]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/mmc/core/block.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / drivers / mmc / core / block.c
1 /*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
41
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
47
48 #include <linux/uaccess.h>
49
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "host.h"
55 #include "bus.h"
56 #include "mmc_ops.h"
57 #include "quirks.h"
58 #include "sd_ops.h"
59
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "mmcblk."
65
66 /*
67 * Set a 10 second timeout for polling write request busy state. Note, mmc core
68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69 * second software timer to timeout the whole request, so 10 seconds should be
70 * ample.
71 */
72 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
73 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
74 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
75
76 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
77 (rq_data_dir(req) == WRITE))
78 static DEFINE_MUTEX(block_mutex);
79
80 /*
81 * The defaults come from config options but can be overriden by module
82 * or bootarg options.
83 */
84 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
85
86 /*
87 * We've only got one major, so number of mmcblk devices is
88 * limited to (1 << 20) / number of minors per device. It is also
89 * limited by the MAX_DEVICES below.
90 */
91 static int max_devices;
92
93 #define MAX_DEVICES 256
94
95 static DEFINE_IDA(mmc_blk_ida);
96 static DEFINE_IDA(mmc_rpmb_ida);
97
98 /*
99 * There is one mmc_blk_data per slot.
100 */
101 struct mmc_blk_data {
102 struct device *parent;
103 struct gendisk *disk;
104 struct mmc_queue queue;
105 struct list_head part;
106 struct list_head rpmbs;
107
108 unsigned int flags;
109 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
110 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
111
112 unsigned int usage;
113 unsigned int read_only;
114 unsigned int part_type;
115 unsigned int reset_done;
116 #define MMC_BLK_READ BIT(0)
117 #define MMC_BLK_WRITE BIT(1)
118 #define MMC_BLK_DISCARD BIT(2)
119 #define MMC_BLK_SECDISCARD BIT(3)
120 #define MMC_BLK_CQE_RECOVERY BIT(4)
121
122 /*
123 * Only set in main mmc_blk_data associated
124 * with mmc_card with dev_set_drvdata, and keeps
125 * track of the current selected device partition.
126 */
127 unsigned int part_curr;
128 struct device_attribute force_ro;
129 struct device_attribute power_ro_lock;
130 int area_type;
131
132 /* debugfs files (only in main mmc_blk_data) */
133 struct dentry *status_dentry;
134 struct dentry *ext_csd_dentry;
135 };
136
137 /* Device type for RPMB character devices */
138 static dev_t mmc_rpmb_devt;
139
140 /* Bus type for RPMB character devices */
141 static struct bus_type mmc_rpmb_bus_type = {
142 .name = "mmc_rpmb",
143 };
144
145 /**
146 * struct mmc_rpmb_data - special RPMB device type for these areas
147 * @dev: the device for the RPMB area
148 * @chrdev: character device for the RPMB area
149 * @id: unique device ID number
150 * @part_index: partition index (0 on first)
151 * @md: parent MMC block device
152 * @node: list item, so we can put this device on a list
153 */
154 struct mmc_rpmb_data {
155 struct device dev;
156 struct cdev chrdev;
157 int id;
158 unsigned int part_index;
159 struct mmc_blk_data *md;
160 struct list_head node;
161 };
162
163 static DEFINE_MUTEX(open_lock);
164
165 module_param(perdev_minors, int, 0444);
166 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
167
168 static inline int mmc_blk_part_switch(struct mmc_card *card,
169 unsigned int part_type);
170 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
171 struct mmc_card *card,
172 int disable_multi,
173 struct mmc_queue *mq);
174 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
175
176 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
177 {
178 struct mmc_blk_data *md;
179
180 mutex_lock(&open_lock);
181 md = disk->private_data;
182 if (md && md->usage == 0)
183 md = NULL;
184 if (md)
185 md->usage++;
186 mutex_unlock(&open_lock);
187
188 return md;
189 }
190
191 static inline int mmc_get_devidx(struct gendisk *disk)
192 {
193 int devidx = disk->first_minor / perdev_minors;
194 return devidx;
195 }
196
197 static void mmc_blk_put(struct mmc_blk_data *md)
198 {
199 mutex_lock(&open_lock);
200 md->usage--;
201 if (md->usage == 0) {
202 int devidx = mmc_get_devidx(md->disk);
203 blk_put_queue(md->queue.queue);
204 ida_simple_remove(&mmc_blk_ida, devidx);
205 put_disk(md->disk);
206 kfree(md);
207 }
208 mutex_unlock(&open_lock);
209 }
210
211 static ssize_t power_ro_lock_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213 {
214 int ret;
215 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
216 struct mmc_card *card = md->queue.card;
217 int locked = 0;
218
219 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
220 locked = 2;
221 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
222 locked = 1;
223
224 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
225
226 mmc_blk_put(md);
227
228 return ret;
229 }
230
231 static ssize_t power_ro_lock_store(struct device *dev,
232 struct device_attribute *attr, const char *buf, size_t count)
233 {
234 int ret;
235 struct mmc_blk_data *md, *part_md;
236 struct mmc_queue *mq;
237 struct request *req;
238 unsigned long set;
239
240 if (kstrtoul(buf, 0, &set))
241 return -EINVAL;
242
243 if (set != 1)
244 return count;
245
246 md = mmc_blk_get(dev_to_disk(dev));
247 mq = &md->queue;
248
249 /* Dispatch locking to the block layer */
250 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
251 if (IS_ERR(req)) {
252 count = PTR_ERR(req);
253 goto out_put;
254 }
255 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
256 blk_execute_rq(mq->queue, NULL, req, 0);
257 ret = req_to_mmc_queue_req(req)->drv_op_result;
258 blk_put_request(req);
259
260 if (!ret) {
261 pr_info("%s: Locking boot partition ro until next power on\n",
262 md->disk->disk_name);
263 set_disk_ro(md->disk, 1);
264
265 list_for_each_entry(part_md, &md->part, part)
266 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
267 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
268 set_disk_ro(part_md->disk, 1);
269 }
270 }
271 out_put:
272 mmc_blk_put(md);
273 return count;
274 }
275
276 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
277 char *buf)
278 {
279 int ret;
280 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
281
282 ret = snprintf(buf, PAGE_SIZE, "%d\n",
283 get_disk_ro(dev_to_disk(dev)) ^
284 md->read_only);
285 mmc_blk_put(md);
286 return ret;
287 }
288
289 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
290 const char *buf, size_t count)
291 {
292 int ret;
293 char *end;
294 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
295 unsigned long set = simple_strtoul(buf, &end, 0);
296 if (end == buf) {
297 ret = -EINVAL;
298 goto out;
299 }
300
301 set_disk_ro(dev_to_disk(dev), set || md->read_only);
302 ret = count;
303 out:
304 mmc_blk_put(md);
305 return ret;
306 }
307
308 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
309 {
310 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
311 int ret = -ENXIO;
312
313 mutex_lock(&block_mutex);
314 if (md) {
315 if (md->usage == 2)
316 check_disk_change(bdev);
317 ret = 0;
318
319 if ((mode & FMODE_WRITE) && md->read_only) {
320 mmc_blk_put(md);
321 ret = -EROFS;
322 }
323 }
324 mutex_unlock(&block_mutex);
325
326 return ret;
327 }
328
329 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
330 {
331 struct mmc_blk_data *md = disk->private_data;
332
333 mutex_lock(&block_mutex);
334 mmc_blk_put(md);
335 mutex_unlock(&block_mutex);
336 }
337
338 static int
339 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
340 {
341 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
342 geo->heads = 4;
343 geo->sectors = 16;
344 return 0;
345 }
346
347 struct mmc_blk_ioc_data {
348 struct mmc_ioc_cmd ic;
349 unsigned char *buf;
350 u64 buf_bytes;
351 struct mmc_rpmb_data *rpmb;
352 };
353
354 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
355 struct mmc_ioc_cmd __user *user)
356 {
357 struct mmc_blk_ioc_data *idata;
358 int err;
359
360 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
361 if (!idata) {
362 err = -ENOMEM;
363 goto out;
364 }
365
366 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
367 err = -EFAULT;
368 goto idata_err;
369 }
370
371 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
372 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
373 err = -EOVERFLOW;
374 goto idata_err;
375 }
376
377 if (!idata->buf_bytes) {
378 idata->buf = NULL;
379 return idata;
380 }
381
382 idata->buf = memdup_user((void __user *)(unsigned long)
383 idata->ic.data_ptr, idata->buf_bytes);
384 if (IS_ERR(idata->buf)) {
385 err = PTR_ERR(idata->buf);
386 goto idata_err;
387 }
388
389 return idata;
390
391 idata_err:
392 kfree(idata);
393 out:
394 return ERR_PTR(err);
395 }
396
397 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
398 struct mmc_blk_ioc_data *idata)
399 {
400 struct mmc_ioc_cmd *ic = &idata->ic;
401
402 if (copy_to_user(&(ic_ptr->response), ic->response,
403 sizeof(ic->response)))
404 return -EFAULT;
405
406 if (!idata->ic.write_flag) {
407 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
408 idata->buf, idata->buf_bytes))
409 return -EFAULT;
410 }
411
412 return 0;
413 }
414
415 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
416 u32 *resp_errs)
417 {
418 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
419 int err = 0;
420 u32 status;
421
422 do {
423 bool done = time_after(jiffies, timeout);
424
425 err = __mmc_send_status(card, &status, 5);
426 if (err) {
427 dev_err(mmc_dev(card->host),
428 "error %d requesting status\n", err);
429 return err;
430 }
431
432 /* Accumulate any response error bits seen */
433 if (resp_errs)
434 *resp_errs |= status;
435
436 /*
437 * Timeout if the device never becomes ready for data and never
438 * leaves the program state.
439 */
440 if (done) {
441 dev_err(mmc_dev(card->host),
442 "Card stuck in wrong state! %s status: %#x\n",
443 __func__, status);
444 return -ETIMEDOUT;
445 }
446 } while (!mmc_ready_for_data(status));
447
448 return err;
449 }
450
451 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
452 struct mmc_blk_ioc_data *idata)
453 {
454 struct mmc_command cmd = {}, sbc = {};
455 struct mmc_data data = {};
456 struct mmc_request mrq = {};
457 struct scatterlist sg;
458 int err;
459 unsigned int target_part;
460
461 if (!card || !md || !idata)
462 return -EINVAL;
463
464 /*
465 * The RPMB accesses comes in from the character device, so we
466 * need to target these explicitly. Else we just target the
467 * partition type for the block device the ioctl() was issued
468 * on.
