]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/davinci_nand.c
Merge branch 'master' of git://git.denx.de/u-boot
[people/ms/u-boot.git] / drivers / mtd / nand / davinci_nand.c
1 /*
2 * NAND driver for TI DaVinci based boards.
3 *
4 * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
5 *
6 * Based on Linux DaVinci NAND driver by TI. Original copyright follows:
7 */
8
9 /*
10 *
11 * linux/drivers/mtd/nand/nand_davinci.c
12 *
13 * NAND Flash Driver
14 *
15 * Copyright (C) 2006 Texas Instruments.
16 *
17 * ----------------------------------------------------------------------------
18 *
19 * SPDX-License-Identifier: GPL-2.0+
20 *
21 * ----------------------------------------------------------------------------
22 *
23 * Overview:
24 * This is a device driver for the NAND flash device found on the
25 * DaVinci board which utilizes the Samsung k9k2g08 part.
26 *
27 Modifications:
28 ver. 1.0: Feb 2005, Vinod/Sudhakar
29 -
30 */
31
32 #include <common.h>
33 #include <asm/io.h>
34 #include <nand.h>
35 #include <asm/ti-common/davinci_nand.h>
36
37 /* Definitions for 4-bit hardware ECC */
38 #define NAND_TIMEOUT 10240
39 #define NAND_ECC_BUSY 0xC
40 #define NAND_4BITECC_MASK 0x03FF03FF
41 #define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00
42 #define ECC_STATE_NO_ERR 0x0
43 #define ECC_STATE_TOO_MANY_ERRS 0x1
44 #define ECC_STATE_ERR_CORR_COMP_P 0x2
45 #define ECC_STATE_ERR_CORR_COMP_N 0x3
46
47 /*
48 * Exploit the little endianness of the ARM to do multi-byte transfers
49 * per device read. This can perform over twice as quickly as individual
50 * byte transfers when buffer alignment is conducive.
51 *
52 * NOTE: This only works if the NAND is not connected to the 2 LSBs of
53 * the address bus. On Davinci EVM platforms this has always been true.
54 */
55 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
56 {
57 struct nand_chip *chip = mtd->priv;
58 const u32 *nand = chip->IO_ADDR_R;
59
60 /* Make sure that buf is 32 bit aligned */
61 if (((int)buf & 0x3) != 0) {
62 if (((int)buf & 0x1) != 0) {
63 if (len) {
64 *buf = readb(nand);
65 buf += 1;
66 len--;
67 }
68 }
69
70 if (((int)buf & 0x3) != 0) {
71 if (len >= 2) {
72 *(u16 *)buf = readw(nand);
73 buf += 2;
74 len -= 2;
75 }
76 }
77 }
78
79 /* copy aligned data */
80 while (len >= 4) {
81 *(u32 *)buf = __raw_readl(nand);
82 buf += 4;
83 len -= 4;
84 }
85
86 /* mop up any remaining bytes */
87 if (len) {
88 if (len >= 2) {
89 *(u16 *)buf = readw(nand);
90 buf += 2;
91 len -= 2;
92 }
93
94 if (len)
95 *buf = readb(nand);
96 }
97 }
98
99 static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf,
100 int len)
101 {
102 struct nand_chip *chip = mtd->priv;
103 const u32 *nand = chip->IO_ADDR_W;
104
105 /* Make sure that buf is 32 bit aligned */
106 if (((int)buf & 0x3) != 0) {
107 if (((int)buf & 0x1) != 0) {
108 if (len) {
109 writeb(*buf, nand);
110 buf += 1;
111 len--;
112 }
113 }
114
115 if (((int)buf & 0x3) != 0) {
116 if (len >= 2) {
117 writew(*(u16 *)buf, nand);
118 buf += 2;
119 len -= 2;
120 }
121 }
122 }
123
124 /* copy aligned data */
125 while (len >= 4) {
126 __raw_writel(*(u32 *)buf, nand);
127 buf += 4;
128 len -= 4;
129 }
130
131 /* mop up any remaining bytes */
132 if (len) {
133 if (len >= 2) {
134 writew(*(u16 *)buf, nand);
135 buf += 2;
136 len -= 2;
137 }
138
139 if (len)
140 writeb(*buf, nand);
141 }
142 }
143
144 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
145 unsigned int ctrl)
146 {
147 struct nand_chip *this = mtd->priv;
148 u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
149
150 if (ctrl & NAND_CTRL_CHANGE) {
151 IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
152
153 if (ctrl & NAND_CLE)
154 IO_ADDR_W |= MASK_CLE;
155 if (ctrl & NAND_ALE)
156 IO_ADDR_W |= MASK_ALE;
157 this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
158 }
159
160 if (cmd != NAND_CMD_NONE)
161 writeb(cmd, IO_ADDR_W);
162 }
163
164 #ifdef CONFIG_SYS_NAND_HW_ECC
165
166 static u_int32_t nand_davinci_readecc(struct mtd_info *mtd)
167 {
168 u_int32_t ecc = 0;
169
170 ecc = __raw_readl(&(davinci_emif_regs->nandfecc[
171 CONFIG_SYS_NAND_CS - 2]));
172
173 return ecc;
174 }
175
176 static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
177 {
178 u_int32_t val;
179
180 /* reading the ECC result register resets the ECC calculation */
181 nand_davinci_readecc(mtd);
