]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/diskonchip.c
fdd85c159d7bf083e4adf00399511913821e9afa
[people/ms/u-boot.git] / drivers / mtd / nand / diskonchip.c
1 /*
2 * drivers/mtd/nand/diskonchip.c
3 *
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
7 *
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
11 *
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
16 *
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
18 *
19 * $Id: diskonchip.c,v 1.45 2005/01/05 18:05:14 dwmw2 Exp $
20 */
21
22 #include <common.h>
23
24 #if !defined(CFG_NAND_LEGACY)
25
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/sched.h>
29 #include <linux/delay.h>
30 #include <linux/rslib.h>
31 #include <linux/moduleparam.h>
32 #include <asm/io.h>
33
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/nand.h>
36 #include <linux/mtd/doc2000.h>
37 #include <linux/mtd/compatmac.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/mtd/inftl.h>
40
41 /* Where to look for the devices? */
42 #ifndef CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS
43 #define CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS 0
44 #endif
45
46 static unsigned long __initdata doc_locations[] = {
47 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
48 #ifdef CONFIG_MTD_DISKONCHIP_PROBE_HIGH
49 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
50 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
51 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
52 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
53 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
54 #else /* CONFIG_MTD_DOCPROBE_HIGH */
55 0xc8000, 0xca000, 0xcc000, 0xce000,
56 0xd0000, 0xd2000, 0xd4000, 0xd6000,
57 0xd8000, 0xda000, 0xdc000, 0xde000,
58 0xe0000, 0xe2000, 0xe4000, 0xe6000,
59 0xe8000, 0xea000, 0xec000, 0xee000,
60 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
61 #elif defined(__PPC__)
62 0xe4000000,
63 #elif defined(CONFIG_MOMENCO_OCELOT)
64 0x2f000000,
65 0xff000000,
66 #elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
67 0xff000000,
68 ##else
69 #warning Unknown architecture for DiskOnChip. No default probe locations defined
70 #endif
71 0xffffffff };
72
73 static struct mtd_info *doclist = NULL;
74
75 struct doc_priv {
76 void __iomem *virtadr;
77 unsigned long physadr;
78 u_char ChipID;
79 u_char CDSNControl;
80 int chips_per_floor; /* The number of chips detected on each floor */
81 int curfloor;
82 int curchip;
83 int mh0_page;
84 int mh1_page;
85 struct mtd_info *nextdoc;
86 };
87
88 /* Max number of eraseblocks to scan (from start of device) for the (I)NFTL
89 MediaHeader. The spec says to just keep going, I think, but that's just
90 silly. */
91 #define MAX_MEDIAHEADER_SCAN 8
92
93 /* This is the syndrome computed by the HW ecc generator upon reading an empty
94 page, one with all 0xff for data and stored ecc code. */
95 static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
96 /* This is the ecc value computed by the HW ecc generator upon writing an empty
97 page, one with all 0xff for data. */
98 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
99
100 #define INFTL_BBT_RESERVED_BLOCKS 4
101
102 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
103 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
104 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
105
106 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd);
107 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
108
109 static int debug=0;
110 module_param(debug, int, 0);
111
112 static int try_dword=1;
113 module_param(try_dword, int, 0);
114
115 static int no_ecc_failures=0;
116 module_param(no_ecc_failures, int, 0);
117
118 #ifdef CONFIG_MTD_PARTITIONS
119 static int no_autopart=0;
120 module_param(no_autopart, int, 0);
121 #endif
122
123 #ifdef MTD_NAND_DISKONCHIP_BBTWRITE
124 static int inftl_bbt_write=1;
125 #else
126 static int inftl_bbt_write=0;
127 #endif
128 module_param(inftl_bbt_write, int, 0);
129
130 static unsigned long doc_config_location = CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS;
131 module_param(doc_config_location, ulong, 0);
132 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
133
134
135 /* Sector size for HW ECC */
136 #define SECTOR_SIZE 512
137 /* The sector bytes are packed into NB_DATA 10 bit words */
138 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
139 /* Number of roots */
140 #define NROOTS 4
141 /* First consective root */
142 #define FCR 510
143 /* Number of symbols */
144 #define NN 1023
145
146 /* the Reed Solomon control structure */
147 static struct rs_control *rs_decoder;
148
149 /*
150 * The HW decoder in the DoC ASIC's provides us a error syndrome,
151 * which we must convert to a standard syndrom usable by the generic
152 * Reed-Solomon library code.