469 */
470 if (idata->rpmb) {
471 /* Support multiple RPMB partitions */
472 target_part = idata->rpmb->part_index;
473 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
474 } else {
475 target_part = md->part_type;
476 }
477
478 cmd.opcode = idata->ic.opcode;
479 cmd.arg = idata->ic.arg;
480 cmd.flags = idata->ic.flags;
481
482 if (idata->buf_bytes) {
483 data.sg = &sg;
484 data.sg_len = 1;
485 data.blksz = idata->ic.blksz;
486 data.blocks = idata->ic.blocks;
487
488 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
489
490 if (idata->ic.write_flag)
491 data.flags = MMC_DATA_WRITE;
492 else
493 data.flags = MMC_DATA_READ;
494
495 /* data.flags must already be set before doing this. */
496 mmc_set_data_timeout(&data, card);
497
498 /* Allow overriding the timeout_ns for empirical tuning. */
499 if (idata->ic.data_timeout_ns)
500 data.timeout_ns = idata->ic.data_timeout_ns;
501
502 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
503 /*
504 * Pretend this is a data transfer and rely on the
505 * host driver to compute timeout. When all host
506 * drivers support cmd.cmd_timeout for R1B, this
507 * can be changed to:
508 *
509 * mrq.data = NULL;
510 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
511 */
512 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
513 }
514
515 mrq.data = &data;
516 }
517
518 mrq.cmd = &cmd;
519
520 err = mmc_blk_part_switch(card, target_part);
521 if (err)
522 return err;
523
524 if (idata->ic.is_acmd) {
525 err = mmc_app_cmd(card->host, card);
526 if (err)
527 return err;
528 }
529
530 if (idata->rpmb) {
531 sbc.opcode = MMC_SET_BLOCK_COUNT;
532 /*
533 * We don't do any blockcount validation because the max size
534 * may be increased by a future standard. We just copy the
535 * 'Reliable Write' bit here.
536 */
537 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
538 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
539 mrq.sbc = &sbc;
540 }
541
542 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
543 (cmd.opcode == MMC_SWITCH))
544 return mmc_sanitize(card);
545
546 mmc_wait_for_req(card->host, &mrq);
547
548 if (cmd.error) {
549 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
550 __func__, cmd.error);
551 return cmd.error;
552 }
553 if (data.error) {
554 dev_err(mmc_dev(card->host), "%s: data error %d\n",
555 __func__, data.error);
556 return data.error;
557 }
558
559 /*
560 * Make sure the cache of the PARTITION_CONFIG register and
561 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
562 * changed it successfully.
563 */
564 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
565 (cmd.opcode == MMC_SWITCH)) {
566 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
567 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
568
569 /*
570 * Update cache so the next mmc_blk_part_switch call operates
571 * on up-to-date data.
572 */
573 card->ext_csd.part_config = value;
574 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
575 }
576
577 /*
578 * According to the SD specs, some commands require a delay after
579 * issuing the command.
580 */
581 if (idata->ic.postsleep_min_us)
582 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
583
584 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
585
586 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B)) {
587 /*
588 * Ensure RPMB/R1B command has completed by polling CMD13
589 * "Send Status".
590 */
591 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
592 }
593
594 return err;
595 }
596
597 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
598 struct mmc_ioc_cmd __user *ic_ptr,
599 struct mmc_rpmb_data *rpmb)
600 {
601 struct mmc_blk_ioc_data *idata;
602 struct mmc_blk_ioc_data *idatas[1];
603 struct mmc_queue *mq;
604 struct mmc_card *card;
605 int err = 0, ioc_err = 0;
606 struct request *req;
607
608 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
609 if (IS_ERR(idata))
610 return PTR_ERR(idata);
611 /* This will be NULL on non-RPMB ioctl():s */
612 idata->rpmb = rpmb;
613
614 card = md->queue.card;
615 if (IS_ERR(card)) {
616 err = PTR_ERR(card);
617 goto cmd_done;
618 }
619
620 /*
621 * Dispatch the ioctl() into the block request queue.
622 */
623 mq = &md->queue;
624 req = blk_get_request(mq->queue,
625 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
626 if (IS_ERR(req)) {
627 err = PTR_ERR(req);
628 goto cmd_done;
629 }
630 idatas[0] = idata;
631 req_to_mmc_queue_req(req)->drv_op =
632 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
633 req_to_mmc_queue_req(req)->drv_op_data = idatas;
634 req_to_mmc_queue_req(req)->ioc_count = 1;
635 blk_execute_rq(mq->queue, NULL, req, 0);
636 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
637 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
638 blk_put_request(req);
639
640 cmd_done:
641 kfree(idata->buf);
642 kfree(idata);
643 return ioc_err ? ioc_err : err;
644 }
645
646 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
647 struct mmc_ioc_multi_cmd __user *user,
648 struct mmc_rpmb_data *rpmb)
649 {
650 struct mmc_blk_ioc_data **idata = NULL;
651 struct mmc_ioc_cmd __user *cmds = user->cmds;
652 struct mmc_card *card;
653 struct mmc_queue *mq;
654 int i, err = 0, ioc_err = 0;
655 __u64 num_of_cmds;
656 struct request *req;
657
658 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
659 sizeof(num_of_cmds)))
660 return -EFAULT;
661
662 if (!num_of_cmds)
663 return 0;
664
665 if (num_of_cmds > MMC_IOC_MAX_CMDS)
666 return -EINVAL;
667
668 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
669 if (!idata)
670 return -ENOMEM;
671
672 for (i = 0; i < num_of_cmds; i++) {
673 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
674 if (IS_ERR(idata[i])) {
675 err = PTR_ERR(idata[i]);
676 num_of_cmds = i;
677 goto cmd_err;
678 }
679 /* This will be NULL on non-RPMB ioctl():s */
680 idata[i]->rpmb = rpmb;
681 }
682
683 card = md->queue.card;
684 if (IS_ERR(card)) {
685 err = PTR_ERR(card);
686 goto cmd_err;
687 }
688
689
690 /*
691 * Dispatch the ioctl()s into the block request queue.
692 */
693 mq = &md->queue;
694 req = blk_get_request(mq->queue,
695 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
696 if (IS_ERR(req)) {
697 err = PTR_ERR(req);
698 goto cmd_err;
699 }
700 req_to_mmc_queue_req(req)->drv_op =
701 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
702 req_to_mmc_queue_req(req)->drv_op_data = idata;
703 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
704 blk_execute_rq(mq->queue, NULL, req, 0);
705 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
706
707 /* copy to user if data and response */
708 for (i = 0; i < num_of_cmds && !err; i++)
709 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
710
711 blk_put_request(req);
712
713 cmd_err:
714 for (i = 0; i < num_of_cmds; i++) {
715 kfree(idata[i]->buf);
716 kfree(idata[i]);
717 }
718 kfree(idata);
719 return ioc_err ? ioc_err : err;
720 }
721
722 static int mmc_blk_check_blkdev(struct block_device *bdev)
723 {
724 /*
725 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
726 * whole block device, not on a partition. This prevents overspray
727 * between sibling partitions.
728 */
729 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
730 return -EPERM;
731 return 0;
732 }
733
734 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
735 unsigned int cmd, unsigned long arg)
736 {
737 struct mmc_blk_data *md;
738 int ret;
739
740 switch (cmd) {
741 case MMC_IOC_CMD:
742 ret = mmc_blk_check_blkdev(bdev);
743 if (ret)
744 return ret;
745 md = mmc_blk_get(bdev->bd_disk);
746 if (!md)
747 return -EINVAL;
748 ret = mmc_blk_ioctl_cmd(md,
749 (struct mmc_ioc_cmd __user *)arg,
750 NULL);
751 mmc_blk_put(md);
752 return ret;
753 case MMC_IOC_MULTI_CMD:
754 ret = mmc_blk_check_blkdev(bdev);
755 if (ret)
756 return ret;
757 md = mmc_blk_get(bdev->bd_disk);
758 if (!md)
759 return -EINVAL;
760 ret = mmc_blk_ioctl_multi_cmd(md,
761 (struct mmc_ioc_multi_cmd __user *)arg,
762 NULL);
763 mmc_blk_put(md);
764 return ret;
765 default:
766 return -EINVAL;
767 }
768 }
769
770 #ifdef CONFIG_COMPAT
771 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
772 unsigned int cmd, unsigned long arg)
773 {
774 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
775 }
776 #endif
777
778 static const struct block_device_operations mmc_bdops = {
779 .open = mmc_blk_open,
780 .release = mmc_blk_release,
781 .getgeo = mmc_blk_getgeo,
782 .owner = THIS_MODULE,
783 .ioctl = mmc_blk_ioctl,
784 #ifdef CONFIG_COMPAT
785 .compat_ioctl = mmc_blk_compat_ioctl,
786 #endif
787 };
788
789 static int mmc_blk_part_switch_pre(struct mmc_card *card,
790 unsigned int part_type)
791 {
792 int ret = 0;
793
794 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
795 if (card->ext_csd.cmdq_en) {
796 ret = mmc_cmdq_disable(card);
797 if (ret)
798 return ret;
799 }
800 mmc_retune_pause(card->host);
801 }
802
803 return ret;
804 }
805
806 static int mmc_blk_part_switch_post(struct mmc_card *card,
807 unsigned int part_type)
808 {
809 int ret = 0;
810
811 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
812 mmc_retune_unpause(card->host);
813 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
814 ret = mmc_cmdq_enable(card);
815 }
816
817 return ret;
818 }
819
820 static inline int mmc_blk_part_switch(struct mmc_card *card,
821 unsigned int part_type)
822 {
823 int ret = 0;
824 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
825
826 if (main_md->part_curr == part_type)
827 return 0;
828
829 if (mmc_card_mmc(card)) {
830 u8 part_config = card->ext_csd.part_config;
831
832 ret = mmc_blk_part_switch_pre(card, part_type);
833 if (ret)
834 return ret;
835
836 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
837 part_config |= part_type;
838
839 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
840 EXT_CSD_PART_CONFIG, part_config,
841 card->ext_csd.part_time);
842 if (ret) {
843 mmc_blk_part_switch_post(card, part_type);
844 return ret;
845 }
846
847 card->ext_csd.part_config = part_config;
848
849 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
850 }
851
852 main_md->part_curr = part_type;
853 return ret;
854 }
855
856 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
857 {
858 int err;
859 u32 result;
860 __be32 *blocks;
861
862 struct mmc_request mrq = {};
863 struct mmc_command cmd = {};
864 struct mmc_data data = {};
865
866 struct scatterlist sg;
867
868 cmd.opcode = MMC_APP_CMD;
869 cmd.arg = card->rca << 16;
870 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
871
872 err = mmc_wait_for_cmd(card->host, &cmd, 0);
873 if (err)
874 return err;
875 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
876 return -EIO;
877
878 memset(&cmd, 0, sizeof(struct mmc_command));
879
880 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
881 cmd.arg = 0;
882 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
883
884 data.blksz = 4;
885 data.blocks = 1;
886 data.flags = MMC_DATA_READ;
887 data.sg = &sg;
888 data.sg_len = 1;
889 mmc_set_data_timeout(&data, card);
890
891 mrq.cmd = &cmd;
892 mrq.data = &data;
893
894 blocks = kmalloc(4, GFP_KERNEL);
895 if (!blocks)
896 return -ENOMEM;
897
898 sg_init_one(&sg, blocks, 4);
899
900 mmc_wait_for_req(card->host, &mrq);
901
902 result = ntohl(*blocks);
903 kfree(blocks);
904
905 if (cmd.error || data.error)
906 return -EIO;
907
908 *written_blocks = result;
909
910 return 0;
911 }
912
913 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
914 {
915 if (host->actual_clock)
916 return host->actual_clock / 1000;
917
918 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
919 if (host->ios.clock)
920 return host->ios.clock / 2000;
921
922 /* How can there be no clock */
923 WARN_ON_ONCE(1);
924 return 100; /* 100 kHz is minimum possible value */
925 }
926
927 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
928 struct mmc_data *data)
929 {
930 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
931 unsigned int khz;
932
933 if (data->timeout_clks) {
934 khz = mmc_blk_clock_khz(host);
935 ms += DIV_ROUND_UP(data->timeout_clks, khz);
936 }
937
938 return ms;
939 }
940
941 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
942 int type)
943 {
944 int err;
945
946 if (md->reset_done & type)
947 return -EEXIST;
948
949 md->reset_done |= type;
950 err = mmc_hw_reset(host);
951 /* Ensure we switch back to the correct partition */
952 if (err != -EOPNOTSUPP) {
953 struct mmc_blk_data *main_md =
954 dev_get_drvdata(&host->card->dev);
955 int part_err;
956
957 main_md->part_curr = main_md->part_type;
958 part_err = mmc_blk_part_switch(host->card, md->part_type);
959 if (part_err) {
960 /*
961 * We have failed to get back into the correct
962 * partition, so we need to abort the whole request.
