]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/mtdpart.c
nand_spl_simple: Add a simple NAND read function
[people/ms/u-boot.git] / drivers / mtd / mtdpart.c
1 /*
2 * Simple MTD partitioning layer
3 *
4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7 *
8 * SPDX-License-Identifier: GPL-2.0+
9 *
10 */
11
12 #ifndef __UBOOT__
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/list.h>
18 #include <linux/kmod.h>
19 #endif
20
21 #include <common.h>
22 #include <malloc.h>
23 #include <asm/errno.h>
24 #include <linux/compat.h>
25 #include <ubi_uboot.h>
26
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/partitions.h>
29 #include <linux/err.h>
30
31 #include "mtdcore.h"
32
33 /* Our partition linked list */
34 static LIST_HEAD(mtd_partitions);
35 #ifndef __UBOOT__
36 static DEFINE_MUTEX(mtd_partitions_mutex);
37 #else
38 DEFINE_MUTEX(mtd_partitions_mutex);
39 #endif
40
41 /* Our partition node structure */
42 struct mtd_part {
43 struct mtd_info mtd;
44 struct mtd_info *master;
45 uint64_t offset;
46 struct list_head list;
47 };
48
49 /*
50 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
51 * the pointer to that structure with this macro.
52 */
53 #define PART(x) ((struct mtd_part *)(x))
54
55
56 #ifdef __UBOOT__
57 /* from mm/util.c */
58
59 /**
60 * kstrdup - allocate space for and copy an existing string
61 * @s: the string to duplicate
62 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
63 */
64 char *kstrdup(const char *s, gfp_t gfp)
65 {
66 size_t len;
67 char *buf;
68
69 if (!s)
70 return NULL;
71
72 len = strlen(s) + 1;
73 buf = kmalloc(len, gfp);
74 if (buf)
75 memcpy(buf, s, len);
76 return buf;
77 }
78 #endif
79
80 /*
81 * MTD methods which simply translate the effective address and pass through
82 * to the _real_ device.
83 */
84
85 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
86 size_t *retlen, u_char *buf)
87 {
88 struct mtd_part *part = PART(mtd);
89 struct mtd_ecc_stats stats;
90 int res;
91
92 stats = part->master->ecc_stats;
93 res = part->master->_read(part->master, from + part->offset, len,
94 retlen, buf);
95 if (unlikely(mtd_is_eccerr(res)))
96 mtd->ecc_stats.failed +=
97 part->master->ecc_stats.failed - stats.failed;
98 else
99 mtd->ecc_stats.corrected +=
100 part->master->ecc_stats.corrected - stats.corrected;
101 return res;
102 }
103
104 #ifndef __UBOOT__
105 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
106 size_t *retlen, void **virt, resource_size_t *phys)
107 {
108 struct mtd_part *part = PART(mtd);
109
110 return part->master->_point(part->master, from + part->offset, len,
111 retlen, virt, phys);
112 }
113
114 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
115 {
116 struct mtd_part *part = PART(mtd);
117
118 return part->master->_unpoint(part->master, from + part->offset, len);
119 }
120 #endif
121
122 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
123 unsigned long len,
124 unsigned long offset,
125 unsigned long flags)
126 {
127 struct mtd_part *part = PART(mtd);
128
129 offset += part->offset;
130 return part->master->_get_unmapped_area(part->master, len, offset,
131 flags);
132 }
133
134 static int part_read_oob(struct mtd_info *mtd, loff_t from,
135 struct mtd_oob_ops *ops)
136 {
137 struct mtd_part *part = PART(mtd);
138 int res;
139
140 if (from >= mtd->size)
141 return -EINVAL;
142 if (ops->datbuf && from + ops->len > mtd->size)
143 return -EINVAL;
144
145 /*
146 * If OOB is also requested, make sure that we do not read past the end
147 * of this partition.
