]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/davinci_nand.c
bfc2acf59e74695bde3440b640a3219e05db4da7
[people/ms/u-boot.git] / drivers / mtd / nand / davinci_nand.c
1 /*
2 * NAND driver for TI DaVinci based boards.
3 *
4 * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
5 *
6 * Based on Linux DaVinci NAND driver by TI. Original copyright follows:
7 */
8
9 /*
10 *
11 * linux/drivers/mtd/nand/nand_davinci.c
12 *
13 * NAND Flash Driver
14 *
15 * Copyright (C) 2006 Texas Instruments.
16 *
17 * ----------------------------------------------------------------------------
18 *
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 2 of the License, or
22 * (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 * ----------------------------------------------------------------------------
33 *
34 * Overview:
35 * This is a device driver for the NAND flash device found on the
36 * DaVinci board which utilizes the Samsung k9k2g08 part.
37 *
38 Modifications:
39 ver. 1.0: Feb 2005, Vinod/Sudhakar
40 -
41 *
42 */
43
44 #include <common.h>
45 #include <asm/io.h>
46 #include <nand.h>
47 #include <asm/arch/nand_defs.h>
48 #include <asm/arch/emif_defs.h>
49
50 /* Definitions for 4-bit hardware ECC */
51 #define NAND_TIMEOUT 10240
52 #define NAND_ECC_BUSY 0xC
53 #define NAND_4BITECC_MASK 0x03FF03FF
54 #define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00
55 #define ECC_STATE_NO_ERR 0x0
56 #define ECC_STATE_TOO_MANY_ERRS 0x1
57 #define ECC_STATE_ERR_CORR_COMP_P 0x2
58 #define ECC_STATE_ERR_CORR_COMP_N 0x3
59
60 static emif_registers *const emif_regs = (void *) DAVINCI_ASYNC_EMIF_CNTRL_BASE;
61
62 /*
63 * Exploit the little endianness of the ARM to do multi-byte transfers
64 * per device read. This can perform over twice as quickly as individual
65 * byte transfers when buffer alignment is conducive.
66 *
67 * NOTE: This only works if the NAND is not connected to the 2 LSBs of
68 * the address bus. On Davinci EVM platforms this has always been true.
69 */
70 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
71 {
72 struct nand_chip *chip = mtd->priv;
73 const u32 *nand = chip->IO_ADDR_R;
74
75 /* Make sure that buf is 32 bit aligned */
76 if (((int)buf & 0x3) != 0) {
77 if (((int)buf & 0x1) != 0) {
78 if (len) {
79 *buf = readb(nand);
80 buf += 1;
81 len--;
82 }
83 }
84
85 if (((int)buf & 0x3) != 0) {
86 if (len >= 2) {
87 *(u16 *)buf = readw(nand);
88 buf += 2;
89 len -= 2;
90 }
91 }
92 }
93
94 /* copy aligned data */
95 while (len >= 4) {
96 *(u32 *)buf = readl(nand);
97 buf += 4;
98 len -= 4;
99 }
100
101 /* mop up any remaining bytes */
102 if (len) {
103 if (len >= 2) {
104 *(u16 *)buf = readw(nand);
105 buf += 2;
106 len -= 2;
107 }
108
109 if (len)
110 *buf = readb(nand);
111 }
112 }
113
114 static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf,
115 int len)
116 {
117 struct nand_chip *chip = mtd->priv;
118 const u32 *nand = chip->IO_ADDR_W;
119
120 /* Make sure that buf is 32 bit aligned */
121 if (((int)buf & 0x3) != 0) {
122 if (((int)buf & 0x1) != 0) {
123 if (len) {
124 writeb(*buf, nand);
125 buf += 1;
126 len--;
127 }
128 }
129
130 if (((int)buf & 0x3) != 0) {
131 if (len >= 2) {
132 writew(*(u16 *)buf, nand);
133 buf += 2;
134 len -= 2;
135 }
136 }
137 }
138
139 /* copy aligned data */
140 while (len >= 4) {
141 writel(*(u32 *)buf, nand);
142 buf += 4;
143 len -= 4;
144 }
145
146 /* mop up any remaining bytes */
147 if (len) {
148 if (len >= 2) {
149 writew(*(u16 *)buf, nand);
150 buf += 2;
151 len -= 2;
152 }
153
154 if (len)
155 writeb(*buf, nand);
156 }
157 }
158
159 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
160 {
161 struct nand_chip *this = mtd->priv;
162 u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
163
164 if (ctrl & NAND_CTRL_CHANGE) {
165 IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
166
167 if ( ctrl & NAND_CLE )
168 IO_ADDR_W |= MASK_CLE;
169 if ( ctrl & NAND_ALE )
170 IO_ADDR_W |= MASK_ALE;
171 this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
172 }
173
174 if (cmd != NAND_CMD_NONE)
175 writeb(cmd, IO_ADDR_W);
176 }
177
178 #ifdef CONFIG_SYS_NAND_HW_ECC
179