963 */
964 return -ENODEV;
965 }
966 }
967 return err;
968 }
969
970 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
971 {
972 md->reset_done &= ~type;
973 }
974
975 /*
976 * The non-block commands come back from the block layer after it queued it and
977 * processed it with all other requests and then they get issued in this
978 * function.
979 */
980 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
981 {
982 struct mmc_queue_req *mq_rq;
983 struct mmc_card *card = mq->card;
984 struct mmc_blk_data *md = mq->blkdata;
985 struct mmc_blk_ioc_data **idata;
986 bool rpmb_ioctl;
987 u8 **ext_csd;
988 u32 status;
989 int ret;
990 int i;
991
992 mq_rq = req_to_mmc_queue_req(req);
993 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
994
995 switch (mq_rq->drv_op) {
996 case MMC_DRV_OP_IOCTL:
997 case MMC_DRV_OP_IOCTL_RPMB:
998 idata = mq_rq->drv_op_data;
999 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1000 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1001 if (ret)
1002 break;
1003 }
1004 /* Always switch back to main area after RPMB access */
1005 if (rpmb_ioctl)
1006 mmc_blk_part_switch(card, 0);
1007 break;
1008 case MMC_DRV_OP_BOOT_WP:
1009 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1010 card->ext_csd.boot_ro_lock |
1011 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1012 card->ext_csd.part_time);
1013 if (ret)
1014 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1015 md->disk->disk_name, ret);
1016 else
1017 card->ext_csd.boot_ro_lock |=
1018 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1019 break;
1020 case MMC_DRV_OP_GET_CARD_STATUS:
1021 ret = mmc_send_status(card, &status);
1022 if (!ret)
1023 ret = status;
1024 break;
1025 case MMC_DRV_OP_GET_EXT_CSD:
1026 ext_csd = mq_rq->drv_op_data;
1027 ret = mmc_get_ext_csd(card, ext_csd);
1028 break;
1029 default:
1030 pr_err("%s: unknown driver specific operation\n",
1031 md->disk->disk_name);
1032 ret = -EINVAL;
1033 break;
1034 }
1035 mq_rq->drv_op_result = ret;
1036 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1037 }
1038
1039 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1040 {
1041 struct mmc_blk_data *md = mq->blkdata;
1042 struct mmc_card *card = md->queue.card;
1043 unsigned int from, nr;
1044 int err = 0, type = MMC_BLK_DISCARD;
1045 blk_status_t status = BLK_STS_OK;
1046
1047 if (!mmc_can_erase(card)) {
1048 status = BLK_STS_NOTSUPP;
1049 goto fail;
1050 }
1051
1052 from = blk_rq_pos(req);
1053 nr = blk_rq_sectors(req);
1054
1055 do {
1056 err = 0;
1057 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1058 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1059 INAND_CMD38_ARG_EXT_CSD,
1060 card->erase_arg == MMC_TRIM_ARG ?
1061 INAND_CMD38_ARG_TRIM :
1062 INAND_CMD38_ARG_ERASE,
1063 card->ext_csd.generic_cmd6_time);
1064 }
1065 if (!err)
1066 err = mmc_erase(card, from, nr, card->erase_arg);
1067 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1068 if (err)
1069 status = BLK_STS_IOERR;
1070 else
1071 mmc_blk_reset_success(md, type);
1072 fail:
1073 blk_mq_end_request(req, status);
1074 }
1075
1076 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1077 struct request *req)
1078 {
1079 struct mmc_blk_data *md = mq->blkdata;
1080 struct mmc_card *card = md->queue.card;
1081 unsigned int from, nr, arg;
1082 int err = 0, type = MMC_BLK_SECDISCARD;
1083 blk_status_t status = BLK_STS_OK;
1084
1085 if (!(mmc_can_secure_erase_trim(card))) {
1086 status = BLK_STS_NOTSUPP;
1087 goto out;
1088 }
1089
1090 from = blk_rq_pos(req);
1091 nr = blk_rq_sectors(req);
1092
1093 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1094 arg = MMC_SECURE_TRIM1_ARG;
1095 else
1096 arg = MMC_SECURE_ERASE_ARG;
1097
1098 retry:
1099 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1100 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1101 INAND_CMD38_ARG_EXT_CSD,
1102 arg == MMC_SECURE_TRIM1_ARG ?
1103 INAND_CMD38_ARG_SECTRIM1 :
1104 INAND_CMD38_ARG_SECERASE,
1105 card->ext_csd.generic_cmd6_time);
1106 if (err)
1107 goto out_retry;
1108 }
1109
1110 err = mmc_erase(card, from, nr, arg);
1111 if (err == -EIO)
1112 goto out_retry;
1113 if (err) {
1114 status = BLK_STS_IOERR;
1115 goto out;
1116 }
1117
1118 if (arg == MMC_SECURE_TRIM1_ARG) {
1119 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1120 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1121 INAND_CMD38_ARG_EXT_CSD,
1122 INAND_CMD38_ARG_SECTRIM2,
1123 card->ext_csd.generic_cmd6_time);
1124 if (err)
1125 goto out_retry;
1126 }
1127
1128 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1129 if (err == -EIO)
1130 goto out_retry;
1131 if (err) {
1132 status = BLK_STS_IOERR;
1133 goto out;
1134 }
1135 }
1136
1137 out_retry:
1138 if (err && !mmc_blk_reset(md, card->host, type))
1139 goto retry;
1140 if (!err)
1141 mmc_blk_reset_success(md, type);
1142 out:
1143 blk_mq_end_request(req, status);
1144 }
1145
1146 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1147 {
1148 struct mmc_blk_data *md = mq->blkdata;
1149 struct mmc_card *card = md->queue.card;
1150 int ret = 0;
1151
1152 ret = mmc_flush_cache(card);
1153 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1154 }
1155
1156 /*
1157 * Reformat current write as a reliable write, supporting
1158 * both legacy and the enhanced reliable write MMC cards.
1159 * In each transfer we'll handle only as much as a single
1160 * reliable write can handle, thus finish the request in
1161 * partial completions.
1162 */
1163 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1164 struct mmc_card *card,
1165 struct request *req)
1166 {
1167 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1168 /* Legacy mode imposes restrictions on transfers. */
1169 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1170 brq->data.blocks = 1;
1171
1172 if (brq->data.blocks > card->ext_csd.rel_sectors)
1173 brq->data.blocks = card->ext_csd.rel_sectors;
1174 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1175 brq->data.blocks = 1;
1176 }
1177 }
1178
1179 #define CMD_ERRORS_EXCL_OOR \
1180 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1181 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1182 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1183 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1184 R1_CC_ERROR | /* Card controller error */ \
1185 R1_ERROR) /* General/unknown error */
1186
1187 #define CMD_ERRORS \
1188 (CMD_ERRORS_EXCL_OOR | \
1189 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1190
1191 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1192 {
1193 u32 val;
1194
1195 /*
1196 * Per the SD specification(physical layer version 4.10)[1],
1197 * section 4.3.3, it explicitly states that "When the last
1198 * block of user area is read using CMD18, the host should
1199 * ignore OUT_OF_RANGE error that may occur even the sequence
1200 * is correct". And JESD84-B51 for eMMC also has a similar
1201 * statement on section 6.8.3.
1202 *
1203 * Multiple block read/write could be done by either predefined
1204 * method, namely CMD23, or open-ending mode. For open-ending mode,
1205 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1206 *
1207 * However the spec[1] doesn't tell us whether we should also
1208 * ignore that for predefined method. But per the spec[1], section
1209 * 4.15 Set Block Count Command, it says"If illegal block count
1210 * is set, out of range error will be indicated during read/write
1211 * operation (For example, data transfer is stopped at user area
1212 * boundary)." In another word, we could expect a out of range error
1213 * in the response for the following CMD18/25. And if argument of
1214 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1215 * we could also expect to get a -ETIMEDOUT or any error number from
1216 * the host drivers due to missing data response(for write)/data(for
1217 * read), as the cards will stop the data transfer by itself per the
1218 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1219 */
1220
1221 if (!brq->stop.error) {
1222 bool oor_with_open_end;
1223 /* If there is no error yet, check R1 response */
1224
1225 val = brq->stop.resp[0] & CMD_ERRORS;
1226 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1227
1228 if (val && !oor_with_open_end)
1229 brq->stop.error = -EIO;
1230 }
1231 }
1232
1233 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1234 int disable_multi, bool *do_rel_wr_p,
1235 bool *do_data_tag_p)
1236 {
1237 struct mmc_blk_data *md = mq->blkdata;
1238 struct mmc_card *card = md->queue.card;
1239 struct mmc_blk_request *brq = &mqrq->brq;
1240 struct request *req = mmc_queue_req_to_req(mqrq);
1241 bool do_rel_wr, do_data_tag;
1242
1243 /*
1244 * Reliable writes are used to implement Forced Unit Access and
1245 * are supported only on MMCs.
