmc_blk_reset_success(md
, type
);
1073 blk_mq_end_request(req
, status
);
1076 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue
*mq
,
1077 struct request
*req
)
1079 struct mmc_blk_data
*md
= mq
->blkdata
;
1080 struct mmc_card
*card
= md
->queue
.card
;
1081 unsigned int from
, nr
, arg
;
1082 int err
= 0, type
= MMC_BLK_SECDISCARD
;
1083 blk_status_t status
= BLK_STS_OK
;
1085 if (!(mmc_can_secure_erase_trim(card
))) {
1086 status
= BLK_STS_NOTSUPP
;
1090 from
= blk_rq_pos(req
);
1091 nr
= blk_rq_sectors(req
);
1093 if (mmc_can_trim(card
) && !mmc_erase_group_aligned(card
, from
, nr
))
1094 arg
= MMC_SECURE_TRIM1_ARG
;
1096 arg
= MMC_SECURE_ERASE_ARG
;
1099 if (card
->quirks
& MMC_QUIRK_INAND_CMD38
) {
1100 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1101 INAND_CMD38_ARG_EXT_CSD
,
1102 arg
== MMC_SECURE_TRIM1_ARG
?
1103 INAND_CMD38_ARG_SECTRIM1
:
1104 INAND_CMD38_ARG_SECERASE
,
1105 card
->ext_csd
.generic_cmd6_time
);
1110 err
= mmc_erase(card
, from
, nr
, arg
);
1114 status
= BLK_STS_IOERR
;
1118 if (arg
== MMC_SECURE_TRIM1_ARG
) {
1119 if (card
->quirks
& MMC_QUIRK_INAND_CMD38
) {
1120 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1121 INAND_CMD38_ARG_EXT_CSD
,
1122 INAND_CMD38_ARG_SECTRIM2
,
1123 card
->ext_csd
.generic_cmd6_time
);
1128 err
= mmc_erase(card
, from
, nr
, MMC_SECURE_TRIM2_ARG
);
1132 status
= BLK_STS_IOERR
;
1138 if (err
&& !mmc_blk_reset(md
, card
->host
, type
))
1141 mmc_blk_reset_success(md
, type
);
1143 blk_mq_end_request(req
, status
);
1146 static void mmc_blk_issue_flush(struct mmc_queue
*mq
, struct request
*req
)
1148 struct mmc_blk_data
*md
= mq
->blkdata
;
1149 struct mmc_card
*card
= md
->queue
.card
;
1152 ret
= mmc_flush_cache(card
);
1153 blk_mq_end_request(req
, ret
? BLK_STS_IOERR
: BLK_STS_OK
);
1157 * Reformat current write as a reliable write, supporting
1158 * both legacy and the enhanced reliable write MMC cards.
1159 * In each transfer we'll handle only as much as a single
1160 * reliable write can handle, thus finish the request in
1161 * partial completions.
1163 static inline void mmc_apply_rel_rw(struct mmc_blk_request
*brq
,
1164 struct mmc_card
*card
,
1165 struct request
*req
)
1167 if (!(card
->ext_csd
.rel_param
& EXT_CSD_WR_REL_PARAM_EN
)) {
1168 /* Legacy mode imposes restrictions on transfers. */
1169 if (!IS_ALIGNED(blk_rq_pos(req
), card
->ext_csd
.rel_sectors
))
1170 brq
->data
.blocks
= 1;
1172 if (brq
->data
.blocks
> card
->ext_csd
.rel_sectors
)
1173 brq
->data
.blocks
= card
->ext_csd
.rel_sectors
;
1174 else if (brq
->data
.blocks
< card
->ext_csd
.rel_sectors
)
1175 brq
->data
.blocks
= 1;
1179 #define CMD_ERRORS_EXCL_OOR \
1180 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1181 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1182 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1183 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1184 R1_CC_ERROR | /* Card controller error */ \
1185 R1_ERROR) /* General/unknown error */
1187 #define CMD_ERRORS \
1188 (CMD_ERRORS_EXCL_OOR | \
1189 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1191 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1196 * Per the SD specification(physical layer version 4.10)[1],
1197 * section 4.3.3, it explicitly states that "When the last
1198 * block of user area is read using CMD18, the host should
1199 * ignore OUT_OF_RANGE error that may occur even the sequence
1200 * is correct". And JESD84-B51 for eMMC also has a similar
1201 * statement on section 6.8.3.
1203 * Multiple block read/write could be done by either predefined
1204 * method, namely CMD23, or open-ending mode. For open-ending mode,
1205 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1207 * However the spec[1] doesn't tell us whether we should also
1208 * ignore that for predefined method. But per the spec[1], section
1209 * 4.15 Set Block Count Command, it says"If illegal block count
1210 * is set, out of range error will be indicated during read/write
1211 * operation (For example, data transfer is stopped at user area
1212 * boundary)." In another word, we could expect a out of range error
1213 * in the response for the following CMD18/25. And if argument of
1214 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1215 * we could also expect to get a -ETIMEDOUT or any error number from
1216 * the host drivers due to missing data response(for write)/data(for
1217 * read), as the cards will stop the data transfer by itself per the
1218 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1221 if (!brq
->stop
.error
) {
1222 bool oor_with_open_end
;
1223 /* If there is no error yet, check R1 response */
1225 val
= brq
->stop
.resp
[0] & CMD_ERRORS
;
1226 oor_with_open_end
= val
& R1_OUT_OF_RANGE
&& !brq
->mrq
.sbc
;
1228 if (val
&& !oor_with_open_end
)
1229 brq
->stop
.error
= -EIO
;
1233 static void mmc_blk_data_prep(struct mmc_queue
*mq
, struct mmc_queue_req
*mqrq
,
1234 int disable_multi
, bool *do_rel_wr_p
,
1235 bool *do_data_tag_p
)
1237 struct mmc_blk_data
*md
= mq
->blkdata
;
1238 struct mmc_card
*card
= md
->queue
.card
;
1239 struct mmc_blk_request
*brq
= &mqrq
->brq
;
1240 struct request
*req
= mmc_queue_req_to_req(mqrq
);
1241 bool do_rel_wr
, do_data_tag
;
1244 * Reliable writes are used to implement Forced Unit Access and
1245 * are supported only on MMCs.
1247 do_rel_wr
= (req
->cmd_flags
& REQ_FUA
) &&
1248 rq_data_dir(req
) == WRITE
&&
1249 (md
->flags
& MMC_BLK_REL_WR
);
1251 memset(brq
, 0, sizeof(struct mmc_blk_request
));
1253 brq
->mrq
.data
= &brq
->data
;
1254 brq
->mrq
.tag
= req
->tag
;
1256 brq
->stop
.opcode
= MMC_STOP_TRANSMISSION
;
1259 if (rq_data_dir(req
) == READ
) {
1260 brq
->data
.flags
= MMC_DATA_READ
;
1261 brq
->stop
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1263 brq
->data
.flags
= MMC_DATA_WRITE
;
1264 brq
->stop
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
1267 brq
->data
.blksz
= 512;
1268 brq
->data
.blocks
= blk_rq_sectors(req
);
1269 brq
->data
.blk_addr
= blk_rq_pos(req
);
1272 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1273 * The eMMC will give "high" priority tasks priority over "simple"
1274 * priority tasks. Here we always set "simple" priority by not setting
1279 * The block layer doesn't support all sector count
1280 * restrictions, so we need to be prepared for too big
1283 if (brq
->data
.blocks
> card
->host
->max_blk_count
)
1284 brq
->data
.blocks
= card
->host
->max_blk_count
;
1286 if (brq
->data
.blocks
> 1) {
1288 * Some SD cards in SPI mode return a CRC error or even lock up
1289 * completely when trying to read the last block using a
1290 * multiblock read command.
1292 if (mmc_host_is_spi(card
->host
) && (rq_data_dir(req
) == READ
) &&
1293 (blk_rq_pos(req
) + blk_rq_sectors(req
) ==
1294 get_capacity(md
->disk
)))
1298 * After a read error, we redo the request one sector
1299 * at a time in order to accurately determine which
1300 * sectors can be read successfully.
1303 brq
->data
.blocks
= 1;
1306 * Some controllers have HW issues while operating
1307 * in multiple I/O mode
1309 if (card
->host
->ops
->multi_io_quirk
)
1310 brq
->data
.blocks
= card
->host
->ops
->multi_io_quirk(card
,
1311 (rq_data_dir(req
) == READ
) ?
