]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/davinci_nand.c
Merge branch 'master' of git://git.denx.de/u-boot-dm
[people/ms/u-boot.git] / drivers / mtd / nand / davinci_nand.c
1 /*
2 * NAND driver for TI DaVinci based boards.
3 *
4 * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
5 *
6 * Based on Linux DaVinci NAND driver by TI. Original copyright follows:
7 */
8
9 /*
10 *
11 * linux/drivers/mtd/nand/nand_davinci.c
12 *
13 * NAND Flash Driver
14 *
15 * Copyright (C) 2006 Texas Instruments.
16 *
17 * ----------------------------------------------------------------------------
18 *
19 * SPDX-License-Identifier: GPL-2.0+
20 *
21 * ----------------------------------------------------------------------------
22 *
23 * Overview:
24 * This is a device driver for the NAND flash device found on the
25 * DaVinci board which utilizes the Samsung k9k2g08 part.
26 *
27 Modifications:
28 ver. 1.0: Feb 2005, Vinod/Sudhakar
29 -
30 */
31
32 #include <common.h>
33 #include <asm/io.h>
34 #include <nand.h>
35 #include <asm/ti-common/davinci_nand.h>
36
37 /* Definitions for 4-bit hardware ECC */
38 #define NAND_TIMEOUT 10240
39 #define NAND_ECC_BUSY 0xC
40 #define NAND_4BITECC_MASK 0x03FF03FF
41 #define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00
42 #define ECC_STATE_NO_ERR 0x0
43 #define ECC_STATE_TOO_MANY_ERRS 0x1
44 #define ECC_STATE_ERR_CORR_COMP_P 0x2
45 #define ECC_STATE_ERR_CORR_COMP_N 0x3
46
47 /*
48 * Exploit the little endianness of the ARM to do multi-byte transfers
49 * per device read. This can perform over twice as quickly as individual
50 * byte transfers when buffer alignment is conducive.
51 *
52 * NOTE: This only works if the NAND is not connected to the 2 LSBs of
53 * the address bus. On Davinci EVM platforms this has always been true.
54 */
55 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
56 {
57 struct nand_chip *chip = mtd->priv;
58 const u32 *nand = chip->IO_ADDR_R;
59
60 /* Make sure that buf is 32 bit aligned */
61 if (((int)buf & 0x3) != 0) {
62 if (((int)buf & 0x1) != 0) {
63 if (len) {
64 *buf = readb(nand);
65 buf += 1;
66 len--;
67 }
68 }
69
70 if (((int)buf & 0x3) != 0) {
71 if (len >= 2) {
72 *(u16 *)buf = readw(nand);
73 buf += 2;
74 len -= 2;
75 }
76 }
77 }
78
79 /* copy aligned data */
80 while (len >= 4) {
81 *(u32 *)buf = __raw_readl(nand);
82 buf += 4;
83 len -= 4;
84 }
85
86 /* mop up any remaining bytes */
87 if (len) {
88 if (len >= 2) {
89 *(u16 *)buf = readw(nand);
90 buf += 2;
91 len -= 2;
92 }
93
94 if (len)
95 *buf = readb(nand);
96 }
97 }
98
99 static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf,
100 int len)
101 {
102 struct nand_chip *chip = mtd->priv;
103 const u32 *nand = chip->IO_ADDR_W;
104
105 /* Make sure that buf is 32 bit aligned */
106 if (((int)buf & 0x3) != 0) {
107 if (((int)buf & 0x1) != 0) {
108 if (len) {
109 writeb(*buf, nand);
110 buf += 1;
111 len--;
112 }
113 }
114
115 if (((int)buf & 0x3) != 0) {
116 if (len >= 2) {
117 writew(*(u16 *)buf, nand);
118 buf += 2;
119 len -= 2;
120 }
121 }
122 }
123
124 /* copy aligned data */
125 while (len >= 4) {
126 __raw_writel(*(u32 *)buf, nand);
127 buf += 4;
128 len -= 4;
129 }
130
131 /* mop up any remaining bytes */
132 if (len) {
133 if (len >= 2) {
134 writew(*(u16 *)buf, nand);
135 buf += 2;
136 len -= 2;
137 }
138
139 if (len)
140 writeb(*buf, nand);
141 }
142 }
143
144 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
145 unsigned int ctrl)
146 {
147 struct nand_chip *this = mtd->priv;
148 u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
149
150 if (ctrl & NAND_CTRL_CHANGE) {
151 IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
152
153 if (ctrl & NAND_CLE)
154 IO_ADDR_W |= MASK_CLE;
155 if (ctrl & NAND_ALE)
156 IO_ADDR_W |= MASK_ALE;
157 this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
158 }
159
160 if (cmd != NAND_CMD_NONE)
161 writeb(cmd, IO_ADDR_W);
162 }
163
164 #ifdef CONFIG_SYS_NAND_HW_ECC
165
166 static u_int32_t nand_davinci_readecc(struct mtd_info *mtd)
167 {
168 u_int32_t ecc = 0;
169
170 ecc = __raw_readl(&(davinci_emif_regs->nandfecc[
171 CONFIG_SYS_NAND_CS - 2]));
172
173 return ecc;
174 }
175
176 static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
177 {