1246 */
1247 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1248 rq_data_dir(req) == WRITE &&
1249 (md->flags & MMC_BLK_REL_WR);
1250
1251 memset(brq, 0, sizeof(struct mmc_blk_request));
1252
1253 brq->mrq.data = &brq->data;
1254 brq->mrq.tag = req->tag;
1255
1256 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1257 brq->stop.arg = 0;
1258
1259 if (rq_data_dir(req) == READ) {
1260 brq->data.flags = MMC_DATA_READ;
1261 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1262 } else {
1263 brq->data.flags = MMC_DATA_WRITE;
1264 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1265 }
1266
1267 brq->data.blksz = 512;
1268 brq->data.blocks = blk_rq_sectors(req);
1269 brq->data.blk_addr = blk_rq_pos(req);
1270
1271 /*
1272 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1273 * The eMMC will give "high" priority tasks priority over "simple"
1274 * priority tasks. Here we always set "simple" priority by not setting
1275 * MMC_DATA_PRIO.
1276 */
1277
1278 /*
1279 * The block layer doesn't support all sector count
1280 * restrictions, so we need to be prepared for too big
1281 * requests.
1282 */
1283 if (brq->data.blocks > card->host->max_blk_count)
1284 brq->data.blocks = card->host->max_blk_count;
1285
1286 if (brq->data.blocks > 1) {
1287 /*
1288 * Some SD cards in SPI mode return a CRC error or even lock up
1289 * completely when trying to read the last block using a
1290 * multiblock read command.
1291 */
1292 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1293 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1294 get_capacity(md->disk)))
1295 brq->data.blocks--;
1296
1297 /*
1298 * After a read error, we redo the request one sector
1299 * at a time in order to accurately determine which
1300 * sectors can be read successfully.
1301 */
1302 if (disable_multi)
1303 brq->data.blocks = 1;
1304
1305 /*
1306 * Some controllers have HW issues while operating
1307 * in multiple I/O mode
1308 */
1309 if (card->host->ops->multi_io_quirk)
1310 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1311 (rq_data_dir(req) == READ) ?
1312 MMC_DATA_READ : MMC_DATA_WRITE,
1313 brq->data.blocks);
1314 }
1315
1316 if (do_rel_wr) {
1317 mmc_apply_rel_rw(brq, card, req);
1318 brq->data.flags |= MMC_DATA_REL_WR;
1319 }
1320
1321 /*
1322 * Data tag is used only during writing meta data to speed
1323 * up write and any subsequent read of this meta data
1324 */
1325 do_data_tag = card->ext_csd.data_tag_unit_size &&
1326 (req->cmd_flags & REQ_META) &&
1327 (rq_data_dir(req) == WRITE) &&
1328 ((brq->data.blocks * brq->data.blksz) >=
1329 card->ext_csd.data_tag_unit_size);
1330
1331 if (do_data_tag)
1332 brq->data.flags |= MMC_DATA_DAT_TAG;
1333
1334 mmc_set_data_timeout(&brq->data, card);
1335
1336 brq->data.sg = mqrq->sg;
1337 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1338
1339 /*
1340 * Adjust the sg list so it is the same size as the
1341 * request.
1342 */
1343 if (brq->data.blocks != blk_rq_sectors(req)) {
1344 int i, data_size = brq->data.blocks << 9;
1345 struct scatterlist *sg;
1346
1347 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1348 data_size -= sg->length;
1349 if (data_size <= 0) {
1350 sg->length += data_size;
1351 i++;
1352 break;
1353 }
1354 }
1355 brq->data.sg_len = i;
1356 }
1357
1358 if (do_rel_wr_p)
1359 *do_rel_wr_p = do_rel_wr;
1360
1361 if (do_data_tag_p)
1362 *do_data_tag_p = do_data_tag;
1363 }
1364
1365 #define MMC_CQE_RETRIES 2
1366
1367 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1368 {
1369 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1370 struct mmc_request *mrq = &mqrq->brq.mrq;
1371 struct request_queue *q = req->q;
1372 struct mmc_host *host = mq->card->host;
1373 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1374 unsigned long flags;
1375 bool put_card;
1376 int err;
1377
1378 mmc_cqe_post_req(host, mrq);
1379
1380 if (mrq->cmd && mrq->cmd->error)
1381 err = mrq->cmd->error;
1382 else if (mrq->data && mrq->data->error)
1383 err = mrq->data->error;
1384 else
1385 err = 0;
1386
1387 if (err) {
1388 if (mqrq->retries++ < MMC_CQE_RETRIES)
1389 blk_mq_requeue_request(req, true);
1390 else
1391 blk_mq_end_request(req, BLK_STS_IOERR);
1392 } else if (mrq->data) {
1393 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1394 blk_mq_requeue_request(req, true);
1395 else
1396 __blk_mq_end_request(req, BLK_STS_OK);
1397 } else {
1398 blk_mq_end_request(req, BLK_STS_OK);
1399 }
1400
1401 spin_lock_irqsave(&mq->lock, flags);
1402
1403 mq->in_flight[issue_type] -= 1;
1404
1405 put_card = (mmc_tot_in_flight(mq) == 0);
1406
1407 mmc_cqe_check_busy(mq);
1408
1409 spin_unlock_irqrestore(&mq->lock, flags);
1410
1411 if (!mq->cqe_busy)
1412 blk_mq_run_hw_queues(q, true);
1413
1414 if (put_card)
1415 mmc_put_card(mq->card, &mq->ctx);
1416 }
1417
1418 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1419 {
1420 struct mmc_card *card = mq->card;
1421 struct mmc_host *host = card->host;
1422 int err;
1423
1424 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1425
1426 err = mmc_cqe_recovery(host);
1427 if (err)
1428 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1429 else
1430 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1431
1432 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1433 }
1434
1435 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1436 {
1437 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1438 brq.mrq);
1439 struct request *req = mmc_queue_req_to_req(mqrq);
1440 struct request_queue *q = req->q;
1441 struct mmc_queue *mq = q->queuedata;
1442
1443 /*
1444 * Block layer timeouts race with completions which means the normal
1445 * completion path cannot be used during recovery.
1446 */
1447 if (mq->in_recovery)
1448 mmc_blk_cqe_complete_rq(mq, req);
1449 else
1450 blk_mq_complete_request(req);
1451 }
1452
1453 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1454 {
1455 mrq->done = mmc_blk_cqe_req_done;
1456 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1457
1458 return mmc_cqe_start_req(host, mrq);
1459 }
1460
1461 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1462 struct request *req)
1463 {
1464 struct mmc_blk_request *brq = &mqrq->brq;
1465
1466 memset(brq, 0, sizeof(*brq));
1467
1468 brq->mrq.cmd = &brq->cmd;
1469 brq->mrq.tag = req->tag;
1470
1471 return &brq->mrq;
1472 }
1473
1474 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1475 {
1476 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1477 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1478
1479 mrq->cmd->opcode = MMC_SWITCH;
1480 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1481 (EXT_CSD_FLUSH_CACHE << 16) |
1482 (1 << 8) |
1483 EXT_CSD_CMD_SET_NORMAL;
1484 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1485
1486 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1487 }
1488
1489 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1490 {
1491 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1492 struct mmc_host *host = mq->card->host;
1493 int err;
1494
1495 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1496 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1497 mmc_pre_req(host, &mqrq->brq.mrq);
1498
1499 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1500 if (err)
1501 mmc_post_req(host, &mqrq->brq.mrq, err);
1502
1503 return err;
1504 }
1505
1506 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1507 {
1508 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1509 struct mmc_host *host = mq->card->host;
1510
1511 if (host->hsq_enabled)
1512 return mmc_blk_hsq_issue_rw_rq(mq, req);
1513
1514 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1515
1516 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1517 }
1518
1519 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1520 struct mmc_card *card,
1521 int disable_multi,
1522 struct mmc_queue *mq)
1523 {
1524 u32 readcmd, writecmd;
1525 struct mmc_blk_request *brq = &mqrq->brq;
1526 struct request *req = mmc_queue_req_to_req(mqrq);
1527 struct mmc_blk_data *md = mq->blkdata;
1528 bool do_rel_wr, do_data_tag;
1529
1530 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1531
1532 brq->mrq.cmd = &brq->cmd;
1533
1534 brq->cmd.arg = blk_rq_pos(req);
1535 if (!mmc_card_blockaddr(card))
1536 brq->cmd.arg <<= 9;
1537 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1538
1539 if (brq->data.blocks > 1 || do_rel_wr) {
1540 /* SPI multiblock writes terminate using a special
1541 * token, not a STOP_TRANSMISSION request.
1542 */
1543 if (!mmc_host_is_spi(card->host) ||
1544 rq_data_dir(req) == READ)
1545 brq->mrq.stop = &brq->stop;
1546 readcmd = MMC_READ_MULTIPLE_BLOCK;
1547 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1548 } else {
1549 brq->mrq.stop = NULL;
1550 readcmd = MMC_READ_SINGLE_BLOCK;
1551 writecmd = MMC_WRITE_BLOCK;
1552 }
1553 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1554
1555 /*
1556 * Pre-defined multi-block transfers are preferable to
1557 * open ended-ones (and necessary for reliable writes).
1558 * However, it is not sufficient to just send CMD23,
1559 * and avoid the final CMD12, as on an error condition
1560 * CMD12 (stop) needs to be sent anyway. This, coupled
1561 * with Auto-CMD23 enhancements provided by some
1562 * hosts, means that the complexity of dealing
1563 * with this is best left to the host. If CMD23 is
1564 * supported by card and host, we'll fill sbc in and let
1565 * the host deal with handling it correctly. This means
1566 * that for hosts that don't expose MMC_CAP_CMD23, no
1567 * change of behavior will be observed.
1568 *
1569 * N.B: Some MMC cards experience perf degradation.
1570 * We'll avoid using CMD23-bounded multiblock writes for
1571 * these, while retaining features like reliable writes.
