]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/davinci_nand.c
nand/davinci: make sure ECC calculation has really started
[people/ms/u-boot.git] / drivers / mtd / nand / davinci_nand.c
1 /*
2 * NAND driver for TI DaVinci based boards.
3 *
4 * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
5 *
6 * Based on Linux DaVinci NAND driver by TI. Original copyright follows:
7 */
8
9 /*
10 *
11 * linux/drivers/mtd/nand/nand_davinci.c
12 *
13 * NAND Flash Driver
14 *
15 * Copyright (C) 2006 Texas Instruments.
16 *
17 * ----------------------------------------------------------------------------
18 *
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 2 of the License, or
22 * (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 * ----------------------------------------------------------------------------
33 *
34 * Overview:
35 * This is a device driver for the NAND flash device found on the
36 * DaVinci board which utilizes the Samsung k9k2g08 part.
37 *
38 Modifications:
39 ver. 1.0: Feb 2005, Vinod/Sudhakar
40 -
41 *
42 */
43
44 #include <common.h>
45 #include <asm/io.h>
46 #include <nand.h>
47 #include <asm/arch/nand_defs.h>
48 #include <asm/arch/emif_defs.h>
49
50 /* Definitions for 4-bit hardware ECC */
51 #define NAND_TIMEOUT 10240
52 #define NAND_ECC_BUSY 0xC
53 #define NAND_4BITECC_MASK 0x03FF03FF
54 #define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00
55 #define ECC_STATE_NO_ERR 0x0
56 #define ECC_STATE_TOO_MANY_ERRS 0x1
57 #define ECC_STATE_ERR_CORR_COMP_P 0x2
58 #define ECC_STATE_ERR_CORR_COMP_N 0x3
59
60 /*
61 * Exploit the little endianness of the ARM to do multi-byte transfers
62 * per device read. This can perform over twice as quickly as individual
63 * byte transfers when buffer alignment is conducive.
64 *
65 * NOTE: This only works if the NAND is not connected to the 2 LSBs of
66 * the address bus. On Davinci EVM platforms this has always been true.
67 */
68 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
69 {
70 struct nand_chip *chip = mtd->priv;
71 const u32 *nand = chip->IO_ADDR_R;
72
73 /* Make sure that buf is 32 bit aligned */
74 if (((int)buf & 0x3) != 0) {
75 if (((int)buf & 0x1) != 0) {
76 if (len) {
77 *buf = readb(nand);
78 buf += 1;
79 len--;
80 }
81 }
82
83 if (((int)buf & 0x3) != 0) {
84 if (len >= 2) {
85 *(u16 *)buf = readw(nand);
86 buf += 2;
87 len -= 2;
88 }
89 }
90 }
91
92 /* copy aligned data */
93 while (len >= 4) {
94 *(u32 *)buf = __raw_readl(nand);
95 buf += 4;
96 len -= 4;
97 }
98
99 /* mop up any remaining bytes */
100 if (len) {
101 if (len >= 2) {
102 *(u16 *)buf = readw(nand);
103 buf += 2;
104 len -= 2;
105 }
106
107 if (len)
108 *buf = readb(nand);
109 }
110 }
111
112 static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf,
113 int len)
114 {
115 struct nand_chip *chip = mtd->priv;
116 const u32 *nand = chip->IO_ADDR_W;
117
118 /* Make sure that buf is 32 bit aligned */
119 if (((int)buf & 0x3) != 0) {
120 if (((int)buf & 0x1) != 0) {
121 if (len) {
122 writeb(*buf, nand);
123 buf += 1;
124 len--;
125 }
126 }
127
128 if (((int)buf & 0x3) != 0) {
129 if (len >= 2) {
130 writew(*(u16 *)buf, nand);
131 buf += 2;
132 len -= 2;
133 }
134 }
135 }
136
137 /* copy aligned data */
138 while (len >= 4) {
139 __raw_writel(*(u32 *)buf, nand);
140 buf += 4;
141 len -= 4;
142 }
143
144 /* mop up any remaining bytes */
145 if (len) {
146 if (len >= 2) {
147 writew(*(u16 *)buf, nand);
148 buf += 2;
149 len -= 2;
150 }
151
152 if (len)
153 writeb(*buf, nand);
154 }
155 }
156
157 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
158 unsigned int ctrl)
159 {
160 struct nand_chip *this = mtd->priv;
161 u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
162
163 if (ctrl & NAND_CTRL_CHANGE) {
164 IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
165
166 if (ctrl & NAND_CLE)
167 IO_ADDR_W |= MASK_CLE;
168 if (ctrl & NAND_ALE)
169 IO_ADDR_W |= MASK_ALE;
170 this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
171 }
172
173 if (cmd != NAND_CMD_NONE)
174 writeb(cmd, IO_ADDR_W);
175 }
176
177 #ifdef CONFIG_SYS_NAND_HW_ECC
178
179 static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
180 {
181 u_int32_t val;
182
