]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/diskonchip.c
mtd: resync with Linux-3.7.1
[people/ms/u-boot.git] / drivers / mtd / nand / diskonchip.c
1 /*
2 * drivers/mtd/nand/diskonchip.c
3 *
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
7 *
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
11 *
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
16 *
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
18 */
19
20 #include <common.h>
21
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/rslib.h>
27 #include <linux/moduleparam.h>
28 #include <asm/io.h>
29
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/doc2000.h>
33 #include <linux/mtd/compatmac.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/mtd/inftl.h>
36
37 /* Where to look for the devices? */
38 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
39 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
40 #endif
41
42 static unsigned long __initdata doc_locations[] = {
43 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
44 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
45 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
46 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
47 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
48 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
49 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
50 #else /* CONFIG_MTD_DOCPROBE_HIGH */
51 0xc8000, 0xca000, 0xcc000, 0xce000,
52 0xd0000, 0xd2000, 0xd4000, 0xd6000,
53 0xd8000, 0xda000, 0xdc000, 0xde000,
54 0xe0000, 0xe2000, 0xe4000, 0xe6000,
55 0xe8000, 0xea000, 0xec000, 0xee000,
56 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
57 #else
58 #warning Unknown architecture for DiskOnChip. No default probe locations defined
59 #endif
60 0xffffffff };
61
62 static struct mtd_info *doclist = NULL;
63
64 struct doc_priv {
65 void __iomem *virtadr;
66 unsigned long physadr;
67 u_char ChipID;
68 u_char CDSNControl;
69 int chips_per_floor; /* The number of chips detected on each floor */
70 int curfloor;
71 int curchip;
72 int mh0_page;
73 int mh1_page;
74 struct mtd_info *nextdoc;
75 };
76
77 /* This is the syndrome computed by the HW ecc generator upon reading an empty
78 page, one with all 0xff for data and stored ecc code. */
79 static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
80
81 /* This is the ecc value computed by the HW ecc generator upon writing an empty
82 page, one with all 0xff for data. */
83 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
84
85 #define INFTL_BBT_RESERVED_BLOCKS 4
86
87 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
88 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
89 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
90
91 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
92 unsigned int bitmask);
93 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
94
95 static int debug = 0;
96 module_param(debug, int, 0);
97
98 static int try_dword = 1;
99 module_param(try_dword, int, 0);
100
101 static int no_ecc_failures = 0;
102 module_param(no_ecc_failures, int, 0);
103
104 static int no_autopart = 0;
105 module_param(no_autopart, int, 0);
106
107 static int show_firmware_partition = 0;
108 module_param(show_firmware_partition, int, 0);
109
110 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
111 static int inftl_bbt_write = 1;
112 #else
113 static int inftl_bbt_write = 0;
114 #endif
115 module_param(inftl_bbt_write, int, 0);
116
117 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
118 module_param(doc_config_location, ulong, 0);
119 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
120
121 /* Sector size for HW ECC */
122 #define SECTOR_SIZE 512
123 /* The sector bytes are packed into NB_DATA 10 bit words */
124 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
125 /* Number of roots */
126 #define NROOTS 4
127 /* First consective root */
128 #define FCR 510
129 /* Number of symbols */
130 #define NN 1023
131
132 /* the Reed Solomon control structure */
133 static struct rs_control *rs_decoder;
134
135 /*
136 * The HW decoder in the DoC ASIC's provides us a error syndrome,
137 * which we must convert to a standard syndrome usable by the generic
138 * Reed-Solomon library code.
139 *
140 * Fabrice Bellard figured this out in the old docecc code. I added
141 * some comments, improved a minor bit and converted it to make use
142 * of the generic Reed-Solomon libary. tglx
143 */
144 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
145 {
146 int i, j, nerr, errpos[8];
147 uint8_t parity;
148 uint16_t ds[4], s[5], tmp, errval[8], syn[4];
149
150 /* Convert the ecc bytes into words */
151 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
152 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
153 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
154 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
155 parity = ecc[1];
156
157 /* Initialize the syndrome buffer */
158 for (i = 0; i < NROOTS; i++)
159 s[i] = ds[0];
160 /*
161 * Evaluate
162 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
163 * where x = alpha^(FCR + i)
164 */
165 for (j = 1; j < NROOTS; j++) {
166 if (ds[j] == 0)
167 continue;
168 tmp = rs->index_of[ds[j]];
169 for (i = 0; i < NROOTS; i++)
170 s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
171 }
172
173 /* Calc s[i] = s[i] / alpha^(v + i) */
174 for (i = 0; i < NROOTS; i++) {
175 if (syn[i])
176 syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
177 }
178 /* Call the decoder library */
179 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
180
181 /* Incorrectable errors ? */
182 if (nerr < 0)
183 return nerr;
184
185 /*
186 * Correct the errors. The bitpositions are a bit of magic,
187 * but they are given by the design of the de/encoder circuit
188 * in the DoC ASIC's.
189 */
190 for (i = 0; i < nerr; i++) {
191 int index, bitpos, pos = 1015 - errpos[i];
192 uint8_t val;
193 if (pos >= NB_DATA && pos < 1019)
194 continue;
195 if (pos < NB_DATA) {
196 /* extract bit position (MSB first) */
197 pos = 10 * (NB_DATA - 1 - pos) - 6;
198 /* now correct the following 10 bits. At most two bytes
199 can be modified since pos is even */
200 index = (pos >> 3) ^ 1;
201 bitpos = pos & 7;
202 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
203 val = (uint8_t) (errval[i] >> (2 + bitpos));
204 parity ^= val;
205 if (index < SECTOR_SIZE)
206 data[index] ^= val;
207 }
208 index = ((pos >> 3) + 1) ^ 1;
209 bitpos = (bitpos + 10) & 7;
210 if (bitpos == 0)
211 bitpos = 8;
212 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
213 val = (uint8_t) (errval[i] << (8 - bitpos));
214 parity ^= val;
215 if (index < SECTOR_SIZE)
216 data[index] ^= val;
217 }
218 }
219 }
220 /* If the parity is wrong, no rescue possible */
221 return parity ? -EBADMSG : nerr;
222 }
223
224 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
225 {
226 volatile char dummy;
227 int i;
228
