]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/mtd/mtdcore.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[thirdparty/kernel/stable.git] / drivers / mtd / mtdcore.c
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43 #include <linux/debugfs.h>
44 #include <linux/nvmem-provider.h>
45
46 #include <linux/mtd/mtd.h>
47 #include <linux/mtd/partitions.h>
48
49 #include "mtdcore.h"
50
51 struct backing_dev_info *mtd_bdi;
52
53 #ifdef CONFIG_PM_SLEEP
54
55 static int mtd_cls_suspend(struct device *dev)
56 {
57 struct mtd_info *mtd = dev_get_drvdata(dev);
58
59 return mtd ? mtd_suspend(mtd) : 0;
60 }
61
62 static int mtd_cls_resume(struct device *dev)
63 {
64 struct mtd_info *mtd = dev_get_drvdata(dev);
65
66 if (mtd)
67 mtd_resume(mtd);
68 return 0;
69 }
70
71 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
72 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
73 #else
74 #define MTD_CLS_PM_OPS NULL
75 #endif
76
77 static struct class mtd_class = {
78 .name = "mtd",
79 .owner = THIS_MODULE,
80 .pm = MTD_CLS_PM_OPS,
81 };
82
83 static DEFINE_IDR(mtd_idr);
84
85 /* These are exported solely for the purpose of mtd_blkdevs.c. You
86 should not use them for _anything_ else */
87 DEFINE_MUTEX(mtd_table_mutex);
88 EXPORT_SYMBOL_GPL(mtd_table_mutex);
89
90 struct mtd_info *__mtd_next_device(int i)
91 {
92 return idr_get_next(&mtd_idr, &i);
93 }
94 EXPORT_SYMBOL_GPL(__mtd_next_device);
95
96 static LIST_HEAD(mtd_notifiers);
97
98
99 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
100
101 /* REVISIT once MTD uses the driver model better, whoever allocates
102 * the mtd_info will probably want to use the release() hook...
103 */
104 static void mtd_release(struct device *dev)
105 {
106 struct mtd_info *mtd = dev_get_drvdata(dev);
107 dev_t index = MTD_DEVT(mtd->index);
108
109 /* remove /dev/mtdXro node */
110 device_destroy(&mtd_class, index + 1);
111 }
112
113 static ssize_t mtd_type_show(struct device *dev,
114 struct device_attribute *attr, char *buf)
115 {
116 struct mtd_info *mtd = dev_get_drvdata(dev);
117 char *type;
118
119 switch (mtd->type) {
120 case MTD_ABSENT:
121 type = "absent";
122 break;
123 case MTD_RAM:
124 type = "ram";
125 break;
126 case MTD_ROM:
127 type = "rom";
128 break;
129 case MTD_NORFLASH:
130 type = "nor";
131 break;
132 case MTD_NANDFLASH:
133 type = "nand";
134 break;
135 case MTD_DATAFLASH:
136 type = "dataflash";
137 break;
138 case MTD_UBIVOLUME:
139 type = "ubi";
140 break;
141 case MTD_MLCNANDFLASH:
142 type = "mlc-nand";
143 break;
144 default:
145 type = "unknown";
146 }
147
148 return snprintf(buf, PAGE_SIZE, "%s\n", type);
149 }
150 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
151
152 static ssize_t mtd_flags_show(struct device *dev,
153 struct device_attribute *attr, char *buf)
154 {
155 struct mtd_info *mtd = dev_get_drvdata(dev);
156
157 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
158 }
159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
160
161 static ssize_t mtd_size_show(struct device *dev,
162 struct device_attribute *attr, char *buf)
163 {
164 struct mtd_info *mtd = dev_get_drvdata(dev);
165
166 return snprintf(buf, PAGE_SIZE, "%llu\n",
167 (unsigned long long)mtd->size);
168 }
169 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
170
171 static ssize_t mtd_erasesize_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
173 {
174 struct mtd_info *mtd = dev_get_drvdata(dev);
175
176 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
177 }
178 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
179
180 static ssize_t mtd_writesize_show(struct device *dev,
181 struct device_attribute *attr, char *buf)
182 {
183 struct mtd_info *mtd = dev_get_drvdata(dev);
184
185 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
186 }
187 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
188
189 static ssize_t mtd_subpagesize_show(struct device *dev,
190 struct device_attribute *attr, char *buf)
191 {
192 struct mtd_info *mtd = dev_get_drvdata(dev);
193 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
194
195 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
196 }
197 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
198
199 static ssize_t mtd_oobsize_show(struct device *dev,
200 struct device_attribute *attr, char *buf)
201 {
202 struct mtd_info *mtd = dev_get_drvdata(dev);
203
204 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
205 }
206 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
207
208 static ssize_t mtd_oobavail_show(struct device *dev,
209 struct device_attribute *attr, char *buf)
210 {
211 struct mtd_info *mtd = dev_get_drvdata(dev);
212
213 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
214 }
215 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
216
217 static ssize_t mtd_numeraseregions_show(struct device *dev,
218 struct device_attribute *attr, char *buf)
219 {
220 struct mtd_info *mtd = dev_get_drvdata(dev);
221
222 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
223 }
224 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
225 NULL);
226
227 static ssize_t mtd_name_show(struct device *dev,
228 struct device_attribute *attr, char *buf)
229 {
230 struct mtd_info *mtd = dev_get_drvdata(dev);
231
232 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
233 }
234 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
235
236 static ssize_t mtd_ecc_strength_show(struct device *dev,
237 struct device_attribute *attr, char *buf)
238 {
239 struct mtd_info *mtd = dev_get_drvdata(dev);
240
241 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
242 }
243 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
244
245 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
246 struct device_attribute *attr,
247 char *buf)
248 {
249 struct mtd_info *mtd = dev_get_drvdata(dev);
250
251 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
252 }
253
254 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
255 struct device_attribute *attr,
256 const char *buf, size_t count)
257 {
258 struct mtd_info *mtd = dev_get_drvdata(dev);
259 unsigned int bitflip_threshold;
260 int retval;
261
262 retval = kstrtouint(buf, 0, &bitflip_threshold);
263 if (retval)
264 return retval;
265
266 mtd->bitflip_threshold = bitflip_threshold;
267 return count;
268 }
269 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
270 mtd_bitflip_threshold_show,
271 mtd_bitflip_threshold_store);
272
273 static ssize_t mtd_ecc_step_size_show(struct device *dev,
274 struct device_attribute *attr, char *buf)
275 {
276 struct mtd_info *mtd = dev_get_drvdata(dev);
277
278 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
279
280 }
281 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
282
283 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
284 struct device_attribute *attr, char *buf)
285 {
286 struct mtd_info *mtd = dev_get_drvdata(dev);
287 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
288
289 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
290 }
291 static DEVICE_ATTR(corrected_bits, S_IRUGO,
292 mtd_ecc_stats_corrected_show, NULL);
293
294 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
295 struct device_attribute *attr, char *buf)
296 {
297 struct mtd_info *mtd = dev_get_drvdata(dev);
298 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