153 *
154 * Fabrice Bellard figured this out in the old docecc code. I added
155 * some comments, improved a minor bit and converted it to make use
156 * of the generic Reed-Solomon libary. tglx
157 */
158 static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc)
159 {
160 int i, j, nerr, errpos[8];
161 uint8_t parity;
162 uint16_t ds[4], s[5], tmp, errval[8], syn[4];
163
164 /* Convert the ecc bytes into words */
165 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
166 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
167 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
168 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
169 parity = ecc[1];
170
171 /* Initialize the syndrom buffer */
172 for (i = 0; i < NROOTS; i++)
173 s[i] = ds[0];
174 /*
175 * Evaluate
176 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
177 * where x = alpha^(FCR + i)
178 */
179 for(j = 1; j < NROOTS; j++) {
180 if(ds[j] == 0)
181 continue;
182 tmp = rs->index_of[ds[j]];
183 for(i = 0; i < NROOTS; i++)
184 s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
185 }
186
187 /* Calc s[i] = s[i] / alpha^(v + i) */
188 for (i = 0; i < NROOTS; i++) {
189 if (syn[i])
190 syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
191 }
192 /* Call the decoder library */
193 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
194
195 /* Incorrectable errors ? */
196 if (nerr < 0)
197 return nerr;
198
199 /*
200 * Correct the errors. The bitpositions are a bit of magic,
201 * but they are given by the design of the de/encoder circuit
202 * in the DoC ASIC's.
203 */
204 for(i = 0;i < nerr; i++) {
205 int index, bitpos, pos = 1015 - errpos[i];
206 uint8_t val;
207 if (pos >= NB_DATA && pos < 1019)
208 continue;
209 if (pos < NB_DATA) {
210 /* extract bit position (MSB first) */
211 pos = 10 * (NB_DATA - 1 - pos) - 6;
212 /* now correct the following 10 bits. At most two bytes
213 can be modified since pos is even */
214 index = (pos >> 3) ^ 1;
215 bitpos = pos & 7;
216 if ((index >= 0 && index < SECTOR_SIZE) ||
217 index == (SECTOR_SIZE + 1)) {
218 val = (uint8_t) (errval[i] >> (2 + bitpos));
219 parity ^= val;
220 if (index < SECTOR_SIZE)
221 data[index] ^= val;
222 }
223 index = ((pos >> 3) + 1) ^ 1;
224 bitpos = (bitpos + 10) & 7;
225 if (bitpos == 0)
226 bitpos = 8;
227 if ((index >= 0 && index < SECTOR_SIZE) ||
228 index == (SECTOR_SIZE + 1)) {
229 val = (uint8_t)(errval[i] << (8 - bitpos));
230 parity ^= val;
231 if (index < SECTOR_SIZE)
232 data[index] ^= val;
233 }
234 }
235 }
236 /* If the parity is wrong, no rescue possible */
237 return parity ? -1 : nerr;
238 }
239
240 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
241 {
242 volatile char dummy;
243 int i;
244
245 for (i = 0; i < cycles; i++) {
246 if (DoC_is_Millennium(doc))
247 dummy = ReadDOC(doc->virtadr, NOP);
248 else if (DoC_is_MillenniumPlus(doc))
249 dummy = ReadDOC(doc->virtadr, Mplus_NOP);
250 else
251 dummy = ReadDOC(doc->virtadr, DOCStatus);
252 }
253
254 }
255
256 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
257
258 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
259 static int _DoC_WaitReady(struct doc_priv *doc)
260 {
261 void __iomem *docptr = doc->virtadr;
262 unsigned long timeo = jiffies + (HZ * 10);
263
264 if(debug) printk("_DoC_WaitReady...\n");
265 /* Out-of-line routine to wait for chip response */
266 if (DoC_is_MillenniumPlus(doc)) {
267 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
268 if (time_after(jiffies, timeo)) {
269 printk("_DoC_WaitReady timed out.\n");
270 return -EIO;
271 }
272 udelay(1);
273 cond_resched();
274 }
275 } else {
276 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
277 if (time_after(jiffies, timeo)) {
278 printk("_DoC_WaitReady timed out.\n");
279 return -EIO;
280 }
281 udelay(1);
282 cond_resched();