229 for (i = 0; i < cycles; i++) {
230 if (DoC_is_Millennium(doc))
231 dummy = ReadDOC(doc->virtadr, NOP);
232 else if (DoC_is_MillenniumPlus(doc))
233 dummy = ReadDOC(doc->virtadr, Mplus_NOP);
234 else
235 dummy = ReadDOC(doc->virtadr, DOCStatus);
236 }
237
238 }
239
240 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
241
242 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
243 static int _DoC_WaitReady(struct doc_priv *doc)
244 {
245 void __iomem *docptr = doc->virtadr;
246 unsigned long timeo = jiffies + (HZ * 10);
247
248 if (debug)
249 printk("_DoC_WaitReady...\n");
250 /* Out-of-line routine to wait for chip response */
251 if (DoC_is_MillenniumPlus(doc)) {
252 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
253 if (time_after(jiffies, timeo)) {
254 printk("_DoC_WaitReady timed out.\n");
255 return -EIO;
256 }
257 udelay(1);
258 cond_resched();
259 }
260 } else {
261 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
262 if (time_after(jiffies, timeo)) {
263 printk("_DoC_WaitReady timed out.\n");
264 return -EIO;
265 }
266 udelay(1);
267 cond_resched();
268 }
269 }
270
271 return 0;
272 }
273
274 static inline int DoC_WaitReady(struct doc_priv *doc)
275 {
276 void __iomem *docptr = doc->virtadr;
277 int ret = 0;
278
279 if (DoC_is_MillenniumPlus(doc)) {
280 DoC_Delay(doc, 4);
281
282 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
283 /* Call the out-of-line routine to wait */
284 ret = _DoC_WaitReady(doc);
285 } else {
286 DoC_Delay(doc, 4);
287
288 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
289 /* Call the out-of-line routine to wait */
290 ret = _DoC_WaitReady(doc);
291 DoC_Delay(doc, 2);
292 }
293
294 if (debug)
295 printk("DoC_WaitReady OK\n");
296 return ret;
297 }
298
299 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
300 {
301 struct nand_chip *this = mtd->priv;
302 struct doc_priv *doc = this->priv;
303 void __iomem *docptr = doc->virtadr;
304
305 if (debug)
306 printk("write_byte %02x\n", datum);
307 WriteDOC(datum, docptr, CDSNSlowIO);
308 WriteDOC(datum, docptr, 2k_CDSN_IO);
309 }
310
311 static u_char doc2000_read_byte(struct mtd_info *mtd)
312 {
313 struct nand_chip *this = mtd->priv;
314 struct doc_priv *doc = this->priv;
315 void __iomem *docptr = doc->virtadr;
316 u_char ret;
317
318 ReadDOC(docptr, CDSNSlowIO);
319 DoC_Delay(doc, 2);
320 ret = ReadDOC(docptr, 2k_CDSN_IO);
321 if (debug)
322 printk("read_byte returns %02x\n", ret);
323 return ret;
324 }
325
326 static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
327 {
328 struct nand_chip *this = mtd->priv;
329 struct doc_priv *doc = this->priv;
330 void __iomem *docptr = doc->virtadr;
331 int i;
332 if (debug)
333 printk("writebuf of %d bytes: ", len);
334 for (i = 0; i < len; i++) {
335 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
336 if (debug && i < 16)
337 printk("%02x ", buf[i]);
338 }
339 if (debug)
340 printk("\n");
341 }
342
343 static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
344 {
345 struct nand_chip *this = mtd->priv;
346 struct doc_priv *doc = this->priv;
347 void __iomem *docptr = doc->virtadr;
348 int i;
349
350 if (debug)
351 printk("readbuf of %d bytes: ", len);
352
353 for (i = 0; i < len; i++) {
354 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
355 }
356 }
357
358 static void doc2000_readbuf_dword(struct mtd_info *mtd,
359 u_char *buf, int len)
360 {
361 struct nand_chip *this = mtd->priv;
362 struct doc_priv *doc = this->priv;
363 void __iomem *docptr = doc->virtadr;
364 int i;
365
366 if (debug)
367 printk("readbuf_dword of %d bytes: ", len);
368
369 if (unlikely((((unsigned long)buf) | len) & 3)) {
370 for (i = 0; i < len; i++) {
371 *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
372 }
373 } else {
374 for (i = 0; i < len; i += 4) {
375 *(uint32_t*) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
376 }
377 }
378 }
379
380 static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
381 {
382 struct nand_chip *this = mtd->priv;
383 struct doc_priv *doc = this->priv;
384 void __iomem *docptr = doc->virtadr;
385 int i;
386
387 for (i = 0; i < len; i++)
388 if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
389 return -EFAULT;
390 return 0;
391 }
392
393 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
394 {
395 struct nand_chip *this = mtd->priv;
396 struct doc_priv *doc = this->priv;
397 uint16_t ret;
398
399 doc200x_select_chip(mtd, nr);
400 doc200x_hwcontrol(mtd, NAND_CMD_READID,
401 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
402 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
403 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
404
405 /* We cant' use dev_ready here, but at least we wait for the
406 * command to complete
407 */
408 udelay(50);
409
410 ret = this->read_byte(mtd) << 8;
411 ret |= this->read_byte(mtd);
412
413 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
414 /* First chip probe. See if we get same results by 32-bit access */
415 union {
416 uint32_t dword;
417 uint8_t byte[4];
418 } ident;
419 void __iomem *docptr = doc->virtadr;
420
421 doc200x_hwcontrol(mtd, NAND_CMD_READID,
422 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
423 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
424 doc200x_hwcontrol(mtd, NAND_CMD_NONE,
425 NAND_NCE | NAND_CTRL_CHANGE);
426
427 udelay(50);
428
429 ident.dword = readl(docptr + DoC_2k_CDSN_IO);
430 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
431 printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
432 this->read_buf = &doc2000_readbuf_dword;
433 }
434 }
435
436 return ret;
437 }
438
439 static void __init doc2000_count_chips(struct mtd_info *mtd)
440 {
441 struct nand_chip *this = mtd->priv;
442 struct doc_priv *doc = this->priv;
443 uint16_t mfrid;
444 int i;
445
446 /* Max 4 chips per floor on DiskOnChip 2000 */
447 doc->chips_per_floor = 4;
448
449 /* Find out what the first chip is */
450 mfrid = doc200x_ident_chip(mtd, 0);
451
452 /* Find how many chips in each floor. */
453 for (i = 1; i < 4; i++) {
454 if (doc200x_ident_chip(mtd, i) != mfrid)
455 break;
456 }
457 doc->chips_per_floor = i;
458 printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
459 }
460
461 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
462 {
463 struct doc_priv *doc = this->priv;
464
465 int status;
466
467 DoC_WaitReady(doc);
468 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
469 DoC_WaitReady(doc);
470 status = (int)this->read_byte(mtd);
471
472 return status;
473 }
474
475 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
476 {
477 struct nand_chip *this = mtd->priv;
478 struct doc_priv *doc = this->priv;
479 void __iomem *docptr = doc->virtadr;
480
481 WriteDOC(datum, docptr, CDSNSlowIO);
482 WriteDOC(datum, docptr, Mil_CDSN_IO);
483 WriteDOC(datum, docptr, WritePipeTerm);
484 }
485
486 static u_char doc2001_read_byte(struct mtd_info *mtd)
487 {
488 struct nand_chip *this = mtd->priv;