299
300 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
301 }
302 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
303
304 static ssize_t mtd_badblocks_show(struct device *dev,
305 struct device_attribute *attr, char *buf)
306 {
307 struct mtd_info *mtd = dev_get_drvdata(dev);
308 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
309
310 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
311 }
312 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
313
314 static ssize_t mtd_bbtblocks_show(struct device *dev,
315 struct device_attribute *attr, char *buf)
316 {
317 struct mtd_info *mtd = dev_get_drvdata(dev);
318 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
319
320 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
321 }
322 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
323
324 static struct attribute *mtd_attrs[] = {
325 &dev_attr_type.attr,
326 &dev_attr_flags.attr,
327 &dev_attr_size.attr,
328 &dev_attr_erasesize.attr,
329 &dev_attr_writesize.attr,
330 &dev_attr_subpagesize.attr,
331 &dev_attr_oobsize.attr,
332 &dev_attr_oobavail.attr,
333 &dev_attr_numeraseregions.attr,
334 &dev_attr_name.attr,
335 &dev_attr_ecc_strength.attr,
336 &dev_attr_ecc_step_size.attr,
337 &dev_attr_corrected_bits.attr,
338 &dev_attr_ecc_failures.attr,
339 &dev_attr_bad_blocks.attr,
340 &dev_attr_bbt_blocks.attr,
341 &dev_attr_bitflip_threshold.attr,
342 NULL,
343 };
344 ATTRIBUTE_GROUPS(mtd);
345
346 static const struct device_type mtd_devtype = {
347 .name = "mtd",
348 .groups = mtd_groups,
349 .release = mtd_release,
350 };
351
352 #ifndef CONFIG_MMU
353 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
354 {
355 switch (mtd->type) {
356 case MTD_RAM:
357 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
358 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
359 case MTD_ROM:
360 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
361 NOMMU_MAP_READ;
362 default:
363 return NOMMU_MAP_COPY;
364 }
365 }
366 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
367 #endif
368
369 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
370 void *cmd)
371 {
372 struct mtd_info *mtd;
373
374 mtd = container_of(n, struct mtd_info, reboot_notifier);
375 mtd->_reboot(mtd);
376
377 return NOTIFY_DONE;
378 }
379
380 /**
381 * mtd_wunit_to_pairing_info - get pairing information of a wunit
382 * @mtd: pointer to new MTD device info structure
383 * @wunit: write unit we are interested in
384 * @info: returned pairing information
385 *
386 * Retrieve pairing information associated to the wunit.
387 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
388 * paired together, and where programming a page may influence the page it is
389 * paired with.
390 * The notion of page is replaced by the term wunit (write-unit) to stay
391 * consistent with the ->writesize field.
392 *
393 * The @wunit argument can be extracted from an absolute offset using
394 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
395 * to @wunit.
396 *
397 * From the pairing info the MTD user can find all the wunits paired with
398 * @wunit using the following loop:
399 *
400 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
401 * info.pair = i;
402 * mtd_pairing_info_to_wunit(mtd, &info);
403 * ...
404 * }
405 */
406 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
407 struct mtd_pairing_info *info)
408 {
409 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
410
411 if (wunit < 0 || wunit >= npairs)
412 return -EINVAL;
413
414 if (mtd->pairing && mtd->pairing->get_info)
415 return mtd->pairing->get_info(mtd, wunit, info);
416
417 info->group = 0;
418 info->pair = wunit;
419
420 return 0;
421 }
422 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
423
424 /**
425 * mtd_pairing_info_to_wunit - get wunit from pairing information
426 * @mtd: pointer to new MTD device info structure
427 * @info: pairing information struct
428 *
429 * Returns a positive number representing the wunit associated to the info
430 * struct, or a negative error code.
431 *
432 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
433 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
434 * doc).
435 *
436 * It can also be used to only program the first page of each pair (i.e.
437 * page attached to group 0), which allows one to use an MLC NAND in
438 * software-emulated SLC mode:
439 *
440 * info.group = 0;
441 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
442 * for (info.pair = 0; info.pair < npairs; info.pair++) {
443 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
444 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
445 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
446 * }
447 */
448 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
449 const struct mtd_pairing_info *info)
450 {
451 int ngroups = mtd_pairing_groups(mtd);
452 int npairs = mtd_wunit_per_eb(mtd) / ngroups;
453
454 if (!info || info->pair < 0 || info->pair >= npairs ||
455 info->group < 0 || info->group >= ngroups)
456 return -EINVAL;
457
458 if (mtd->pairing && mtd->pairing->get_wunit)
459 return mtd->pairing->get_wunit(mtd, info);
460
461 return info->pair;
462 }
463 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
464
465 /**
466 * mtd_pairing_groups - get the number of pairing groups
467 * @mtd: pointer to new MTD device info structure
468 *
469 * Returns the number of pairing groups.
470 *
471 * This number is usually equal to the number of bits exposed by a single
472 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
473 * to iterate over all pages of a given pair.
474 */
475 int mtd_pairing_groups(struct mtd_info *mtd)
476 {
477 if (!mtd->pairing || !mtd->pairing->ngroups)
478 return 1;
479
480 return mtd->pairing->ngroups;
481 }
482 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
483
484 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
485 void *val, size_t bytes)
486 {
487 struct mtd_info *mtd = priv;
488 size_t retlen;
489 int err;
490
491 err = mtd_read(mtd, offset, bytes, &retlen, val);
492 if (err && err != -EUCLEAN)
493 return err;
494
495 return retlen == bytes ? 0 : -EIO;
496 }
497
498 static int mtd_nvmem_add(struct mtd_info *mtd)
499 {
500 struct nvmem_config config = {};
501
502 config.id = -1;
503 config.dev = &mtd->dev;
504 config.name = mtd->name;
505 config.owner = THIS_MODULE;
506 config.reg_read = mtd_nvmem_reg_read;
507 config.size = mtd->size;
508 config.word_size = 1;
509 config.stride = 1;
510 config.read_only = true;
511 config.root_only = true;
512 config.no_of_node = true;
513 config.priv = mtd;
514
515 mtd->nvmem = nvmem_register(&config);
516 if (IS_ERR(mtd->nvmem)) {
517 /* Just ignore if there is no NVMEM support in the kernel */
518 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
519 mtd->nvmem = NULL;
520 } else {
521 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
522 return PTR_ERR(mtd->nvmem);
523 }
524 }
525
526 return 0;
527 }
528
529 static struct dentry *dfs_dir_mtd;
530
531 /**
532 * add_mtd_device - register an MTD device
533 * @mtd: pointer to new MTD device info structure
534 *
535 * Add a device to the list of MTD devices present in the system, and
536 * notify each currently active MTD 'user' of its arrival. Returns
537 * zero on success or non-zero on failure.