283 }
284 }
285
286 return 0;
287 }
288
289 static inline int DoC_WaitReady(struct doc_priv *doc)
290 {
291 void __iomem *docptr = doc->virtadr;
292 int ret = 0;
293
294 if (DoC_is_MillenniumPlus(doc)) {
295 DoC_Delay(doc, 4);
296
297 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
298 /* Call the out-of-line routine to wait */
299 ret = _DoC_WaitReady(doc);
300 } else {
301 DoC_Delay(doc, 4);
302
303 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
304 /* Call the out-of-line routine to wait */
305 ret = _DoC_WaitReady(doc);
306 DoC_Delay(doc, 2);
307 }
308
309 if(debug) printk("DoC_WaitReady OK\n");
310 return ret;
311 }
312
313 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
314 {
315 struct nand_chip *this = mtd->priv;
316 struct doc_priv *doc = this->priv;
317 void __iomem *docptr = doc->virtadr;
318
319 if(debug)printk("write_byte %02x\n", datum);
320 WriteDOC(datum, docptr, CDSNSlowIO);
321 WriteDOC(datum, docptr, 2k_CDSN_IO);
322 }
323
324 static u_char doc2000_read_byte(struct mtd_info *mtd)
325 {
326 struct nand_chip *this = mtd->priv;
327 struct doc_priv *doc = this->priv;
328 void __iomem *docptr = doc->virtadr;
329 u_char ret;
330
331 ReadDOC(docptr, CDSNSlowIO);
332 DoC_Delay(doc, 2);
333 ret = ReadDOC(docptr, 2k_CDSN_IO);
334 if (debug) printk("read_byte returns %02x\n", ret);
335 return ret;
336 }
337
338 static void doc2000_writebuf(struct mtd_info *mtd,
339 const u_char *buf, int len)
340 {
341 struct nand_chip *this = mtd->priv;
342 struct doc_priv *doc = this->priv;
343 void __iomem *docptr = doc->virtadr;
344 int i;
345 if (debug)printk("writebuf of %d bytes: ", len);
346 for (i=0; i < len; i++) {
347 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
348 if (debug && i < 16)
349 printk("%02x ", buf[i]);
350 }
351 if (debug) printk("\n");
352 }
353
354 static void doc2000_readbuf(struct mtd_info *mtd,
355 u_char *buf, int len)
356 {
357 struct nand_chip *this = mtd->priv;
358 struct doc_priv *doc = this->priv;
359 void __iomem *docptr = doc->virtadr;
360 int i;
361
362 if (debug)printk("readbuf of %d bytes: ", len);
363
364 for (i=0; i < len; i++) {
365 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
366 }
367 }
368
369 static void doc2000_readbuf_dword(struct mtd_info *mtd,
370 u_char *buf, int len)
371 {
372 struct nand_chip *this = mtd->priv;
373 struct doc_priv *doc = this->priv;
374 void __iomem *docptr = doc->virtadr;
375 int i;
376
377 if (debug) printk("readbuf_dword of %d bytes: ", len);
378
379 if (unlikely((((unsigned long)buf)|len) & 3)) {
380 for (i=0; i < len; i++) {
381 *(uint8_t *)(&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
382 }
383 } else {
384 for (i=0; i < len; i+=4) {
385 *(uint32_t*)(&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
386 }
387 }
388 }
389
390 static int doc2000_verifybuf(struct mtd_info *mtd,
391 const u_char *buf, int len)
392 {
393 struct nand_chip *this = mtd->priv;
394 struct doc_priv *doc = this->priv;
395 void __iomem *docptr = doc->virtadr;
396 int i;
397
398 for (i=0; i < len; i++)
399 if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
400 return -EFAULT;
401 return 0;
402 }
403
404 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
405 {
406 struct nand_chip *this = mtd->priv;
407 struct doc_priv *doc = this->priv;
408 uint16_t ret;
409
410 doc200x_select_chip(mtd, nr);
411 doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
412 this->write_byte(mtd, NAND_CMD_READID);
413 doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
414 doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
415 this->write_byte(mtd, 0);
416 doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
417
418 ret = this->read_byte(mtd) << 8;
419 ret |= this->read_byte(mtd);
420
421 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