148 */
149 if (ops->oobbuf) {
150 size_t len, pages;
151
152 if (ops->mode == MTD_OPS_AUTO_OOB)
153 len = mtd->oobavail;
154 else
155 len = mtd->oobsize;
156 pages = mtd_div_by_ws(mtd->size, mtd);
157 pages -= mtd_div_by_ws(from, mtd);
158 if (ops->ooboffs + ops->ooblen > pages * len)
159 return -EINVAL;
160 }
161
162 res = part->master->_read_oob(part->master, from + part->offset, ops);
163 if (unlikely(res)) {
164 if (mtd_is_bitflip(res))
165 mtd->ecc_stats.corrected++;
166 if (mtd_is_eccerr(res))
167 mtd->ecc_stats.failed++;
168 }
169 return res;
170 }
171
172 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
173 size_t len, size_t *retlen, u_char *buf)
174 {
175 struct mtd_part *part = PART(mtd);
176 return part->master->_read_user_prot_reg(part->master, from, len,
177 retlen, buf);
178 }
179
180 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
181 size_t *retlen, struct otp_info *buf)
182 {
183 struct mtd_part *part = PART(mtd);
184 return part->master->_get_user_prot_info(part->master, len, retlen,
185 buf);
186 }
187
188 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
189 size_t len, size_t *retlen, u_char *buf)
190 {
191 struct mtd_part *part = PART(mtd);
192 return part->master->_read_fact_prot_reg(part->master, from, len,
193 retlen, buf);
194 }
195
196 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
197 size_t *retlen, struct otp_info *buf)
198 {
199 struct mtd_part *part = PART(mtd);
200 return part->master->_get_fact_prot_info(part->master, len, retlen,
201 buf);
202 }
203
204 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
205 size_t *retlen, const u_char *buf)
206 {
207 struct mtd_part *part = PART(mtd);
208 return part->master->_write(part->master, to + part->offset, len,
209 retlen, buf);
210 }
211
212 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
213 size_t *retlen, const u_char *buf)
214 {
215 struct mtd_part *part = PART(mtd);
216 return part->master->_panic_write(part->master, to + part->offset, len,
217 retlen, buf);
218 }
219
220 static int part_write_oob(struct mtd_info *mtd, loff_t to,
221 struct mtd_oob_ops *ops)
222 {
223 struct mtd_part *part = PART(mtd);
224
225 if (to >= mtd->size)
226 return -EINVAL;
227 if (ops->datbuf && to + ops->len > mtd->size)
228 return -EINVAL;
229 return part->master->_write_oob(part->master, to + part->offset, ops);
230 }
231
232 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
233 size_t len, size_t *retlen, u_char *buf)
234 {
235 struct mtd_part *part = PART(mtd);
236 return part->master->_write_user_prot_reg(part->master, from, len,
237 retlen, buf);
238 }
239
240 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
241 size_t len)
242 {
243 struct mtd_part *part = PART(mtd);
244 return part->master->_lock_user_prot_reg(part->master, from, len);
245 }
246
247 #ifndef __UBOOT__
248 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
249 unsigned long count, loff_t to, size_t *retlen)
250 {
251 struct mtd_part *part = PART(mtd);
252 return part->master->_writev(part->master, vecs, count,
253 to + part->offset, retlen);
254 }
255 #endif
256
257 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
258 {
259 struct mtd_part *part = PART(mtd);
260 int ret;
261
262 instr->addr += part->offset;
263 ret = part->master->_erase(part->master, instr);
264 if (ret) {
265 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
266 instr->fail_addr -= part->offset;
267 instr->addr -= part->offset;
268 }
269 return ret;
270 }
271
272 void mtd_erase_callback(struct erase_info *instr)
273 {
274 if (instr->mtd->_erase == part_erase) {
275 struct mtd_part *part = PART(instr->mtd);
276
277 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
278 instr->fail_addr -= part->offset;
279 instr->addr -= part->offset;