178 u_int32_t val;
179
180 /* reading the ECC result register resets the ECC calculation */
181 nand_davinci_readecc(mtd);
182
183 val = __raw_readl(&davinci_emif_regs->nandfcr);
184 val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
185 val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS);
186 __raw_writel(val, &davinci_emif_regs->nandfcr);
187 }
188
189 static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
190 u_char *ecc_code)
191 {
192 u_int32_t tmp;
193
194 tmp = nand_davinci_readecc(mtd);
195
196 /* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
197 * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
198 tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
199
200 /* Invert so that erased block ECC is correct */
201 tmp = ~tmp;
202
203 *ecc_code++ = tmp;
204 *ecc_code++ = tmp >> 8;
205 *ecc_code++ = tmp >> 16;
206
207 /* NOTE: the above code matches mainline Linux:
208 * .PQR.stu ==> ~PQRstu
209 *
210 * MontaVista/TI kernels encode those bytes differently, use
211 * complicated (and allegedly sometimes-wrong) correction code,
212 * and usually shipped with U-Boot that uses software ECC:
213 * .PQR.stu ==> PsQRtu
214 *
215 * If you need MV/TI compatible NAND I/O in U-Boot, it should
216 * be possible to (a) change the mangling above, (b) reverse
217 * that mangling in nand_davinci_correct_data() below.
218 */
219
220 return 0;
221 }
222
223 static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat,
224 u_char *read_ecc, u_char *calc_ecc)
225 {
226 struct nand_chip *this = mtd->priv;
227 u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
228 (read_ecc[2] << 16);
229 u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
230 (calc_ecc[2] << 16);
231 u_int32_t diff = ecc_calc ^ ecc_nand;
232
233 if (diff) {
234 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
235 /* Correctable error */
236 if ((diff >> (12 + 3)) < this->ecc.size) {
237 uint8_t find_bit = 1 << ((diff >> 12) & 7);
238 uint32_t find_byte = diff >> (12 + 3);
239
240 dat[find_byte] ^= find_bit;
241 MTDDEBUG(MTD_DEBUG_LEVEL0, "Correcting single "
242 "bit ECC error at offset: %d, bit: "
243 "%d\n", find_byte, find_bit);
244 return 1;
245 } else {
246 return -1;
247 }
248 } else if (!(diff & (diff - 1))) {
249 /* Single bit ECC error in the ECC itself,
250 nothing to fix */
251 MTDDEBUG(MTD_DEBUG_LEVEL0, "Single bit ECC error in "
252 "ECC.\n");
253 return 1;
254 } else {
255 /* Uncorrectable error */
256 MTDDEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
257 return -1;
258 }
259 }
260 return 0;
261 }
262 #endif /* CONFIG_SYS_NAND_HW_ECC */
263
264 #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
265 static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
266 #if defined(CONFIG_SYS_NAND_PAGE_2K)
267 .eccbytes = 40,
268 #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC
269 .eccpos = {
270 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
271 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
272 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
273 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
274 },
275 .oobfree = {
276 {2, 4}, {16, 6}, {32, 6}, {48, 6},
277 },
278 #else
279 .eccpos = {
280 24, 25, 26, 27, 28,
281 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
282 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
283 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
284 59, 60, 61, 62, 63,
285 },
286 .oobfree = {
287 {.offset = 2, .length = 22, },
288 },
289 #endif /* #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC */
290 #elif defined(CONFIG_SYS_NAND_PAGE_4K)
291 .eccbytes = 80,
292 .eccpos = {
293 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
294 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
295 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
296 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
297 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
298 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
299 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
300 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
301 },
302 .oobfree = {
303 {.offset = 2, .length = 46, },
304 },
305 #endif
306 };
307
308 #if defined CONFIG_KEYSTONE_RBL_NAND