1312 MMC_DATA_READ
: MMC_DATA_WRITE
,
1317 mmc_apply_rel_rw(brq
, card
, req
);
1318 brq
->data
.flags
|= MMC_DATA_REL_WR
;
1322 * Data tag is used only during writing meta data to speed
1323 * up write and any subsequent read of this meta data
1325 do_data_tag
= card
->ext_csd
.data_tag_unit_size
&&
1326 (req
->cmd_flags
& REQ_META
) &&
1327 (rq_data_dir(req
) == WRITE
) &&
1328 ((brq
->data
.blocks
* brq
->data
.blksz
) >=
1329 card
->ext_csd
.data_tag_unit_size
);
1332 brq
->data
.flags
|= MMC_DATA_DAT_TAG
;
1334 mmc_set_data_timeout(&brq
->data
, card
);
1336 brq
->data
.sg
= mqrq
->sg
;
1337 brq
->data
.sg_len
= mmc_queue_map_sg(mq
, mqrq
);
1340 * Adjust the sg list so it is the same size as the
1343 if (brq
->data
.blocks
!= blk_rq_sectors(req
)) {
1344 int i
, data_size
= brq
->data
.blocks
<< 9;
1345 struct scatterlist
*sg
;
1347 for_each_sg(brq
->data
.sg
, sg
, brq
->data
.sg_len
, i
) {
1348 data_size
-= sg
->length
;
1349 if (data_size
<= 0) {
1350 sg
->length
+= data_size
;
1355 brq
->data
.sg_len
= i
;
1359 *do_rel_wr_p
= do_rel_wr
;
1362 *do_data_tag_p
= do_data_tag
;
1365 #define MMC_CQE_RETRIES 2
1367 static void mmc_blk_cqe_complete_rq(struct mmc_queue
*mq
, struct request
*req
)
1369 struct mmc_queue_req
*mqrq
= req_to_mmc_queue_req(req
);
1370 struct mmc_request
*mrq
= &mqrq
->brq
.mrq
;
1371 struct request_queue
*q
= req
->q
;
1372 struct mmc_host
*host
= mq
->card
->host
;
1373 enum mmc_issue_type issue_type
= mmc_issue_type(mq
, req
);
1374 unsigned long flags
;
1378 mmc_cqe_post_req(host
, mrq
);
1380 if (mrq
->cmd
&& mrq
->cmd
->error
)
1381 err
= mrq
->cmd
->error
;
1382 else if (mrq
->data
&& mrq
->data
->error
)
1383 err
= mrq
->data
->error
;
1388 if (mqrq
->retries
++ < MMC_CQE_RETRIES
)
1389 blk_mq_requeue_request(req
, true);
1391 blk_mq_end_request(req
, BLK_STS_IOERR
);
1392 } else if (mrq
->data
) {
1393 if (blk_update_request(req
, BLK_STS_OK
, mrq
->data
->bytes_xfered
))
1394 blk_mq_requeue_request(req
, true);
1396 __blk_mq_end_request(req
, BLK_STS_OK
);
1398 blk_mq_end_request(req
, BLK_STS_OK
);
1401 spin_lock_irqsave(&mq
->lock
, flags
);
1403 mq
->in_flight
[issue_type
] -= 1;
1405 put_card
= (mmc_tot_in_flight(mq
) == 0);
1407 mmc_cqe_check_busy(mq
);
1409 spin_unlock_irqrestore(&mq
->lock
, flags
);
1412 blk_mq_run_hw_queues(q
, true);
1415 mmc_put_card(mq
->card
, &mq
->ctx
);
1418 void mmc_blk_cqe_recovery(struct mmc_queue
*mq
)
1420 struct mmc_card
*card
= mq
->card
;
1421 struct mmc_host
*host
= card
->host
;
1424 pr_debug("%s: CQE recovery start\n", mmc_hostname(host
));
1426 err
= mmc_cqe_recovery(host
);
1428 mmc_blk_reset(mq
->blkdata
, host
, MMC_BLK_CQE_RECOVERY
);
1430 mmc_blk_reset_success(mq
->blkdata
, MMC_BLK_CQE_RECOVERY
);
1432 pr_debug("%s: CQE recovery done\n", mmc_hostname(host
));
1435 static void mmc_blk_cqe_req_done(struct mmc_request
*mrq
)
1437 struct mmc_queue_req
*mqrq
= container_of(mrq
, struct mmc_queue_req
,
1439 struct request
*req
= mmc_queue_req_to_req(mqrq
);
1440 struct request_queue
*q
= req
->q
;
1441 struct mmc_queue
*mq
= q
->queuedata
;
1444 * Block layer timeouts race with completions which means the normal
1445 * completion path cannot be used during recovery.
1447 if (mq
->in_recovery
)
1448 mmc_blk_cqe_complete_rq(mq
, req
);
1450 blk_mq_complete_request(req
);
1453 static int mmc_blk_cqe_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
1455 mrq
->done
= mmc_blk_cqe_req_done
;
1456 mrq
->recovery_notifier
= mmc_cqe_recovery_notifier
;
1458 return mmc_cqe_start_req(host
, mrq
);
1461 static struct mmc_request
*mmc_blk_cqe_prep_dcmd(struct mmc_queue_req
*mqrq
,
1462 struct request
*req
)
1464 struct mmc_blk_request
*brq
= &mqrq
->brq
;
1466 memset(brq
, 0, sizeof(*brq
));
1468 brq
->mrq
.cmd
= &brq
->cmd
;
1469 brq
->mrq
.tag
= req
->tag
;
1474 static int mmc_blk_cqe_issue_flush(struct mmc_queue
*mq
, struct request
*req
)
1476 struct mmc_queue_req
*mqrq
= req_to_mmc_queue_req(req
);
1477 struct mmc_request
*mrq
= mmc_blk_cqe_prep_dcmd(mqrq
, req
);
1479 mrq
->cmd
->opcode
= MMC_SWITCH
;
1480 mrq
->cmd
->arg
= (MMC_SWITCH_MODE_WRITE_BYTE
<< 24) |
1481 (EXT_CSD_FLUSH_CACHE
<< 16) |
1483 EXT_CSD_CMD_SET_NORMAL
;
1484 mrq
->cmd
->flags
= MMC_CMD_AC
| MMC_RSP_R1B
;
1486 return mmc_blk_cqe_start_req(mq
->card
->host
, mrq
);
1489 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue
*mq
, struct request
*req
)
1491 struct mmc_queue_req
*mqrq
= req_to_mmc_queue_req(req
);
1492 struct mmc_host
*host
= mq
->card
->host
;
1495 mmc_blk_rw_rq_prep(mqrq
, mq
->card
, 0, mq
);
1496 mqrq
->brq
.mrq
.done
= mmc_blk_hsq_req_done
;
1497 mmc_pre_req(host
, &mqrq
->brq
.mrq
);
1499 err
= mmc_cqe_start_req(host
, &mqrq
->brq
.mrq
);
1501 mmc_post_req(host
, &mqrq
->brq
.mrq
, err
);
1506 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue
*mq
, struct request
*req
)
1508 struct mmc_queue_req
*mqrq
= req_to_mmc_queue_req(req
);
1509 struct mmc_host
*host
= mq
->card
->host
;
1511 if (host
->hsq_enabled
)
1512 return mmc_blk_hsq_issue_rw_rq(mq
, req
);
1514 mmc_blk_data_prep(mq
, mqrq
, 0, NULL
, NULL
);
1516 return mmc_blk_cqe_start_req(mq
->card
->host
, &mqrq
->brq
.mrq
);
1519 static void mmc_blk_rw_rq_prep(struct mmc_queue_req
*mqrq
,
1520 struct mmc_card
*card
,
1522 struct mmc_queue
*mq
)
1524 u32 readcmd
, writecmd
;
1525 struct mmc_blk_request
*brq
= &mqrq
->brq
;
1526 struct request
*req
= mmc_queue_req_to_req(mqrq
);
1527 struct mmc_blk_data
*md
= mq
->blkdata
;
1528 bool do_rel_wr
, do_data_tag
;
1530 mmc_blk_data_prep(mq
, mqrq
, disable_multi
, &do_rel_wr
, &do_data_tag
);
1532 brq
->mrq
.cmd
= &brq
->cmd
;
1534 brq
->cmd
.arg
= blk_rq_pos(req
);
1535 if (!mmc_card_blockaddr(card
))
1537 brq
->cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_ADTC
;
1539 if (brq
->data
.blocks
> 1 || do_rel_wr
) {
1540 /* SPI multiblock writes terminate using a special
1541 * token, not a STOP_TRANSMISSION request.