280 }
281 if (instr->callback)
282 instr->callback(instr);
283 }
284 EXPORT_SYMBOL_GPL(mtd_erase_callback);
285
286 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
287 {
288 struct mtd_part *part = PART(mtd);
289 return part->master->_lock(part->master, ofs + part->offset, len);
290 }
291
292 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
293 {
294 struct mtd_part *part = PART(mtd);
295 return part->master->_unlock(part->master, ofs + part->offset, len);
296 }
297
298 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
299 {
300 struct mtd_part *part = PART(mtd);
301 return part->master->_is_locked(part->master, ofs + part->offset, len);
302 }
303
304 static void part_sync(struct mtd_info *mtd)
305 {
306 struct mtd_part *part = PART(mtd);
307 part->master->_sync(part->master);
308 }
309
310 #ifndef __UBOOT__
311 static int part_suspend(struct mtd_info *mtd)
312 {
313 struct mtd_part *part = PART(mtd);
314 return part->master->_suspend(part->master);
315 }
316
317 static void part_resume(struct mtd_info *mtd)
318 {
319 struct mtd_part *part = PART(mtd);
320 part->master->_resume(part->master);
321 }
322 #endif
323
324 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
325 {
326 struct mtd_part *part = PART(mtd);
327 ofs += part->offset;
328 return part->master->_block_isreserved(part->master, ofs);
329 }
330
331 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
332 {
333 struct mtd_part *part = PART(mtd);
334 ofs += part->offset;
335 return part->master->_block_isbad(part->master, ofs);
336 }
337
338 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
339 {
340 struct mtd_part *part = PART(mtd);
341 int res;
342
343 ofs += part->offset;
344 res = part->master->_block_markbad(part->master, ofs);
345 if (!res)
346 mtd->ecc_stats.badblocks++;
347 return res;
348 }
349
350 static inline void free_partition(struct mtd_part *p)
351 {
352 kfree(p->mtd.name);
353 kfree(p);
354 }
355
356 /*
357 * This function unregisters and destroy all slave MTD objects which are
358 * attached to the given master MTD object.
359 */
360
361 int del_mtd_partitions(struct mtd_info *master)
362 {
363 struct mtd_part *slave, *next;
364 int ret, err = 0;
365
366 mutex_lock(&mtd_partitions_mutex);
367 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
368 if (slave->master == master) {
369 ret = del_mtd_device(&slave->mtd);
370 if (ret < 0) {
371 err = ret;
372 continue;
373 }
374 list_del(&slave->list);
375 free_partition(slave);
376 }
377 mutex_unlock(&mtd_partitions_mutex);
378
379 return err;
380 }
381
382 static struct mtd_part *allocate_partition(struct mtd_info *master,
383 const struct mtd_partition *part, int partno,
384 uint64_t cur_offset)
385 {
386 struct mtd_part *slave;
387 char *name;
388
389 /* allocate the partition structure */
390 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
391 name = kstrdup(part->name, GFP_KERNEL);
392 if (!name || !slave) {
393 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
394 master->name);
395 kfree(name);
396 kfree(slave);
397 return ERR_PTR(-ENOMEM);
398 }
399
400 /* set up the MTD object for this partition */
401 slave->mtd.type = master->type;
402 slave->mtd.flags = master->flags & ~part->mask_flags;
403 slave->mtd.size = part->size;
404 slave->mtd.writesize = master->writesize;
405 slave->mtd.writebufsize = master->writebufsize;
406 slave->mtd.oobsize = master->oobsize;
407 slave->mtd.oobavail = master->oobavail;
408 slave->mtd.subpage_sft = master->subpage_sft;
409
410 slave->mtd.name = name;
411 slave->mtd.owner = master->owner;
412 #ifndef __UBOOT__
413 slave->mtd.backing_dev_info = master->backing_dev_info;
414
415 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
416 * to have the same data be in two different partitions.