489 struct doc_priv *doc = this->priv;
490 void __iomem *docptr = doc->virtadr;
491
492 /*ReadDOC(docptr, CDSNSlowIO); */
493 /* 11.4.5 -- delay twice to allow extended length cycle */
494 DoC_Delay(doc, 2);
495 ReadDOC(docptr, ReadPipeInit);
496 /*return ReadDOC(docptr, Mil_CDSN_IO); */
497 return ReadDOC(docptr, LastDataRead);
498 }
499
500 static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
501 {
502 struct nand_chip *this = mtd->priv;
503 struct doc_priv *doc = this->priv;
504 void __iomem *docptr = doc->virtadr;
505 int i;
506
507 for (i = 0; i < len; i++)
508 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
509 /* Terminate write pipeline */
510 WriteDOC(0x00, docptr, WritePipeTerm);
511 }
512
513 static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
514 {
515 struct nand_chip *this = mtd->priv;
516 struct doc_priv *doc = this->priv;
517 void __iomem *docptr = doc->virtadr;
518 int i;
519
520 /* Start read pipeline */
521 ReadDOC(docptr, ReadPipeInit);
522
523 for (i = 0; i < len - 1; i++)
524 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
525
526 /* Terminate read pipeline */
527 buf[i] = ReadDOC(docptr, LastDataRead);
528 }
529
530 static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
531 {
532 struct nand_chip *this = mtd->priv;
533 struct doc_priv *doc = this->priv;
534 void __iomem *docptr = doc->virtadr;
535 int i;
536
537 /* Start read pipeline */
538 ReadDOC(docptr, ReadPipeInit);
539
540 for (i = 0; i < len - 1; i++)
541 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
542 ReadDOC(docptr, LastDataRead);
543 return i;
544 }
545 if (buf[i] != ReadDOC(docptr, LastDataRead))
546 return i;
547 return 0;
548 }
549
550 static u_char doc2001plus_read_byte(struct mtd_info *mtd)
551 {
552 struct nand_chip *this = mtd->priv;
553 struct doc_priv *doc = this->priv;
554 void __iomem *docptr = doc->virtadr;
555 u_char ret;
556
557 ReadDOC(docptr, Mplus_ReadPipeInit);
558 ReadDOC(docptr, Mplus_ReadPipeInit);
559 ret = ReadDOC(docptr, Mplus_LastDataRead);
560 if (debug)
561 printk("read_byte returns %02x\n", ret);
562 return ret;
563 }
564
565 static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
566 {
567 struct nand_chip *this = mtd->priv;
568 struct doc_priv *doc = this->priv;
569 void __iomem *docptr = doc->virtadr;
570 int i;
571
572 if (debug)
573 printk("writebuf of %d bytes: ", len);
574 for (i = 0; i < len; i++) {
575 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
576 if (debug && i < 16)
577 printk("%02x ", buf[i]);
578 }
579 if (debug)
580 printk("\n");
581 }
582
583 static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
584 {
585 struct nand_chip *this = mtd->priv;
586 struct doc_priv *doc = this->priv;
587 void __iomem *docptr = doc->virtadr;
588 int i;
589
590 if (debug)
591 printk("readbuf of %d bytes: ", len);
592
593 /* Start read pipeline */
594 ReadDOC(docptr, Mplus_ReadPipeInit);
595 ReadDOC(docptr, Mplus_ReadPipeInit);
596
597 for (i = 0; i < len - 2; i++) {
598 buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
599 if (debug && i < 16)
600 printk("%02x ", buf[i]);
601 }
602
603 /* Terminate read pipeline */
604 buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
605 if (debug && i < 16)
606 printk("%02x ", buf[len - 2]);
607 buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
608 if (debug && i < 16)
609 printk("%02x ", buf[len - 1]);
610 if (debug)
611 printk("\n");
612 }
613
614 static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
615 {
616 struct nand_chip *this = mtd->priv;
617 struct doc_priv *doc = this->priv;
618 void __iomem *docptr = doc->virtadr;
619 int i;
620
621 if (debug)
622 printk("verifybuf of %d bytes: ", len);
623
624 /* Start read pipeline */
625 ReadDOC(docptr, Mplus_ReadPipeInit);
626 ReadDOC(docptr, Mplus_ReadPipeInit);
627
628 for (i = 0; i < len - 2; i++)
629 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
630 ReadDOC(docptr, Mplus_LastDataRead);
631 ReadDOC(docptr, Mplus_LastDataRead);
632 return i;
633 }
634 if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead))
635 return len - 2;
636 if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead))
637 return len - 1;
638 return 0;
639 }
640
641 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
642 {
643 struct nand_chip *this = mtd->priv;
644 struct doc_priv *doc = this->priv;
645 void __iomem *docptr = doc->virtadr;
646 int floor = 0;
647
648 if (debug)
649 printk("select chip (%d)\n", chip);
650
651 if (chip == -1) {
652 /* Disable flash internally */
653 WriteDOC(0, docptr, Mplus_FlashSelect);
654 return;
655 }
656
657 floor = chip / doc->chips_per_floor;
658 chip -= (floor * doc->chips_per_floor);
659
660 /* Assert ChipEnable and deassert WriteProtect */
661 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
662 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
663
664 doc->curchip = chip;
665 doc->curfloor = floor;
666 }
667
668 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
669 {
670 struct nand_chip *this = mtd->priv;
671 struct doc_priv *doc = this->priv;
672 void __iomem *docptr = doc->virtadr;
673 int floor = 0;
674
675 if (debug)
676 printk("select chip (%d)\n", chip);
677
678 if (chip == -1)
679 return;
680
681 floor = chip / doc->chips_per_floor;
682 chip -= (floor * doc->chips_per_floor);
683
684 /* 11.4.4 -- deassert CE before changing chip */
685 doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
686
687 WriteDOC(floor, docptr, FloorSelect);
688 WriteDOC(chip, docptr, CDSNDeviceSelect);
689
690 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
691
692 doc->curchip = chip;
693 doc->curfloor = floor;
694 }
695
696 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
697
698 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
699 unsigned int ctrl)
700 {
701 struct nand_chip *this = mtd->priv;
702 struct doc_priv *doc = this->priv;
703 void __iomem *docptr = doc->virtadr;
704
705 if (ctrl & NAND_CTRL_CHANGE) {
706 doc->CDSNControl &= ~CDSN_CTRL_MSK;
707 doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
708 if (debug)
709 printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
710 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
711 /* 11.4.3 -- 4 NOPs after CSDNControl write */
712 DoC_Delay(doc, 4);
713 }
714 if (cmd != NAND_CMD_NONE) {
715 if (DoC_is_2000(doc))
716 doc2000_write_byte(mtd, cmd);
717 else
718 doc2001_write_byte(mtd, cmd);
719 }
720 }
721
722 static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
723 {
724 struct nand_chip *this = mtd->priv;
725 struct doc_priv *doc = this->priv;
726 void __iomem *docptr = doc->virtadr;
727
728 /*
729 * Must terminate write pipeline before sending any commands
730 * to the device.
731 */
732 if (command == NAND_CMD_PAGEPROG) {
733 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
734 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
735 }
736
737 /*
738 * Write out the command to the device.