182
183 val = __raw_readl(&davinci_emif_regs->nandfcr);
184 val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
185 val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS);
186 __raw_writel(val, &davinci_emif_regs->nandfcr);
187 }
188
189 static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
190 u_char *ecc_code)
191 {
192 u_int32_t tmp;
193
194 tmp = nand_davinci_readecc(mtd);
195
196 /* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
197 * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
198 tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
199
200 /* Invert so that erased block ECC is correct */
201 tmp = ~tmp;
202
203 *ecc_code++ = tmp;
204 *ecc_code++ = tmp >> 8;
205 *ecc_code++ = tmp >> 16;
206
207 /* NOTE: the above code matches mainline Linux:
208 * .PQR.stu ==> ~PQRstu
209 *
210 * MontaVista/TI kernels encode those bytes differently, use
211 * complicated (and allegedly sometimes-wrong) correction code,
212 * and usually shipped with U-Boot that uses software ECC:
213 * .PQR.stu ==> PsQRtu
214 *
215 * If you need MV/TI compatible NAND I/O in U-Boot, it should
216 * be possible to (a) change the mangling above, (b) reverse
217 * that mangling in nand_davinci_correct_data() below.
218 */
219
220 return 0;
221 }
222
223 static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat,
224 u_char *read_ecc, u_char *calc_ecc)
225 {
226 struct nand_chip *this = mtd->priv;
227 u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
228 (read_ecc[2] << 16);
229 u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
230 (calc_ecc[2] << 16);
231 u_int32_t diff = ecc_calc ^ ecc_nand;
232
233 if (diff) {
234 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
235 /* Correctable error */
236 if ((diff >> (12 + 3)) < this->ecc.size) {
237 uint8_t find_bit = 1 << ((diff >> 12) & 7);
238 uint32_t find_byte = diff >> (12 + 3);
239
240 dat[find_byte] ^= find_bit;
241 MTDDEBUG(MTD_DEBUG_LEVEL0, "Correcting single "
242 "bit ECC error at offset: %d, bit: "
243 "%d\n", find_byte, find_bit);
244 return 1;
245 } else {
246 return -1;
247 }
248 } else if (!(diff & (diff - 1))) {
249 /* Single bit ECC error in the ECC itself,
250 nothing to fix */
251 MTDDEBUG(MTD_DEBUG_LEVEL0, "Single bit ECC error in "
252 "ECC.\n");
253 return 1;
254 } else {
255 /* Uncorrectable error */
256 MTDDEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
257 return -1;
258 }
259 }
260 return 0;
261 }
262 #endif /* CONFIG_SYS_NAND_HW_ECC */
263
264 #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
265 static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
266 #if defined(CONFIG_SYS_NAND_PAGE_2K)
267 .eccbytes = 40,
268 #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC
269 .eccpos = {
270 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
271 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
272 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
273 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
274 },
275 .oobfree = {
276 {2, 4}, {16, 6}, {32, 6}, {48, 6},
277 },
278 #else
279 .eccpos = {
280 24, 25, 26, 27, 28,
281 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
282 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
283 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
284 59, 60, 61, 62, 63,
285 },
286 .oobfree = {
287 {.offset = 2, .length = 22, },
288 },
289 #endif /* #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC */
290 #elif defined(CONFIG_SYS_NAND_PAGE_4K)
291 .eccbytes = 80,
292 .eccpos = {
293 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
294 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
295 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
296 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
297 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
298 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
299 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
300 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
301 },
302 .oobfree = {
303 {.offset = 2, .length = 46, },
304 },
305 #endif
306 };
307
308 static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
309 {
310 u32 val;
311
312 switch (mode) {
313 case NAND_ECC_WRITE:
314 case NAND_ECC_READ:
315 /*
316 * Start a new ECC calculation for reading or writing 512 bytes
317 * of data.