183 (void)__raw_readl(&(davinci_emif_regs->nandfecc[
184 CONFIG_SYS_NAND_CS - 2]));
185
186 val = __raw_readl(&davinci_emif_regs->nandfcr);
187 val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
188 val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS);
189 __raw_writel(val, &davinci_emif_regs->nandfcr);
190 }
191
192 static u_int32_t nand_davinci_readecc(struct mtd_info *mtd, u_int32_t region)
193 {
194 u_int32_t ecc = 0;
195
196 ecc = __raw_readl(&(davinci_emif_regs->nandfecc[region - 1]));
197
198 return ecc;
199 }
200
201 static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
202 u_char *ecc_code)
203 {
204 u_int32_t tmp;
205 const int region = 1;
206
207 tmp = nand_davinci_readecc(mtd, region);
208
209 /* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
210 * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
211 tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
212
213 /* Invert so that erased block ECC is correct */
214 tmp = ~tmp;
215
216 *ecc_code++ = tmp;
217 *ecc_code++ = tmp >> 8;
218 *ecc_code++ = tmp >> 16;
219
220 /* NOTE: the above code matches mainline Linux:
221 * .PQR.stu ==> ~PQRstu
222 *
223 * MontaVista/TI kernels encode those bytes differently, use
224 * complicated (and allegedly sometimes-wrong) correction code,
225 * and usually shipped with U-Boot that uses software ECC:
226 * .PQR.stu ==> PsQRtu
227 *
228 * If you need MV/TI compatible NAND I/O in U-Boot, it should
229 * be possible to (a) change the mangling above, (b) reverse
230 * that mangling in nand_davinci_correct_data() below.
231 */
232
233 return 0;
234 }
235
236 static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat,
237 u_char *read_ecc, u_char *calc_ecc)
238 {
239 struct nand_chip *this = mtd->priv;
240 u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
241 (read_ecc[2] << 16);
242 u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
243 (calc_ecc[2] << 16);
244 u_int32_t diff = ecc_calc ^ ecc_nand;
245
246 if (diff) {
247 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
248 /* Correctable error */
249 if ((diff >> (12 + 3)) < this->ecc.size) {
250 uint8_t find_bit = 1 << ((diff >> 12) & 7);
251 uint32_t find_byte = diff >> (12 + 3);
252
253 dat[find_byte] ^= find_bit;
254 MTDDEBUG(MTD_DEBUG_LEVEL0, "Correcting single "
255 "bit ECC error at offset: %d, bit: "
256 "%d\n", find_byte, find_bit);
257 return 1;
258 } else {
259 return -1;
260 }
261 } else if (!(diff & (diff - 1))) {
262 /* Single bit ECC error in the ECC itself,
263 nothing to fix */
264 MTDDEBUG(MTD_DEBUG_LEVEL0, "Single bit ECC error in "
265 "ECC.\n");
266 return 1;
267 } else {
268 /* Uncorrectable error */
269 MTDDEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
270 return -1;
271 }
272 }
273 return 0;
274 }
275 #endif /* CONFIG_SYS_NAND_HW_ECC */
276
277 #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
278 static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
279 #if defined(CONFIG_SYS_NAND_PAGE_2K)
280 .eccbytes = 40,
281 .eccpos = {
282 24, 25, 26, 27, 28,
283 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
284 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
285 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
286 59, 60, 61, 62, 63,
287 },
288 .oobfree = {
289 {.offset = 2, .length = 22, },
290 },
291 #elif defined(CONFIG_SYS_NAND_PAGE_4K)
292 .eccbytes = 80,
293 .eccpos = {
294 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
295 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
296 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
297 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
298 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
299 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
300 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
301 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
302 },
303 .oobfree = {
304 {.offset = 2, .length = 46, },
305 },
306 #endif
307 };
308
309 static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
310 {
311 u32 val;
312
313 switch (mode) {
314 case NAND_ECC_WRITE:
315 case NAND_ECC_READ:
316 /*
317 * Start a new ECC calculation for reading or writing 512 bytes
318 * of data.