739 */
740 if (command == NAND_CMD_SEQIN) {
741 int readcmd;
742
743 if (column >= mtd->writesize) {
744 /* OOB area */
745 column -= mtd->writesize;
746 readcmd = NAND_CMD_READOOB;
747 } else if (column < 256) {
748 /* First 256 bytes --> READ0 */
749 readcmd = NAND_CMD_READ0;
750 } else {
751 column -= 256;
752 readcmd = NAND_CMD_READ1;
753 }
754 WriteDOC(readcmd, docptr, Mplus_FlashCmd);
755 }
756 WriteDOC(command, docptr, Mplus_FlashCmd);
757 WriteDOC(0, docptr, Mplus_WritePipeTerm);
758 WriteDOC(0, docptr, Mplus_WritePipeTerm);
759
760 if (column != -1 || page_addr != -1) {
761 /* Serially input address */
762 if (column != -1) {
763 /* Adjust columns for 16 bit buswidth */
764 if (this->options & NAND_BUSWIDTH_16)
765 column >>= 1;
766 WriteDOC(column, docptr, Mplus_FlashAddress);
767 }
768 if (page_addr != -1) {
769 WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
770 WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
771 /* One more address cycle for higher density devices */
772 if (this->chipsize & 0x0c000000) {
773 WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
774 printk("high density\n");
775 }
776 }
777 WriteDOC(0, docptr, Mplus_WritePipeTerm);
778 WriteDOC(0, docptr, Mplus_WritePipeTerm);
779 /* deassert ALE */
780 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
781 command == NAND_CMD_READOOB || command == NAND_CMD_READID)
782 WriteDOC(0, docptr, Mplus_FlashControl);
783 }
784
785 /*
786 * program and erase have their own busy handlers
787 * status and sequential in needs no delay
788 */
789 switch (command) {
790
791 case NAND_CMD_PAGEPROG:
792 case NAND_CMD_ERASE1:
793 case NAND_CMD_ERASE2:
794 case NAND_CMD_SEQIN:
795 case NAND_CMD_STATUS:
796 return;
797
798 case NAND_CMD_RESET:
799 if (this->dev_ready)
800 break;
801 udelay(this->chip_delay);
802 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
803 WriteDOC(0, docptr, Mplus_WritePipeTerm);
804 WriteDOC(0, docptr, Mplus_WritePipeTerm);
805 while (!(this->read_byte(mtd) & 0x40)) ;
806 return;
807
808 /* This applies to read commands */
809 default:
810 /*
811 * If we don't have access to the busy pin, we apply the given
812 * command delay
813 */
814 if (!this->dev_ready) {
815 udelay(this->chip_delay);
816 return;
817 }
818 }
819
820 /* Apply this short delay always to ensure that we do wait tWB in
821 * any case on any machine. */
822 ndelay(100);
823 /* wait until command is processed */
824 while (!this->dev_ready(mtd)) ;
825 }
826
827 static int doc200x_dev_ready(struct mtd_info *mtd)
828 {
829 struct nand_chip *this = mtd->priv;
830 struct doc_priv *doc = this->priv;
831 void __iomem *docptr = doc->virtadr;
832
833 if (DoC_is_MillenniumPlus(doc)) {
834 /* 11.4.2 -- must NOP four times before checking FR/B# */
835 DoC_Delay(doc, 4);
836 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
837 if (debug)
838 printk("not ready\n");
839 return 0;
840 }
841 if (debug)
842 printk("was ready\n");
843 return 1;
844 } else {
845 /* 11.4.2 -- must NOP four times before checking FR/B# */
846 DoC_Delay(doc, 4);
847 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
848 if (debug)
849 printk("not ready\n");
850 return 0;
851 }
852 /* 11.4.2 -- Must NOP twice if it's ready */
853 DoC_Delay(doc, 2);
854 if (debug)
855 printk("was ready\n");
856 return 1;
857 }
858 }
859
860 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
861 {
862 /* This is our last resort if we couldn't find or create a BBT. Just
863 pretend all blocks are good. */
864 return 0;
865 }
866
867 static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
868 {
869 struct nand_chip *this = mtd->priv;
870 struct doc_priv *doc = this->priv;
871 void __iomem *docptr = doc->virtadr;
872
873 /* Prime the ECC engine */
874 switch (mode) {
875 case NAND_ECC_READ:
876 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
877 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
878 break;
879 case NAND_ECC_WRITE:
880 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
881 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
882 break;
883 }
884 }
885
886 static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
887 {
888 struct nand_chip *this = mtd->priv;
889 struct doc_priv *doc = this->priv;
890 void __iomem *docptr = doc->virtadr;
891
892 /* Prime the ECC engine */
893 switch (mode) {
894 case NAND_ECC_READ:
895 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
896 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
897 break;
898 case NAND_ECC_WRITE:
899 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
900 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
901 break;
902 }
903 }
904
905 /* This code is only called on write */
906 static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
907 {
908 struct nand_chip *this = mtd->priv;
909 struct doc_priv *doc = this->priv;
910 void __iomem *docptr = doc->virtadr;
911 int i;
912 int emptymatch = 1;
913
914 /* flush the pipeline */
915 if (DoC_is_2000(doc)) {
916 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
917 WriteDOC(0, docptr, 2k_CDSN_IO);
918 WriteDOC(0, docptr, 2k_CDSN_IO);
919 WriteDOC(0, docptr, 2k_CDSN_IO);
920 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
921 } else if (DoC_is_MillenniumPlus(doc)) {
922 WriteDOC(0, docptr, Mplus_NOP);
923 WriteDOC(0, docptr, Mplus_NOP);
924 WriteDOC(0, docptr, Mplus_NOP);
925 } else {
926 WriteDOC(0, docptr, NOP);
927 WriteDOC(0, docptr, NOP);
928 WriteDOC(0, docptr, NOP);
929 }
930
931 for (i = 0; i < 6; i++) {
932 if (DoC_is_MillenniumPlus(doc))
933 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
934 else
935 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
936 if (ecc_code[i] != empty_write_ecc[i])
937 emptymatch = 0;
938 }
939 if (DoC_is_MillenniumPlus(doc))
940 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
941 else
942 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
943 #if 0
944 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
945 if (emptymatch) {
946 /* Note: this somewhat expensive test should not be triggered
947 often. It could be optimized away by examining the data in
948 the writebuf routine, and remembering the result. */
949 for (i = 0; i < 512; i++) {
950 if (dat[i] == 0xff)
951 continue;
952 emptymatch = 0;
953 break;
954 }
955 }
956 /* If emptymatch still =1, we do have an all-0xff data buffer.