422 /* First chip probe. See if we get same results by 32-bit access */
423 union {
424 uint32_t dword;
425 uint8_t byte[4];
426 } ident;
427 void __iomem *docptr = doc->virtadr;
428
429 doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
430 doc2000_write_byte(mtd, NAND_CMD_READID);
431 doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
432 doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
433 doc2000_write_byte(mtd, 0);
434 doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
435
436 ident.dword = readl(docptr + DoC_2k_CDSN_IO);
437 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
438 printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
439 this->read_buf = &doc2000_readbuf_dword;
440 }
441 }
442
443 return ret;
444 }
445
446 static void __init doc2000_count_chips(struct mtd_info *mtd)
447 {
448 struct nand_chip *this = mtd->priv;
449 struct doc_priv *doc = this->priv;
450 uint16_t mfrid;
451 int i;
452
453 /* Max 4 chips per floor on DiskOnChip 2000 */
454 doc->chips_per_floor = 4;
455
456 /* Find out what the first chip is */
457 mfrid = doc200x_ident_chip(mtd, 0);
458
459 /* Find how many chips in each floor. */
460 for (i = 1; i < 4; i++) {
461 if (doc200x_ident_chip(mtd, i) != mfrid)
462 break;
463 }
464 doc->chips_per_floor = i;
465 printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
466 }
467
468 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
469 {
470 struct doc_priv *doc = this->priv;
471
472 int status;
473
474 DoC_WaitReady(doc);
475 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
476 DoC_WaitReady(doc);
477 status = (int)this->read_byte(mtd);
478
479 return status;
480 }
481
482 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
483 {
484 struct nand_chip *this = mtd->priv;
485 struct doc_priv *doc = this->priv;
486 void __iomem *docptr = doc->virtadr;
487
488 WriteDOC(datum, docptr, CDSNSlowIO);
489 WriteDOC(datum, docptr, Mil_CDSN_IO);
490 WriteDOC(datum, docptr, WritePipeTerm);
491 }
492
493 static u_char doc2001_read_byte(struct mtd_info *mtd)
494 {
495 struct nand_chip *this = mtd->priv;
496 struct doc_priv *doc = this->priv;
497 void __iomem *docptr = doc->virtadr;
498
499 /*ReadDOC(docptr, CDSNSlowIO); */
500 /* 11.4.5 -- delay twice to allow extended length cycle */
501 DoC_Delay(doc, 2);
502 ReadDOC(docptr, ReadPipeInit);
503 /*return ReadDOC(docptr, Mil_CDSN_IO); */
504 return ReadDOC(docptr, LastDataRead);
505 }
506
507 static void doc2001_writebuf(struct mtd_info *mtd,
508 const u_char *buf, int len)
509 {
510 struct nand_chip *this = mtd->priv;
511 struct doc_priv *doc = this->priv;
512 void __iomem *docptr = doc->virtadr;
513 int i;
514
515 for (i=0; i < len; i++)
516 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
517 /* Terminate write pipeline */
518 WriteDOC(0x00, docptr, WritePipeTerm);
519 }
520
521 static void doc2001_readbuf(struct mtd_info *mtd,
522 u_char *buf, int len)
523 {
524 struct nand_chip *this = mtd->priv;
525 struct doc_priv *doc = this->priv;
526 void __iomem *docptr = doc->virtadr;
527 int i;
528
529 /* Start read pipeline */
530 ReadDOC(docptr, ReadPipeInit);
531
532 for (i=0; i < len-1; i++)
533 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
534
535 /* Terminate read pipeline */
536 buf[i] = ReadDOC(docptr, LastDataRead);
537 }
538
539 static int doc2001_verifybuf(struct mtd_info *mtd,
540 const u_char *buf, int len)
541 {
542 struct nand_chip *this = mtd->priv;
543 struct doc_priv *doc = this->priv;
544 void __iomem *docptr = doc->virtadr;
545 int i;
546
547 /* Start read pipeline */
548 ReadDOC(docptr, ReadPipeInit);
549
550 for (i=0; i < len-1; i++)
551 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
552 ReadDOC(docptr, LastDataRead);
553 return i;
554 }
555 if (buf[i] != ReadDOC(docptr, LastDataRead))
556 return i;