319 */
320 val = __raw_readl(&davinci_emif_regs->nandfcr);
321 val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK;
322 val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
323 val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS);
324 val |= DAVINCI_NANDFCR_4BIT_ECC_START;
325 __raw_writel(val, &davinci_emif_regs->nandfcr);
326 break;
327 case NAND_ECC_READSYN:
328 val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]);
329 break;
330 default:
331 break;
332 }
333 }
334
335 static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
336 {
337 int i;
338
339 for (i = 0; i < 4; i++) {
340 ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) &
341 NAND_4BITECC_MASK;
342 }
343
344 return 0;
345 }
346
347 static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
348 const uint8_t *dat,
349 uint8_t *ecc_code)
350 {
351 unsigned int hw_4ecc[4];
352 unsigned int i;
353
354 nand_davinci_4bit_readecc(mtd, hw_4ecc);
355
356 /*Convert 10 bit ecc value to 8 bit */
357 for (i = 0; i < 2; i++) {
358 unsigned int hw_ecc_low = hw_4ecc[i * 2];
359 unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1];
360
361 /* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
362 *ecc_code++ = hw_ecc_low & 0xFF;
363
364 /*
365 * Take 2 bits as LSB bits from val1 (count1=0) or val5
366 * (count1=1) and 6 bits from val2 (count1=0) or
367 * val5 (count1=1)
368 */
369 *ecc_code++ =
370 ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC);
371
372 /*
373 * Take 4 bits from val2 (count1=0) or val5 (count1=1) and
374 * 4 bits from val3 (count1=0) or val6 (count1=1)
375 */
376 *ecc_code++ =
377 ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0);
378
379 /*
380 * Take 6 bits from val3(count1=0) or val6 (count1=1) and
381 * 2 bits from val4 (count1=0) or val7 (count1=1)
382 */
383 *ecc_code++ =
384 ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0);
385
386 /* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
387 *ecc_code++ = (hw_ecc_hi >> 18) & 0xFF;
388 }
389
390 return 0;
391 }
392
393 static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
394 uint8_t *read_ecc, uint8_t *calc_ecc)
395 {
396 int i;
397 unsigned int hw_4ecc[4];
398 unsigned int iserror;
399 unsigned short *ecc16;
400 unsigned int numerrors, erroraddress, errorvalue;
401 u32 val;
402
403 /*
404 * Check for an ECC where all bytes are 0xFF. If this is the case, we
405 * will assume we are looking at an erased page and we should ignore
406 * the ECC.
407 */
408 for (i = 0; i < 10; i++) {
409 if (read_ecc[i] != 0xFF)
410 break;
411 }
412 if (i == 10)
413 return 0;
414
415 /* Convert 8 bit in to 10 bit */
416 ecc16 = (unsigned short *)&read_ecc[0];
417
418 /*
419 * Write the parity values in the NAND Flash 4-bit ECC Load register.
420 * Write each parity value one at a time starting from 4bit_ecc_val8
421 * to 4bit_ecc_val1.