1543 if (!mmc_host_is_spi(card
->host
) ||
1544 rq_data_dir(req
) == READ
)
1545 brq
->mrq
.stop
= &brq
->stop
;
1546 readcmd
= MMC_READ_MULTIPLE_BLOCK
;
1547 writecmd
= MMC_WRITE_MULTIPLE_BLOCK
;
1549 brq
->mrq
.stop
= NULL
;
1550 readcmd
= MMC_READ_SINGLE_BLOCK
;
1551 writecmd
= MMC_WRITE_BLOCK
;
1553 brq
->cmd
.opcode
= rq_data_dir(req
) == READ
? readcmd
: writecmd
;
1556 * Pre-defined multi-block transfers are preferable to
1557 * open ended-ones (and necessary for reliable writes).
1558 * However, it is not sufficient to just send CMD23,
1559 * and avoid the final CMD12, as on an error condition
1560 * CMD12 (stop) needs to be sent anyway. This, coupled
1561 * with Auto-CMD23 enhancements provided by some
1562 * hosts, means that the complexity of dealing
1563 * with this is best left to the host. If CMD23 is
1564 * supported by card and host, we'll fill sbc in and let
1565 * the host deal with handling it correctly. This means
1566 * that for hosts that don't expose MMC_CAP_CMD23, no
1567 * change of behavior will be observed.
1569 * N.B: Some MMC cards experience perf degradation.
1570 * We'll avoid using CMD23-bounded multiblock writes for
1571 * these, while retaining features like reliable writes.
1573 if ((md
->flags
& MMC_BLK_CMD23
) && mmc_op_multi(brq
->cmd
.opcode
) &&
1574 (do_rel_wr
|| !(card
->quirks
& MMC_QUIRK_BLK_NO_CMD23
) ||
1576 brq
->sbc
.opcode
= MMC_SET_BLOCK_COUNT
;
1577 brq
->sbc
.arg
= brq
->data
.blocks
|
1578 (do_rel_wr
? (1 << 31) : 0) |
1579 (do_data_tag
? (1 << 29) : 0);
1580 brq
->sbc
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1581 brq
->mrq
.sbc
= &brq
->sbc
;
1585 #define MMC_MAX_RETRIES 5
1586 #define MMC_DATA_RETRIES 2
1587 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1589 static int mmc_blk_send_stop(struct mmc_card
*card
, unsigned int timeout
)
1591 struct mmc_command cmd
= {
1592 .opcode
= MMC_STOP_TRANSMISSION
,
1593 .flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
,
1594 /* Some hosts wait for busy anyway, so provide a busy timeout */
1595 .busy_timeout
= timeout
,
1598 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
1601 static int mmc_blk_fix_state(struct mmc_card
*card
, struct request
*req
)
1603 struct mmc_queue_req
*mqrq
= req_to_mmc_queue_req(req
);
1604 struct mmc_blk_request
*brq
= &mqrq
->brq
;
1605 unsigned int timeout
= mmc_blk_data_timeout_ms(card
->host
, &brq
->data
);
1608 mmc_retune_hold_now(card
->host
);
1610 mmc_blk_send_stop(card
, timeout
);
1612 err
= card_busy_detect(card
, timeout
, NULL
);
1614 mmc_retune_release(card
->host
);
1619 #define MMC_READ_SINGLE_RETRIES 2
1621 /* Single sector read during recovery */
1622 static void mmc_blk_read_single(struct mmc_queue
*mq
, struct request
*req
)
1624 struct mmc_queue_req
*mqrq
= req_to_mmc_queue_req(req
);
1625 struct mmc_request
*mrq
= &mqrq
->brq
.mrq
;
1626 struct mmc_card
*card
= mq
->card
;
1627 struct mmc_host
*host
= card
->host
;
1628 blk_status_t error
= BLK_STS_OK
;
1635 mmc_blk_rw_rq_prep(mqrq
, card
, 1, mq
);
1637 mmc_wait_for_req(host
, mrq
);
1639 err
= mmc_send_status(card
, &status
);
1643 if (!mmc_host_is_spi(host
) &&
1644 !mmc_ready_for_data(status
)) {
1645 err
= mmc_blk_fix_state(card
, req
);
1650 if (mrq
->cmd
->error
&& retries
++ < MMC_READ_SINGLE_RETRIES
)
1655 if (mrq
->cmd
->error
||
1657 (!mmc_host_is_spi(host
) &&
1658 (mrq
->cmd
->resp
[0] & CMD_ERRORS
|| status
& CMD_ERRORS
)))
1659 error
= BLK_STS_IOERR
;
1663 } while (blk_update_request(req
, error
, 512));
1668 mrq
->data
->bytes_xfered
= 0;
1669 blk_update_request(req
, BLK_STS_IOERR
, 512);
1670 /* Let it try the remaining request again */
1671 if (mqrq
->retries
> MMC_MAX_RETRIES
- 1)
1672 mqrq
->retries
= MMC_MAX_RETRIES
- 1;
1675 static inline bool mmc_blk_oor_valid(struct mmc_blk_request
*brq
)
1677 return !!brq
->mrq
.sbc
;
1680 static inline u32
mmc_blk_stop_err_bits(struct mmc_blk_request
*brq
)
1682 return mmc_blk_oor_valid(brq
) ? CMD_ERRORS
: CMD_ERRORS_EXCL_OOR
;
1686 * Check for errors the host controller driver might not have seen such as
1687 * response mode errors or invalid card state.
1689 static bool mmc_blk_status_error(struct request
*req
, u32 status
)
1691 struct mmc_queue_req
*mqrq
= req_to_mmc_queue_req(req
);
1692 struct mmc_blk_request
*brq
= &mqrq
->brq
;
1693 struct mmc_queue
*mq
= req
->q
->queuedata
;
1696 if (mmc_host_is_spi(mq
->card
->host
))
1699 stop_err_bits
= mmc_blk_stop_err_bits(brq
);
1701 return brq
->cmd
.resp
[0] & CMD_ERRORS
||
1702 brq
->stop
.resp
[0] & stop_err_bits
||
1703 status
& stop_err_bits
||
1704 (rq_data_dir(req
) == WRITE
&& !mmc_ready_for_data(status
));
1707 static inline bool mmc_blk_cmd_started(struct mmc_blk_request
*brq
)
1709 return !brq
->sbc
.error
&& !brq
->cmd
.error
&&
1710 !(brq
->cmd
.resp
[0] & CMD_ERRORS
);
1714 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1716 * 1. A request that has transferred at least some data is considered
1717 * successful and will be requeued if there is remaining data to
1719 * 2. Otherwise the number of retries is incremented and the request
1720 * will be requeued if there are remaining retries.
1721 * 3. Otherwise the request will be errored out.
1722 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1723 * mqrq->retries. So there are only 4 possible actions here:
1724 * 1. do not accept the bytes_xfered value i.e. set it to zero
1725 * 2. change mqrq->retries to determine the number of retries
1726 * 3. try to reset the card
1727 * 4. read one sector at a time
1729 static void mmc_blk_mq_rw_recovery(struct mmc_queue
*mq
, struct request
*req
)
1731 int type
= rq_data_dir(req
) == READ
? MMC_BLK_READ
: MMC_BLK_WRITE
;
1732 struct mmc_queue_req
*mqrq
= req_to_mmc_queue_req(req
);
1733 struct mmc_blk_request
*brq
= &mqrq
->brq
;
1734 struct mmc_blk_data
*md
= mq
->blkdata
;
1735 struct mmc_card
*card
= mq
->card
;
1741 * Some errors the host driver might not have seen. Set the number of
1742 * bytes transferred to zero in that case.
1744 err
= __mmc_send_status(card
, &status
, 0);
1745 if (err
|| mmc_blk_status_error(req
, status
))
1746 brq
->data
.bytes_xfered
= 0;
1748 mmc_retune_release(card
->host
);
1751 * Try again to get the status. This also provides an opportunity for
1755 err
= __mmc_send_status(card
, &status
, 0);
1758 * Nothing more to do after the number of bytes transferred has been
1759 * updated and there is no card.