1572 */
1573 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1574 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1575 do_data_tag)) {
1576 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1577 brq->sbc.arg = brq->data.blocks |
1578 (do_rel_wr ? (1 << 31) : 0) |
1579 (do_data_tag ? (1 << 29) : 0);
1580 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1581 brq->mrq.sbc = &brq->sbc;
1582 }
1583 }
1584
1585 #define MMC_MAX_RETRIES 5
1586 #define MMC_DATA_RETRIES 2
1587 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1588
1589 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1590 {
1591 struct mmc_command cmd = {
1592 .opcode = MMC_STOP_TRANSMISSION,
1593 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1594 /* Some hosts wait for busy anyway, so provide a busy timeout */
1595 .busy_timeout = timeout,
1596 };
1597
1598 return mmc_wait_for_cmd(card->host, &cmd, 5);
1599 }
1600
1601 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1602 {
1603 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1604 struct mmc_blk_request *brq = &mqrq->brq;
1605 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1606 int err;
1607
1608 mmc_retune_hold_now(card->host);
1609
1610 mmc_blk_send_stop(card, timeout);
1611
1612 err = card_busy_detect(card, timeout, NULL);
1613
1614 mmc_retune_release(card->host);
1615
1616 return err;
1617 }
1618
1619 #define MMC_READ_SINGLE_RETRIES 2
1620
1621 /* Single sector read during recovery */
1622 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1623 {
1624 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1625 struct mmc_request *mrq = &mqrq->brq.mrq;
1626 struct mmc_card *card = mq->card;
1627 struct mmc_host *host = card->host;
1628 blk_status_t error = BLK_STS_OK;
1629 int retries = 0;
1630
1631 do {
1632 u32 status;
1633 int err;
1634
1635 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1636
1637 mmc_wait_for_req(host, mrq);
1638
1639 err = mmc_send_status(card, &status);
1640 if (err)
1641 goto error_exit;
1642
1643 if (!mmc_host_is_spi(host) &&
1644 !mmc_ready_for_data(status)) {
1645 err = mmc_blk_fix_state(card, req);
1646 if (err)
1647 goto error_exit;
1648 }
1649
1650 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1651 continue;
1652
1653 retries = 0;
1654
1655 if (mrq->cmd->error ||
1656 mrq->data->error ||
1657 (!mmc_host_is_spi(host) &&
1658 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1659 error = BLK_STS_IOERR;
1660 else
1661 error = BLK_STS_OK;
1662
1663 } while (blk_update_request(req, error, 512));
1664
1665 return;
1666
1667 error_exit:
1668 mrq->data->bytes_xfered = 0;
1669 blk_update_request(req, BLK_STS_IOERR, 512);
1670 /* Let it try the remaining request again */
1671 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1672 mqrq->retries = MMC_MAX_RETRIES - 1;
1673 }
1674
1675 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1676 {
1677 return !!brq->mrq.sbc;
1678 }
1679
1680 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1681 {
1682 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1683 }
1684
1685 /*
1686 * Check for errors the host controller driver might not have seen such as
1687 * response mode errors or invalid card state.
1688 */
1689 static bool mmc_blk_status_error(struct request *req, u32 status)
1690 {
1691 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1692 struct mmc_blk_request *brq = &mqrq->brq;
1693 struct mmc_queue *mq = req->q->queuedata;
1694 u32 stop_err_bits;
1695
1696 if (mmc_host_is_spi(mq->card->host))
1697 return false;
1698
1699 stop_err_bits = mmc_blk_stop_err_bits(brq);
1700
1701 return brq->cmd.resp[0] & CMD_ERRORS ||
1702 brq->stop.resp[0] & stop_err_bits ||
1703 status & stop_err_bits ||
1704 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1705 }
1706
1707 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1708 {
1709 return !brq->sbc.error && !brq->cmd.error &&
1710 !(brq->cmd.resp[0] & CMD_ERRORS);
1711 }
1712
1713 /*
1714 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1715 * policy:
1716 * 1. A request that has transferred at least some data is considered
1717 * successful and will be requeued if there is remaining data to
1718 * transfer.
1719 * 2. Otherwise the number of retries is incremented and the request
1720 * will be requeued if there are remaining retries.
1721 * 3. Otherwise the request will be errored out.
1722 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1723 * mqrq->retries. So there are only 4 possible actions here:
1724 * 1. do not accept the bytes_xfered value i.e. set it to zero
1725 * 2. change mqrq->retries to determine the number of retries
1726 * 3. try to reset the card
1727 * 4. read one sector at a time
1728 */
1729 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1730 {
1731 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1732 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1733 struct mmc_blk_request *brq = &mqrq->brq;
1734 struct mmc_blk_data *md = mq->blkdata;
1735 struct mmc_card *card = mq->card;
1736 u32 status;
1737 u32 blocks;
1738 int err;
1739
1740 /*
1741 * Some errors the host driver might not have seen. Set the number of
1742 * bytes transferred to zero in that case.
1743 */
1744 err = __mmc_send_status(card, &status, 0);
1745 if (err || mmc_blk_status_error(req, status))
1746 brq->data.bytes_xfered = 0;
1747
1748 mmc_retune_release(card->host);
1749
1750 /*
1751 * Try again to get the status. This also provides an opportunity for
1752 * re-tuning.
1753 */
1754 if (err)
1755 err = __mmc_send_status(card, &status, 0);
1756
1757 /*
1758 * Nothing more to do after the number of bytes transferred has been
1759 * updated and there is no card.
1760 */
1761 if (err && mmc_detect_card_removed(card->host))
1762 return;
1763
1764 /* Try to get back to "tran" state */
1765 if (!mmc_host_is_spi(mq->card->host) &&
1766 (err || !mmc_ready_for_data(status)))
1767 err = mmc_blk_fix_state(mq->card, req);
1768
1769 /*
1770 * Special case for SD cards where the card might record the number of
1771 * blocks written.
1772 */
1773 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1774 rq_data_dir(req) == WRITE) {
1775 if (mmc_sd_num_wr_blocks(card, &blocks))
1776 brq->data.bytes_xfered = 0;
1777 else
1778 brq->data.bytes_xfered = blocks << 9;
1779 }
1780
1781 /* Reset if the card is in a bad state */
1782 if (!mmc_host_is_spi(mq->card->host) &&
1783 err && mmc_blk_reset(md, card->host, type)) {
1784 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1785 mqrq->retries = MMC_NO_RETRIES;
1786 return;
1787 }
1788
1789 /*
1790 * If anything was done, just return and if there is anything remaining
1791 * on the request it will get requeued.
1792 */
1793 if (brq->data.bytes_xfered)
1794 return;
1795
1796 /* Reset before last retry */
1797 if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1798 mmc_blk_reset(md, card->host, type);
1799
1800 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1801 if (brq->sbc.error || brq->cmd.error)
1802 return;
1803
1804 /* Reduce the remaining retries for data errors */
1805 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1806 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1807 return;
1808 }
1809
1810 /* FIXME: Missing single sector read for large sector size */
1811 if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1812 brq->data.blocks > 1) {
1813 /* Read one sector at a time */
1814 mmc_blk_read_single(mq, req);
1815 return;
1816 }
1817 }
1818
1819 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1820 {
1821 mmc_blk_eval_resp_error(brq);
1822
1823 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1824 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1825 }
1826
1827 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1828 {
1829 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1830 u32 status = 0;
1831 int err;
1832
1833 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1834 return 0;
1835
1836 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
1837
1838 /*
1839 * Do not assume data transferred correctly if there are any error bits
1840 * set.
1841 */
1842 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1843 mqrq->brq.data.bytes_xfered = 0;
1844 err = err ? err : -EIO;
1845 }
1846
1847 /* Copy the exception bit so it will be seen later on */
1848 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1849 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1850
1851 return err;
1852 }
1853
1854 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1855 struct request *req)
1856 {
1857 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1858
1859 mmc_blk_reset_success(mq->blkdata, type);
1860 }
1861
1862 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1863 {
1864 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1865 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1866
1867 if (nr_bytes) {
1868 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1869 blk_mq_requeue_request(req, true);
1870 else
1871 __blk_mq_end_request(req, BLK_STS_OK);
1872 } else if (!blk_rq_bytes(req)) {
1873 __blk_mq_end_request(req, BLK_STS_IOERR);
1874 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1875 blk_mq_requeue_request(req, true);
1876 } else {
1877 if (mmc_card_removed(mq->card))
1878 req->rq_flags |= RQF_QUIET;
1879 blk_mq_end_request(req, BLK_STS_IOERR);
1880 }
1881 }
1882
1883 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1884 struct mmc_queue_req *mqrq)
1885 {
1886 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1887 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1888 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1889 }
1890
1891 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1892 struct mmc_queue_req *mqrq)
1893 {
1894 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1895 mmc_run_bkops(mq->card);
1896 }
1897
1898 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1899 {
1900 struct mmc_queue_req *mqrq =
1901 container_of(mrq, struct mmc_queue_req, brq.mrq);
1902 struct request *req = mmc_queue_req_to_req(mqrq);
1903 struct request_queue *q = req->q;
1904 struct mmc_queue *mq = q->queuedata;
1905 struct mmc_host *host = mq->card->host;
1906 unsigned long flags;
1907
1908 if (mmc_blk_rq_error(&mqrq->brq) ||
1909 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1910 spin_lock_irqsave(&mq->lock, flags);
1911 mq->recovery_needed = true;
1912 mq->recovery_req = req;
1913 spin_unlock_irqrestore(&mq->lock, flags);
1914
1915 host->cqe_ops->cqe_recovery_start(host);
1916
1917 schedule_work(&mq->recovery_work);
1918 return;
1919 }
1920
1921 mmc_blk_rw_reset_success(mq, req);
1922
1923 /*
1924 * Block layer timeouts race with completions which means the normal
1925 * completion path cannot be used during recovery.
1926 */
1927 if (mq->in_recovery)
1928 mmc_blk_cqe_complete_rq(mq, req);
1929 else
1930 blk_mq_complete_request(req);
1931 }
1932
1933 void mmc_blk_mq_complete(struct request *req)
1934 {
1935 struct mmc_queue *mq = req->q->queuedata;
1936
1937 if (mq->use_cqe)
1938 mmc_blk_cqe_complete_rq(mq, req);
1939 else
1940 mmc_blk_mq_complete_rq(mq, req);
1941 }
1942
1943 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1944 struct request *req)
1945 {
1946 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1947 struct mmc_host *host = mq->card->host;
1948
1949 if (mmc_blk_rq_error(&mqrq->brq) ||
1950 mmc_blk_card_busy(mq->card, req)) {
1951 mmc_blk_mq_rw_recovery(mq, req);
1952 } else {
1953 mmc_blk_rw_reset_success(mq, req);
1954 mmc_retune_release(host);
1955 }
1956
1957 mmc_blk_urgent_bkops(mq, mqrq);
1958 }
1959
1960 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1961 {
1962 unsigned long flags;
1963 bool put_card;
1964
1965 spin_lock_irqsave(&mq->lock, flags);
1966
1967 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1968
1969 put_card = (mmc_tot_in_flight(mq) == 0);
1970
1971 spin_unlock_irqrestore(&mq->lock, flags);
1972
1973 if (put_card)
1974 mmc_put_card(mq->card, &mq->ctx);
1975 }
1976
1977 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
1978 {
1979 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1980 struct mmc_request *mrq = &mqrq->brq.mrq;
1981 struct mmc_host *host = mq->card->host;
1982
1983 mmc_post_req(host, mrq, 0);
1984
1985 /*
1986 * Block layer timeouts race with completions which means the normal
1987 * completion path cannot be used during recovery.