180 static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
181 {
182 u_int32_t val;
183
184 (void)readl(&(emif_regs->NANDFECC[CONFIG_SYS_NAND_CS - 2]));
185
186 val = readl(&emif_regs->NANDFCR);
187 val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
188 val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS);
189 writel(val, &emif_regs->NANDFCR);
190 }
191
192 static u_int32_t nand_davinci_readecc(struct mtd_info *mtd, u_int32_t region)
193 {
194 u_int32_t ecc = 0;
195
196 ecc = readl(&(emif_regs->NANDFECC[region - 1]));
197
198 return(ecc);
199 }
200
201 static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
202 {
203 u_int32_t tmp;
204 const int region = 1;
205
206 tmp = nand_davinci_readecc(mtd, region);
207
208 /* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
209 * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
210 tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
211
212 /* Invert so that erased block ECC is correct */
213 tmp = ~tmp;
214
215 *ecc_code++ = tmp;
216 *ecc_code++ = tmp >> 8;
217 *ecc_code++ = tmp >> 16;
218
219 /* NOTE: the above code matches mainline Linux:
220 * .PQR.stu ==> ~PQRstu
221 *
222 * MontaVista/TI kernels encode those bytes differently, use
223 * complicated (and allegedly sometimes-wrong) correction code,
224 * and usually shipped with U-Boot that uses software ECC:
225 * .PQR.stu ==> PsQRtu
226 *
227 * If you need MV/TI compatible NAND I/O in U-Boot, it should
228 * be possible to (a) change the mangling above, (b) reverse
229 * that mangling in nand_davinci_correct_data() below.
230 */
231
232 return 0;
233 }
234
235 static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
236 {
237 struct nand_chip *this = mtd->priv;
238 u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
239 (read_ecc[2] << 16);
240 u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
241 (calc_ecc[2] << 16);
242 u_int32_t diff = ecc_calc ^ ecc_nand;
243
244 if (diff) {
245 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
246 /* Correctable error */
247 if ((diff >> (12 + 3)) < this->ecc.size) {
248 uint8_t find_bit = 1 << ((diff >> 12) & 7);
249 uint32_t find_byte = diff >> (12 + 3);
250
251 dat[find_byte] ^= find_bit;
252 MTDDEBUG(MTD_DEBUG_LEVEL0, "Correcting single "
253 "bit ECC error at offset: %d, bit: "
254 "%d\n", find_byte, find_bit);
255 return 1;
256 } else {
257 return -1;
258 }
259 } else if (!(diff & (diff - 1))) {
260 /* Single bit ECC error in the ECC itself,
261 nothing to fix */
262 MTDDEBUG(MTD_DEBUG_LEVEL0, "Single bit ECC error in "
263 "ECC.\n");
264 return 1;
265 } else {
266 /* Uncorrectable error */
267 MTDDEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
268 return -1;
269 }
270 }
271 return(0);
272 }
273 #endif /* CONFIG_SYS_NAND_HW_ECC */
274
275 #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
276 static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
277 #if defined(CONFIG_SYS_NAND_PAGE_2K)
278 .eccbytes = 40,
279 .eccpos = {
280 24, 25, 26, 27, 28,
281 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
282 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
283 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
284 59, 60, 61, 62, 63,
285 },
286 .oobfree = {
287 {.offset = 2, .length = 22, },
288 },
289 #elif defined(CONFIG_SYS_NAND_PAGE_4K)
290 .eccbytes = 80,
291 .eccpos = {
292 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
293 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
294 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
295 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
296 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
297 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
298 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
299 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
300 },
301 .oobfree = {
302 {.offset = 2, .length = 46, },
303 },
304 #endif
305 };
306
307 static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
308 {
309 u32 val;
310
311 switch (mode) {
312 case NAND_ECC_WRITE:
313 case NAND_ECC_READ:
314 /*
315 * Start a new ECC calculation for reading or writing 512 bytes
316 * of data.