309 static struct nand_ecclayout nand_keystone_rbl_4bit_layout_oobfirst = {
310 #if defined(CONFIG_SYS_NAND_PAGE_2K)
311 .eccbytes = 40,
312 .eccpos = {
313 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
314 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
315 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
316 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
317 },
318 .oobfree = {
319 {.offset = 2, .length = 4, },
320 {.offset = 16, .length = 6, },
321 {.offset = 32, .length = 6, },
322 {.offset = 48, .length = 6, },
323 },
324 #elif defined(CONFIG_SYS_NAND_PAGE_4K)
325 .eccbytes = 80,
326 .eccpos = {
327 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
328 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
329 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
330 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
331 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
332 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
333 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
334 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
335 },
336 .oobfree = {
337 {.offset = 2, .length = 4, },
338 {.offset = 16, .length = 6, },
339 {.offset = 32, .length = 6, },
340 {.offset = 48, .length = 6, },
341 {.offset = 64, .length = 6, },
342 {.offset = 80, .length = 6, },
343 {.offset = 96, .length = 6, },
344 {.offset = 112, .length = 6, },
345 },
346 #endif
347 };
348
349 #ifdef CONFIG_SYS_NAND_PAGE_2K
350 #define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 11
351 #elif defined(CONFIG_SYS_NAND_PAGE_4K)
352 #define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 12
353 #endif
354
355 /**
356 * nand_davinci_write_page - write one page
357 * @mtd: MTD device structure
358 * @chip: NAND chip descriptor
359 * @buf: the data to write
360 * @oob_required: must write chip->oob_poi to OOB
361 * @page: page number to write
362 * @cached: cached programming
363 * @raw: use _raw version of write_page
364 */
365 static int nand_davinci_write_page(struct mtd_info *mtd, struct nand_chip *chip,
366 const uint8_t *buf, int oob_required,
367 int page, int cached, int raw)
368 {
369 int status;
370 int ret = 0;
371 struct nand_ecclayout *saved_ecc_layout;
372
373 /* save current ECC layout and assign Keystone RBL ECC layout */
374 if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
375 saved_ecc_layout = chip->ecc.layout;
376 chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst;
377 mtd->oobavail = chip->ecc.layout->oobavail;
378 }
379
380 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
381
382 if (unlikely(raw))
383 status = chip->ecc.write_page_raw(mtd, chip, buf, oob_required);
384 else
385 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
386
387 if (status < 0) {
388 ret = status;
389 goto err;
390 }
391
392 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
393 status = chip->waitfunc(mtd, chip);
394
395 /*
396 * See if operation failed and additional status checks are
397 * available.
398 */
399 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
400 status = chip->errstat(mtd, chip, FL_WRITING, status, page);
401
402 if (status & NAND_STATUS_FAIL) {
403 ret = -EIO;
404 goto err;
405 }
406
407 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
408 /* Send command to read back the data */
409 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
410
411 if (chip->verify_buf(mtd, buf, mtd->writesize)) {
412 ret = -EIO;
413 goto err;
414 }
415
416 /* Make sure the next page prog is preceded by a status read */
417 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
418 #endif
419 err:
420 /* restore ECC layout */
421 if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
422 chip->ecc.layout = saved_ecc_layout;
423 mtd->oobavail = saved_ecc_layout->oobavail;
424 }
425
426 return ret;
427 }
428
429 /**
430 * nand_davinci_read_page_hwecc - hardware ECC based page read function
431 * @mtd: mtd info structure
432 * @chip: nand chip info structure
433 * @buf: buffer to store read data
434 * @oob_required: caller requires OOB data read to chip->oob_poi
435 * @page: page number to read
436 *
437 * Not for syndrome calculating ECC controllers which need a special oob layout.