1988 */
1989 if (mq->in_recovery)
1990 mmc_blk_mq_complete_rq(mq, req);
1991 else
1992 blk_mq_complete_request(req);
1993
1994 mmc_blk_mq_dec_in_flight(mq, req);
1995 }
1996
1997 void mmc_blk_mq_recovery(struct mmc_queue *mq)
1998 {
1999 struct request *req = mq->recovery_req;
2000 struct mmc_host *host = mq->card->host;
2001 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2002
2003 mq->recovery_req = NULL;
2004 mq->rw_wait = false;
2005
2006 if (mmc_blk_rq_error(&mqrq->brq)) {
2007 mmc_retune_hold_now(host);
2008 mmc_blk_mq_rw_recovery(mq, req);
2009 }
2010
2011 mmc_blk_urgent_bkops(mq, mqrq);
2012
2013 mmc_blk_mq_post_req(mq, req);
2014 }
2015
2016 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2017 struct request **prev_req)
2018 {
2019 if (mmc_host_done_complete(mq->card->host))
2020 return;
2021
2022 mutex_lock(&mq->complete_lock);
2023
2024 if (!mq->complete_req)
2025 goto out_unlock;
2026
2027 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2028
2029 if (prev_req)
2030 *prev_req = mq->complete_req;
2031 else
2032 mmc_blk_mq_post_req(mq, mq->complete_req);
2033
2034 mq->complete_req = NULL;
2035
2036 out_unlock:
2037 mutex_unlock(&mq->complete_lock);
2038 }
2039
2040 void mmc_blk_mq_complete_work(struct work_struct *work)
2041 {
2042 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2043 complete_work);
2044
2045 mmc_blk_mq_complete_prev_req(mq, NULL);
2046 }
2047
2048 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2049 {
2050 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2051 brq.mrq);
2052 struct request *req = mmc_queue_req_to_req(mqrq);
2053 struct request_queue *q = req->q;
2054 struct mmc_queue *mq = q->queuedata;
2055 struct mmc_host *host = mq->card->host;
2056 unsigned long flags;
2057
2058 if (!mmc_host_done_complete(host)) {
2059 bool waiting;
2060
2061 /*
2062 * We cannot complete the request in this context, so record
2063 * that there is a request to complete, and that a following
2064 * request does not need to wait (although it does need to
2065 * complete complete_req first).
2066 */
2067 spin_lock_irqsave(&mq->lock, flags);
2068 mq->complete_req = req;
2069 mq->rw_wait = false;
2070 waiting = mq->waiting;
2071 spin_unlock_irqrestore(&mq->lock, flags);
2072
2073 /*
2074 * If 'waiting' then the waiting task will complete this
2075 * request, otherwise queue a work to do it. Note that
2076 * complete_work may still race with the dispatch of a following
2077 * request.
2078 */
2079 if (waiting)
2080 wake_up(&mq->wait);
2081 else
2082 queue_work(mq->card->complete_wq, &mq->complete_work);
2083
2084 return;
2085 }
2086
2087 /* Take the recovery path for errors or urgent background operations */
2088 if (mmc_blk_rq_error(&mqrq->brq) ||
2089 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2090 spin_lock_irqsave(&mq->lock, flags);
2091 mq->recovery_needed = true;
2092 mq->recovery_req = req;
2093 spin_unlock_irqrestore(&mq->lock, flags);
2094 wake_up(&mq->wait);
2095 schedule_work(&mq->recovery_work);
2096 return;
2097 }
2098
2099 mmc_blk_rw_reset_success(mq, req);
2100
2101 mq->rw_wait = false;
2102 wake_up(&mq->wait);
2103
2104 mmc_blk_mq_post_req(mq, req);
2105 }
2106
2107 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2108 {
2109 unsigned long flags;
2110 bool done;
2111
2112 /*
2113 * Wait while there is another request in progress, but not if recovery
2114 * is needed. Also indicate whether there is a request waiting to start.
2115 */
2116 spin_lock_irqsave(&mq->lock, flags);
2117 if (mq->recovery_needed) {
2118 *err = -EBUSY;
2119 done = true;
2120 } else {
2121 done = !mq->rw_wait;
2122 }
2123 mq->waiting = !done;
2124 spin_unlock_irqrestore(&mq->lock, flags);
2125
2126 return done;
2127 }
2128
2129 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2130 {
2131 int err = 0;
2132
2133 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2134
2135 /* Always complete the previous request if there is one */
2136 mmc_blk_mq_complete_prev_req(mq, prev_req);
2137
2138 return err;
2139 }
2140
2141 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2142 struct request *req)
2143 {
2144 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2145 struct mmc_host *host = mq->card->host;
2146 struct request *prev_req = NULL;
2147 int err = 0;
2148
2149 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2150
2151 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2152
2153 mmc_pre_req(host, &mqrq->brq.mrq);
2154
2155 err = mmc_blk_rw_wait(mq, &prev_req);
2156 if (err)
2157 goto out_post_req;
2158
2159 mq->rw_wait = true;
2160
2161 err = mmc_start_request(host, &mqrq->brq.mrq);
2162
2163 if (prev_req)
2164 mmc_blk_mq_post_req(mq, prev_req);
2165
2166 if (err)
2167 mq->rw_wait = false;
2168
2169 /* Release re-tuning here where there is no synchronization required */
2170 if (err || mmc_host_done_complete(host))
2171 mmc_retune_release(host);
2172
2173 out_post_req:
2174 if (err)
2175 mmc_post_req(host, &mqrq->brq.mrq, err);
2176
2177 return err;
2178 }
2179
2180 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2181 {
2182 if (mq->use_cqe)
2183 return host->cqe_ops->cqe_wait_for_idle(host);
2184
2185 return mmc_blk_rw_wait(mq, NULL);
2186 }
2187
2188 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2189 {
2190 struct mmc_blk_data *md = mq->blkdata;
2191 struct mmc_card *card = md->queue.card;
2192 struct mmc_host *host = card->host;
2193 int ret;
2194
2195 ret = mmc_blk_part_switch(card, md->part_type);
2196 if (ret)
2197 return MMC_REQ_FAILED_TO_START;
2198
2199 switch (mmc_issue_type(mq, req)) {
2200 case MMC_ISSUE_SYNC:
2201 ret = mmc_blk_wait_for_idle(mq, host);
2202 if (ret)
2203 return MMC_REQ_BUSY;
2204 switch (req_op(req)) {
2205 case REQ_OP_DRV_IN:
2206 case REQ_OP_DRV_OUT:
2207 mmc_blk_issue_drv_op(mq, req);
2208 break;
2209 case REQ_OP_DISCARD:
2210 mmc_blk_issue_discard_rq(mq, req);
2211 break;
2212 case REQ_OP_SECURE_ERASE:
2213 mmc_blk_issue_secdiscard_rq(mq, req);
2214 break;
2215 case REQ_OP_FLUSH:
2216 mmc_blk_issue_flush(mq, req);
2217 break;
2218 default:
2219 WARN_ON_ONCE(1);
2220 return MMC_REQ_FAILED_TO_START;
2221 }
2222 return MMC_REQ_FINISHED;
2223 case MMC_ISSUE_DCMD:
2224 case MMC_ISSUE_ASYNC:
2225 switch (req_op(req)) {
2226 case REQ_OP_FLUSH:
2227 ret = mmc_blk_cqe_issue_flush(mq, req);
2228 break;
2229 case REQ_OP_READ:
2230 case REQ_OP_WRITE:
2231 if (mq->use_cqe)
2232 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2233 else
2234 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2235 break;
2236 default:
2237 WARN_ON_ONCE(1);
2238 ret = -EINVAL;
2239 }
2240 if (!ret)
2241 return MMC_REQ_STARTED;
2242 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2243 default:
2244 WARN_ON_ONCE(1);
2245 return MMC_REQ_FAILED_TO_START;
2246 }
2247 }
2248
2249 static inline int mmc_blk_readonly(struct mmc_card *card)
2250 {
2251 return mmc_card_readonly(card) ||
2252 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2253 }
2254
2255 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2256 struct device *parent,
2257 sector_t size,
2258 bool default_ro,
2259 const char *subname,
2260 int area_type)
2261 {
2262 struct mmc_blk_data *md;
2263 int devidx, ret;
2264
2265 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2266 if (devidx < 0) {
2267 /*
2268 * We get -ENOSPC because there are no more any available
2269 * devidx. The reason may be that, either userspace haven't yet
2270 * unmounted the partitions, which postpones mmc_blk_release()
2271 * from being called, or the device has more partitions than
2272 * what we support.
2273 */
2274 if (devidx == -ENOSPC)
2275 dev_err(mmc_dev(card->host),
2276 "no more device IDs available\n");
2277
2278 return ERR_PTR(devidx);
2279 }
2280
2281 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2282 if (!md) {
2283 ret = -ENOMEM;
2284 goto out;
2285 }
2286
2287 md->area_type = area_type;
2288
2289 /*
2290 * Set the read-only status based on the supported commands
2291 * and the write protect switch.
2292 */
2293 md->read_only = mmc_blk_readonly(card);
2294
2295 md->disk = alloc_disk(perdev_minors);
2296 if (md->disk == NULL) {
2297 ret = -ENOMEM;
2298 goto err_kfree;
2299 }
2300
2301 INIT_LIST_HEAD(&md->part);
2302 INIT_LIST_HEAD(&md->rpmbs);
2303 md->usage = 1;
2304
2305 ret = mmc_init_queue(&md->queue, card);
2306 if (ret)
2307 goto err_putdisk;
2308
2309 md->queue.blkdata = md;
2310
2311 /*
2312 * Keep an extra reference to the queue so that we can shutdown the
2313 * queue (i.e. call blk_cleanup_queue()) while there are still
2314 * references to the 'md'. The corresponding blk_put_queue() is in
2315 * mmc_blk_put().
2316 */
2317 if (!blk_get_queue(md->queue.queue)) {
2318 mmc_cleanup_queue(&md->queue);
2319 ret = -ENODEV;
2320 goto err_putdisk;
2321 }
2322
2323 md->disk->major = MMC_BLOCK_MAJOR;
2324 md->disk->first_minor = devidx * perdev_minors;
2325 md->disk->fops = &mmc_bdops;
2326 md->disk->private_data = md;
2327 md->disk->queue = md->queue.queue;
2328 md->parent = parent;
2329 set_disk_ro(md->disk, md->read_only || default_ro);
2330 md->disk->flags = GENHD_FL_EXT_DEVT;
2331 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2332 md->disk->flags |= GENHD_FL_NO_PART_SCAN
2333 | GENHD_FL_SUPPRESS_PARTITION_INFO;
2334
2335 /*
2336 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2337 *
2338 * - be set for removable media with permanent block devices
2339 * - be unset for removable block devices with permanent media
2340 *
2341 * Since MMC block devices clearly fall under the second
2342 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2343 * should use the block device creation/destruction hotplug
2344 * messages to tell when the card is present.