317 */
318 val = readl(&emif_regs->NANDFCR);
319 val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK;
320 val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
321 val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS);
322 val |= DAVINCI_NANDFCR_4BIT_ECC_START;
323 writel(val, &emif_regs->NANDFCR);
324 break;
325 case NAND_ECC_READSYN:
326 val = emif_regs->NAND4BITECC1;
327 break;
328 default:
329 break;
330 }
331 }
332
333 static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
334 {
335 ecc[0] = emif_regs->NAND4BITECC1 & NAND_4BITECC_MASK;
336 ecc[1] = emif_regs->NAND4BITECC2 & NAND_4BITECC_MASK;
337 ecc[2] = emif_regs->NAND4BITECC3 & NAND_4BITECC_MASK;
338 ecc[3] = emif_regs->NAND4BITECC4 & NAND_4BITECC_MASK;
339
340 return 0;
341 }
342
343 static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
344 const uint8_t *dat,
345 uint8_t *ecc_code)
346 {
347 unsigned int hw_4ecc[4];
348 unsigned int i;
349
350 nand_davinci_4bit_readecc(mtd, hw_4ecc);
351
352 /*Convert 10 bit ecc value to 8 bit */
353 for (i = 0; i < 2; i++) {
354 unsigned int hw_ecc_low = hw_4ecc[i * 2];
355 unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1];
356
357 /* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
358 *ecc_code++ = hw_ecc_low & 0xFF;
359
360 /*
361 * Take 2 bits as LSB bits from val1 (count1=0) or val5
362 * (count1=1) and 6 bits from val2 (count1=0) or
363 * val5 (count1=1)
364 */
365 *ecc_code++ =
366 ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC);
367
368 /*
369 * Take 4 bits from val2 (count1=0) or val5 (count1=1) and
370 * 4 bits from val3 (count1=0) or val6 (count1=1)
371 */
372 *ecc_code++ =
373 ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0);
374
375 /*
376 * Take 6 bits from val3(count1=0) or val6 (count1=1) and
377 * 2 bits from val4 (count1=0) or val7 (count1=1)
378 */
379 *ecc_code++ =
380 ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0);
381
382 /* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
383 *ecc_code++ = (hw_ecc_hi >> 18) & 0xFF;
384 }
385
386 return 0;
387 }
388
389 static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
390 uint8_t *read_ecc, uint8_t *calc_ecc)
391 {
392 int i;
393 unsigned int hw_4ecc[4];
394 unsigned int iserror;
395 unsigned short *ecc16;
396 unsigned int numerrors, erroraddress, errorvalue;
397 u32 val;
398
399 /*
400 * Check for an ECC where all bytes are 0xFF. If this is the case, we
401 * will assume we are looking at an erased page and we should ignore
402 * the ECC.