538 */
539
540 int add_mtd_device(struct mtd_info *mtd)
541 {
542 struct mtd_notifier *not;
543 int i, error;
544
545 /*
546 * May occur, for instance, on buggy drivers which call
547 * mtd_device_parse_register() multiple times on the same master MTD,
548 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
549 */
550 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
551 return -EEXIST;
552
553 BUG_ON(mtd->writesize == 0);
554
555 /*
556 * MTD drivers should implement ->_{write,read}() or
557 * ->_{write,read}_oob(), but not both.
558 */
559 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
560 (mtd->_read && mtd->_read_oob)))
561 return -EINVAL;
562
563 if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
564 !(mtd->flags & MTD_NO_ERASE)))
565 return -EINVAL;
566
567 mutex_lock(&mtd_table_mutex);
568
569 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
570 if (i < 0) {
571 error = i;
572 goto fail_locked;
573 }
574
575 mtd->index = i;
576 mtd->usecount = 0;
577
578 /* default value if not set by driver */
579 if (mtd->bitflip_threshold == 0)
580 mtd->bitflip_threshold = mtd->ecc_strength;
581
582 if (is_power_of_2(mtd->erasesize))
583 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
584 else
585 mtd->erasesize_shift = 0;
586
587 if (is_power_of_2(mtd->writesize))
588 mtd->writesize_shift = ffs(mtd->writesize) - 1;
589 else
590 mtd->writesize_shift = 0;
591
592 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
593 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
594
595 /* Some chips always power up locked. Unlock them now */
596 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
597 error = mtd_unlock(mtd, 0, mtd->size);
598 if (error && error != -EOPNOTSUPP)
599 printk(KERN_WARNING
600 "%s: unlock failed, writes may not work\n",
601 mtd->name);
602 /* Ignore unlock failures? */
603 error = 0;
604 }
605
606 /* Caller should have set dev.parent to match the
607 * physical device, if appropriate.
608 */
609 mtd->dev.type = &mtd_devtype;
610 mtd->dev.class = &mtd_class;
611 mtd->dev.devt = MTD_DEVT(i);
612 dev_set_name(&mtd->dev, "mtd%d", i);
613 dev_set_drvdata(&mtd->dev, mtd);
614 of_node_get(mtd_get_of_node(mtd));
615 error = device_register(&mtd->dev);
616 if (error)
617 goto fail_added;
618
619 /* Add the nvmem provider */
620 error = mtd_nvmem_add(mtd);
621 if (error)
622 goto fail_nvmem_add;
623
624 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
625 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
626 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
627 pr_debug("mtd device %s won't show data in debugfs\n",
628 dev_name(&mtd->dev));
629 }
630 }
631
632 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
633 "mtd%dro", i);
634
635 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
636 /* No need to get a refcount on the module containing
637 the notifier, since we hold the mtd_table_mutex */
638 list_for_each_entry(not, &mtd_notifiers, list)
639 not->add(mtd);
640
641 mutex_unlock(&mtd_table_mutex);
642 /* We _know_ we aren't being removed, because
643 our caller is still holding us here. So none
644 of this try_ nonsense, and no bitching about it
645 either. :) */
646 __module_get(THIS_MODULE);
647 return 0;
648
649 fail_nvmem_add:
650 device_unregister(&mtd->dev);
651 fail_added:
652 of_node_put(mtd_get_of_node(mtd));
653 idr_remove(&mtd_idr, i);
654 fail_locked:
655 mutex_unlock(&mtd_table_mutex);
656 return error;
657 }
658
659 /**
660 * del_mtd_device - unregister an MTD device
661 * @mtd: pointer to MTD device info structure
662 *
663 * Remove a device from the list of MTD devices present in the system,
664 * and notify each currently active MTD 'user' of its departure.
665 * Returns zero on success or 1 on failure, which currently will happen
666 * if the requested device does not appear to be present in the list.
667 */
668
669 int del_mtd_device(struct mtd_info *mtd)
670 {
671 int ret;
672 struct mtd_notifier *not;
673
674 mutex_lock(&mtd_table_mutex);
675
676 debugfs_remove_recursive(mtd->dbg.dfs_dir);
677
678 if (idr_find(&mtd_idr, mtd->index) != mtd) {
679 ret = -ENODEV;
680 goto out_error;
681 }
682
683 /* No need to get a refcount on the module containing
684 the notifier, since we hold the mtd_table_mutex */
685 list_for_each_entry(not, &mtd_notifiers, list)
686 not->remove(mtd);
687
688 if (mtd->usecount) {
689 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
690 mtd->index, mtd->name, mtd->usecount);
691 ret = -EBUSY;
692 } else {
693 /* Try to remove the NVMEM provider */
694 if (mtd->nvmem)
695 nvmem_unregister(mtd->nvmem);
696
697 device_unregister(&mtd->dev);
698
699 idr_remove(&mtd_idr, mtd->index);
700 of_node_put(mtd_get_of_node(mtd));
701
702 module_put(THIS_MODULE);
703 ret = 0;
704 }
705
706 out_error:
707 mutex_unlock(&mtd_table_mutex);
708 return ret;
709 }
710
711 /*
712 * Set a few defaults based on the parent devices, if not provided by the
713 * driver
714 */
715 static void mtd_set_dev_defaults(struct mtd_info *mtd)
716 {
717 if (mtd->dev.parent) {
718 if (!mtd->owner && mtd->dev.parent->driver)
719 mtd->owner = mtd->dev.parent->driver->owner;
720 if (!mtd->name)
721 mtd->name = dev_name(mtd->dev.parent);
722 } else {
723 pr_debug("mtd device won't show a device symlink in sysfs\n");
724 }
725
726 mtd->orig_flags = mtd->flags;
727 }
728
729 /**
730 * mtd_device_parse_register - parse partitions and register an MTD device.
731 *
732 * @mtd: the MTD device to register
733 * @types: the list of MTD partition probes to try, see
734 * 'parse_mtd_partitions()' for more information
735 * @parser_data: MTD partition parser-specific data
736 * @parts: fallback partition information to register, if parsing fails;
737 * only valid if %nr_parts > %0
738 * @nr_parts: the number of partitions in parts, if zero then the full
739 * MTD device is registered if no partition info is found
740 *
741 * This function aggregates MTD partitions parsing (done by
742 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
743 * basically follows the most common pattern found in many MTD drivers:
744 *
745 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
746 * registered first.
747 * * Then It tries to probe partitions on MTD device @mtd using parsers
748 * specified in @types (if @types is %NULL, then the default list of parsers
749 * is used, see 'parse_mtd_partitions()' for more information). If none are
750 * found this functions tries to fallback to information specified in
751 * @parts/@nr_parts.
752 * * If no partitions were found this function just registers the MTD device
753 * @mtd and exits.