1761 if (err
&& mmc_detect_card_removed(card
->host
))
1764 /* Try to get back to "tran" state */
1765 if (!mmc_host_is_spi(mq
->card
->host
) &&
1766 (err
|| !mmc_ready_for_data(status
)))
1767 err
= mmc_blk_fix_state(mq
->card
, req
);
1770 * Special case for SD cards where the card might record the number of
1773 if (!err
&& mmc_blk_cmd_started(brq
) && mmc_card_sd(card
) &&
1774 rq_data_dir(req
) == WRITE
) {
1775 if (mmc_sd_num_wr_blocks(card
, &blocks
))
1776 brq
->data
.bytes_xfered
= 0;
1778 brq
->data
.bytes_xfered
= blocks
<< 9;
1781 /* Reset if the card is in a bad state */
1782 if (!mmc_host_is_spi(mq
->card
->host
) &&
1783 err
&& mmc_blk_reset(md
, card
->host
, type
)) {
1784 pr_err("%s: recovery failed!\n", req
->rq_disk
->disk_name
);
1785 mqrq
->retries
= MMC_NO_RETRIES
;
1790 * If anything was done, just return and if there is anything remaining
1791 * on the request it will get requeued.
1793 if (brq
->data
.bytes_xfered
)
1796 /* Reset before last retry */
1797 if (mqrq
->retries
+ 1 == MMC_MAX_RETRIES
)
1798 mmc_blk_reset(md
, card
->host
, type
);
1800 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1801 if (brq
->sbc
.error
|| brq
->cmd
.error
)
1804 /* Reduce the remaining retries for data errors */
1805 if (mqrq
->retries
< MMC_MAX_RETRIES
- MMC_DATA_RETRIES
) {
1806 mqrq
->retries
= MMC_MAX_RETRIES
- MMC_DATA_RETRIES
;
1810 /* FIXME: Missing single sector read for large sector size */
1811 if (!mmc_large_sector(card
) && rq_data_dir(req
) == READ
&&
1812 brq
->data
.blocks
> 1) {
1813 /* Read one sector at a time */
1814 mmc_blk_read_single(mq
, req
);
1819 static inline bool mmc_blk_rq_error(struct mmc_blk_request
*brq
)
1821 mmc_blk_eval_resp_error(brq
);
1823 return brq
->sbc
.error
|| brq
->cmd
.error
|| brq
->stop
.error
||
1824 brq
->data
.error
|| brq
->cmd
.resp
[0] & CMD_ERRORS
;
1827 static int mmc_blk_card_busy(struct mmc_card
*card
, struct request
*req
)
1829 struct mmc_queue_req
*mqrq
= req_to_mmc_queue_req(req
);
1833 if (mmc_host_is_spi(card
->host
) || rq_data_dir(req
) == READ
)
1836 err
= card_busy_detect(card
, MMC_BLK_TIMEOUT_MS
, &status
);
1839 * Do not assume data transferred correctly if there are any error bits
1842 if (status
& mmc_blk_stop_err_bits(&mqrq
->brq
)) {
1843 mqrq
->brq
.data
.bytes_xfered
= 0;
1844 err
= err
? err
: -EIO
;
1847 /* Copy the exception bit so it will be seen later on */
1848 if (mmc_card_mmc(card
) && status
& R1_EXCEPTION_EVENT
)
1849 mqrq
->brq
.cmd
.resp
[0] |= R1_EXCEPTION_EVENT
;
1854 static inline void mmc_blk_rw_reset_success(struct mmc_queue
*mq
,
1855 struct request
*req
)
1857 int type
= rq_data_dir(req
) == READ
? MMC_BLK_READ
: MMC_BLK_WRITE
;
1859 mmc_blk_reset_success(mq
->blkdata
, type
);
1862 static void mmc_blk_mq_complete_rq(struct mmc_queue
*mq
, struct request
*req
)
1864 struct mmc_queue_req
*mqrq
= req_to_mmc_queue_req(req
);
1865 unsigned int nr_bytes
= mqrq
->brq
.data
.bytes_xfered
;
1868 if (blk_update_request(req
, BLK_STS_OK
, nr_bytes
))
1869 blk_mq_requeue_request(req
, true);
1871 __blk_mq_end_request(req
, BLK_STS_OK
);
1872 } else if (!blk_rq_bytes(req
)) {
1873 __blk_mq_end_request(req
, BLK_STS_IOERR
);
1874 } else if (mqrq
->retries
++ < MMC_MAX_RETRIES
) {
1875 blk_mq_requeue_request(req
, true);
1877 if (mmc_card_removed(mq
->card
))
1878 req
->rq_flags
|= RQF_QUIET
;
1879 blk_mq_end_request(req
, BLK_STS_IOERR
);
1883 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue
*mq
,
1884 struct mmc_queue_req
*mqrq
)
1886 return mmc_card_mmc(mq
->card
) && !mmc_host_is_spi(mq
->card
->host
) &&
1887 (mqrq
->brq
.cmd
.resp
[0] & R1_EXCEPTION_EVENT
||
1888 mqrq
->brq
.stop
.resp
[0] & R1_EXCEPTION_EVENT
);
1891 static void mmc_blk_urgent_bkops(struct mmc_queue
*mq
,
1892 struct mmc_queue_req
*mqrq
)
1894 if (mmc_blk_urgent_bkops_needed(mq
, mqrq
))
1895 mmc_run_bkops(mq
->card
);
1898 static void mmc_blk_hsq_req_done(struct mmc_request
*mrq
)
1900 struct mmc_queue_req
*mqrq
=
1901 container_of(mrq
, struct mmc_queue_req
, brq
.mrq
);
1902 struct request
*req
= mmc_queue_req_to_req(mqrq
);
1903 struct request_queue
*q
= req
->q
;
1904 struct mmc_queue
*mq
= q
->queuedata
;
1905 struct mmc_host
*host
= mq
->card
->host
;
1906 unsigned long flags
;
1908 if (mmc_blk_rq_error(&mqrq
->brq
) ||
1909 mmc_blk_urgent_bkops_needed(mq
, mqrq
)) {
1910 spin_lock_irqsave(&mq
->lock
, flags
);
1911 mq
->recovery_needed
= true;
1912 mq
->recovery_req
= req
;
1913 spin_unlock_irqrestore(&mq
->lock
, flags
);
1915 host
->cqe_ops
->cqe_recovery_start(host
);
1917 schedule_work(&mq
->recovery_work
);
1921 mmc_blk_rw_reset_success(mq
, req
);
1924 * Block layer timeouts race with completions which means the normal
1925 * completion path cannot be used during recovery.
1927 if (mq
->in_recovery
)
1928 mmc_blk_cqe_complete_rq(mq
, req
);
1930 blk_mq_complete_request(req
);
1933 void mmc_blk_mq_complete(struct request
*req
)
1935 struct mmc_queue
*mq
= req
->q
->queuedata
;
1938 mmc_blk_cqe_complete_rq(mq
, req
);
1940 mmc_blk_mq_complete_rq(mq
, req
);
1943 static void mmc_blk_mq_poll_completion(struct mmc_queue
*mq
,
1944 struct request
*req
)
1946 struct mmc_queue_req
*mqrq
= req_to_mmc_queue_req(req
);
1947 struct mmc_host
*host
= mq
->card
->host
;
1949 if (mmc_blk_rq_error(&mqrq
->brq
) ||
1950 mmc_blk_card_busy(mq
->card
, req
)) {
1951 mmc_blk_mq_rw_recovery(mq
, req
);
1953 mmc_blk_rw_reset_success(mq
, req
);
1954 mmc_retune_release(host
);
1957 mmc_blk_urgent_bkops(mq
, mqrq
);
1960 static void mmc_blk_mq_dec_in_flight(struct mmc_queue
*mq
, struct request
*req
)
1962 unsigned long flags
;
1965 spin_lock_irqsave(&mq
->lock
, flags
);
1967 mq
->in_flight
[mmc_issue_type(mq
, req
)] -= 1;
1969 put_card
= (mmc_tot_in_flight(mq
) == 0);
1971 spin_unlock_irqrestore(&mq
->lock
, flags
);
1974 mmc_put_card(mq
->card
, &mq
->ctx
);
1977 static void mmc_blk_mq_post_req(struct mmc_queue
*mq
, struct request
*req
)
1979 struct mmc_queue_req
*mqrq
= req_to_mmc_queue_req(req
);
1980 struct mmc_request
*mrq
= &mqrq
->brq
.mrq
;
1981 struct mmc_host
*host
= mq
->card
->host
;
1983 mmc_post_req(host
, mrq
, 0);
1986 * Block layer timeouts race with completions which means the normal
1987 * completion path cannot be used during recovery.