957 Return all-0xff ecc value instead of the computed one, so
958 it'll look just like a freshly-erased page. */
959 if (emptymatch)
960 memset(ecc_code, 0xff, 6);
961 #endif
962 return 0;
963 }
964
965 static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
966 u_char *read_ecc, u_char *isnull)
967 {
968 int i, ret = 0;
969 struct nand_chip *this = mtd->priv;
970 struct doc_priv *doc = this->priv;
971 void __iomem *docptr = doc->virtadr;
972 uint8_t calc_ecc[6];
973 volatile u_char dummy;
974 int emptymatch = 1;
975
976 /* flush the pipeline */
977 if (DoC_is_2000(doc)) {
978 dummy = ReadDOC(docptr, 2k_ECCStatus);
979 dummy = ReadDOC(docptr, 2k_ECCStatus);
980 dummy = ReadDOC(docptr, 2k_ECCStatus);
981 } else if (DoC_is_MillenniumPlus(doc)) {
982 dummy = ReadDOC(docptr, Mplus_ECCConf);
983 dummy = ReadDOC(docptr, Mplus_ECCConf);
984 dummy = ReadDOC(docptr, Mplus_ECCConf);
985 } else {
986 dummy = ReadDOC(docptr, ECCConf);
987 dummy = ReadDOC(docptr, ECCConf);
988 dummy = ReadDOC(docptr, ECCConf);
989 }
990
991 /* Error occured ? */
992 if (dummy & 0x80) {
993 for (i = 0; i < 6; i++) {
994 if (DoC_is_MillenniumPlus(doc))
995 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
996 else
997 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
998 if (calc_ecc[i] != empty_read_syndrome[i])
999 emptymatch = 0;
1000 }
1001 /* If emptymatch=1, the read syndrome is consistent with an
1002 all-0xff data and stored ecc block. Check the stored ecc. */
1003 if (emptymatch) {
1004 for (i = 0; i < 6; i++) {
1005 if (read_ecc[i] == 0xff)
1006 continue;
1007 emptymatch = 0;
1008 break;
1009 }
1010 }
1011 /* If emptymatch still =1, check the data block. */
1012 if (emptymatch) {
1013 /* Note: this somewhat expensive test should not be triggered
1014 often. It could be optimized away by examining the data in
1015 the readbuf routine, and remembering the result. */
1016 for (i = 0; i < 512; i++) {
1017 if (dat[i] == 0xff)
1018 continue;
1019 emptymatch = 0;
1020 break;
1021 }
1022 }
1023 /* If emptymatch still =1, this is almost certainly a freshly-
1024 erased block, in which case the ECC will not come out right.
1025 We'll suppress the error and tell the caller everything's
1026 OK. Because it is. */
1027 if (!emptymatch)
1028 ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
1029 if (ret > 0)
1030 printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1031 }
1032 if (DoC_is_MillenniumPlus(doc))
1033 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1034 else
1035 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1036 if (no_ecc_failures && mtd_is_eccerr(ret)) {
1037 printk(KERN_ERR "suppressing ECC failure\n");
1038 ret = 0;
1039 }
1040 return ret;
1041 }
1042
1043 /*u_char mydatabuf[528]; */
1044
1045 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
1046 * attempt to retain compatibility. It used to read:
1047 * .oobfree = { {8, 8} }
1048 * Since that leaves two bytes unusable, it was changed. But the following
1049 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1050 * .oobfree = { {6, 10} }
1051 * jffs2 seems to handle the above gracefully, but the current scheme seems
1052 * safer. The only problem with it is that any code that parses oobfree must
1053 * be able to handle out-of-order segments.
1054 */
1055 static struct nand_ecclayout doc200x_oobinfo = {
1056 .eccbytes = 6,
1057 .eccpos = {0, 1, 2, 3, 4, 5},
1058 .oobfree = {{8, 8}, {6, 2}}
1059 };
1060
1061 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1062 On sucessful return, buf will contain a copy of the media header for
1063 further processing. id is the string to scan for, and will presumably be
1064 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1065 header. The page #s of the found media headers are placed in mh0_page and
1066 mh1_page in the DOC private structure. */
1067 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1068 {
1069 struct nand_chip *this = mtd->priv;
1070 struct doc_priv *doc = this->priv;
1071 unsigned offs;
1072 int ret;
1073 size_t retlen;
1074
1075 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1076 ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1077 if (retlen != mtd->writesize)
1078 continue;
1079 if (ret) {
1080 printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1081 }
1082 if (memcmp(buf, id, 6))
1083 continue;
1084 printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1085 if (doc->mh0_page == -1) {
1086 doc->mh0_page = offs >> this->page_shift;
1087 if (!findmirror)
1088 return 1;
1089 continue;
1090 }
1091 doc->mh1_page = offs >> this->page_shift;
1092 return 2;
1093 }
1094 if (doc->mh0_page == -1) {
1095 printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1096 return 0;
1097 }
1098 /* Only one mediaheader was found. We want buf to contain a
1099 mediaheader on return, so we'll have to re-read the one we found. */
1100 offs = doc->mh0_page << this->page_shift;
1101 ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1102 if (retlen != mtd->writesize) {
1103 /* Insanity. Give up. */
1104 printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1105 return 0;
1106 }
1107 return 1;
1108 }
1109
1110 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1111 {
1112 struct nand_chip *this = mtd->priv;
1113 struct doc_priv *doc = this->priv;
1114 int ret = 0;
1115 u_char *buf;
1116 struct NFTLMediaHeader *mh;
1117 const unsigned psize = 1 << this->page_shift;
1118 int numparts = 0;
1119 unsigned blocks, maxblocks;
1120 int offs, numheaders;
1121
1122 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1123 if (!buf) {
1124 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1125 return 0;
1126 }
1127 if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1128 goto out;
1129 mh = (struct NFTLMediaHeader *)buf;
1130
1131 le16_to_cpus(&mh->NumEraseUnits);
1132 le16_to_cpus(&mh->FirstPhysicalEUN);
1133 le32_to_cpus(&mh->FormattedSize);
1134
1135 printk(KERN_INFO " DataOrgID = %s\n"
1136 " NumEraseUnits = %d\n"
1137 " FirstPhysicalEUN = %d\n"
1138 " FormattedSize = %d\n"
1139 " UnitSizeFactor = %d\n",
1140 mh->DataOrgID, mh->NumEraseUnits,
1141 mh->FirstPhysicalEUN, mh->FormattedSize,
1142 mh->UnitSizeFactor);
1143
1144 blocks = mtd->size >> this->phys_erase_shift;
1145 maxblocks = min(32768U, mtd->erasesize - psize);
1146
1147 if (mh->UnitSizeFactor == 0x00) {
1148 /* Auto-determine UnitSizeFactor. The constraints are:
1149 - There can be at most 32768 virtual blocks.
1150 - There can be at most (virtual block size - page size)
1151 virtual blocks (because MediaHeader+BBT must fit in 1).
1152 */
1153 mh->UnitSizeFactor = 0xff;
1154 while (blocks > maxblocks) {
1155 blocks >>= 1;
1156 maxblocks = min(32768U, (maxblocks << 1) + psize);
1157 mh->UnitSizeFactor--;
1158 }
1159 printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1160 }
1161
1162 /* NOTE: The lines below modify internal variables of the NAND and MTD
1163 layers; variables with have already been configured by nand_scan.