422 */
423
424 /*Take 2 bits from 8th byte and 8 bits from 9th byte */
425 __raw_writel(((ecc16[4]) >> 6) & 0x3FF,
426 &davinci_emif_regs->nand4biteccload);
427
428 /* Take 4 bits from 7th byte and 6 bits from 8th byte */
429 __raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0),
430 &davinci_emif_regs->nand4biteccload);
431
432 /* Take 6 bits from 6th byte and 4 bits from 7th byte */
433 __raw_writel((ecc16[3] >> 2) & 0x3FF,
434 &davinci_emif_regs->nand4biteccload);
435
436 /* Take 8 bits from 5th byte and 2 bits from 6th byte */
437 __raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300),
438 &davinci_emif_regs->nand4biteccload);
439
440 /*Take 2 bits from 3rd byte and 8 bits from 4th byte */
441 __raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC),
442 &davinci_emif_regs->nand4biteccload);
443
444 /* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
445 __raw_writel(((ecc16[1]) >> 4) & 0x3FF,
446 &davinci_emif_regs->nand4biteccload);
447
448 /* Take 6 bits from 1st byte and 4 bits from 2nd byte */
449 __raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0),
450 &davinci_emif_regs->nand4biteccload);
451
452 /* Take 10 bits from 0th and 1st bytes */
453 __raw_writel((ecc16[0]) & 0x3FF,
454 &davinci_emif_regs->nand4biteccload);
455
456 /*
457 * Perform a dummy read to the EMIF Revision Code and Status register.
458 * This is required to ensure time for syndrome calculation after
459 * writing the ECC values in previous step.
460 */
461
462 val = __raw_readl(&davinci_emif_regs->nandfsr);
463
464 /*
465 * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
466 * A syndrome value of 0 means no bit errors. If the syndrome is
467 * non-zero then go further otherwise return.
468 */
469 nand_davinci_4bit_readecc(mtd, hw_4ecc);
470
471 if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3]))
472 return 0;
473
474 /*
475 * Clear any previous address calculation by doing a dummy read of an
476 * error address register.
477 */
478 val = __raw_readl(&davinci_emif_regs->nanderradd1);
479
480 /*
481 * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
482 * register to 1.
483 */
484 __raw_writel(1 << 13, &davinci_emif_regs->nandfcr);
485
486 /*
487 * Wait for the corr_state field (bits 8 to 11) in the
488 * NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3.
489 * Otherwise ECC calculation has not even begun and the next loop might
490 * fail because of a false positive!
491 */
492 i = NAND_TIMEOUT;
493 do {
494 val = __raw_readl(&davinci_emif_regs->nandfsr);
495 val &= 0xc00;
496 i--;
497 } while ((i > 0) && !val);
498
499 /*
500 * Wait for the corr_state field (bits 8 to 11) in the
501 * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
502 */
503 i = NAND_TIMEOUT;
504 do {
505 val = __raw_readl(&davinci_emif_regs->nandfsr);
506 val &= 0xc00;
507 i--;
508 } while ((i > 0) && val);
509
510 iserror = __raw_readl(&davinci_emif_regs->nandfsr);
511 iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
512 iserror = iserror >> 8;
513
514 /*
515 * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
516 * corrected (five or more errors). The number of errors
517 * calculated (err_num field) differs from the number of errors
518 * searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error
519 * correction complete (errors on bit 8 or 9).
520 * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
521 * complete (error exists).