1989 if (mq
->in_recovery
)
1990 mmc_blk_mq_complete_rq(mq
, req
);
1992 blk_mq_complete_request(req
);
1994 mmc_blk_mq_dec_in_flight(mq
, req
);
1997 void mmc_blk_mq_recovery(struct mmc_queue
*mq
)
1999 struct request
*req
= mq
->recovery_req
;
2000 struct mmc_host
*host
= mq
->card
->host
;
2001 struct mmc_queue_req
*mqrq
= req_to_mmc_queue_req(req
);
2003 mq
->recovery_req
= NULL
;
2004 mq
->rw_wait
= false;
2006 if (mmc_blk_rq_error(&mqrq
->brq
)) {
2007 mmc_retune_hold_now(host
);
2008 mmc_blk_mq_rw_recovery(mq
, req
);
2011 mmc_blk_urgent_bkops(mq
, mqrq
);
2013 mmc_blk_mq_post_req(mq
, req
);
2016 static void mmc_blk_mq_complete_prev_req(struct mmc_queue
*mq
,
2017 struct request
**prev_req
)
2019 if (mmc_host_done_complete(mq
->card
->host
))
2022 mutex_lock(&mq
->complete_lock
);
2024 if (!mq
->complete_req
)
2027 mmc_blk_mq_poll_completion(mq
, mq
->complete_req
);
2030 *prev_req
= mq
->complete_req
;
2032 mmc_blk_mq_post_req(mq
, mq
->complete_req
);
2034 mq
->complete_req
= NULL
;
2037 mutex_unlock(&mq
->complete_lock
);
2040 void mmc_blk_mq_complete_work(struct work_struct
*work
)
2042 struct mmc_queue
*mq
= container_of(work
, struct mmc_queue
,
2045 mmc_blk_mq_complete_prev_req(mq
, NULL
);
2048 static void mmc_blk_mq_req_done(struct mmc_request
*mrq
)
2050 struct mmc_queue_req
*mqrq
= container_of(mrq
, struct mmc_queue_req
,
2052 struct request
*req
= mmc_queue_req_to_req(mqrq
);
2053 struct request_queue
*q
= req
->q
;
2054 struct mmc_queue
*mq
= q
->queuedata
;
2055 struct mmc_host
*host
= mq
->card
->host
;
2056 unsigned long flags
;
2058 if (!mmc_host_done_complete(host
)) {
2062 * We cannot complete the request in this context, so record
2063 * that there is a request to complete, and that a following
2064 * request does not need to wait (although it does need to
2065 * complete complete_req first).
2067 spin_lock_irqsave(&mq
->lock
, flags
);
2068 mq
->complete_req
= req
;
2069 mq
->rw_wait
= false;
2070 waiting
= mq
->waiting
;
2071 spin_unlock_irqrestore(&mq
->lock
, flags
);
2074 * If 'waiting' then the waiting task will complete this
2075 * request, otherwise queue a work to do it. Note that
2076 * complete_work may still race with the dispatch of a following
2082 queue_work(mq
->card
->complete_wq
, &mq
->complete_work
);
2087 /* Take the recovery path for errors or urgent background operations */
2088 if (mmc_blk_rq_error(&mqrq
->brq
) ||
2089 mmc_blk_urgent_bkops_needed(mq
, mqrq
)) {
2090 spin_lock_irqsave(&mq
->lock
, flags
);
2091 mq
->recovery_needed
= true;
2092 mq
->recovery_req
= req
;
2093 spin_unlock_irqrestore(&mq
->lock
, flags
);
2095 schedule_work(&mq
->recovery_work
);
2099 mmc_blk_rw_reset_success(mq
, req
);
2101 mq
->rw_wait
= false;
2104 mmc_blk_mq_post_req(mq
, req
);
2107 static bool mmc_blk_rw_wait_cond(struct mmc_queue
*mq
, int *err
)
2109 unsigned long flags
;
2113 * Wait while there is another request in progress, but not if recovery
2114 * is needed. Also indicate whether there is a request waiting to start.
2116 spin_lock_irqsave(&mq
->lock
, flags
);
2117 if (mq
->recovery_needed
) {
2121 done
= !mq
->rw_wait
;
2123 mq
->waiting
= !done
;
2124 spin_unlock_irqrestore(&mq
->lock
, flags
);
2129 static int mmc_blk_rw_wait(struct mmc_queue
*mq
, struct request
**prev_req
)
2133 wait_event(mq
->wait
, mmc_blk_rw_wait_cond(mq
, &err
));
2135 /* Always complete the previous request if there is one */
2136 mmc_blk_mq_complete_prev_req(mq
, prev_req
);
2141 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue
*mq
,
2142 struct request
*req
)
2144 struct mmc_queue_req
*mqrq
= req_to_mmc_queue_req(req
);
2145 struct mmc_host
*host
= mq
->card
->host
;
2146 struct request
*prev_req
= NULL
;
2149 mmc_blk_rw_rq_prep(mqrq
, mq
->card
, 0, mq
);
2151 mqrq
->brq
.mrq
.done
= mmc_blk_mq_req_done
;
2153 mmc_pre_req(host
, &mqrq
->brq
.mrq
);
2155 err
= mmc_blk_rw_wait(mq
, &prev_req
);
2161 err
= mmc_start_request(host
, &mqrq
->brq
.mrq
);
2164 mmc_blk_mq_post_req(mq
, prev_req
);
2167 mq
->rw_wait
= false;
2169 /* Release re-tuning here where there is no synchronization required */
2170 if (err
|| mmc_host_done_complete(host
))
2171 mmc_retune_release(host
);
2175 mmc_post_req(host
, &mqrq
->brq
.mrq
, err
);
2180 static int mmc_blk_wait_for_idle(struct mmc_queue
*mq
, struct mmc_host
*host
)
2183 return host
->cqe_ops
->cqe_wait_for_idle(host
);
2185 return mmc_blk_rw_wait(mq
, NULL
);
2188 enum mmc_issued
mmc_blk_mq_issue_rq(struct mmc_queue
*mq
, struct request
*req
)
2190 struct mmc_blk_data
*md
= mq
->blkdata
;
2191 struct mmc_card
*card
= md
->queue
.card
;
2192 struct mmc_host
*host
= card
->host
;
2195 ret
= mmc_blk_part_switch(card
, md
->part_type
);
2197 return MMC_REQ_FAILED_TO_START
;
2199 switch (mmc_issue_type(mq
, req
)) {
2200 case MMC_ISSUE_SYNC
:
2201 ret
= mmc_blk_wait_for_idle(mq
, host
);
2203 return MMC_REQ_BUSY
;
2204 switch (req_op(req
)) {
2206 case REQ_OP_DRV_OUT
:
2207 mmc_blk_issue_drv_op(mq
, req
);
2209 case REQ_OP_DISCARD
:
2210 mmc_blk_issue_discard_rq(mq
, req
);
2212 case REQ_OP_SECURE_ERASE
:
2213 mmc_blk_issue_secdiscard_rq(mq
, req
);
2216 mmc_blk_issue_flush(mq
, req
);
2220 return MMC_REQ_FAILED_TO_START
;
2222 return MMC_REQ_FINISHED
;
2223 case MMC_ISSUE_DCMD
:
2224 case MMC_ISSUE_ASYNC
:
2225 switch (req_op(req
)) {
2227 ret
= mmc_blk_cqe_issue_flush(mq
, req
);
2232 ret
= mmc_blk_cqe_issue_rw_rq(mq
, req
);
2234 ret
= mmc_blk_mq_issue_rw_rq(mq
, req
);
2241 return MMC_REQ_STARTED
;
2242 return ret
== -EBUSY
? MMC_REQ_BUSY
: MMC_REQ_FAILED_TO_START
;
2245 return MMC_REQ_FAILED_TO_START
;
2249 static inline int mmc_blk_readonly(struct mmc_card
*card
)
2251 return mmc_card_readonly(card
) ||
2252 !(card
->csd
.cmdclass
& CCC_BLOCK_WRITE
);
2255 static struct mmc_blk_data
*mmc_blk_alloc_req(struct mmc_card
*card
,
2256 struct device
*parent
,
2259 const char *subname
,
2262 struct mmc_blk_data
*md
;
2265 devidx
= ida_simple_get(&mmc_blk_ida
, 0, max_devices
, GFP_KERNEL
);
2268 * We get -ENOSPC because there are no more any available
2269 * devidx. The reason may be that, either userspace haven't yet
2270 * unmounted the partitions, which postpones mmc_blk_release()
2271 * from being called, or the device has more partitions than
2274 if (devidx
== -ENOSPC
)
2275 dev_err(mmc_dev(card
->host
),
2276 "no more device IDs available\n");
2278 return ERR_PTR(devidx
);
2281 md
= kzalloc(sizeof(struct mmc_blk_data
), GFP_KERNEL
);
2287 md
->area_type
= area_type
;
2290 * Set the read-only status based on the supported commands
2291 * and the write protect switch.