1164 Unfortunately, we didn't know before this point what these values
1165 should be. Thus, this code is somewhat dependant on the exact
1166 implementation of the NAND layer. */
1167 if (mh->UnitSizeFactor != 0xff) {
1168 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1169 mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1170 printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1171 blocks = mtd->size >> this->bbt_erase_shift;
1172 maxblocks = min(32768U, mtd->erasesize - psize);
1173 }
1174
1175 if (blocks > maxblocks) {
1176 printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
1177 goto out;
1178 }
1179
1180 /* Skip past the media headers. */
1181 offs = max(doc->mh0_page, doc->mh1_page);
1182 offs <<= this->page_shift;
1183 offs += mtd->erasesize;
1184
1185 if (show_firmware_partition == 1) {
1186 parts[0].name = " DiskOnChip Firmware / Media Header partition";
1187 parts[0].offset = 0;
1188 parts[0].size = offs;
1189 numparts = 1;
1190 }
1191
1192 parts[numparts].name = " DiskOnChip BDTL partition";
1193 parts[numparts].offset = offs;
1194 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1195
1196 offs += parts[numparts].size;
1197 numparts++;
1198
1199 if (offs < mtd->size) {
1200 parts[numparts].name = " DiskOnChip Remainder partition";
1201 parts[numparts].offset = offs;
1202 parts[numparts].size = mtd->size - offs;
1203 numparts++;
1204 }
1205
1206 ret = numparts;
1207 out:
1208 kfree(buf);
1209 return ret;
1210 }
1211
1212 /* This is a stripped-down copy of the code in inftlmount.c */
1213 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1214 {
1215 struct nand_chip *this = mtd->priv;
1216 struct doc_priv *doc = this->priv;
1217 int ret = 0;
1218 u_char *buf;
1219 struct INFTLMediaHeader *mh;
1220 struct INFTLPartition *ip;
1221 int numparts = 0;
1222 int blocks;
1223 int vshift, lastvunit = 0;
1224 int i;
1225 int end = mtd->size;
1226
1227 if (inftl_bbt_write)
1228 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1229
1230 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1231 if (!buf) {
1232 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1233 return 0;
1234 }
1235
1236 if (!find_media_headers(mtd, buf, "BNAND", 0))
1237 goto out;
1238 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1239 mh = (struct INFTLMediaHeader *)buf;
1240
1241 le32_to_cpus(&mh->NoOfBootImageBlocks);
1242 le32_to_cpus(&mh->NoOfBinaryPartitions);
1243 le32_to_cpus(&mh->NoOfBDTLPartitions);
1244 le32_to_cpus(&mh->BlockMultiplierBits);
1245 le32_to_cpus(&mh->FormatFlags);
1246 le32_to_cpus(&mh->PercentUsed);
1247
1248 printk(KERN_INFO " bootRecordID = %s\n"
1249 " NoOfBootImageBlocks = %d\n"
1250 " NoOfBinaryPartitions = %d\n"
1251 " NoOfBDTLPartitions = %d\n"
1252 " BlockMultiplerBits = %d\n"
1253 " FormatFlgs = %d\n"
1254 " OsakVersion = %d.%d.%d.%d\n"
1255 " PercentUsed = %d\n",
1256 mh->bootRecordID, mh->NoOfBootImageBlocks,
1257 mh->NoOfBinaryPartitions,
1258 mh->NoOfBDTLPartitions,
1259 mh->BlockMultiplierBits, mh->FormatFlags,
1260 ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1261 ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1262 ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1263 ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1264 mh->PercentUsed);
1265
1266 vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1267
1268 blocks = mtd->size >> vshift;
1269 if (blocks > 32768) {
1270 printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
1271 goto out;
1272 }
1273
1274 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1275 if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1276 printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1277 goto out;
1278 }
1279
1280 /* Scan the partitions */
1281 for (i = 0; (i < 4); i++) {
1282 ip = &(mh->Partitions[i]);
1283 le32_to_cpus(&ip->virtualUnits);
1284 le32_to_cpus(&ip->firstUnit);
1285 le32_to_cpus(&ip->lastUnit);
1286 le32_to_cpus(&ip->flags);
1287 le32_to_cpus(&ip->spareUnits);
1288 le32_to_cpus(&ip->Reserved0);
1289
1290 printk(KERN_INFO " PARTITION[%d] ->\n"
1291 " virtualUnits = %d\n"
1292 " firstUnit = %d\n"
1293 " lastUnit = %d\n"
1294 " flags = 0x%x\n"
1295 " spareUnits = %d\n",
1296 i, ip->virtualUnits, ip->firstUnit,
1297 ip->lastUnit, ip->flags,
1298 ip->spareUnits);
1299
1300 if ((show_firmware_partition == 1) &&
1301 (i == 0) && (ip->firstUnit > 0)) {
1302 parts[0].name = " DiskOnChip IPL / Media Header partition";
1303 parts[0].offset = 0;
1304 parts[0].size = mtd->erasesize * ip->firstUnit;
1305 numparts = 1;
1306 }
1307
1308 if (ip->flags & INFTL_BINARY)
1309 parts[numparts].name = " DiskOnChip BDK partition";
1310 else
1311 parts[numparts].name = " DiskOnChip BDTL partition";
1312 parts[numparts].offset = ip->firstUnit << vshift;
1313 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1314 numparts++;
1315 if (ip->lastUnit > lastvunit)
1316 lastvunit = ip->lastUnit;
1317 if (ip->flags & INFTL_LAST)
1318 break;
1319 }
1320 lastvunit++;
1321 if ((lastvunit << vshift) < end) {
1322 parts[numparts].name = " DiskOnChip Remainder partition";
1323 parts[numparts].offset = lastvunit << vshift;
1324 parts[numparts].size = end - parts[numparts].offset;
1325 numparts++;
1326 }
1327 ret = numparts;
1328 out:
1329 kfree(buf);
1330 return ret;
1331 }
1332
1333 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1334 {
1335 int ret, numparts;
1336 struct nand_chip *this = mtd->priv;
1337 struct doc_priv *doc = this->priv;
1338 struct mtd_partition parts[2];
1339
1340 memset((char *)parts, 0, sizeof(parts));
1341 /* On NFTL, we have to find the media headers before we can read the
1342 BBTs, since they're stored in the media header eraseblocks. */
1343 numparts = nftl_partscan(mtd, parts);
1344 if (!numparts)
1345 return -EIO;
1346 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1347 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1348 NAND_BBT_VERSION;