754 *
755 * Returns zero in case of success and a negative error code in case of failure.
756 */
757 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
758 struct mtd_part_parser_data *parser_data,
759 const struct mtd_partition *parts,
760 int nr_parts)
761 {
762 int ret;
763
764 mtd_set_dev_defaults(mtd);
765
766 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
767 ret = add_mtd_device(mtd);
768 if (ret)
769 return ret;
770 }
771
772 /* Prefer parsed partitions over driver-provided fallback */
773 ret = parse_mtd_partitions(mtd, types, parser_data);
774 if (ret > 0)
775 ret = 0;
776 else if (nr_parts)
777 ret = add_mtd_partitions(mtd, parts, nr_parts);
778 else if (!device_is_registered(&mtd->dev))
779 ret = add_mtd_device(mtd);
780 else
781 ret = 0;
782
783 if (ret)
784 goto out;
785
786 /*
787 * FIXME: some drivers unfortunately call this function more than once.
788 * So we have to check if we've already assigned the reboot notifier.
789 *
790 * Generally, we can make multiple calls work for most cases, but it
791 * does cause problems with parse_mtd_partitions() above (e.g.,
792 * cmdlineparts will register partitions more than once).
793 */
794 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
795 "MTD already registered\n");
796 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
797 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
798 register_reboot_notifier(&mtd->reboot_notifier);
799 }
800
801 out:
802 if (ret && device_is_registered(&mtd->dev))
803 del_mtd_device(mtd);
804
805 return ret;
806 }
807 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
808
809 /**
810 * mtd_device_unregister - unregister an existing MTD device.
811 *
812 * @master: the MTD device to unregister. This will unregister both the master
813 * and any partitions if registered.
814 */
815 int mtd_device_unregister(struct mtd_info *master)
816 {
817 int err;
818
819 if (master->_reboot)
820 unregister_reboot_notifier(&master->reboot_notifier);
821
822 err = del_mtd_partitions(master);
823 if (err)
824 return err;
825
826 if (!device_is_registered(&master->dev))
827 return 0;
828
829 return del_mtd_device(master);
830 }
831 EXPORT_SYMBOL_GPL(mtd_device_unregister);
832
833 /**
834 * register_mtd_user - register a 'user' of MTD devices.
835 * @new: pointer to notifier info structure
836 *
837 * Registers a pair of callbacks function to be called upon addition
838 * or removal of MTD devices. Causes the 'add' callback to be immediately
839 * invoked for each MTD device currently present in the system.
840 */
841 void register_mtd_user (struct mtd_notifier *new)
842 {
843 struct mtd_info *mtd;
844
845 mutex_lock(&mtd_table_mutex);
846
847 list_add(&new->list, &mtd_notifiers);
848
849 __module_get(THIS_MODULE);
850
851 mtd_for_each_device(mtd)
852 new->add(mtd);
853
854 mutex_unlock(&mtd_table_mutex);
855 }
856 EXPORT_SYMBOL_GPL(register_mtd_user);
857
858 /**
859 * unregister_mtd_user - unregister a 'user' of MTD devices.
860 * @old: pointer to notifier info structure
861 *
862 * Removes a callback function pair from the list of 'users' to be
863 * notified upon addition or removal of MTD devices. Causes the
864 * 'remove' callback to be immediately invoked for each MTD device
865 * currently present in the system.
866 */
867 int unregister_mtd_user (struct mtd_notifier *old)
868 {
869 struct mtd_info *mtd;
870
871 mutex_lock(&mtd_table_mutex);
872
873 module_put(THIS_MODULE);
874
875 mtd_for_each_device(mtd)
876 old->remove(mtd);
877
878 list_del(&old->list);
879 mutex_unlock(&mtd_table_mutex);
880 return 0;
881 }
882 EXPORT_SYMBOL_GPL(unregister_mtd_user);
883
884 /**
885 * get_mtd_device - obtain a validated handle for an MTD device
886 * @mtd: last known address of the required MTD device
887 * @num: internal device number of the required MTD device
888 *
889 * Given a number and NULL address, return the num'th entry in the device
890 * table, if any. Given an address and num == -1, search the device table
891 * for a device with that address and return if it's still present. Given
892 * both, return the num'th driver only if its address matches. Return
893 * error code if not.
894 */
895 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
896 {
897 struct mtd_info *ret = NULL, *other;
898 int err = -ENODEV;
899
900 mutex_lock(&mtd_table_mutex);
901
902 if (num == -1) {
903 mtd_for_each_device(other) {
904 if (other == mtd) {
905 ret = mtd;
906 break;
907 }
908 }
909 } else if (num >= 0) {
910 ret = idr_find(&mtd_idr, num);
911 if (mtd && mtd != ret)
912 ret = NULL;
913 }
914
915 if (!ret) {
916 ret = ERR_PTR(err);
917 goto out;
918 }
919
920 err = __get_mtd_device(ret);
921 if (err)
922 ret = ERR_PTR(err);
923 out:
924 mutex_unlock(&mtd_table_mutex);
925 return ret;
926 }
927 EXPORT_SYMBOL_GPL(get_mtd_device);
928
929
930 int __get_mtd_device(struct mtd_info *mtd)
931 {
932 int err;
933
934 if (!try_module_get(mtd->owner))
935 return -ENODEV;
936
937 if (mtd->_get_device) {
938 err = mtd->_get_device(mtd);
939
940 if (err) {
941 module_put(mtd->owner);
942 return err;
943 }
944 }
945 mtd->usecount++;
946 return 0;
947 }
948 EXPORT_SYMBOL_GPL(__get_mtd_device);
949
950 /**
951 * get_mtd_device_nm - obtain a validated handle for an MTD device by
952 * device name
953 * @name: MTD device name to open
954 *
955 * This function returns MTD device description structure in case of
956 * success and an error code in case of failure.
957 */
958 struct mtd_info *get_mtd_device_nm(const char *name)
959 {
960 int err = -ENODEV;
961 struct mtd_info *mtd = NULL, *other;
962
963 mutex_lock(&mtd_table_mutex);
964
965 mtd_for_each_device(other) {
966 if (!strcmp(name, other->name)) {
967 mtd = other;
968 break;
969 }
970 }
971
972 if (!mtd)
973 goto out_unlock;
974
975 err = __get_mtd_device(mtd);
976 if (err)
977 goto out_unlock;
978
979 mutex_unlock(&mtd_table_mutex);
980 return mtd;
981
982 out_unlock:
983 mutex_unlock(&mtd_table_mutex);
984 return ERR_PTR(err);
985 }
986 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
987
988 void put_mtd_device(struct mtd_info *mtd)
989 {
990 mutex_lock(&mtd_table_mutex);
991 __put_mtd_device(mtd);
992 mutex_unlock(&mtd_table_mutex);
993
994 }
995 EXPORT_SYMBOL_GPL(put_mtd_device);
996
997 void __put_mtd_device(struct mtd_info *mtd)
998 {
999 --mtd->usecount;
1000 BUG_ON(mtd->usecount < 0);
1001
1002 if (mtd->_put_device)
1003 mtd->_put_device(mtd);
1004
1005 module_put(mtd->owner);
1006 }
1007 EXPORT_SYMBOL_GPL(__put_mtd_device);
1008
1009 /*
1010 * Erase is an synchronous operation. Device drivers are epected to return a
1011 * negative error code if the operation failed and update instr->fail_addr
1012 * to point the portion that was not properly erased.