417 */
418 slave->mtd.dev.parent = master->dev.parent;
419 #endif
420
421 slave->mtd._read = part_read;
422 slave->mtd._write = part_write;
423
424 if (master->_panic_write)
425 slave->mtd._panic_write = part_panic_write;
426
427 #ifndef __UBOOT__
428 if (master->_point && master->_unpoint) {
429 slave->mtd._point = part_point;
430 slave->mtd._unpoint = part_unpoint;
431 }
432 #endif
433
434 if (master->_get_unmapped_area)
435 slave->mtd._get_unmapped_area = part_get_unmapped_area;
436 if (master->_read_oob)
437 slave->mtd._read_oob = part_read_oob;
438 if (master->_write_oob)
439 slave->mtd._write_oob = part_write_oob;
440 if (master->_read_user_prot_reg)
441 slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
442 if (master->_read_fact_prot_reg)
443 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
444 if (master->_write_user_prot_reg)
445 slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
446 if (master->_lock_user_prot_reg)
447 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
448 if (master->_get_user_prot_info)
449 slave->mtd._get_user_prot_info = part_get_user_prot_info;
450 if (master->_get_fact_prot_info)
451 slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
452 if (master->_sync)
453 slave->mtd._sync = part_sync;
454 #ifndef __UBOOT__
455 if (!partno && !master->dev.class && master->_suspend &&
456 master->_resume) {
457 slave->mtd._suspend = part_suspend;
458 slave->mtd._resume = part_resume;
459 }
460 if (master->_writev)
461 slave->mtd._writev = part_writev;
462 #endif
463 if (master->_lock)
464 slave->mtd._lock = part_lock;
465 if (master->_unlock)
466 slave->mtd._unlock = part_unlock;
467 if (master->_is_locked)
468 slave->mtd._is_locked = part_is_locked;
469 if (master->_block_isreserved)
470 slave->mtd._block_isreserved = part_block_isreserved;
471 if (master->_block_isbad)
472 slave->mtd._block_isbad = part_block_isbad;
473 if (master->_block_markbad)
474 slave->mtd._block_markbad = part_block_markbad;
475 slave->mtd._erase = part_erase;
476 slave->master = master;
477 slave->offset = part->offset;
478
479 if (slave->offset == MTDPART_OFS_APPEND)
480 slave->offset = cur_offset;
481 if (slave->offset == MTDPART_OFS_NXTBLK) {
482 slave->offset = cur_offset;
483 if (mtd_mod_by_eb(cur_offset, master) != 0) {
484 /* Round up to next erasesize */
485 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
486 debug("Moving partition %d: "
487 "0x%012llx -> 0x%012llx\n", partno,
488 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
489 }
490 }
491 if (slave->offset == MTDPART_OFS_RETAIN) {
492 slave->offset = cur_offset;
493 if (master->size - slave->offset >= slave->mtd.size) {
494 slave->mtd.size = master->size - slave->offset
495 - slave->mtd.size;
496 } else {
497 debug("mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
498 part->name, master->size - slave->offset,
499 slave->mtd.size);
500 /* register to preserve ordering */
501 goto out_register;
502 }
503 }
504 if (slave->mtd.size == MTDPART_SIZ_FULL)
505 slave->mtd.size = master->size - slave->offset;
506
507 debug("0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
508 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
509
510 /* let's do some sanity checks */
511 if (slave->offset >= master->size) {
512 /* let's register it anyway to preserve ordering */
513 slave->offset = 0;
514 slave->mtd.size = 0;
515 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
516 part->name);
517 goto out_register;
518 }
519 if (slave->offset + slave->mtd.size > master->size) {
520 slave->mtd.size = master->size - slave->offset;
521 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
522 part->name, master->name, (unsigned long long)slave->mtd.size);
523 }
524 if (master->numeraseregions > 1) {
525 /* Deal with variable erase size stuff */
526 int i, max = master->numeraseregions;
527 u64 end = slave->offset + slave->mtd.size;
528 struct mtd_erase_region_info *regions = master->eraseregions;
529
530 /* Find the first erase regions which is part of this
531 * partition. */
532 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
533 ;
534 /* The loop searched for the region _behind_ the first one */