403 */
404 for (i = 0; i < 10; i++) {
405 if (read_ecc[i] != 0xFF)
406 break;
407 }
408 if (i == 10)
409 return 0;
410
411 /* Convert 8 bit in to 10 bit */
412 ecc16 = (unsigned short *)&read_ecc[0];
413
414 /*
415 * Write the parity values in the NAND Flash 4-bit ECC Load register.
416 * Write each parity value one at a time starting from 4bit_ecc_val8
417 * to 4bit_ecc_val1.
418 */
419
420 /*Take 2 bits from 8th byte and 8 bits from 9th byte */
421 writel(((ecc16[4]) >> 6) & 0x3FF, &emif_regs->NAND4BITECCLOAD);
422
423 /* Take 4 bits from 7th byte and 6 bits from 8th byte */
424 writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0),
425 &emif_regs->NAND4BITECCLOAD);
426
427 /* Take 6 bits from 6th byte and 4 bits from 7th byte */
428 writel((ecc16[3] >> 2) & 0x3FF, &emif_regs->NAND4BITECCLOAD);
429
430 /* Take 8 bits from 5th byte and 2 bits from 6th byte */
431 writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300),
432 &emif_regs->NAND4BITECCLOAD);
433
434 /*Take 2 bits from 3rd byte and 8 bits from 4th byte */
435 writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC),
436 &emif_regs->NAND4BITECCLOAD);
437
438 /* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
439 writel(((ecc16[1]) >> 4) & 0x3FF, &emif_regs->NAND4BITECCLOAD);
440
441 /* Take 6 bits from 1st byte and 4 bits from 2nd byte */
442 writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0),
443 &emif_regs->NAND4BITECCLOAD);
444
445 /* Take 10 bits from 0th and 1st bytes */
446 writel((ecc16[0]) & 0x3FF, &emif_regs->NAND4BITECCLOAD);
447
448 /*
449 * Perform a dummy read to the EMIF Revision Code and Status register.
450 * This is required to ensure time for syndrome calculation after
451 * writing the ECC values in previous step.
452 */
453
454 val = emif_regs->NANDFSR;
455
456 /*
457 * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
458 * A syndrome value of 0 means no bit errors. If the syndrome is
459 * non-zero then go further otherwise return.
460 */
461 nand_davinci_4bit_readecc(mtd, hw_4ecc);
462
463 if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3]))
464 return 0;
465
466 /*
467 * Clear any previous address calculation by doing a dummy read of an
468 * error address register.
469 */
470 val = emif_regs->NANDERRADD1;
471
472 /*
473 * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
474 * register to 1.
475 */
476 emif_regs->NANDFCR |= 1 << 13;
477
478 /*
479 * Wait for the corr_state field (bits 8 to 11)in the
480 * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
481 */
482 i = NAND_TIMEOUT;
483 do {
484 val = emif_regs->NANDFSR;
485 val &= 0xc00;
486 i--;
487 } while ((i > 0) && val);
488
489 iserror = emif_regs->NANDFSR;
490 iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
491 iserror = iserror >> 8;
492
493 /*
494 * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
495 * corrected (five or more errors). The number of errors
496 * calculated (err_num field) differs from the number of errors
497 * searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error
498 * correction complete (errors on bit 8 or 9).
499 * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
500 * complete (error exists).