1013 */
1014 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1015 {
1016 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1017
1018 if (!mtd->erasesize || !mtd->_erase)
1019 return -ENOTSUPP;
1020
1021 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1022 return -EINVAL;
1023 if (!(mtd->flags & MTD_WRITEABLE))
1024 return -EROFS;
1025
1026 if (!instr->len)
1027 return 0;
1028
1029 ledtrig_mtd_activity();
1030 return mtd->_erase(mtd, instr);
1031 }
1032 EXPORT_SYMBOL_GPL(mtd_erase);
1033
1034 /*
1035 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1036 */
1037 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1038 void **virt, resource_size_t *phys)
1039 {
1040 *retlen = 0;
1041 *virt = NULL;
1042 if (phys)
1043 *phys = 0;
1044 if (!mtd->_point)
1045 return -EOPNOTSUPP;
1046 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1047 return -EINVAL;
1048 if (!len)
1049 return 0;
1050 return mtd->_point(mtd, from, len, retlen, virt, phys);
1051 }
1052 EXPORT_SYMBOL_GPL(mtd_point);
1053
1054 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1055 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1056 {
1057 if (!mtd->_unpoint)
1058 return -EOPNOTSUPP;
1059 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1060 return -EINVAL;
1061 if (!len)
1062 return 0;
1063 return mtd->_unpoint(mtd, from, len);
1064 }
1065 EXPORT_SYMBOL_GPL(mtd_unpoint);
1066
1067 /*
1068 * Allow NOMMU mmap() to directly map the device (if not NULL)
1069 * - return the address to which the offset maps
1070 * - return -ENOSYS to indicate refusal to do the mapping
1071 */
1072 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1073 unsigned long offset, unsigned long flags)
1074 {
1075 size_t retlen;
1076 void *virt;
1077 int ret;
1078
1079 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1080 if (ret)
1081 return ret;
1082 if (retlen != len) {
1083 mtd_unpoint(mtd, offset, retlen);
1084 return -ENOSYS;
1085 }
1086 return (unsigned long)virt;
1087 }
1088 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1089
1090 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1091 u_char *buf)
1092 {
1093 struct mtd_oob_ops ops = {
1094 .len = len,
1095 .datbuf = buf,
1096 };
1097 int ret;
1098
1099 ret = mtd_read_oob(mtd, from, &ops);
1100 *retlen = ops.retlen;
1101
1102 return ret;
1103 }
1104 EXPORT_SYMBOL_GPL(mtd_read);
1105
1106 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1107 const u_char *buf)
1108 {
1109 struct mtd_oob_ops ops = {
1110 .len = len,
1111 .datbuf = (u8 *)buf,
1112 };
1113 int ret;
1114
1115 ret = mtd_write_oob(mtd, to, &ops);
1116 *retlen = ops.retlen;
1117
1118 return ret;
1119 }
1120 EXPORT_SYMBOL_GPL(mtd_write);
1121
1122 /*
1123 * In blackbox flight recorder like scenarios we want to make successful writes
1124 * in interrupt context. panic_write() is only intended to be called when its
1125 * known the kernel is about to panic and we need the write to succeed. Since
1126 * the kernel is not going to be running for much longer, this function can
1127 * break locks and delay to ensure the write succeeds (but not sleep).
1128 */
1129 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1130 const u_char *buf)
1131 {
1132 *retlen = 0;
1133 if (!mtd->_panic_write)
1134 return -EOPNOTSUPP;
1135 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1136 return -EINVAL;
1137 if (!(mtd->flags & MTD_WRITEABLE))
1138 return -EROFS;
1139 if (!len)
1140 return 0;
1141 return mtd->_panic_write(mtd, to, len, retlen, buf);
1142 }
1143 EXPORT_SYMBOL_GPL(mtd_panic_write);
1144
1145 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1146 struct mtd_oob_ops *ops)
1147 {
1148 /*
1149 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1150 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1151 * this case.
1152 */
1153 if (!ops->datbuf)
1154 ops->len = 0;
1155
1156 if (!ops->oobbuf)
1157 ops->ooblen = 0;
1158
1159 if (offs < 0 || offs + ops->len > mtd->size)
1160 return -EINVAL;
1161
1162 if (ops->ooblen) {
1163 size_t maxooblen;
1164
1165 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1166 return -EINVAL;
1167
1168 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1169 mtd_div_by_ws(offs, mtd)) *
1170 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1171 if (ops->ooblen > maxooblen)
1172 return -EINVAL;
1173 }
1174
1175 return 0;
1176 }
1177
1178 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1179 {
1180 int ret_code;
1181 ops->retlen = ops->oobretlen = 0;
1182
1183 ret_code = mtd_check_oob_ops(mtd, from, ops);
1184 if (ret_code)
1185 return ret_code;
1186
1187 ledtrig_mtd_activity();
1188
1189 /* Check the validity of a potential fallback on mtd->_read */
1190 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1191 return -EOPNOTSUPP;
1192
1193 if (mtd->_read_oob)
1194 ret_code = mtd->_read_oob(mtd, from, ops);
1195 else
1196 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1197 ops->datbuf);
1198
1199 /*
1200 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1201 * similar to mtd->_read(), returning a non-negative integer
1202 * representing max bitflips. In other cases, mtd->_read_oob() may
1203 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1204 */
1205 if (unlikely(ret_code < 0))
1206 return ret_code;
1207 if (mtd->ecc_strength == 0)
1208 return 0; /* device lacks ecc */
1209 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1210 }
1211 EXPORT_SYMBOL_GPL(mtd_read_oob);
1212
1213 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1214 struct mtd_oob_ops *ops)
1215 {
1216 int ret;
1217
1218 ops->retlen = ops->oobretlen = 0;
1219
1220 if (!(mtd->flags & MTD_WRITEABLE))
1221 return -EROFS;
1222
1223 ret = mtd_check_oob_ops(mtd, to, ops);
1224 if (ret)
1225 return ret;
1226
1227 ledtrig_mtd_activity();
1228
1229 /* Check the validity of a potential fallback on mtd->_write */
1230 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1231 return -EOPNOTSUPP;
1232
1233 if (mtd->_write_oob)
1234 return mtd->_write_oob(mtd, to, ops);
1235 else
1236 return mtd->_write(mtd, to, ops->len, &ops->retlen,
1237 ops->datbuf);
1238 }
1239 EXPORT_SYMBOL_GPL(mtd_write_oob);
1240
1241 /**
1242 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1243 * @mtd: MTD device structure
1244 * @section: ECC section. Depending on the layout you may have all the ECC
1245 * bytes stored in a single contiguous section, or one section
1246 * per ECC chunk (and sometime several sections for a single ECC
1247 * ECC chunk)
1248 * @oobecc: OOB region struct filled with the appropriate ECC position
1249 * information
1250 *
1251 * This function returns ECC section information in the OOB area. If you want
1252 * to get all the ECC bytes information, then you should call
1253 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1254 *
1255 * Returns zero on success, a negative error code otherwise.