318 */
319 val = __raw_readl(&davinci_emif_regs->nandfcr);
320 val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK;
321 val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
322 val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS);
323 val |= DAVINCI_NANDFCR_4BIT_ECC_START;
324 __raw_writel(val, &davinci_emif_regs->nandfcr);
325 break;
326 case NAND_ECC_READSYN:
327 val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]);
328 break;
329 default:
330 break;
331 }
332 }
333
334 static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
335 {
336 int i;
337
338 for (i = 0; i < 4; i++) {
339 ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) &
340 NAND_4BITECC_MASK;
341 }
342
343 return 0;
344 }
345
346 static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
347 const uint8_t *dat,
348 uint8_t *ecc_code)
349 {
350 unsigned int hw_4ecc[4];
351 unsigned int i;
352
353 nand_davinci_4bit_readecc(mtd, hw_4ecc);
354
355 /*Convert 10 bit ecc value to 8 bit */
356 for (i = 0; i < 2; i++) {
357 unsigned int hw_ecc_low = hw_4ecc[i * 2];
358 unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1];
359
360 /* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
361 *ecc_code++ = hw_ecc_low & 0xFF;
362
363 /*
364 * Take 2 bits as LSB bits from val1 (count1=0) or val5
365 * (count1=1) and 6 bits from val2 (count1=0) or
366 * val5 (count1=1)
367 */
368 *ecc_code++ =
369 ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC);
370
371 /*
372 * Take 4 bits from val2 (count1=0) or val5 (count1=1) and
373 * 4 bits from val3 (count1=0) or val6 (count1=1)
374 */
375 *ecc_code++ =
376 ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0);
377
378 /*
379 * Take 6 bits from val3(count1=0) or val6 (count1=1) and
380 * 2 bits from val4 (count1=0) or val7 (count1=1)
381 */
382 *ecc_code++ =
383 ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0);
384
385 /* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
386 *ecc_code++ = (hw_ecc_hi >> 18) & 0xFF;
387 }
388
389 return 0;
390 }
391
392 static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
393 uint8_t *read_ecc, uint8_t *calc_ecc)
394 {
395 int i;
396 unsigned int hw_4ecc[4];
397 unsigned int iserror;
398 unsigned short *ecc16;
399 unsigned int numerrors, erroraddress, errorvalue;
400 u32 val;
401
402 /*
403 * Check for an ECC where all bytes are 0xFF. If this is the case, we
404 * will assume we are looking at an erased page and we should ignore
405 * the ECC.
406 */
407 for (i = 0; i < 10; i++) {
408 if (read_ecc[i] != 0xFF)
409 break;
410 }
411 if (i == 10)
412 return 0;
413
414 /* Convert 8 bit in to 10 bit */
415 ecc16 = (unsigned short *)&read_ecc[0];
416
417 /*
418 * Write the parity values in the NAND Flash 4-bit ECC Load register.
419 * Write each parity value one at a time starting from 4bit_ecc_val8
420 * to 4bit_ecc_val1.