2345 */
2346
2347 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2348 "mmcblk%u%s", card->host->index, subname ? subname : "");
2349
2350 set_capacity(md->disk, size);
2351
2352 if (mmc_host_cmd23(card->host)) {
2353 if ((mmc_card_mmc(card) &&
2354 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2355 (mmc_card_sd(card) &&
2356 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2357 md->flags |= MMC_BLK_CMD23;
2358 }
2359
2360 if (mmc_card_mmc(card) &&
2361 md->flags & MMC_BLK_CMD23 &&
2362 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2363 card->ext_csd.rel_sectors)) {
2364 md->flags |= MMC_BLK_REL_WR;
2365 blk_queue_write_cache(md->queue.queue, true, true);
2366 }
2367
2368 return md;
2369
2370 err_putdisk:
2371 put_disk(md->disk);
2372 err_kfree:
2373 kfree(md);
2374 out:
2375 ida_simple_remove(&mmc_blk_ida, devidx);
2376 return ERR_PTR(ret);
2377 }
2378
2379 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2380 {
2381 sector_t size;
2382
2383 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2384 /*
2385 * The EXT_CSD sector count is in number or 512 byte
2386 * sectors.
2387 */
2388 size = card->ext_csd.sectors;
2389 } else {
2390 /*
2391 * The CSD capacity field is in units of read_blkbits.
2392 * set_capacity takes units of 512 bytes.
2393 */
2394 size = (typeof(sector_t))card->csd.capacity
2395 << (card->csd.read_blkbits - 9);
2396 }
2397
2398 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2399 MMC_BLK_DATA_AREA_MAIN);
2400 }
2401
2402 static int mmc_blk_alloc_part(struct mmc_card *card,
2403 struct mmc_blk_data *md,
2404 unsigned int part_type,
2405 sector_t size,
2406 bool default_ro,
2407 const char *subname,
2408 int area_type)
2409 {
2410 char cap_str[10];
2411 struct mmc_blk_data *part_md;
2412
2413 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2414 subname, area_type);
2415 if (IS_ERR(part_md))
2416 return PTR_ERR(part_md);
2417 part_md->part_type = part_type;
2418 list_add(&part_md->part, &md->part);
2419
2420 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2421 cap_str, sizeof(cap_str));
2422 pr_info("%s: %s %s partition %u %s\n",
2423 part_md->disk->disk_name, mmc_card_id(card),
2424 mmc_card_name(card), part_md->part_type, cap_str);
2425 return 0;
2426 }
2427
2428 /**
2429 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2430 * @filp: the character device file
2431 * @cmd: the ioctl() command
2432 * @arg: the argument from userspace
2433 *
2434 * This will essentially just redirect the ioctl()s coming in over to
2435 * the main block device spawning the RPMB character device.
2436 */
2437 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2438 unsigned long arg)
2439 {
2440 struct mmc_rpmb_data *rpmb = filp->private_data;
2441 int ret;
2442
2443 switch (cmd) {
2444 case MMC_IOC_CMD:
2445 ret = mmc_blk_ioctl_cmd(rpmb->md,
2446 (struct mmc_ioc_cmd __user *)arg,
2447 rpmb);
2448 break;
2449 case MMC_IOC_MULTI_CMD:
2450 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2451 (struct mmc_ioc_multi_cmd __user *)arg,
2452 rpmb);
2453 break;
2454 default:
2455 ret = -EINVAL;
2456 break;
2457 }
2458
2459 return ret;
2460 }
2461
2462 #ifdef CONFIG_COMPAT
2463 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2464 unsigned long arg)
2465 {
2466 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2467 }
2468 #endif
2469
2470 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2471 {
2472 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2473 struct mmc_rpmb_data, chrdev);
2474
2475 get_device(&rpmb->dev);
2476 filp->private_data = rpmb;
2477 mmc_blk_get(rpmb->md->disk);
2478
2479 return nonseekable_open(inode, filp);
2480 }
2481
2482 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2483 {
2484 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2485 struct mmc_rpmb_data, chrdev);
2486
2487 put_device(&rpmb->dev);
2488 mmc_blk_put(rpmb->md);
2489
2490 return 0;
2491 }
2492
2493 static const struct file_operations mmc_rpmb_fileops = {
2494 .release = mmc_rpmb_chrdev_release,
2495 .open = mmc_rpmb_chrdev_open,
2496 .owner = THIS_MODULE,
2497 .llseek = no_llseek,
2498 .unlocked_ioctl = mmc_rpmb_ioctl,
2499 #ifdef CONFIG_COMPAT
2500 .compat_ioctl = mmc_rpmb_ioctl_compat,
2501 #endif
2502 };
2503
2504 static void mmc_blk_rpmb_device_release(struct device *dev)
2505 {
2506 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2507
2508 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2509 kfree(rpmb);
2510 }
2511
2512 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2513 struct mmc_blk_data *md,
2514 unsigned int part_index,
2515 sector_t size,
2516 const char *subname)
2517 {
2518 int devidx, ret;
2519 char rpmb_name[DISK_NAME_LEN];
2520 char cap_str[10];
2521 struct mmc_rpmb_data *rpmb;
2522
2523 /* This creates the minor number for the RPMB char device */
2524 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2525 if (devidx < 0)
2526 return devidx;
2527
2528 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2529 if (!rpmb) {
2530 ida_simple_remove(&mmc_rpmb_ida, devidx);
2531 return -ENOMEM;
2532 }
2533
2534 snprintf(rpmb_name, sizeof(rpmb_name),
2535 "mmcblk%u%s", card->host->index, subname ? subname : "");
2536
2537 rpmb->id = devidx;
2538 rpmb->part_index = part_index;
2539 rpmb->dev.init_name = rpmb_name;
2540 rpmb->dev.bus = &mmc_rpmb_bus_type;
2541 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2542 rpmb->dev.parent = &card->dev;
2543 rpmb->dev.release = mmc_blk_rpmb_device_release;
2544 device_initialize(&rpmb->dev);
2545 dev_set_drvdata(&rpmb->dev, rpmb);
2546 rpmb->md = md;
2547
2548 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2549 rpmb->chrdev.owner = THIS_MODULE;
2550 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2551 if (ret) {
2552 pr_err("%s: could not add character device\n", rpmb_name);
2553 goto out_put_device;
2554 }
2555
2556 list_add(&rpmb->node, &md->rpmbs);
2557
2558 string_get_size((u64)size, 512, STRING_UNITS_2,
2559 cap_str, sizeof(cap_str));
2560
2561 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2562 rpmb_name, mmc_card_id(card),
2563 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2564 MAJOR(mmc_rpmb_devt), rpmb->id);
2565
2566 return 0;
2567
2568 out_put_device:
2569 put_device(&rpmb->dev);
2570 return ret;
2571 }
2572
2573 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2574
2575 {
2576 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2577 put_device(&rpmb->dev);
2578 }
2579
2580 /* MMC Physical partitions consist of two boot partitions and
2581 * up to four general purpose partitions.
2582 * For each partition enabled in EXT_CSD a block device will be allocatedi
2583 * to provide access to the partition.
2584 */
2585
2586 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2587 {
2588 int idx, ret;
2589
2590 if (!mmc_card_mmc(card))
2591 return 0;
2592
2593 for (idx = 0; idx < card->nr_parts; idx++) {
2594 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2595 /*
2596 * RPMB partitions does not provide block access, they
2597 * are only accessed using ioctl():s. Thus create
2598 * special RPMB block devices that do not have a
2599 * backing block queue for these.
2600 */
2601 ret = mmc_blk_alloc_rpmb_part(card, md,
2602 card->part[idx].part_cfg,
2603 card->part[idx].size >> 9,
2604 card->part[idx].name);
2605 if (ret)
2606 return ret;
2607 } else if (card->part[idx].size) {
2608 ret = mmc_blk_alloc_part(card, md,
2609 card->part[idx].part_cfg,
2610 card->part[idx].size >> 9,
2611 card->part[idx].force_ro,
2612 card->part[idx].name,
2613 card->part[idx].area_type);
2614 if (ret)
2615 return ret;
2616 }
2617 }
2618
2619 return 0;
2620 }
2621
2622 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2623 {
2624 struct mmc_card *card;
2625
2626 if (md) {
2627 /*
2628 * Flush remaining requests and free queues. It
2629 * is freeing the queue that stops new requests
2630 * from being accepted.