1349 this->bbt_td->veroffs = 7;
1350 this->bbt_td->pages[0] = doc->mh0_page + 1;
1351 if (doc->mh1_page != -1) {
1352 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1353 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1354 NAND_BBT_VERSION;
1355 this->bbt_md->veroffs = 7;
1356 this->bbt_md->pages[0] = doc->mh1_page + 1;
1357 } else {
1358 this->bbt_md = NULL;
1359 }
1360
1361 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1362 At least as nand_bbt.c is currently written. */
1363 if ((ret = nand_scan_bbt(mtd, NULL)))
1364 return ret;
1365 add_mtd_device(mtd);
1366 #ifdef CONFIG_MTD_PARTITIONS
1367 if (!no_autopart)
1368 add_mtd_partitions(mtd, parts, numparts);
1369 #endif
1370 return 0;
1371 }
1372
1373 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1374 {
1375 int ret, numparts;
1376 struct nand_chip *this = mtd->priv;
1377 struct doc_priv *doc = this->priv;
1378 struct mtd_partition parts[5];
1379
1380 if (this->numchips > doc->chips_per_floor) {
1381 printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1382 return -EIO;
1383 }
1384
1385 if (DoC_is_MillenniumPlus(doc)) {
1386 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1387 if (inftl_bbt_write)
1388 this->bbt_td->options |= NAND_BBT_WRITE;
1389 this->bbt_td->pages[0] = 2;
1390 this->bbt_md = NULL;
1391 } else {
1392 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1393 if (inftl_bbt_write)
1394 this->bbt_td->options |= NAND_BBT_WRITE;
1395 this->bbt_td->offs = 8;
1396 this->bbt_td->len = 8;
1397 this->bbt_td->veroffs = 7;
1398 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1399 this->bbt_td->reserved_block_code = 0x01;
1400 this->bbt_td->pattern = "MSYS_BBT";
1401
1402 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1403 if (inftl_bbt_write)
1404 this->bbt_md->options |= NAND_BBT_WRITE;
1405 this->bbt_md->offs = 8;
1406 this->bbt_md->len = 8;
1407 this->bbt_md->veroffs = 7;
1408 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1409 this->bbt_md->reserved_block_code = 0x01;
1410 this->bbt_md->pattern = "TBB_SYSM";
1411 }
1412
1413 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1414 At least as nand_bbt.c is currently written. */
1415 if ((ret = nand_scan_bbt(mtd, NULL)))
1416 return ret;
1417 memset((char *)parts, 0, sizeof(parts));
1418 numparts = inftl_partscan(mtd, parts);
1419 /* At least for now, require the INFTL Media Header. We could probably
1420 do without it for non-INFTL use, since all it gives us is
1421 autopartitioning, but I want to give it more thought. */
1422 if (!numparts)
1423 return -EIO;
1424 add_mtd_device(mtd);
1425 #ifdef CONFIG_MTD_PARTITIONS
1426 if (!no_autopart)
1427 add_mtd_partitions(mtd, parts, numparts);
1428 #endif
1429 return 0;
1430 }
1431
1432 static inline int __init doc2000_init(struct mtd_info *mtd)
1433 {
1434 struct nand_chip *this = mtd->priv;
1435 struct doc_priv *doc = this->priv;
1436
1437 this->read_byte = doc2000_read_byte;
1438 this->write_buf = doc2000_writebuf;
1439 this->read_buf = doc2000_readbuf;
1440 this->verify_buf = doc2000_verifybuf;
1441 this->scan_bbt = nftl_scan_bbt;
1442
1443 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1444 doc2000_count_chips(mtd);
1445 mtd->name = "DiskOnChip 2000 (NFTL Model)";
1446 return (4 * doc->chips_per_floor);
1447 }
1448
1449 static inline int __init doc2001_init(struct mtd_info *mtd)
1450 {
1451 struct nand_chip *this = mtd->priv;
1452 struct doc_priv *doc = this->priv;
1453
1454 this->read_byte = doc2001_read_byte;
1455 this->write_buf = doc2001_writebuf;
1456 this->read_buf = doc2001_readbuf;
1457 this->verify_buf = doc2001_verifybuf;
1458
1459 ReadDOC(doc->virtadr, ChipID);
1460 ReadDOC(doc->virtadr, ChipID);
1461 ReadDOC(doc->virtadr, ChipID);
1462 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1463 /* It's not a Millennium; it's one of the newer
1464 DiskOnChip 2000 units with a similar ASIC.
1465 Treat it like a Millennium, except that it
1466 can have multiple chips. */
1467 doc2000_count_chips(mtd);
1468 mtd->name = "DiskOnChip 2000 (INFTL Model)";
1469 this->scan_bbt = inftl_scan_bbt;
1470 return (4 * doc->chips_per_floor);
1471 } else {
1472 /* Bog-standard Millennium */
1473 doc->chips_per_floor = 1;
1474 mtd->name = "DiskOnChip Millennium";
1475 this->scan_bbt = nftl_scan_bbt;
1476 return 1;
1477 }
1478 }
1479
1480 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1481 {
1482 struct nand_chip *this = mtd->priv;
1483 struct doc_priv *doc = this->priv;
1484
1485 this->read_byte = doc2001plus_read_byte;
1486 this->write_buf = doc2001plus_writebuf;
1487 this->read_buf = doc2001plus_readbuf;
1488 this->verify_buf = doc2001plus_verifybuf;
1489 this->scan_bbt = inftl_scan_bbt;
1490 this->cmd_ctrl = NULL;
1491 this->select_chip = doc2001plus_select_chip;
1492 this->cmdfunc = doc2001plus_command;
1493 this->ecc.hwctl = doc2001plus_enable_hwecc;
1494
1495 doc->chips_per_floor = 1;
1496 mtd->name = "DiskOnChip Millennium Plus";
1497
1498 return 1;
1499 }
1500
1501 static int __init doc_probe(unsigned long physadr)
1502 {
1503 unsigned char ChipID;
1504 struct mtd_info *mtd;
1505 struct nand_chip *nand;
1506 struct doc_priv *doc;
1507 void __iomem *virtadr;
1508 unsigned char save_control;
1509 unsigned char tmp, tmpb, tmpc;
1510 int reg, len, numchips;
1511 int ret = 0;
1512
1513 virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1514 if (!virtadr) {
1515 printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1516 return -EIO;
1517 }
1518
1519 /* It's not possible to cleanly detect the DiskOnChip - the
1520 * bootup procedure will put the device into reset mode, and
1521 * it's not possible to talk to it without actually writing
1522 * to the DOCControl register. So we store the current contents
1523 * of the DOCControl register's location, in case we later decide
1524 * that it's not a DiskOnChip, and want to put it back how we
1525 * found it.