421 */
422
423 /*Take 2 bits from 8th byte and 8 bits from 9th byte */
424 __raw_writel(((ecc16[4]) >> 6) & 0x3FF,
425 &davinci_emif_regs->nand4biteccload);
426
427 /* Take 4 bits from 7th byte and 6 bits from 8th byte */
428 __raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0),
429 &davinci_emif_regs->nand4biteccload);
430
431 /* Take 6 bits from 6th byte and 4 bits from 7th byte */
432 __raw_writel((ecc16[3] >> 2) & 0x3FF,
433 &davinci_emif_regs->nand4biteccload);
434
435 /* Take 8 bits from 5th byte and 2 bits from 6th byte */
436 __raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300),
437 &davinci_emif_regs->nand4biteccload);
438
439 /*Take 2 bits from 3rd byte and 8 bits from 4th byte */
440 __raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC),
441 &davinci_emif_regs->nand4biteccload);
442
443 /* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
444 __raw_writel(((ecc16[1]) >> 4) & 0x3FF,
445 &davinci_emif_regs->nand4biteccload);
446
447 /* Take 6 bits from 1st byte and 4 bits from 2nd byte */
448 __raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0),
449 &davinci_emif_regs->nand4biteccload);
450
451 /* Take 10 bits from 0th and 1st bytes */
452 __raw_writel((ecc16[0]) & 0x3FF,
453 &davinci_emif_regs->nand4biteccload);
454
455 /*
456 * Perform a dummy read to the EMIF Revision Code and Status register.
457 * This is required to ensure time for syndrome calculation after
458 * writing the ECC values in previous step.
459 */
460
461 val = __raw_readl(&davinci_emif_regs->nandfsr);
462
463 /*
464 * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
465 * A syndrome value of 0 means no bit errors. If the syndrome is
466 * non-zero then go further otherwise return.
467 */
468 nand_davinci_4bit_readecc(mtd, hw_4ecc);
469
470 if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3]))
471 return 0;
472
473 /*
474 * Clear any previous address calculation by doing a dummy read of an
475 * error address register.
476 */
477 val = __raw_readl(&davinci_emif_regs->nanderradd1);
478
479 /*
480 * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
481 * register to 1.
482 */
483 __raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START,
484 &davinci_emif_regs->nandfcr);
485
486 /*
487 * Wait for the corr_state field (bits 8 to 11) in the
488 * NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3.
489 * Otherwise ECC calculation has not even begun and the next loop might
490 * fail because of a false positive!
491 */
492 i = NAND_TIMEOUT;
493 do {
494 val = __raw_readl(&davinci_emif_regs->nandfsr);
495 val &= 0xc00;
496 i--;
497 } while ((i > 0) && !val);
498
499 /*
500 * Wait for the corr_state field (bits 8 to 11) in the
501 * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
502 */
503 i = NAND_TIMEOUT;
504 do {
505 val = __raw_readl(&davinci_emif_regs->nandfsr);
506 val &= 0xc00;
507 i--;
508 } while ((i > 0) && val);
509
510 iserror = __raw_readl(&davinci_emif_regs->nandfsr);
511 iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
512 iserror = iserror >> 8;
513
514 /*
515 * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
516 * corrected (five or more errors). The number of errors
517 * calculated (err_num field) differs from the number of errors
518 * searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error
519 * correction complete (errors on bit 8 or 9).
520 * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
521 * complete (error exists).
522 */
523
524 if (iserror == ECC_STATE_NO_ERR) {
525 val = __raw_readl(&davinci_emif_regs->nanderrval1);
526 return 0;
527 } else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
528 val = __raw_readl(&davinci_emif_regs->nanderrval1);
529 return -1;
530 }
531
532 numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16)
533 & 0x3) + 1;
534
535 /* Read the error address, error value and correct */
536 for (i = 0; i < numerrors; i++) {
537 if (i > 1) {
538 erroraddress =
539 ((__raw_readl(&davinci_emif_regs->nanderradd2) >>
540 (16 * (i & 1))) & 0x3FF);
541 erroraddress = ((512 + 7) - erroraddress);
542 errorvalue =
543 ((__raw_readl(&davinci_emif_regs->nanderrval2) >>
544 (16 * (i & 1))) & 0xFF);
545 } else {
546 erroraddress =
547 ((__raw_readl(&davinci_emif_regs->nanderradd1) >>
548 (16 * (i & 1))) & 0x3FF);
549 erroraddress = ((512 + 7) - erroraddress);
550 errorvalue =
551 ((__raw_readl(&davinci_emif_regs->nanderrval1) >>
552 (16 * (i & 1))) & 0xFF);
553 }
554 /* xor the corrupt data with error value */
555 if (erroraddress < 512)
556 dat[erroraddress] ^= errorvalue;
557 }
558
559 return numerrors;
560 }
561 #endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
562
563 static int nand_davinci_dev_ready(struct mtd_info *mtd)
564 {
565 return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1;
566 }
567
568 static void nand_flash_init(void)
569 {
570 /* This is for DM6446 EVM and *very* similar. DO NOT GROW THIS!