1256 */
1257 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1258 struct mtd_oob_region *oobecc)
1259 {
1260 memset(oobecc, 0, sizeof(*oobecc));
1261
1262 if (!mtd || section < 0)
1263 return -EINVAL;
1264
1265 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1266 return -ENOTSUPP;
1267
1268 return mtd->ooblayout->ecc(mtd, section, oobecc);
1269 }
1270 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1271
1272 /**
1273 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1274 * section
1275 * @mtd: MTD device structure
1276 * @section: Free section you are interested in. Depending on the layout
1277 * you may have all the free bytes stored in a single contiguous
1278 * section, or one section per ECC chunk plus an extra section
1279 * for the remaining bytes (or other funky layout).
1280 * @oobfree: OOB region struct filled with the appropriate free position
1281 * information
1282 *
1283 * This function returns free bytes position in the OOB area. If you want
1284 * to get all the free bytes information, then you should call
1285 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1286 *
1287 * Returns zero on success, a negative error code otherwise.
1288 */
1289 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1290 struct mtd_oob_region *oobfree)
1291 {
1292 memset(oobfree, 0, sizeof(*oobfree));
1293
1294 if (!mtd || section < 0)
1295 return -EINVAL;
1296
1297 if (!mtd->ooblayout || !mtd->ooblayout->free)
1298 return -ENOTSUPP;
1299
1300 return mtd->ooblayout->free(mtd, section, oobfree);
1301 }
1302 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1303
1304 /**
1305 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1306 * @mtd: mtd info structure
1307 * @byte: the byte we are searching for
1308 * @sectionp: pointer where the section id will be stored
1309 * @oobregion: used to retrieve the ECC position
1310 * @iter: iterator function. Should be either mtd_ooblayout_free or
1311 * mtd_ooblayout_ecc depending on the region type you're searching for
1312 *
1313 * This function returns the section id and oobregion information of a
1314 * specific byte. For example, say you want to know where the 4th ECC byte is
1315 * stored, you'll use:
1316 *
1317 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1318 *
1319 * Returns zero on success, a negative error code otherwise.
1320 */
1321 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1322 int *sectionp, struct mtd_oob_region *oobregion,
1323 int (*iter)(struct mtd_info *,
1324 int section,
1325 struct mtd_oob_region *oobregion))
1326 {
1327 int pos = 0, ret, section = 0;
1328
1329 memset(oobregion, 0, sizeof(*oobregion));
1330
1331 while (1) {
1332 ret = iter(mtd, section, oobregion);
1333 if (ret)
1334 return ret;
1335
1336 if (pos + oobregion->length > byte)
1337 break;
1338
1339 pos += oobregion->length;
1340 section++;
1341 }
1342
1343 /*
1344 * Adjust region info to make it start at the beginning at the
1345 * 'start' ECC byte.
1346 */
1347 oobregion->offset += byte - pos;
1348 oobregion->length -= byte - pos;
1349 *sectionp = section;
1350
1351 return 0;
1352 }
1353
1354 /**
1355 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1356 * ECC byte
1357 * @mtd: mtd info structure
1358 * @eccbyte: the byte we are searching for
1359 * @sectionp: pointer where the section id will be stored
1360 * @oobregion: OOB region information
1361 *
1362 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1363 * byte.
1364 *
1365 * Returns zero on success, a negative error code otherwise.
1366 */
1367 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1368 int *section,
1369 struct mtd_oob_region *oobregion)
1370 {
1371 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1372 mtd_ooblayout_ecc);
1373 }
1374 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1375
1376 /**
1377 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1378 * @mtd: mtd info structure
1379 * @buf: destination buffer to store OOB bytes
1380 * @oobbuf: OOB buffer
1381 * @start: first byte to retrieve
1382 * @nbytes: number of bytes to retrieve
1383 * @iter: section iterator
1384 *
1385 * Extract bytes attached to a specific category (ECC or free)
1386 * from the OOB buffer and copy them into buf.
1387 *
1388 * Returns zero on success, a negative error code otherwise.
1389 */
1390 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1391 const u8 *oobbuf, int start, int nbytes,
1392 int (*iter)(struct mtd_info *,
1393 int section,
1394 struct mtd_oob_region *oobregion))
1395 {
1396 struct mtd_oob_region oobregion;
1397 int section, ret;
1398
1399 ret = mtd_ooblayout_find_region(mtd, start, &section,
1400 &oobregion, iter);
1401
1402 while (!ret) {
1403 int cnt;
1404
1405 cnt = min_t(int, nbytes, oobregion.length);
1406 memcpy(buf, oobbuf + oobregion.offset, cnt);
1407 buf += cnt;
1408 nbytes -= cnt;
1409
1410 if (!nbytes)
1411 break;
1412
1413 ret = iter(mtd, ++section, &oobregion);
1414 }
1415
1416 return ret;
1417 }
1418
1419 /**
1420 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1421 * @mtd: mtd info structure
1422 * @buf: source buffer to get OOB bytes from
1423 * @oobbuf: OOB buffer
1424 * @start: first OOB byte to set
1425 * @nbytes: number of OOB bytes to set
1426 * @iter: section iterator
1427 *
1428 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1429 * is selected by passing the appropriate iterator.
1430 *
1431 * Returns zero on success, a negative error code otherwise.
1432 */
1433 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1434 u8 *oobbuf, int start, int nbytes,
1435 int (*iter)(struct mtd_info *,
1436 int section,
1437 struct mtd_oob_region *oobregion))
1438 {
1439 struct mtd_oob_region oobregion;
1440 int section, ret;
1441
1442 ret = mtd_ooblayout_find_region(mtd, start, &section,
1443 &oobregion, iter);
1444
1445 while (!ret) {
1446 int cnt;
1447
1448 cnt = min_t(int, nbytes, oobregion.length);
1449 memcpy(oobbuf + oobregion.offset, buf, cnt);
1450 buf += cnt;
1451 nbytes -= cnt;
1452
1453 if (!nbytes)
1454 break;
1455
1456 ret = iter(mtd, ++section, &oobregion);
1457 }
1458
1459 return ret;
1460 }
1461
1462 /**
1463 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1464 * @mtd: mtd info structure
1465 * @iter: category iterator
1466 *
1467 * Count the number of bytes in a given category.