501 */
502
503 if (iserror == ECC_STATE_NO_ERR) {
504 val = emif_regs->NANDERRVAL1;
505 return 0;
506 } else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
507 val = emif_regs->NANDERRVAL1;
508 return -1;
509 }
510
511 numerrors = ((emif_regs->NANDFSR >> 16) & 0x3) + 1;
512
513 /* Read the error address, error value and correct */
514 for (i = 0; i < numerrors; i++) {
515 if (i > 1) {
516 erroraddress =
517 ((emif_regs->NANDERRADD2 >>
518 (16 * (i & 1))) & 0x3FF);
519 erroraddress = ((512 + 7) - erroraddress);
520 errorvalue =
521 ((emif_regs->NANDERRVAL2 >>
522 (16 * (i & 1))) & 0xFF);
523 } else {
524 erroraddress =
525 ((emif_regs->NANDERRADD1 >>
526 (16 * (i & 1))) & 0x3FF);
527 erroraddress = ((512 + 7) - erroraddress);
528 errorvalue =
529 ((emif_regs->NANDERRVAL1 >>
530 (16 * (i & 1))) & 0xFF);
531 }
532 /* xor the corrupt data with error value */
533 if (erroraddress < 512)
534 dat[erroraddress] ^= errorvalue;
535 }
536
537 return numerrors;
538 }
539 #endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
540
541 static int nand_davinci_dev_ready(struct mtd_info *mtd)
542 {
543 return emif_regs->NANDFSR & 0x1;
544 }
545
546 static void nand_flash_init(void)
547 {
548 /* This is for DM6446 EVM and *very* similar. DO NOT GROW THIS!
549 * Instead, have your board_init() set EMIF timings, based on its
550 * knowledge of the clocks and what devices are hooked up ... and
551 * don't even do that unless no UBL handled it.
552 */
553 #ifdef CONFIG_SOC_DM644X
554 u_int32_t acfg1 = 0x3ffffffc;
555
556 /*------------------------------------------------------------------*
557 * NAND FLASH CHIP TIMEOUT @ 459 MHz *
558 * *
559 * AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz *
560 * AEMIF.CLK period = 1/76.5 MHz = 13.1 ns *
561 * *
562 *------------------------------------------------------------------*/
563 acfg1 = 0
564 | (0 << 31 ) /* selectStrobe */
565 | (0 << 30 ) /* extWait */
566 | (1 << 26 ) /* writeSetup 10 ns */
567 | (3 << 20 ) /* writeStrobe 40 ns */
568 | (1 << 17 ) /* writeHold 10 ns */
569 | (1 << 13 ) /* readSetup 10 ns */
570 | (5 << 7 ) /* readStrobe 60 ns */
571 | (1 << 4 ) /* readHold 10 ns */
572 | (3 << 2 ) /* turnAround ?? ns */
573 | (0 << 0 ) /* asyncSize 8-bit bus */
574 ;
575
576 emif_regs->AB1CR = acfg1; /* CS2 */
577
578 emif_regs->NANDFCR = 0x00000101; /* NAND flash on CS2 */
579 #endif
580 }
581
582 void davinci_nand_init(struct nand_chip *nand)
583 {
584 nand->chip_delay = 0;
585 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
586 nand->options |= NAND_USE_FLASH_BBT;
587 #endif
588 #ifdef CONFIG_SYS_NAND_HW_ECC
589 nand->ecc.mode = NAND_ECC_HW;
590 nand->ecc.size = 512;
591 nand->ecc.bytes = 3;
592 nand->ecc.calculate = nand_davinci_calculate_ecc;
593 nand->ecc.correct = nand_davinci_correct_data;
594 nand->ecc.hwctl = nand_davinci_enable_hwecc;
595 #else
596 nand->ecc.mode = NAND_ECC_SOFT;
597 #endif /* CONFIG_SYS_NAND_HW_ECC */
598 #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
599 nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
600 nand->ecc.size = 512;
601 nand->ecc.bytes = 10;
602 nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
603 nand->ecc.correct = nand_davinci_4bit_correct_data;
604 nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
605 nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
606 #endif
607 /* Set address of hardware control function */
608 nand->cmd_ctrl = nand_davinci_hwcontrol;
609
610 nand->read_buf = nand_davinci_read_buf;
611 nand->write_buf = nand_davinci_write_buf;
612
613 nand->dev_ready = nand_davinci_dev_ready;
614
615 nand_flash_init();
616 }
617
618 int board_nand_init(struct nand_chip *chip) __attribute__((weak));
619
620 int board_nand_init(struct nand_chip *chip)
621 {
622 davinci_nand_init(chip);
623 return 0;
624 }