2293 md
->read_only
= mmc_blk_readonly(card
);
2295 md
->disk
= alloc_disk(perdev_minors
);
2296 if (md
->disk
== NULL
) {
2301 INIT_LIST_HEAD(&md
->part
);
2302 INIT_LIST_HEAD(&md
->rpmbs
);
2305 ret
= mmc_init_queue(&md
->queue
, card
);
2309 md
->queue
.blkdata
= md
;
2312 * Keep an extra reference to the queue so that we can shutdown the
2313 * queue (i.e. call blk_cleanup_queue()) while there are still
2314 * references to the 'md'. The corresponding blk_put_queue() is in
2317 if (!blk_get_queue(md
->queue
.queue
)) {
2318 mmc_cleanup_queue(&md
->queue
);
2323 md
->disk
->major
= MMC_BLOCK_MAJOR
;
2324 md
->disk
->first_minor
= devidx
* perdev_minors
;
2325 md
->disk
->fops
= &mmc_bdops
;
2326 md
->disk
->private_data
= md
;
2327 md
->disk
->queue
= md
->queue
.queue
;
2328 md
->parent
= parent
;
2329 set_disk_ro(md
->disk
, md
->read_only
|| default_ro
);
2330 md
->disk
->flags
= GENHD_FL_EXT_DEVT
;
2331 if (area_type
& (MMC_BLK_DATA_AREA_RPMB
| MMC_BLK_DATA_AREA_BOOT
))
2332 md
->disk
->flags
|= GENHD_FL_NO_PART_SCAN
2333 | GENHD_FL_SUPPRESS_PARTITION_INFO
;
2336 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2338 * - be set for removable media with permanent block devices
2339 * - be unset for removable block devices with permanent media
2341 * Since MMC block devices clearly fall under the second
2342 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2343 * should use the block device creation/destruction hotplug
2344 * messages to tell when the card is present.
2347 snprintf(md
->disk
->disk_name
, sizeof(md
->disk
->disk_name
),
2348 "mmcblk%u%s", card
->host
->index
, subname
? subname
: "");
2350 set_capacity(md
->disk
, size
);
2352 if (mmc_host_cmd23(card
->host
)) {
2353 if ((mmc_card_mmc(card
) &&
2354 card
->csd
.mmca_vsn
>= CSD_SPEC_VER_3
) ||
2355 (mmc_card_sd(card
) &&
2356 card
->scr
.cmds
& SD_SCR_CMD23_SUPPORT
))
2357 md
->flags
|= MMC_BLK_CMD23
;
2360 if (mmc_card_mmc(card
) &&
2361 md
->flags
& MMC_BLK_CMD23
&&
2362 ((card
->ext_csd
.rel_param
& EXT_CSD_WR_REL_PARAM_EN
) ||
2363 card
->ext_csd
.rel_sectors
)) {
2364 md
->flags
|= MMC_BLK_REL_WR
;
2365 blk_queue_write_cache(md
->queue
.queue
, true, true);
2375 ida_simple_remove(&mmc_blk_ida
, devidx
);
2376 return ERR_PTR(ret
);
2379 static struct mmc_blk_data
*mmc_blk_alloc(struct mmc_card
*card
)
2383 if (!mmc_card_sd(card
) && mmc_card_blockaddr(card
)) {
2385 * The EXT_CSD sector count is in number or 512 byte
2388 size
= card
->ext_csd
.sectors
;
2391 * The CSD capacity field is in units of read_blkbits.
2392 * set_capacity takes units of 512 bytes.
2394 size
= (typeof(sector_t
))card
->csd
.capacity
2395 << (card
->csd
.read_blkbits
- 9);
2398 return mmc_blk_alloc_req(card
, &card
->dev
, size
, false, NULL
,
2399 MMC_BLK_DATA_AREA_MAIN
);
2402 static int mmc_blk_alloc_part(struct mmc_card
*card
,
2403 struct mmc_blk_data
*md
,
2404 unsigned int part_type
,
2407 const char *subname
,
2411 struct mmc_blk_data
*part_md
;
2413 part_md
= mmc_blk_alloc_req(card
, disk_to_dev(md
->disk
), size
, default_ro
,
2414 subname
, area_type
);
2415 if (IS_ERR(part_md
))
2416 return PTR_ERR(part_md
);
2417 part_md
->part_type
= part_type
;
2418 list_add(&part_md
->part
, &md
->part
);
2420 string_get_size((u64
)get_capacity(part_md
->disk
), 512, STRING_UNITS_2
,
2421 cap_str
, sizeof(cap_str
));
2422 pr_info("%s: %s %s partition %u %s\n",
2423 part_md
->disk
->disk_name
, mmc_card_id(card
),
2424 mmc_card_name(card
), part_md
->part_type
, cap_str
);
2429 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2430 * @filp: the character device file
2431 * @cmd: the ioctl() command
2432 * @arg: the argument from userspace
2434 * This will essentially just redirect the ioctl()s coming in over to
2435 * the main block device spawning the RPMB character device.
2437 static long mmc_rpmb_ioctl(struct file
*filp
, unsigned int cmd
,
2440 struct mmc_rpmb_data
*rpmb
= filp
->private_data
;
2445 ret
= mmc_blk_ioctl_cmd(rpmb
->md
,
2446 (struct mmc_ioc_cmd __user
*)arg
,
2449 case MMC_IOC_MULTI_CMD
:
2450 ret
= mmc_blk_ioctl_multi_cmd(rpmb
->md
,
2451 (struct mmc_ioc_multi_cmd __user
*)arg
,
2462 #ifdef CONFIG_COMPAT
2463 static long mmc_rpmb_ioctl_compat(struct file
*filp
, unsigned int cmd
,
2466 return mmc_rpmb_ioctl(filp
, cmd
, (unsigned long)compat_ptr(arg
));
2470 static int mmc_rpmb_chrdev_open(struct inode
*inode
, struct file
*filp
)
2472 struct mmc_rpmb_data
*rpmb
= container_of(inode
->i_cdev
,
2473 struct mmc_rpmb_data
, chrdev
);
2475 get_device(&rpmb
->dev
);
2476 filp
->private_data
= rpmb
;
2477 mmc_blk_get(rpmb
->md
->disk
);
2479 return nonseekable_open(inode
, filp
);
2482 static int mmc_rpmb_chrdev_release(struct inode
*inode
, struct file
*filp
)
2484 struct mmc_rpmb_data
*rpmb
= container_of(inode
->i_cdev
,
2485 struct mmc_rpmb_data
, chrdev
);
2487 put_device(&rpmb
->dev
);
2488 mmc_blk_put(rpmb
->md
);
2493 static const struct file_operations mmc_rpmb_fileops
= {
2494 .release
= mmc_rpmb_chrdev_release
,
2495 .open
= mmc_rpmb_chrdev_open
,
2496 .owner
= THIS_MODULE
,
2497 .llseek
= no_llseek
,
2498 .unlocked_ioctl
= mmc_rpmb_ioctl
,
2499 #ifdef CONFIG_COMPAT
2500 .compat_ioctl
= mmc_rpmb_ioctl_compat
,
2504 static void mmc_blk_rpmb_device_release(struct device
*dev
)
2506 struct mmc_rpmb_data
*rpmb
= dev_get_drvdata(dev
);
2508 ida_simple_remove(&mmc_rpmb_ida
, rpmb
->id
);
2512 static int mmc_blk_alloc_rpmb_part(struct mmc_card
*card
,
2513 struct mmc_blk_data
*md
,
2514 unsigned int part_index
,
2516 const char *subname
)
2519 char rpmb_name
[DISK_NAME_LEN
];
2521 struct mmc_rpmb_data
*rpmb
;
2523 /* This creates the minor number for the RPMB char device */
2524 devidx
= ida_simple_get(&mmc_rpmb_ida
, 0, max_devices
, GFP_KERNEL
);
2528 rpmb
= kzalloc(sizeof(*rpmb
), GFP_KERNEL
);
2530 ida_simple_remove(&mmc_rpmb_ida
, devidx
);
2534 snprintf(rpmb_name
, sizeof(rpmb_name
),
2535 "mmcblk%u%s", card
->host
->index
, subname
? subname
: "");
2538 rpmb
->part_index
= part_index
;
2539 rpmb
->dev
.init_name
= rpmb_name
;
2540 rpmb
->dev
.bus
= &mmc_rpmb_bus_type
;
2541 rpmb
->dev
.devt
= MKDEV(MAJOR(mmc_rpmb_devt
), rpmb
->id
);
2542 rpmb
->dev
.parent
= &card
->dev
;
2543 rpmb
->dev
.release
= mmc_blk_rpmb_device_release
;
2544 device_initialize(&rpmb
->dev
);
2545 dev_set_drvdata(&rpmb
->dev
, rpmb
);
2548 cdev_init(&rpmb
->chrdev
, &mmc_rpmb_fileops
);
2549 rpmb
->chrdev
.owner
= THIS_MODULE
;
2550 ret
= cdev_device_add(&rpmb
->chrdev
, &rpmb
->dev
);
2552 pr_err("%s: could not add character device\n", rpmb_name
);
2553 goto out_put_device
;
2556 list_add(&rpmb
->node
, &md
->rpmbs
);
2558 string_get_size((u64
)size
, 512, STRING_UNITS_2
,
2559 cap_str
, sizeof(cap_str
));
2561 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2562 rpmb_name
, mmc_card_id(card
),
2563 mmc_card_name(card
), EXT_CSD_PART_CONFIG_ACC_RPMB
, cap_str
,
2564 MAJOR(mmc_rpmb_devt
), rpmb
->id
);
2569 put_device(&rpmb
->dev
);
2573 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data
*rpmb
)
2576 cdev_device_del(&rpmb
->chrdev
, &rpmb
->dev
);
2577 put_device(&rpmb
->dev
);
2580 /* MMC Physical partitions consist of two boot partitions and
2581 * up to four general purpose partitions.