438 */
439 static int nand_davinci_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
440 uint8_t *buf, int oob_required, int page)
441 {
442 int i, eccsize = chip->ecc.size;
443 int eccbytes = chip->ecc.bytes;
444 int eccsteps = chip->ecc.steps;
445 uint32_t *eccpos;
446 uint8_t *p = buf;
447 uint8_t *ecc_code = chip->buffers->ecccode;
448 uint8_t *ecc_calc = chip->buffers->ecccalc;
449 struct nand_ecclayout *saved_ecc_layout = chip->ecc.layout;
450
451 /* save current ECC layout and assign Keystone RBL ECC layout */
452 if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
453 chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst;
454 mtd->oobavail = chip->ecc.layout->oobavail;
455 }
456
457 eccpos = chip->ecc.layout->eccpos;
458
459 /* Read the OOB area first */
460 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
461 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
462 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
463
464 for (i = 0; i < chip->ecc.total; i++)
465 ecc_code[i] = chip->oob_poi[eccpos[i]];
466
467 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
468 int stat;
469
470 chip->ecc.hwctl(mtd, NAND_ECC_READ);
471 chip->read_buf(mtd, p, eccsize);
472 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
473
474 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
475 if (stat < 0)
476 mtd->ecc_stats.failed++;
477 else
478 mtd->ecc_stats.corrected += stat;
479 }
480
481 /* restore ECC layout */
482 if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
483 chip->ecc.layout = saved_ecc_layout;
484 mtd->oobavail = saved_ecc_layout->oobavail;
485 }
486
487 return 0;
488 }
489 #endif /* CONFIG_KEYSTONE_RBL_NAND */
490
491 static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
492 {
493 u32 val;
494
495 switch (mode) {
496 case NAND_ECC_WRITE:
497 case NAND_ECC_READ:
498 /*
499 * Start a new ECC calculation for reading or writing 512 bytes
500 * of data.
501 */
502 val = __raw_readl(&davinci_emif_regs->nandfcr);
503 val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK;
504 val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
505 val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS);
506 val |= DAVINCI_NANDFCR_4BIT_ECC_START;
507 __raw_writel(val, &davinci_emif_regs->nandfcr);
508 break;
509 case NAND_ECC_READSYN:
510 val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]);
511 break;
512 default:
513 break;
514 }
515 }
516
517 static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
518 {
519 int i;
520
521 for (i = 0; i < 4; i++) {
522 ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) &
523 NAND_4BITECC_MASK;
524 }
525
526 return 0;
527 }
528
529 static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
530 const uint8_t *dat,
531 uint8_t *ecc_code)
532 {
533 unsigned int hw_4ecc[4];
534 unsigned int i;
535
536 nand_davinci_4bit_readecc(mtd, hw_4ecc);
537
538 /*Convert 10 bit ecc value to 8 bit */
539 for (i = 0; i < 2; i++) {
540 unsigned int hw_ecc_low = hw_4ecc[i * 2];
541 unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1];
542
543 /* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
544 *ecc_code++ = hw_ecc_low & 0xFF;
545
546 /*
547 * Take 2 bits as LSB bits from val1 (count1=0) or val5
548 * (count1=1) and 6 bits from val2 (count1=0) or
549 * val5 (count1=1)
550 */
551 *ecc_code++ =
552 ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC);
553
554 /*
555 * Take 4 bits from val2 (count1=0) or val5 (count1=1) and
556 * 4 bits from val3 (count1=0) or val6 (count1=1)
557 */
558 *ecc_code++ =
559 ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0);
560
561 /*
562 * Take 6 bits from val3(count1=0) or val6 (count1=1) and
563 * 2 bits from val4 (count1=0) or val7 (count1=1)
564 */
565 *ecc_code++ =
566 ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0);
567
568 /* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
569 *ecc_code++ = (hw_ecc_hi >> 18) & 0xFF;
570 }
571
572 return 0;
573 }
574
575 static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
576 uint8_t *read_ecc, uint8_t *calc_ecc)
577 {
578 int i;
579 unsigned int hw_4ecc[4];
580 unsigned int iserror;
581 unsigned short *ecc16;
582 unsigned int numerrors, erroraddress, errorvalue;
583 u32 val;
584
585 /*
586 * Check for an ECC where all bytes are 0xFF. If this is the case, we
587 * will assume we are looking at an erased page and we should ignore
588 * the ECC.
589 */
590 for (i = 0; i < 10; i++) {
591 if (read_ecc[i] != 0xFF)
592 break;
593 }
594 if (i == 10)
595 return 0;
596
597 /* Convert 8 bit in to 10 bit */
598 ecc16 = (unsigned short *)&read_ecc[0];
599
600 /*
601 * Write the parity values in the NAND Flash 4-bit ECC Load register.
602 * Write each parity value one at a time starting from 4bit_ecc_val8
603 * to 4bit_ecc_val1.