535 if (i > 0)
536 i--;
537
538 /* Pick biggest erasesize */
539 for (; i < max && regions[i].offset < end; i++) {
540 if (slave->mtd.erasesize < regions[i].erasesize) {
541 slave->mtd.erasesize = regions[i].erasesize;
542 }
543 }
544 BUG_ON(slave->mtd.erasesize == 0);
545 } else {
546 /* Single erase size */
547 slave->mtd.erasesize = master->erasesize;
548 }
549
550 if ((slave->mtd.flags & MTD_WRITEABLE) &&
551 mtd_mod_by_eb(slave->offset, &slave->mtd)) {
552 /* Doesn't start on a boundary of major erase size */
553 /* FIXME: Let it be writable if it is on a boundary of
554 * _minor_ erase size though */
555 slave->mtd.flags &= ~MTD_WRITEABLE;
556 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
557 part->name);
558 }
559 if ((slave->mtd.flags & MTD_WRITEABLE) &&
560 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
561 slave->mtd.flags &= ~MTD_WRITEABLE;
562 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
563 part->name);
564 }
565
566 slave->mtd.ecclayout = master->ecclayout;
567 slave->mtd.ecc_step_size = master->ecc_step_size;
568 slave->mtd.ecc_strength = master->ecc_strength;
569 slave->mtd.bitflip_threshold = master->bitflip_threshold;
570
571 if (master->_block_isbad) {
572 uint64_t offs = 0;
573
574 while (offs < slave->mtd.size) {
575 if (mtd_block_isbad(master, offs + slave->offset))
576 slave->mtd.ecc_stats.badblocks++;
577 offs += slave->mtd.erasesize;
578 }
579 }
580
581 out_register:
582 return slave;
583 }
584
585 #ifndef __UBOOT__
586 int mtd_add_partition(struct mtd_info *master, const char *name,
587 long long offset, long long length)
588 {
589 struct mtd_partition part;
590 struct mtd_part *p, *new;
591 uint64_t start, end;
592 int ret = 0;
593
594 /* the direct offset is expected */
595 if (offset == MTDPART_OFS_APPEND ||
596 offset == MTDPART_OFS_NXTBLK)
597 return -EINVAL;
598
599 if (length == MTDPART_SIZ_FULL)
600 length = master->size - offset;
601
602 if (length <= 0)
603 return -EINVAL;
604
605 part.name = name;
606 part.size = length;
607 part.offset = offset;
608 part.mask_flags = 0;
609 part.ecclayout = NULL;
610
611 new = allocate_partition(master, &part, -1, offset);
612 if (IS_ERR(new))
613 return PTR_ERR(new);
614
615 start = offset;
616 end = offset + length;
617
618 mutex_lock(&mtd_partitions_mutex);
619 list_for_each_entry(p, &mtd_partitions, list)
620 if (p->master == master) {
621 if ((start >= p->offset) &&
622 (start < (p->offset + p->mtd.size)))
623 goto err_inv;
624
625 if ((end >= p->offset) &&
626 (end < (p->offset + p->mtd.size)))
627 goto err_inv;
628 }
629
630 list_add(&new->list, &mtd_partitions);
631 mutex_unlock(&mtd_partitions_mutex);
632
633 add_mtd_device(&new->mtd);
634
635 return ret;
636 err_inv:
637 mutex_unlock(&mtd_partitions_mutex);
638 free_partition(new);
639 return -EINVAL;
640 }
641 EXPORT_SYMBOL_GPL(mtd_add_partition);
642
643 int mtd_del_partition(struct mtd_info *master, int partno)
644 {
645 struct mtd_part *slave, *next;
646 int ret = -EINVAL;
647
648 mutex_lock(&mtd_partitions_mutex);
649 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
650 if ((slave->master == master) &&
651 (slave->mtd.index == partno)) {
652 ret = del_mtd_device(&slave->mtd);
653 if (ret < 0)
654 break;
655
656 list_del(&slave->list);
657 free_partition(slave);
658 break;
659 }
660 mutex_unlock(&mtd_partitions_mutex);
661
662 return ret;
663 }
664 EXPORT_SYMBOL_GPL(mtd_del_partition);
665 #endif
666
667 /*
668 * This function, given a master MTD object and a partition table, creates
669 * and registers slave MTD objects which are bound to the master according to
670 * the partition definitions.
671 *
672 * We don't register the master, or expect the caller to have done so,
673 * for reasons of data integrity.
674 */
675
676 int add_mtd_partitions(struct mtd_info *master,
677 const struct mtd_partition *parts,
678 int nbparts)
679 {
680 struct mtd_part *slave;
681 uint64_t cur_offset = 0;
682 int i;
683
684 #ifdef __UBOOT__
685 /*
686 * Need to init the list here, since LIST_INIT() does not
687 * work on platforms where relocation has problems (like MIPS
688 * & PPC).