2631 */
2632 card = md->queue.card;
2633 if (md->disk->flags & GENHD_FL_UP) {
2634 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2635 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2636 card->ext_csd.boot_ro_lockable)
2637 device_remove_file(disk_to_dev(md->disk),
2638 &md->power_ro_lock);
2639
2640 del_gendisk(md->disk);
2641 }
2642 mmc_cleanup_queue(&md->queue);
2643 mmc_blk_put(md);
2644 }
2645 }
2646
2647 static void mmc_blk_remove_parts(struct mmc_card *card,
2648 struct mmc_blk_data *md)
2649 {
2650 struct list_head *pos, *q;
2651 struct mmc_blk_data *part_md;
2652 struct mmc_rpmb_data *rpmb;
2653
2654 /* Remove RPMB partitions */
2655 list_for_each_safe(pos, q, &md->rpmbs) {
2656 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2657 list_del(pos);
2658 mmc_blk_remove_rpmb_part(rpmb);
2659 }
2660 /* Remove block partitions */
2661 list_for_each_safe(pos, q, &md->part) {
2662 part_md = list_entry(pos, struct mmc_blk_data, part);
2663 list_del(pos);
2664 mmc_blk_remove_req(part_md);
2665 }
2666 }
2667
2668 static int mmc_add_disk(struct mmc_blk_data *md)
2669 {
2670 int ret;
2671 struct mmc_card *card = md->queue.card;
2672
2673 device_add_disk(md->parent, md->disk, NULL);
2674 md->force_ro.show = force_ro_show;
2675 md->force_ro.store = force_ro_store;
2676 sysfs_attr_init(&md->force_ro.attr);
2677 md->force_ro.attr.name = "force_ro";
2678 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2679 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2680 if (ret)
2681 goto force_ro_fail;
2682
2683 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2684 card->ext_csd.boot_ro_lockable) {
2685 umode_t mode;
2686
2687 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2688 mode = S_IRUGO;
2689 else
2690 mode = S_IRUGO | S_IWUSR;
2691
2692 md->power_ro_lock.show = power_ro_lock_show;
2693 md->power_ro_lock.store = power_ro_lock_store;
2694 sysfs_attr_init(&md->power_ro_lock.attr);
2695 md->power_ro_lock.attr.mode = mode;
2696 md->power_ro_lock.attr.name =
2697 "ro_lock_until_next_power_on";
2698 ret = device_create_file(disk_to_dev(md->disk),
2699 &md->power_ro_lock);
2700 if (ret)
2701 goto power_ro_lock_fail;
2702 }
2703 return ret;
2704
2705 power_ro_lock_fail:
2706 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2707 force_ro_fail:
2708 del_gendisk(md->disk);
2709
2710 return ret;
2711 }
2712
2713 #ifdef CONFIG_DEBUG_FS
2714
2715 static int mmc_dbg_card_status_get(void *data, u64 *val)
2716 {
2717 struct mmc_card *card = data;
2718 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2719 struct mmc_queue *mq = &md->queue;
2720 struct request *req;
2721 int ret;
2722
2723 /* Ask the block layer about the card status */
2724 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2725 if (IS_ERR(req))
2726 return PTR_ERR(req);
2727 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2728 blk_execute_rq(mq->queue, NULL, req, 0);
2729 ret = req_to_mmc_queue_req(req)->drv_op_result;
2730 if (ret >= 0) {
2731 *val = ret;
2732 ret = 0;
2733 }
2734 blk_put_request(req);
2735
2736 return ret;
2737 }
2738 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2739 NULL, "%08llx\n");
2740
2741 /* That is two digits * 512 + 1 for newline */
2742 #define EXT_CSD_STR_LEN 1025
2743
2744 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2745 {
2746 struct mmc_card *card = inode->i_private;
2747 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2748 struct mmc_queue *mq = &md->queue;
2749 struct request *req;
2750 char *buf;
2751 ssize_t n = 0;
2752 u8 *ext_csd;
2753 int err, i;
2754
2755 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2756 if (!buf)
2757 return -ENOMEM;
2758
2759 /* Ask the block layer for the EXT CSD */
2760 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2761 if (IS_ERR(req)) {
2762 err = PTR_ERR(req);
2763 goto out_free;
2764 }
2765 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2766 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2767 blk_execute_rq(mq->queue, NULL, req, 0);
2768 err = req_to_mmc_queue_req(req)->drv_op_result;
2769 blk_put_request(req);
2770 if (err) {
2771 pr_err("FAILED %d\n", err);
2772 goto out_free;
2773 }
2774
2775 for (i = 0; i < 512; i++)
2776 n += sprintf(buf + n, "%02x", ext_csd[i]);
2777 n += sprintf(buf + n, "\n");
2778
2779 if (n != EXT_CSD_STR_LEN) {
2780 err = -EINVAL;
2781 kfree(ext_csd);
2782 goto out_free;
2783 }
2784
2785 filp->private_data = buf;
2786 kfree(ext_csd);
2787 return 0;
2788
2789 out_free:
2790 kfree(buf);
2791 return err;
2792 }
2793
2794 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2795 size_t cnt, loff_t *ppos)
2796 {
2797 char *buf = filp->private_data;
2798
2799 return simple_read_from_buffer(ubuf, cnt, ppos,
2800 buf, EXT_CSD_STR_LEN);
2801 }
2802
2803 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2804 {
2805 kfree(file->private_data);
2806 return 0;
2807 }
2808
2809 static const struct file_operations mmc_dbg_ext_csd_fops = {
2810 .open = mmc_ext_csd_open,
2811 .read = mmc_ext_csd_read,
2812 .release = mmc_ext_csd_release,
2813 .llseek = default_llseek,
2814 };
2815
2816 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2817 {
2818 struct dentry *root;
2819
2820 if (!card->debugfs_root)
2821 return 0;
2822
2823 root = card->debugfs_root;
2824
2825 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2826 md->status_dentry =
2827 debugfs_create_file_unsafe("status", 0400, root,
2828 card,
2829 &mmc_dbg_card_status_fops);
2830 if (!md->status_dentry)
2831 return -EIO;
2832 }
2833
2834 if (mmc_card_mmc(card)) {
2835 md->ext_csd_dentry =
2836 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2837 &mmc_dbg_ext_csd_fops);
2838 if (!md->ext_csd_dentry)
2839 return -EIO;
2840 }
2841
2842 return 0;
2843 }
2844
2845 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2846 struct mmc_blk_data *md)
2847 {
2848 if (!card->debugfs_root)
2849 return;
2850
2851 if (!IS_ERR_OR_NULL(md->status_dentry)) {
2852 debugfs_remove(md->status_dentry);
2853 md->status_dentry = NULL;
2854 }
2855
2856 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2857 debugfs_remove(md->ext_csd_dentry);
2858 md->ext_csd_dentry = NULL;
2859 }
2860 }
2861
2862 #else
2863
2864 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2865 {
2866 return 0;
2867 }
2868
2869 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2870 struct mmc_blk_data *md)
2871 {
2872 }
2873
2874 #endif /* CONFIG_DEBUG_FS */
2875
2876 static int mmc_blk_probe(struct mmc_card *card)
2877 {
2878 struct mmc_blk_data *md, *part_md;
2879 char cap_str[10];
2880
2881 /*
2882 * Check that the card supports the command class(es) we need.
2883 */
2884 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2885 return -ENODEV;
2886
2887 mmc_fixup_device(card, mmc_blk_fixups);
2888
2889 card->complete_wq = alloc_workqueue("mmc_complete",
2890 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2891 if (unlikely(!card->complete_wq)) {
2892 pr_err("Failed to create mmc completion workqueue");
2893 return -ENOMEM;
2894 }
2895
2896 md = mmc_blk_alloc(card);
2897 if (IS_ERR(md))
2898 return PTR_ERR(md);
2899
2900 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2901 cap_str, sizeof(cap_str));
2902 pr_info("%s: %s %s %s %s\n",
2903 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2904 cap_str, md->read_only ? "(ro)" : "");
2905
2906 if (mmc_blk_alloc_parts(card, md))
2907 goto out;
2908
2909 dev_set_drvdata(&card->dev, md);
2910
2911 if (mmc_add_disk(md))
2912 goto out;
2913
2914 list_for_each_entry(part_md, &md->part, part) {
2915 if (mmc_add_disk(part_md))
2916 goto out;
2917 }
2918
2919 /* Add two debugfs entries */
2920 mmc_blk_add_debugfs(card, md);
2921
2922 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2923 pm_runtime_use_autosuspend(&card->dev);
2924
2925 /*
2926 * Don't enable runtime PM for SD-combo cards here. Leave that
2927 * decision to be taken during the SDIO init sequence instead.
2928 */
2929 if (card->type != MMC_TYPE_SD_COMBO) {
2930 pm_runtime_set_active(&card->dev);
2931 pm_runtime_enable(&card->dev);
2932 }
2933
2934 return 0;
2935
2936 out:
2937 mmc_blk_remove_parts(card, md);
2938 mmc_blk_remove_req(md);
2939 return 0;
2940 }
2941
2942 static void mmc_blk_remove(struct mmc_card *card)
2943 {
2944 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2945
2946 mmc_blk_remove_debugfs(card, md);
2947 mmc_blk_remove_parts(card, md);
2948 pm_runtime_get_sync(&card->dev);
2949 if (md->part_curr != md->part_type) {
2950 mmc_claim_host(card->host);
2951 mmc_blk_part_switch(card, md->part_type);
2952 mmc_release_host(card->host);
2953 }
2954 if (card->type != MMC_TYPE_SD_COMBO)
2955 pm_runtime_disable(&card->dev);
2956 pm_runtime_put_noidle(&card->dev);
2957 mmc_blk_remove_req(md);
2958 dev_set_drvdata(&card->dev, NULL);
2959 destroy_workqueue(card->complete_wq);
2960 }
2961
2962 static int _mmc_blk_suspend(struct mmc_card *card)
2963 {
2964 struct mmc_blk_data *part_md;
2965 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2966
2967 if (md) {
2968 mmc_queue_suspend(&md->queue);
2969 list_for_each_entry(part_md, &md->part, part) {
2970 mmc_queue_suspend(&part_md->queue);
2971 }
2972 }
2973 return 0;
2974 }
2975
2976 static void mmc_blk_shutdown(struct mmc_card *card)
2977 {
2978 _mmc_blk_suspend(card);
2979 }
2980
2981 #ifdef CONFIG_PM_SLEEP
2982 static int mmc_blk_suspend(struct device *dev)
2983 {
2984 struct mmc_card *card = mmc_dev_to_card(dev);
2985
2986 return _mmc_blk_suspend(card);
2987 }
2988
2989 static int mmc_blk_resume(struct device *dev)
2990 {
2991 struct mmc_blk_data *part_md;
2992 struct mmc_blk_data *md = dev_get_drvdata(dev);
2993
2994 if (md) {
2995 /*
2996 * Resume involves the card going into idle state,
2997 * so current partition is always the main one.
2998 */
2999 md->part_curr = md->part_type;
3000 mmc_queue_resume(&md->queue);
3001 list_for_each_entry(part_md, &md->part, part) {
3002 mmc_queue_resume(&part_md->queue);
3003 }
3004 }
3005 return 0;
3006 }
3007 #endif
3008
3009 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3010
3011 static struct mmc_driver mmc_driver = {
3012 .drv = {
3013 .name = "mmcblk",
3014 .pm = &mmc_blk_pm_ops,
3015 },
3016 .probe = mmc_blk_probe,
3017 .remove = mmc_blk_remove,
3018 .shutdown = mmc_blk_shutdown,
3019 };
3020
3021 static int __init mmc_blk_init(void)
3022 {
3023 int res;
3024
3025 res = bus_register(&mmc_rpmb_bus_type);
3026 if (res < 0) {
3027 pr_err("mmcblk: could not register RPMB bus type\n");
3028 return res;
3029 }
3030 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3031 if (res < 0) {
3032 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3033 goto out_bus_unreg;
3034 }
3035
3036 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3037 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3038
3039 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3040
3041 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3042 if (res)
3043 goto out_chrdev_unreg;
3044
3045 res = mmc_register_driver(&mmc_driver);
3046 if (res)
3047 goto out_blkdev_unreg;
3048
3049 return 0;
3050
3051 out_blkdev_unreg:
3052 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3053 out_chrdev_unreg:
3054 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3055 out_bus_unreg:
3056 bus_unregister(&mmc_rpmb_bus_type);
3057 return res;
3058 }
3059
3060 static void __exit mmc_blk_exit(void)
3061 {
3062 mmc_unregister_driver(&mmc_driver);
3063 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3064 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3065 bus_unregister(&mmc_rpmb_bus_type);
3066 }
3067
3068 module_init(mmc_blk_init);
3069 module_exit(mmc_blk_exit);
3070
3071 MODULE_LICENSE("GPL");
3072 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3073