571 * Instead, have your board_init() set EMIF timings, based on its
572 * knowledge of the clocks and what devices are hooked up ... and
573 * don't even do that unless no UBL handled it.
574 */
575 #ifdef CONFIG_SOC_DM644X
576 u_int32_t acfg1 = 0x3ffffffc;
577
578 /*------------------------------------------------------------------*
579 * NAND FLASH CHIP TIMEOUT @ 459 MHz *
580 * *
581 * AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz *
582 * AEMIF.CLK period = 1/76.5 MHz = 13.1 ns *
583 * *
584 *------------------------------------------------------------------*/
585 acfg1 = 0
586 | (0 << 31) /* selectStrobe */
587 | (0 << 30) /* extWait */
588 | (1 << 26) /* writeSetup 10 ns */
589 | (3 << 20) /* writeStrobe 40 ns */
590 | (1 << 17) /* writeHold 10 ns */
591 | (1 << 13) /* readSetup 10 ns */
592 | (5 << 7) /* readStrobe 60 ns */
593 | (1 << 4) /* readHold 10 ns */
594 | (3 << 2) /* turnAround ?? ns */
595 | (0 << 0) /* asyncSize 8-bit bus */
596 ;
597
598 __raw_writel(acfg1, &davinci_emif_regs->ab1cr); /* CS2 */
599
600 /* NAND flash on CS2 */
601 __raw_writel(0x00000101, &davinci_emif_regs->nandfcr);
602 #endif
603 }
604
605 void davinci_nand_init(struct nand_chip *nand)
606 {
607 nand->chip_delay = 0;
608 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
609 nand->bbt_options |= NAND_BBT_USE_FLASH;
610 #endif
611 #ifdef CONFIG_SYS_NAND_NO_SUBPAGE_WRITE
612 nand->options |= NAND_NO_SUBPAGE_WRITE;
613 #endif
614 #ifdef CONFIG_SYS_NAND_HW_ECC
615 nand->ecc.mode = NAND_ECC_HW;
616 nand->ecc.size = 512;
617 nand->ecc.bytes = 3;
618 nand->ecc.strength = 1;
619 nand->ecc.calculate = nand_davinci_calculate_ecc;
620 nand->ecc.correct = nand_davinci_correct_data;
621 nand->ecc.hwctl = nand_davinci_enable_hwecc;
622 #else
623 nand->ecc.mode = NAND_ECC_SOFT;
624 #endif /* CONFIG_SYS_NAND_HW_ECC */
625 #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
626 nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
627 nand->ecc.size = 512;
628 nand->ecc.bytes = 10;
629 nand->ecc.strength = 4;
630 nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
631 nand->ecc.correct = nand_davinci_4bit_correct_data;
632 nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
633 nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
634 #endif
635 /* Set address of hardware control function */
636 nand->cmd_ctrl = nand_davinci_hwcontrol;
637
638 nand->read_buf = nand_davinci_read_buf;
639 nand->write_buf = nand_davinci_write_buf;
640
641 nand->dev_ready = nand_davinci_dev_ready;
642
643 nand_flash_init();
644 }
645
646 int board_nand_init(struct nand_chip *chip) __attribute__((weak));
647
648 int board_nand_init(struct nand_chip *chip)
649 {
650 davinci_nand_init(chip);
651 return 0;
652 }