1468 *
1469 * Returns a positive value on success, a negative error code otherwise.
1470 */
1471 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1472 int (*iter)(struct mtd_info *,
1473 int section,
1474 struct mtd_oob_region *oobregion))
1475 {
1476 struct mtd_oob_region oobregion;
1477 int section = 0, ret, nbytes = 0;
1478
1479 while (1) {
1480 ret = iter(mtd, section++, &oobregion);
1481 if (ret) {
1482 if (ret == -ERANGE)
1483 ret = nbytes;
1484 break;
1485 }
1486
1487 nbytes += oobregion.length;
1488 }
1489
1490 return ret;
1491 }
1492
1493 /**
1494 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1495 * @mtd: mtd info structure
1496 * @eccbuf: destination buffer to store ECC bytes
1497 * @oobbuf: OOB buffer
1498 * @start: first ECC byte to retrieve
1499 * @nbytes: number of ECC bytes to retrieve
1500 *
1501 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1502 *
1503 * Returns zero on success, a negative error code otherwise.
1504 */
1505 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1506 const u8 *oobbuf, int start, int nbytes)
1507 {
1508 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1509 mtd_ooblayout_ecc);
1510 }
1511 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1512
1513 /**
1514 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1515 * @mtd: mtd info structure
1516 * @eccbuf: source buffer to get ECC bytes from
1517 * @oobbuf: OOB buffer
1518 * @start: first ECC byte to set
1519 * @nbytes: number of ECC bytes to set
1520 *
1521 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1522 *
1523 * Returns zero on success, a negative error code otherwise.
1524 */
1525 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1526 u8 *oobbuf, int start, int nbytes)
1527 {
1528 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1529 mtd_ooblayout_ecc);
1530 }
1531 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1532
1533 /**
1534 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1535 * @mtd: mtd info structure
1536 * @databuf: destination buffer to store ECC bytes
1537 * @oobbuf: OOB buffer
1538 * @start: first ECC byte to retrieve
1539 * @nbytes: number of ECC bytes to retrieve
1540 *
1541 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1542 *
1543 * Returns zero on success, a negative error code otherwise.
1544 */
1545 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1546 const u8 *oobbuf, int start, int nbytes)
1547 {
1548 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1549 mtd_ooblayout_free);
1550 }
1551 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1552
1553 /**
1554 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1555 * @mtd: mtd info structure
1556 * @databuf: source buffer to get data bytes from
1557 * @oobbuf: OOB buffer
1558 * @start: first ECC byte to set
1559 * @nbytes: number of ECC bytes to set
1560 *
1561 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1562 *
1563 * Returns zero on success, a negative error code otherwise.
1564 */
1565 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1566 u8 *oobbuf, int start, int nbytes)
1567 {
1568 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1569 mtd_ooblayout_free);
1570 }
1571 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1572
1573 /**
1574 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1575 * @mtd: mtd info structure
1576 *
1577 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1578 *
1579 * Returns zero on success, a negative error code otherwise.
1580 */
1581 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1582 {
1583 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1584 }
1585 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1586
1587 /**
1588 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1589 * @mtd: mtd info structure
1590 *
1591 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1592 *
1593 * Returns zero on success, a negative error code otherwise.
1594 */
1595 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1596 {
1597 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1598 }
1599 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1600
1601 /*
1602 * Method to access the protection register area, present in some flash
1603 * devices. The user data is one time programmable but the factory data is read
1604 * only.
1605 */
1606 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1607 struct otp_info *buf)
1608 {
1609 if (!mtd->_get_fact_prot_info)
1610 return -EOPNOTSUPP;
1611 if (!len)
1612 return 0;
1613 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1614 }
1615 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1616
1617 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1618 size_t *retlen, u_char *buf)
1619 {
1620 *retlen = 0;
1621 if (!mtd->_read_fact_prot_reg)
1622 return -EOPNOTSUPP;
1623 if (!len)
1624 return 0;
1625 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1626 }
1627 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1628
1629 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1630 struct otp_info *buf)
1631 {
1632 if (!mtd->_get_user_prot_info)
1633 return -EOPNOTSUPP;
1634 if (!len)
1635 return 0;
1636 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1637 }
1638 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1639
1640 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1641 size_t *retlen, u_char *buf)
1642 {
1643 *retlen = 0;
1644 if (!mtd->_read_user_prot_reg)
1645 return -EOPNOTSUPP;
1646 if (!len)
1647 return 0;
1648 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1649 }
1650 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1651
1652 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1653 size_t *retlen, u_char *buf)
1654 {
1655 int ret;
1656
1657 *retlen = 0;
1658 if (!mtd->_write_user_prot_reg)
1659 return -EOPNOTSUPP;
1660 if (!len)
1661 return 0;
1662 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1663 if (ret)
1664 return ret;
1665
1666 /*
1667 * If no data could be written at all, we are out of memory and
1668 * must return -ENOSPC.
1669 */
1670 return (*retlen) ? 0 : -ENOSPC;
1671 }
1672 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1673
1674 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1675 {
1676 if (!mtd->_lock_user_prot_reg)
1677 return -EOPNOTSUPP;
1678 if (!len)
1679 return 0;
1680 return mtd->_lock_user_prot_reg(mtd, from, len);
1681 }
1682 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1683
1684 /* Chip-supported device locking */
1685 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1686 {
1687 if (!mtd->_lock)
1688 return -EOPNOTSUPP;
1689 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1690 return -EINVAL;
1691 if (!len)
1692 return 0;
1693 return mtd->_lock(mtd, ofs, len);
1694 }
1695 EXPORT_SYMBOL_GPL(mtd_lock);
1696
1697 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1698 {
1699 if (!mtd->_unlock)
1700 return -EOPNOTSUPP;
1701 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1702 return -EINVAL;
1703 if (!len)
1704 return 0;
1705 return mtd->_unlock(mtd, ofs, len);
1706 }
1707 EXPORT_SYMBOL_GPL(mtd_unlock);
1708
1709 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1710 {
1711 if (!mtd->_is_locked)
1712 return -EOPNOTSUPP;
1713 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1714 return -EINVAL;
1715 if (!len)
1716 return 0;
1717 return mtd->_is_locked(mtd, ofs, len);
1718 }
1719 EXPORT_SYMBOL_GPL(mtd_is_locked);
1720
1721 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1722 {
1723 if (ofs < 0 || ofs >= mtd->size)
1724 return -EINVAL;
1725 if (!mtd->_block_isreserved)
1726 return 0;
1727 return mtd->_block_isreserved(mtd, ofs);
1728 }
1729 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1730
1731 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1732 {
1733 if (ofs < 0 || ofs >= mtd->size)
1734 return -EINVAL;
1735 if (!mtd->_block_isbad)
1736 return 0;
1737 return mtd->_block_isbad(mtd, ofs);
1738 }
1739 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1740
1741 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1742 {
1743 if (!mtd->_block_markbad)
1744 return -EOPNOTSUPP;
1745 if (ofs < 0 || ofs >= mtd->size)
1746 return -EINVAL;
1747 if (!(mtd->flags & MTD_WRITEABLE))
1748 return -EROFS;
1749 return mtd->_block_markbad(mtd, ofs);
1750 }
1751 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1752
1753 /*
1754 * default_mtd_writev - the default writev method
1755 * @mtd: mtd device description object pointer
1756 * @vecs: the vectors to write
1757 * @count: count of vectors in @vecs
1758 * @to: the MTD device offset to write to
1759 * @retlen: on exit contains the count of bytes written to the MTD device.