2582 * For each partition enabled in EXT_CSD a block device will be allocatedi
2583 * to provide access to the partition.
2586 static int mmc_blk_alloc_parts(struct mmc_card
*card
, struct mmc_blk_data
*md
)
2590 if (!mmc_card_mmc(card
))
2593 for (idx
= 0; idx
< card
->nr_parts
; idx
++) {
2594 if (card
->part
[idx
].area_type
& MMC_BLK_DATA_AREA_RPMB
) {
2596 * RPMB partitions does not provide block access, they
2597 * are only accessed using ioctl():s. Thus create
2598 * special RPMB block devices that do not have a
2599 * backing block queue for these.
2601 ret
= mmc_blk_alloc_rpmb_part(card
, md
,
2602 card
->part
[idx
].part_cfg
,
2603 card
->part
[idx
].size
>> 9,
2604 card
->part
[idx
].name
);
2607 } else if (card
->part
[idx
].size
) {
2608 ret
= mmc_blk_alloc_part(card
, md
,
2609 card
->part
[idx
].part_cfg
,
2610 card
->part
[idx
].size
>> 9,
2611 card
->part
[idx
].force_ro
,
2612 card
->part
[idx
].name
,
2613 card
->part
[idx
].area_type
);
2622 static void mmc_blk_remove_req(struct mmc_blk_data
*md
)
2624 struct mmc_card
*card
;
2628 * Flush remaining requests and free queues. It
2629 * is freeing the queue that stops new requests
2630 * from being accepted.
2632 card
= md
->queue
.card
;
2633 if (md
->disk
->flags
& GENHD_FL_UP
) {
2634 device_remove_file(disk_to_dev(md
->disk
), &md
->force_ro
);
2635 if ((md
->area_type
& MMC_BLK_DATA_AREA_BOOT
) &&
2636 card
->ext_csd
.boot_ro_lockable
)
2637 device_remove_file(disk_to_dev(md
->disk
),
2638 &md
->power_ro_lock
);
2640 del_gendisk(md
->disk
);
2642 mmc_cleanup_queue(&md
->queue
);
2647 static void mmc_blk_remove_parts(struct mmc_card
*card
,
2648 struct mmc_blk_data
*md
)
2650 struct list_head
*pos
, *q
;
2651 struct mmc_blk_data
*part_md
;
2652 struct mmc_rpmb_data
*rpmb
;
2654 /* Remove RPMB partitions */
2655 list_for_each_safe(pos
, q
, &md
->rpmbs
) {
2656 rpmb
= list_entry(pos
, struct mmc_rpmb_data
, node
);
2658 mmc_blk_remove_rpmb_part(rpmb
);
2660 /* Remove block partitions */
2661 list_for_each_safe(pos
, q
, &md
->part
) {
2662 part_md
= list_entry(pos
, struct mmc_blk_data
, part
);
2664 mmc_blk_remove_req(part_md
);
2668 static int mmc_add_disk(struct mmc_blk_data
*md
)
2671 struct mmc_card
*card
= md
->queue
.card
;
2673 device_add_disk(md
->parent
, md
->disk
, NULL
);
2674 md
->force_ro
.show
= force_ro_show
;
2675 md
->force_ro
.store
= force_ro_store
;
2676 sysfs_attr_init(&md
->force_ro
.attr
);
2677 md
->force_ro
.attr
.name
= "force_ro";
2678 md
->force_ro
.attr
.mode
= S_IRUGO
| S_IWUSR
;
2679 ret
= device_create_file(disk_to_dev(md
->disk
), &md
->force_ro
);
2683 if ((md
->area_type
& MMC_BLK_DATA_AREA_BOOT
) &&
2684 card
->ext_csd
.boot_ro_lockable
) {
2687 if (card
->ext_csd
.boot_ro_lock
& EXT_CSD_BOOT_WP_B_PWR_WP_DIS
)
2690 mode
= S_IRUGO
| S_IWUSR
;
2692 md
->power_ro_lock
.show
= power_ro_lock_show
;
2693 md
->power_ro_lock
.store
= power_ro_lock_store
;
2694 sysfs_attr_init(&md
->power_ro_lock
.attr
);
2695 md
->power_ro_lock
.attr
.mode
= mode
;
2696 md
->power_ro_lock
.attr
.name
=
2697 "ro_lock_until_next_power_on";
2698 ret
= device_create_file(disk_to_dev(md
->disk
),
2699 &md
->power_ro_lock
);
2701 goto power_ro_lock_fail
;
2706 device_remove_file(disk_to_dev(md
->disk
), &md
->force_ro
);
2708 del_gendisk(md
->disk
);
2713 #ifdef CONFIG_DEBUG_FS
2715 static int mmc_dbg_card_status_get(void *data
, u64
*val
)
2717 struct mmc_card
*card
= data
;
2718 struct mmc_blk_data
*md
= dev_get_drvdata(&card
->dev
);
2719 struct mmc_queue
*mq
= &md
->queue
;
2720 struct request
*req
;
2723 /* Ask the block layer about the card status */
2724 req
= blk_get_request(mq
->queue
, REQ_OP_DRV_IN
, 0);
2726 return PTR_ERR(req
);
2727 req_to_mmc_queue_req(req
)->drv_op
= MMC_DRV_OP_GET_CARD_STATUS
;
2728 blk_execute_rq(mq
->queue
, NULL
, req
, 0);
2729 ret
= req_to_mmc_queue_req(req
)->drv_op_result
;
2734 blk_put_request(req
);
2738 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops
, mmc_dbg_card_status_get
,
2741 /* That is two digits * 512 + 1 for newline */
2742 #define EXT_CSD_STR_LEN 1025
2744 static int mmc_ext_csd_open(struct inode
*inode
, struct file
*filp
)
2746 struct mmc_card
*card
= inode
->i_private
;
2747 struct mmc_blk_data
*md
= dev_get_drvdata(&card
->dev
);
2748 struct mmc_queue
*mq
= &md
->queue
;
2749 struct request
*req
;
2755 buf
= kmalloc(EXT_CSD_STR_LEN
+ 1, GFP_KERNEL
);
2759 /* Ask the block layer for the EXT CSD */
2760 req
= blk_get_request(mq
->queue
, REQ_OP_DRV_IN
, 0);
2765 req_to_mmc_queue_req(req
)->drv_op
= MMC_DRV_OP_GET_EXT_CSD
;
2766 req_to_mmc_queue_req(req
)->drv_op_data
= &ext_csd
;
2767 blk_execute_rq(mq
->queue
, NULL
, req
, 0);
2768 err
= req_to_mmc_queue_req(req
)->drv_op_result
;
2769 blk_put_request(req
);
2771 pr_err("FAILED %d\n", err
);
2775 for (i
= 0; i
< 512; i
++)
2776 n
+= sprintf(buf
+ n
, "%02x", ext_csd
[i
]);
2777 n
+= sprintf(buf
+ n
, "\n");
2779 if (n
!= EXT_CSD_STR_LEN
) {
2785 filp
->private_data
= buf
;
2794 static ssize_t
mmc_ext_csd_read(struct file
*filp
, char __user
*ubuf
,
2795 size_t cnt
, loff_t
*ppos
)
2797 char *buf
= filp
->private_data
;
2799 return simple_read_from_buffer(ubuf
, cnt
, ppos
,
2800 buf
, EXT_CSD_STR_LEN
);
2803 static int mmc_ext_csd_release(struct inode
*inode
, struct file
*file
)
2805 kfree(file
->private_data
);
2809 static const struct file_operations mmc_dbg_ext_csd_fops
= {
2810 .open
= mmc_ext_csd_open
,
2811 .read
= mmc_ext_csd_read
,
2812 .release
= mmc_ext_csd_release
,
2813 .llseek
= default_llseek
,
2816 static int mmc_blk_add_debugfs(struct mmc_card
*card
, struct mmc_blk_data
*md
)