522 */
523
524 if (iserror == ECC_STATE_NO_ERR) {
525 val = __raw_readl(&davinci_emif_regs->nanderrval1);
526 return 0;
527 } else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
528 val = __raw_readl(&davinci_emif_regs->nanderrval1);
529 return -1;
530 }
531
532 numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16)
533 & 0x3) + 1;
534
535 /* Read the error address, error value and correct */
536 for (i = 0; i < numerrors; i++) {
537 if (i > 1) {
538 erroraddress =
539 ((__raw_readl(&davinci_emif_regs->nanderradd2) >>
540 (16 * (i & 1))) & 0x3FF);
541 erroraddress = ((512 + 7) - erroraddress);
542 errorvalue =
543 ((__raw_readl(&davinci_emif_regs->nanderrval2) >>
544 (16 * (i & 1))) & 0xFF);
545 } else {
546 erroraddress =
547 ((__raw_readl(&davinci_emif_regs->nanderradd1) >>
548 (16 * (i & 1))) & 0x3FF);
549 erroraddress = ((512 + 7) - erroraddress);
550 errorvalue =
551 ((__raw_readl(&davinci_emif_regs->nanderrval1) >>
552 (16 * (i & 1))) & 0xFF);
553 }
554 /* xor the corrupt data with error value */
555 if (erroraddress < 512)
556 dat[erroraddress] ^= errorvalue;
557 }
558
559 return numerrors;
560 }
561 #endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
562
563 static int nand_davinci_dev_ready(struct mtd_info *mtd)
564 {
565 return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1;
566 }
567
568 static void nand_flash_init(void)
569 {
570 /* This is for DM6446 EVM and *very* similar. DO NOT GROW THIS!
571 * Instead, have your board_init() set EMIF timings, based on its
572 * knowledge of the clocks and what devices are hooked up ... and
573 * don't even do that unless no UBL handled it.
574 */
575 #ifdef CONFIG_SOC_DM644X
576 u_int32_t acfg1 = 0x3ffffffc;
577
578 /*------------------------------------------------------------------*
579 * NAND FLASH CHIP TIMEOUT @ 459 MHz *
580 * *
581 * AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz *
582 * AEMIF.CLK period = 1/76.5 MHz = 13.1 ns *
583 * *
584 *------------------------------------------------------------------*/
585 acfg1 = 0
586 | (0 << 31) /* selectStrobe */
587 | (0 << 30) /* extWait */
588 | (1 << 26) /* writeSetup 10 ns */
589 | (3 << 20) /* writeStrobe 40 ns */
590 | (1 << 17) /* writeHold 10 ns */
591 | (1 << 13) /* readSetup 10 ns */
592 | (5 << 7) /* readStrobe 60 ns */
593 | (1 << 4) /* readHold 10 ns */
594 | (3 << 2) /* turnAround ?? ns */
595 | (0 << 0) /* asyncSize 8-bit bus */
596 ;
597
598 __raw_writel(acfg1, &davinci_emif_regs->ab1cr); /* CS2 */
599
600 /* NAND flash on CS2 */
601 __raw_writel(0x00000101, &davinci_emif_regs->nandfcr);
602 #endif
603 }
604
605 void davinci_nand_init(struct nand_chip *nand)
606 {
607 nand->chip_delay = 0;
608 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
609 nand->options |= NAND_USE_FLASH_BBT;
610 #endif
611 #ifdef CONFIG_SYS_NAND_HW_ECC
612 nand->ecc.mode = NAND_ECC_HW;
613 nand->ecc.size = 512;
614 nand->ecc.bytes = 3;
615 nand->ecc.calculate = nand_davinci_calculate_ecc;
616 nand->ecc.correct = nand_davinci_correct_data;
617 nand->ecc.hwctl = nand_davinci_enable_hwecc;
618 #else
619 nand->ecc.mode = NAND_ECC_SOFT;
620 #endif /* CONFIG_SYS_NAND_HW_ECC */
621 #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
622 nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
623 nand->ecc.size = 512;
624 nand->ecc.bytes = 10;
625 nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
626 nand->ecc.correct = nand_davinci_4bit_correct_data;
627 nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
628 nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
629 #endif
630 /* Set address of hardware control function */
631 nand->cmd_ctrl = nand_davinci_hwcontrol;
632
633 nand->read_buf = nand_davinci_read_buf;
634 nand->write_buf = nand_davinci_write_buf;
635
636 nand->dev_ready = nand_davinci_dev_ready;
637
638 nand_flash_init();
639 }
640
641 int board_nand_init(struct nand_chip *chip) __attribute__((weak));
642
643 int board_nand_init(struct nand_chip *chip)
644 {
645 davinci_nand_init(chip);
646 return 0;
647 }