604 */
605
606 /*Take 2 bits from 8th byte and 8 bits from 9th byte */
607 __raw_writel(((ecc16[4]) >> 6) & 0x3FF,
608 &davinci_emif_regs->nand4biteccload);
609
610 /* Take 4 bits from 7th byte and 6 bits from 8th byte */
611 __raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0),
612 &davinci_emif_regs->nand4biteccload);
613
614 /* Take 6 bits from 6th byte and 4 bits from 7th byte */
615 __raw_writel((ecc16[3] >> 2) & 0x3FF,
616 &davinci_emif_regs->nand4biteccload);
617
618 /* Take 8 bits from 5th byte and 2 bits from 6th byte */
619 __raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300),
620 &davinci_emif_regs->nand4biteccload);
621
622 /*Take 2 bits from 3rd byte and 8 bits from 4th byte */
623 __raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC),
624 &davinci_emif_regs->nand4biteccload);
625
626 /* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
627 __raw_writel(((ecc16[1]) >> 4) & 0x3FF,
628 &davinci_emif_regs->nand4biteccload);
629
630 /* Take 6 bits from 1st byte and 4 bits from 2nd byte */
631 __raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0),
632 &davinci_emif_regs->nand4biteccload);
633
634 /* Take 10 bits from 0th and 1st bytes */
635 __raw_writel((ecc16[0]) & 0x3FF,
636 &davinci_emif_regs->nand4biteccload);
637
638 /*
639 * Perform a dummy read to the EMIF Revision Code and Status register.
640 * This is required to ensure time for syndrome calculation after
641 * writing the ECC values in previous step.
642 */
643
644 val = __raw_readl(&davinci_emif_regs->nandfsr);
645
646 /*
647 * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
648 * A syndrome value of 0 means no bit errors. If the syndrome is
649 * non-zero then go further otherwise return.
650 */
651 nand_davinci_4bit_readecc(mtd, hw_4ecc);
652
653 if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3]))
654 return 0;
655
656 /*
657 * Clear any previous address calculation by doing a dummy read of an
658 * error address register.
659 */
660 val = __raw_readl(&davinci_emif_regs->nanderradd1);
661
662 /*
663 * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
664 * register to 1.
665 */
666 __raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START,
667 &davinci_emif_regs->nandfcr);
668
669 /*
670 * Wait for the corr_state field (bits 8 to 11) in the
671 * NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3.
672 * Otherwise ECC calculation has not even begun and the next loop might
673 * fail because of a false positive!
674 */
675 i = NAND_TIMEOUT;
676 do {
677 val = __raw_readl(&davinci_emif_regs->nandfsr);
678 val &= 0xc00;
679 i--;
680 } while ((i > 0) && !val);
681
682 /*
683 * Wait for the corr_state field (bits 8 to 11) in the
684 * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
685 */
686 i = NAND_TIMEOUT;
687 do {
688 val = __raw_readl(&davinci_emif_regs->nandfsr);
689 val &= 0xc00;
690 i--;
691 } while ((i > 0) && val);
692
693 iserror = __raw_readl(&davinci_emif_regs->nandfsr);
694 iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
695 iserror = iserror >> 8;
696
697 /*
698 * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
699 * corrected (five or more errors). The number of errors
700 * calculated (err_num field) differs from the number of errors
701 * searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error
702 * correction complete (errors on bit 8 or 9).
703 * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
704 * complete (error exists).
705 */
706
707 if (iserror == ECC_STATE_NO_ERR) {
708 val = __raw_readl(&davinci_emif_regs->nanderrval1);
709 return 0;
710 } else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
711 val = __raw_readl(&davinci_emif_regs->nanderrval1);
712 return -1;
713 }
714
715 numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16)
716 & 0x3) + 1;
717
718 /* Read the error address, error value and correct */
719 for (i = 0; i < numerrors; i++) {
720 if (i > 1) {
721 erroraddress =
722 ((__raw_readl(&davinci_emif_regs->nanderradd2) >>
723 (16 * (i & 1))) & 0x3FF);
724 erroraddress = ((512 + 7) - erroraddress);
725 errorvalue =
726 ((__raw_readl(&davinci_emif_regs->nanderrval2) >>
727 (16 * (i & 1))) & 0xFF);
728 } else {
729 erroraddress =
730 ((__raw_readl(&davinci_emif_regs->nanderradd1) >>
731 (16 * (i & 1))) & 0x3FF);
732 erroraddress = ((512 + 7) - erroraddress);
733 errorvalue =
734 ((__raw_readl(&davinci_emif_regs->nanderrval1) >>
735 (16 * (i & 1))) & 0xFF);
736 }
737 /* xor the corrupt data with error value */
738 if (erroraddress < 512)
739 dat[erroraddress] ^= errorvalue;
740 }
741
742 return numerrors;
743 }
744 #endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
745
746 static int nand_davinci_dev_ready(struct mtd_info *mtd)
747 {
748 return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1;
749 }
750
751 static void nand_flash_init(void)
752 {
753 /* This is for DM6446 EVM and *very* similar. DO NOT GROW THIS!