1760 *
1761 * This function returns zero in case of success and a negative error code in
1762 * case of failure.
1763 */
1764 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1765 unsigned long count, loff_t to, size_t *retlen)
1766 {
1767 unsigned long i;
1768 size_t totlen = 0, thislen;
1769 int ret = 0;
1770
1771 for (i = 0; i < count; i++) {
1772 if (!vecs[i].iov_len)
1773 continue;
1774 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1775 vecs[i].iov_base);
1776 totlen += thislen;
1777 if (ret || thislen != vecs[i].iov_len)
1778 break;
1779 to += vecs[i].iov_len;
1780 }
1781 *retlen = totlen;
1782 return ret;
1783 }
1784
1785 /*
1786 * mtd_writev - the vector-based MTD write method
1787 * @mtd: mtd device description object pointer
1788 * @vecs: the vectors to write
1789 * @count: count of vectors in @vecs
1790 * @to: the MTD device offset to write to
1791 * @retlen: on exit contains the count of bytes written to the MTD device.
1792 *
1793 * This function returns zero in case of success and a negative error code in
1794 * case of failure.
1795 */
1796 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1797 unsigned long count, loff_t to, size_t *retlen)
1798 {
1799 *retlen = 0;
1800 if (!(mtd->flags & MTD_WRITEABLE))
1801 return -EROFS;
1802 if (!mtd->_writev)
1803 return default_mtd_writev(mtd, vecs, count, to, retlen);
1804 return mtd->_writev(mtd, vecs, count, to, retlen);
1805 }
1806 EXPORT_SYMBOL_GPL(mtd_writev);
1807
1808 /**
1809 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1810 * @mtd: mtd device description object pointer
1811 * @size: a pointer to the ideal or maximum size of the allocation, points
1812 * to the actual allocation size on success.
1813 *
1814 * This routine attempts to allocate a contiguous kernel buffer up to
1815 * the specified size, backing off the size of the request exponentially
1816 * until the request succeeds or until the allocation size falls below
1817 * the system page size. This attempts to make sure it does not adversely
1818 * impact system performance, so when allocating more than one page, we
1819 * ask the memory allocator to avoid re-trying, swapping, writing back
1820 * or performing I/O.
1821 *
1822 * Note, this function also makes sure that the allocated buffer is aligned to
1823 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1824 *
1825 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1826 * to handle smaller (i.e. degraded) buffer allocations under low- or
1827 * fragmented-memory situations where such reduced allocations, from a
1828 * requested ideal, are allowed.
1829 *
1830 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1831 */
1832 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1833 {
1834 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1835 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1836 void *kbuf;
1837
1838 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1839
1840 while (*size > min_alloc) {
1841 kbuf = kmalloc(*size, flags);
1842 if (kbuf)
1843 return kbuf;
1844
1845 *size >>= 1;
1846 *size = ALIGN(*size, mtd->writesize);
1847 }
1848
1849 /*
1850 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1851 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1852 */
1853 return kmalloc(*size, GFP_KERNEL);
1854 }
1855 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1856
1857 #ifdef CONFIG_PROC_FS
1858
1859 /*====================================================================*/
1860 /* Support for /proc/mtd */
1861
1862 static int mtd_proc_show(struct seq_file *m, void *v)
1863 {
1864 struct mtd_info *mtd;
1865
1866 seq_puts(m, "dev: size erasesize name\n");
1867 mutex_lock(&mtd_table_mutex);
1868 mtd_for_each_device(mtd) {
1869 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1870 mtd->index, (unsigned long long)mtd->size,
1871 mtd->erasesize, mtd->name);
1872 }
1873 mutex_unlock(&mtd_table_mutex);
1874 return 0;
1875 }
1876 #endif /* CONFIG_PROC_FS */
1877
1878 /*====================================================================*/
1879 /* Init code */
1880
1881 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1882 {
1883 struct backing_dev_info *bdi;
1884 int ret;
1885
1886 bdi = bdi_alloc(GFP_KERNEL);
1887 if (!bdi)
1888 return ERR_PTR(-ENOMEM);
1889
1890 bdi->name = name;
1891 /*
1892 * We put '-0' suffix to the name to get the same name format as we
1893 * used to get. Since this is called only once, we get a unique name.
1894 */
1895 ret = bdi_register(bdi, "%.28s-0", name);
1896 if (ret)
1897 bdi_put(bdi);
1898
1899 return ret ? ERR_PTR(ret) : bdi;
1900 }
1901
1902 static struct proc_dir_entry *proc_mtd;
1903
1904 static int __init init_mtd(void)
1905 {
1906 int ret;
1907
1908 ret = class_register(&mtd_class);
1909 if (ret)
1910 goto err_reg;
1911
1912 mtd_bdi = mtd_bdi_init("mtd");
1913 if (IS_ERR(mtd_bdi)) {
1914 ret = PTR_ERR(mtd_bdi);
1915 goto err_bdi;
1916 }
1917
1918 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
1919
1920 ret = init_mtdchar();
1921 if (ret)
1922 goto out_procfs;
1923
1924 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1925
1926 return 0;
1927
1928 out_procfs:
1929 if (proc_mtd)
1930 remove_proc_entry("mtd", NULL);
1931 bdi_put(mtd_bdi);
1932 err_bdi:
1933 class_unregister(&mtd_class);
1934 err_reg:
1935 pr_err("Error registering mtd class or bdi: %d\n", ret);
1936 return ret;
1937 }
1938
1939 static void __exit cleanup_mtd(void)
1940 {
1941 debugfs_remove_recursive(dfs_dir_mtd);
1942 cleanup_mtdchar();
1943 if (proc_mtd)
1944 remove_proc_entry("mtd", NULL);
1945 class_unregister(&mtd_class);
1946 bdi_put(mtd_bdi);
1947 idr_destroy(&mtd_idr);
1948 }
1949
1950 module_init(init_mtd);
1951 module_exit(cleanup_mtd);
1952
1953 MODULE_LICENSE("GPL");
1954 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1955 MODULE_DESCRIPTION("Core MTD registration and access routines");