2818 struct dentry
*root
;
2820 if (!card
->debugfs_root
)
2823 root
= card
->debugfs_root
;
2825 if (mmc_card_mmc(card
) || mmc_card_sd(card
)) {
2827 debugfs_create_file_unsafe("status", 0400, root
,
2829 &mmc_dbg_card_status_fops
);
2830 if (!md
->status_dentry
)
2834 if (mmc_card_mmc(card
)) {
2835 md
->ext_csd_dentry
=
2836 debugfs_create_file("ext_csd", S_IRUSR
, root
, card
,
2837 &mmc_dbg_ext_csd_fops
);
2838 if (!md
->ext_csd_dentry
)
2845 static void mmc_blk_remove_debugfs(struct mmc_card
*card
,
2846 struct mmc_blk_data
*md
)
2848 if (!card
->debugfs_root
)
2851 if (!IS_ERR_OR_NULL(md
->status_dentry
)) {
2852 debugfs_remove(md
->status_dentry
);
2853 md
->status_dentry
= NULL
;
2856 if (!IS_ERR_OR_NULL(md
->ext_csd_dentry
)) {
2857 debugfs_remove(md
->ext_csd_dentry
);
2858 md
->ext_csd_dentry
= NULL
;
2864 static int mmc_blk_add_debugfs(struct mmc_card
*card
, struct mmc_blk_data
*md
)
2869 static void mmc_blk_remove_debugfs(struct mmc_card
*card
,
2870 struct mmc_blk_data
*md
)
2874 #endif /* CONFIG_DEBUG_FS */
2876 static int mmc_blk_probe(struct mmc_card
*card
)
2878 struct mmc_blk_data
*md
, *part_md
;
2882 * Check that the card supports the command class(es) we need.
2884 if (!(card
->csd
.cmdclass
& CCC_BLOCK_READ
))
2887 mmc_fixup_device(card
, mmc_blk_fixups
);
2889 card
->complete_wq
= alloc_workqueue("mmc_complete",
2890 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
2891 if (unlikely(!card
->complete_wq
)) {
2892 pr_err("Failed to create mmc completion workqueue");
2896 md
= mmc_blk_alloc(card
);
2900 string_get_size((u64
)get_capacity(md
->disk
), 512, STRING_UNITS_2
,
2901 cap_str
, sizeof(cap_str
));
2902 pr_info("%s: %s %s %s %s\n",
2903 md
->disk
->disk_name
, mmc_card_id(card
), mmc_card_name(card
),
2904 cap_str
, md
->read_only
? "(ro)" : "");
2906 if (mmc_blk_alloc_parts(card
, md
))
2909 dev_set_drvdata(&card
->dev
, md
);
2911 if (mmc_add_disk(md
))
2914 list_for_each_entry(part_md
, &md
->part
, part
) {
2915 if (mmc_add_disk(part_md
))
2919 /* Add two debugfs entries */
2920 mmc_blk_add_debugfs(card
, md
);
2922 pm_runtime_set_autosuspend_delay(&card
->dev
, 3000);
2923 pm_runtime_use_autosuspend(&card
->dev
);
2926 * Don't enable runtime PM for SD-combo cards here. Leave that
2927 * decision to be taken during the SDIO init sequence instead.
2929 if (card
->type
!= MMC_TYPE_SD_COMBO
) {
2930 pm_runtime_set_active(&card
->dev
);
2931 pm_runtime_enable(&card
->dev
);
2937 mmc_blk_remove_parts(card
, md
);
2938 mmc_blk_remove_req(md
);
2942 static void mmc_blk_remove(struct mmc_card
*card
)
2944 struct mmc_blk_data
*md
= dev_get_drvdata(&card
->dev
);
2946 mmc_blk_remove_debugfs(card
, md
);
2947 mmc_blk_remove_parts(card
, md
);
2948 pm_runtime_get_sync(&card
->dev
);
2949 if (md
->part_curr
!= md
->part_type
) {
2950 mmc_claim_host(card
->host
);
2951 mmc_blk_part_switch(card
, md
->part_type
);
2952 mmc_release_host(card
->host
);
2954 if (card
->type
!= MMC_TYPE_SD_COMBO
)
2955 pm_runtime_disable(&card
->dev
);
2956 pm_runtime_put_noidle(&card
->dev
);
2957 mmc_blk_remove_req(md
);
2958 dev_set_drvdata(&card
->dev
, NULL
);
2959 destroy_workqueue(card
->complete_wq
);
2962 static int _mmc_blk_suspend(struct mmc_card
*card
)
2964 struct mmc_blk_data
*part_md
;
2965 struct mmc_blk_data
*md
= dev_get_drvdata(&card
->dev
);
2968 mmc_queue_suspend(&md
->queue
);
2969 list_for_each_entry(part_md
, &md
->part
, part
) {
2970 mmc_queue_suspend(&part_md
->queue
);
2976 static void mmc_blk_shutdown(struct mmc_card
*card
)
2978 _mmc_blk_suspend(card
);
2981 #ifdef CONFIG_PM_SLEEP
2982 static int mmc_blk_suspend(struct device
*dev
)
2984 struct mmc_card
*card
= mmc_dev_to_card(dev
);
2986 return _mmc_blk_suspend(card
);
2989 static int mmc_blk_resume(struct device
*dev
)
2991 struct mmc_blk_data
*part_md
;
2992 struct mmc_blk_data
*md
= dev_get_drvdata(dev
);
2996 * Resume involves the card going into idle state,
2997 * so current partition is always the main one.
2999 md
->part_curr
= md
->part_type
;
3000 mmc_queue_resume(&md
->queue
);
3001 list_for_each_entry(part_md
, &md
->part
, part
) {
3002 mmc_queue_resume(&part_md
->queue
);
3009 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops
, mmc_blk_suspend
, mmc_blk_resume
);
3011 static struct mmc_driver mmc_driver
= {
3014 .pm
= &mmc_blk_pm_ops
,
3016 .probe
= mmc_blk_probe
,
3017 .remove
= mmc_blk_remove
,
3018 .shutdown
= mmc_blk_shutdown
,
3021 static int __init
mmc_blk_init(void)
3025 res
= bus_register(&mmc_rpmb_bus_type
);
3027 pr_err("mmcblk: could not register RPMB bus type\n");
3030 res
= alloc_chrdev_region(&mmc_rpmb_devt
, 0, MAX_DEVICES
, "rpmb");
3032 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3036 if (perdev_minors
!= CONFIG_MMC_BLOCK_MINORS
)
3037 pr_info("mmcblk: using %d minors per device\n", perdev_minors
);
3039 max_devices
= min(MAX_DEVICES
, (1 << MINORBITS
) / perdev_minors
);
3041 res
= register_blkdev(MMC_BLOCK_MAJOR
, "mmc");
3043 goto out_chrdev_unreg
;
3045 res
= mmc_register_driver(&mmc_driver
);
3047 goto out_blkdev_unreg
;
3052 unregister_blkdev(MMC_BLOCK_MAJOR
, "mmc");
3054 unregister_chrdev_region(mmc_rpmb_devt
, MAX_DEVICES
);
3056 bus_unregister(&mmc_rpmb_bus_type
);
3060 static void __exit
mmc_blk_exit(void)
3062 mmc_unregister_driver(&mmc_driver
);
3063 unregister_blkdev(MMC_BLOCK_MAJOR
, "mmc");
3064 unregister_chrdev_region(mmc_rpmb_devt
, MAX_DEVICES
);
3065 bus_unregister(&mmc_rpmb_bus_type
);
3068 module_init(mmc_blk_init
);
3069 module_exit(mmc_blk_exit
);
3071 MODULE_LICENSE("GPL");
3072 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");