1526 */
1527 save_control = ReadDOC(virtadr, DOCControl);
1528
1529 /* Reset the DiskOnChip ASIC */
1530 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1531 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1532
1533 /* Enable the DiskOnChip ASIC */
1534 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1535 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1536
1537 ChipID = ReadDOC(virtadr, ChipID);
1538
1539 switch (ChipID) {
1540 case DOC_ChipID_Doc2k:
1541 reg = DoC_2k_ECCStatus;
1542 break;
1543 case DOC_ChipID_DocMil:
1544 reg = DoC_ECCConf;
1545 break;
1546 case DOC_ChipID_DocMilPlus16:
1547 case DOC_ChipID_DocMilPlus32:
1548 case 0:
1549 /* Possible Millennium Plus, need to do more checks */
1550 /* Possibly release from power down mode */
1551 for (tmp = 0; (tmp < 4); tmp++)
1552 ReadDOC(virtadr, Mplus_Power);
1553
1554 /* Reset the Millennium Plus ASIC */
1555 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1556 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1557 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1558
1559 mdelay(1);
1560 /* Enable the Millennium Plus ASIC */
1561 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1562 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1563 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1564 mdelay(1);
1565
1566 ChipID = ReadDOC(virtadr, ChipID);
1567
1568 switch (ChipID) {
1569 case DOC_ChipID_DocMilPlus16:
1570 reg = DoC_Mplus_Toggle;
1571 break;
1572 case DOC_ChipID_DocMilPlus32:
1573 printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1574 default:
1575 ret = -ENODEV;
1576 goto notfound;
1577 }
1578 break;
1579
1580 default:
1581 ret = -ENODEV;
1582 goto notfound;
1583 }
1584 /* Check the TOGGLE bit in the ECC register */
1585 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1586 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1587 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1588 if ((tmp == tmpb) || (tmp != tmpc)) {
1589 printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1590 ret = -ENODEV;
1591 goto notfound;
1592 }
1593
1594 for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1595 unsigned char oldval;
1596 unsigned char newval;
1597 nand = mtd->priv;
1598 doc = nand->priv;
1599 /* Use the alias resolution register to determine if this is
1600 in fact the same DOC aliased to a new address. If writes
1601 to one chip's alias resolution register change the value on
1602 the other chip, they're the same chip. */
1603 if (ChipID == DOC_ChipID_DocMilPlus16) {
1604 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1605 newval = ReadDOC(virtadr, Mplus_AliasResolution);
1606 } else {
1607 oldval = ReadDOC(doc->virtadr, AliasResolution);
1608 newval = ReadDOC(virtadr, AliasResolution);
1609 }
1610 if (oldval != newval)
1611 continue;
1612 if (ChipID == DOC_ChipID_DocMilPlus16) {
1613 WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1614 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1615 WriteDOC(newval, virtadr, Mplus_AliasResolution); /* restore it */
1616 } else {
1617 WriteDOC(~newval, virtadr, AliasResolution);
1618 oldval = ReadDOC(doc->virtadr, AliasResolution);
1619 WriteDOC(newval, virtadr, AliasResolution); /* restore it */
1620 }
1621 newval = ~newval;
1622 if (oldval == newval) {
1623 printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1624 goto notfound;
1625 }
1626 }
1627
1628 printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1629
1630 len = sizeof(struct mtd_info) +
1631 sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1632 mtd = kzalloc(len, GFP_KERNEL);
1633 if (!mtd) {
1634 printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1635 ret = -ENOMEM;
1636 goto fail;
1637 }
1638
1639 nand = (struct nand_chip *) (mtd + 1);
1640 doc = (struct doc_priv *) (nand + 1);
1641 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
1642 nand->bbt_md = nand->bbt_td + 1;
1643
1644 mtd->priv = nand;
1645 mtd->owner = THIS_MODULE;
1646
1647 nand->priv = doc;
1648 nand->select_chip = doc200x_select_chip;
1649 nand->cmd_ctrl = doc200x_hwcontrol;
1650 nand->dev_ready = doc200x_dev_ready;
1651 nand->waitfunc = doc200x_wait;
1652 nand->block_bad = doc200x_block_bad;
1653 nand->ecc.hwctl = doc200x_enable_hwecc;
1654 nand->ecc.calculate = doc200x_calculate_ecc;
1655 nand->ecc.correct = doc200x_correct_data;
1656
1657 nand->ecc.layout = &doc200x_oobinfo;
1658 nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1659 nand->ecc.size = 512;
1660 nand->ecc.bytes = 6;
1661 nand->ecc.strength = 2;
1662 nand->bbt_options = NAND_BBT_USE_FLASH;
1663
1664 doc->physadr = physadr;
1665 doc->virtadr = virtadr;
1666 doc->ChipID = ChipID;
1667 doc->curfloor = -1;
1668 doc->curchip = -1;
1669 doc->mh0_page = -1;
1670 doc->mh1_page = -1;
1671 doc->nextdoc = doclist;
1672
1673 if (ChipID == DOC_ChipID_Doc2k)
1674 numchips = doc2000_init(mtd);
1675 else if (ChipID == DOC_ChipID_DocMilPlus16)
1676 numchips = doc2001plus_init(mtd);
1677 else
1678 numchips = doc2001_init(mtd);
1679
1680 if ((ret = nand_scan(mtd, numchips))) {
1681 /* DBB note: i believe nand_release is necessary here, as
1682 buffers may have been allocated in nand_base. Check with
1683 Thomas. FIX ME! */
1684 /* nand_release will call del_mtd_device, but we haven't yet
1685 added it. This is handled without incident by
1686 del_mtd_device, as far as I can tell. */
1687 nand_release(mtd);
1688 kfree(mtd);
1689 goto fail;
1690 }
1691
1692 /* Success! */
1693 doclist = mtd;
1694 return 0;
1695
1696 notfound:
1697 /* Put back the contents of the DOCControl register, in case it's not
1698 actually a DiskOnChip. */
1699 WriteDOC(save_control, virtadr, DOCControl);
1700 fail:
1701 iounmap(virtadr);
1702 return ret;
1703 }
1704
1705 static void release_nanddoc(void)
1706 {
1707 struct mtd_info *mtd, *nextmtd;
1708 struct nand_chip *nand;
1709 struct doc_priv *doc;
1710
1711 for (mtd = doclist; mtd; mtd = nextmtd) {
1712 nand = mtd->priv;
1713 doc = nand->priv;
1714
1715 nextmtd = doc->nextdoc;
1716 nand_release(mtd);
1717 iounmap(doc->virtadr);
1718 kfree(mtd);
1719 }
1720 }
1721
1722 static int __init init_nanddoc(void)
1723 {
1724 int i, ret = 0;
1725
1726 /* We could create the decoder on demand, if memory is a concern.
1727 * This way we have it handy, if an error happens
1728 *
1729 * Symbolsize is 10 (bits)
1730 * Primitve polynomial is x^10+x^3+1
1731 * first consecutive root is 510
1732 * primitve element to generate roots = 1
1733 * generator polinomial degree = 4
1734 */
1735 rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1736 if (!rs_decoder) {
1737 printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1738 return -ENOMEM;
1739 }
1740
1741 if (doc_config_location) {
1742 printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1743 ret = doc_probe(doc_config_location);
1744 if (ret < 0)
1745 goto outerr;
1746 } else {
1747 for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1748 doc_probe(doc_locations[i]);
1749 }
1750 }
1751 /* No banner message any more. Print a message if no DiskOnChip
1752 found, so the user knows we at least tried. */
1753 if (!doclist) {
1754 printk(KERN_INFO "No valid DiskOnChip devices found\n");
1755 ret = -ENODEV;
1756 goto outerr;
1757 }
1758 return 0;
1759 outerr:
1760 free_rs(rs_decoder);
1761 return ret;
1762 }
1763
1764 static void __exit cleanup_nanddoc(void)
1765 {
1766 /* Cleanup the nand/DoC resources */
1767 release_nanddoc();
1768
1769 /* Free the reed solomon resources */
1770 if (rs_decoder) {
1771 free_rs(rs_decoder);
1772 }
1773 }
1774
1775 module_init(init_nanddoc);
1776 module_exit(cleanup_nanddoc);
1777
1778 MODULE_LICENSE("GPL");
1779 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1780 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");