689 */
690 if (mtd_partitions.next == NULL)
691 INIT_LIST_HEAD(&mtd_partitions);
692 #endif
693
694 debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
695
696 for (i = 0; i < nbparts; i++) {
697 slave = allocate_partition(master, parts + i, i, cur_offset);
698 if (IS_ERR(slave))
699 return PTR_ERR(slave);
700
701 mutex_lock(&mtd_partitions_mutex);
702 list_add(&slave->list, &mtd_partitions);
703 mutex_unlock(&mtd_partitions_mutex);
704
705 add_mtd_device(&slave->mtd);
706
707 cur_offset = slave->offset + slave->mtd.size;
708 }
709
710 return 0;
711 }
712
713 #ifndef __UBOOT__
714 static DEFINE_SPINLOCK(part_parser_lock);
715 static LIST_HEAD(part_parsers);
716
717 static struct mtd_part_parser *get_partition_parser(const char *name)
718 {
719 struct mtd_part_parser *p, *ret = NULL;
720
721 spin_lock(&part_parser_lock);
722
723 list_for_each_entry(p, &part_parsers, list)
724 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
725 ret = p;
726 break;
727 }
728
729 spin_unlock(&part_parser_lock);
730
731 return ret;
732 }
733
734 #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
735
736 void register_mtd_parser(struct mtd_part_parser *p)
737 {
738 spin_lock(&part_parser_lock);
739 list_add(&p->list, &part_parsers);
740 spin_unlock(&part_parser_lock);
741 }
742 EXPORT_SYMBOL_GPL(register_mtd_parser);
743
744 void deregister_mtd_parser(struct mtd_part_parser *p)
745 {
746 spin_lock(&part_parser_lock);
747 list_del(&p->list);
748 spin_unlock(&part_parser_lock);
749 }
750 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
751
752 /*
753 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
754 * are changing this array!
755 */
756 static const char * const default_mtd_part_types[] = {
757 "cmdlinepart",
758 "ofpart",
759 NULL
760 };
761
762 /**
763 * parse_mtd_partitions - parse MTD partitions
764 * @master: the master partition (describes whole MTD device)
765 * @types: names of partition parsers to try or %NULL
766 * @pparts: array of partitions found is returned here
767 * @data: MTD partition parser-specific data
768 *
769 * This function tries to find partition on MTD device @master. It uses MTD
770 * partition parsers, specified in @types. However, if @types is %NULL, then
771 * the default list of parsers is used. The default list contains only the
772 * "cmdlinepart" and "ofpart" parsers ATM.
773 * Note: If there are more then one parser in @types, the kernel only takes the
774 * partitions parsed out by the first parser.
775 *
776 * This function may return:
777 * o a negative error code in case of failure
778 * o zero if no partitions were found
779 * o a positive number of found partitions, in which case on exit @pparts will
780 * point to an array containing this number of &struct mtd_info objects.
781 */
782 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
783 struct mtd_partition **pparts,
784 struct mtd_part_parser_data *data)
785 {
786 struct mtd_part_parser *parser;
787 int ret = 0;
788
789 if (!types)
790 types = default_mtd_part_types;
791
792 for ( ; ret <= 0 && *types; types++) {
793 parser = get_partition_parser(*types);
794 if (!parser && !request_module("%s", *types))
795 parser = get_partition_parser(*types);
796 if (!parser)
797 continue;
798 ret = (*parser->parse_fn)(master, pparts, data);
799 put_partition_parser(parser);
800 if (ret > 0) {
801 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
802 ret, parser->name, master->name);
803 break;
804 }
805 }
806 return ret;
807 }
808 #endif
809
810 int mtd_is_partition(const struct mtd_info *mtd)
811 {
812 struct mtd_part *part;
813 int ispart = 0;
814
815 mutex_lock(&mtd_partitions_mutex);
816 list_for_each_entry(part, &mtd_partitions, list)
817 if (&part->mtd == mtd) {
818 ispart = 1;
819 break;
820 }
821 mutex_unlock(&mtd_partitions_mutex);
822
823 return ispart;
824 }
825 EXPORT_SYMBOL_GPL(mtd_is_partition);
826
827 /* Returns the size of the entire flash chip */
828 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
829 {
830 if (!mtd_is_partition(mtd))
831 return mtd->size;
832
833 return PART(mtd)->master->size;
834 }
835 EXPORT_SYMBOL_GPL(mtd_get_device_size);