754 * Instead, have your board_init() set EMIF timings, based on its
755 * knowledge of the clocks and what devices are hooked up ... and
756 * don't even do that unless no UBL handled it.
757 */
758 #ifdef CONFIG_SOC_DM644X
759 u_int32_t acfg1 = 0x3ffffffc;
760
761 /*------------------------------------------------------------------*
762 * NAND FLASH CHIP TIMEOUT @ 459 MHz *
763 * *
764 * AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz *
765 * AEMIF.CLK period = 1/76.5 MHz = 13.1 ns *
766 * *
767 *------------------------------------------------------------------*/
768 acfg1 = 0
769 | (0 << 31) /* selectStrobe */
770 | (0 << 30) /* extWait */
771 | (1 << 26) /* writeSetup 10 ns */
772 | (3 << 20) /* writeStrobe 40 ns */
773 | (1 << 17) /* writeHold 10 ns */
774 | (1 << 13) /* readSetup 10 ns */
775 | (5 << 7) /* readStrobe 60 ns */
776 | (1 << 4) /* readHold 10 ns */
777 | (3 << 2) /* turnAround ?? ns */
778 | (0 << 0) /* asyncSize 8-bit bus */
779 ;
780
781 __raw_writel(acfg1, &davinci_emif_regs->ab1cr); /* CS2 */
782
783 /* NAND flash on CS2 */
784 __raw_writel(0x00000101, &davinci_emif_regs->nandfcr);
785 #endif
786 }
787
788 void davinci_nand_init(struct nand_chip *nand)
789 {
790 #if defined CONFIG_KEYSTONE_RBL_NAND
791 int i;
792 struct nand_ecclayout *layout;
793
794 layout = &nand_keystone_rbl_4bit_layout_oobfirst;
795 layout->oobavail = 0;
796 for (i = 0; layout->oobfree[i].length &&
797 i < ARRAY_SIZE(layout->oobfree); i++)
798 layout->oobavail += layout->oobfree[i].length;
799
800 nand->write_page = nand_davinci_write_page;
801 nand->ecc.read_page = nand_davinci_read_page_hwecc;
802 #endif
803 nand->chip_delay = 0;
804 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
805 nand->bbt_options |= NAND_BBT_USE_FLASH;
806 #endif
807 #ifdef CONFIG_SYS_NAND_NO_SUBPAGE_WRITE
808 nand->options |= NAND_NO_SUBPAGE_WRITE;
809 #endif
810 #ifdef CONFIG_SYS_NAND_HW_ECC
811 nand->ecc.mode = NAND_ECC_HW;
812 nand->ecc.size = 512;
813 nand->ecc.bytes = 3;
814 nand->ecc.strength = 1;
815 nand->ecc.calculate = nand_davinci_calculate_ecc;
816 nand->ecc.correct = nand_davinci_correct_data;
817 nand->ecc.hwctl = nand_davinci_enable_hwecc;
818 #else
819 nand->ecc.mode = NAND_ECC_SOFT;
820 #endif /* CONFIG_SYS_NAND_HW_ECC */
821 #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
822 nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
823 nand->ecc.size = 512;
824 nand->ecc.bytes = 10;
825 nand->ecc.strength = 4;
826 nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
827 nand->ecc.correct = nand_davinci_4bit_correct_data;
828 nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
829 nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
830 #endif
831 /* Set address of hardware control function */
832 nand->cmd_ctrl = nand_davinci_hwcontrol;
833
834 nand->read_buf = nand_davinci_read_buf;
835 nand->write_buf = nand_davinci_write_buf;
836
837 nand->dev_ready = nand_davinci_dev_ready;
838
839 nand_flash_init();
840 }
841
842 int board_nand_init(struct nand_chip *chip) __attribute__((weak));
843
844 int board_nand_init(struct nand_chip *chip)
845 {
846 davinci_nand_init(chip);
847 return 0;
848 }