557 return 0;
558 }
559
560 static u_char doc2001plus_read_byte(struct mtd_info *mtd)
561 {
562 struct nand_chip *this = mtd->priv;
563 struct doc_priv *doc = this->priv;
564 void __iomem *docptr = doc->virtadr;
565 u_char ret;
566
567 ReadDOC(docptr, Mplus_ReadPipeInit);
568 ReadDOC(docptr, Mplus_ReadPipeInit);
569 ret = ReadDOC(docptr, Mplus_LastDataRead);
570 if (debug) printk("read_byte returns %02x\n", ret);
571 return ret;
572 }
573
574 static void doc2001plus_writebuf(struct mtd_info *mtd,
575 const u_char *buf, int len)
576 {
577 struct nand_chip *this = mtd->priv;
578 struct doc_priv *doc = this->priv;
579 void __iomem *docptr = doc->virtadr;
580 int i;
581
582 if (debug)printk("writebuf of %d bytes: ", len);
583 for (i=0; i < len; i++) {
584 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
585 if (debug && i < 16)
586 printk("%02x ", buf[i]);
587 }
588 if (debug) printk("\n");
589 }
590
591 static void doc2001plus_readbuf(struct mtd_info *mtd,
592 u_char *buf, int len)
593 {
594 struct nand_chip *this = mtd->priv;
595 struct doc_priv *doc = this->priv;
596 void __iomem *docptr = doc->virtadr;
597 int i;
598
599 if (debug)printk("readbuf of %d bytes: ", len);
600
601 /* Start read pipeline */
602 ReadDOC(docptr, Mplus_ReadPipeInit);
603 ReadDOC(docptr, Mplus_ReadPipeInit);
604
605 for (i=0; i < len-2; i++) {
606 buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
607 if (debug && i < 16)
608 printk("%02x ", buf[i]);
609 }
610
611 /* Terminate read pipeline */
612 buf[len-2] = ReadDOC(docptr, Mplus_LastDataRead);
613 if (debug && i < 16)
614 printk("%02x ", buf[len-2]);
615 buf[len-1] = ReadDOC(docptr, Mplus_LastDataRead);
616 if (debug && i < 16)
617 printk("%02x ", buf[len-1]);
618 if (debug) printk("\n");
619 }
620
621 static int doc2001plus_verifybuf(struct mtd_info *mtd,
622 const u_char *buf, int len)
623 {
624 struct nand_chip *this = mtd->priv;
625 struct doc_priv *doc = this->priv;
626 void __iomem *docptr = doc->virtadr;
627 int i;
628
629 if (debug)printk("verifybuf of %d bytes: ", len);
630
631 /* Start read pipeline */
632 ReadDOC(docptr, Mplus_ReadPipeInit);
633 ReadDOC(docptr, Mplus_ReadPipeInit);
634
635 for (i=0; i < len-2; i++)
636 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
637 ReadDOC(docptr, Mplus_LastDataRead);
638 ReadDOC(docptr, Mplus_LastDataRead);
639 return i;
640 }
641 if (buf[len-2] != ReadDOC(docptr, Mplus_LastDataRead))
642 return len-2;
643 if (buf[len-1] != ReadDOC(docptr, Mplus_LastDataRead))
644 return len-1;
645 return 0;
646 }
647
648 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
649 {
650 struct nand_chip *this = mtd->priv;
651 struct doc_priv *doc = this->priv;
652 void __iomem *docptr = doc->virtadr;
653 int floor = 0;
654
655 if(debug)printk("select chip (%d)\n", chip);
656
657 if (chip == -1) {
658 /* Disable flash internally */
659 WriteDOC(0, docptr, Mplus_FlashSelect);
660 return;
661 }
662
663 floor = chip / doc->chips_per_floor;
664 chip -= (floor * doc->chips_per_floor);
665
666 /* Assert ChipEnable and deassert WriteProtect */
667 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
668 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
669
670 doc->curchip = chip;
671 doc->curfloor = floor;
672 }
673
674 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
675 {
676 struct nand_chip *this = mtd->priv;
677 struct doc_priv *doc = this->priv;
678 void __iomem *docptr = doc->virtadr;
679 int floor = 0;
680
681 if(debug)printk("select chip (%d)\n", chip);
682
683 if (chip == -1)
684 return;
685
686 floor = chip / doc->chips_per_floor;
687 chip -= (floor * doc->chips_per_floor);
688
689 /* 11.4.4 -- deassert CE before changing chip */
690 doc200x_hwcontrol(mtd, NAND_CTL_CLRNCE);
691
692 WriteDOC(floor, docptr, FloorSelect);
693 WriteDOC(chip, docptr, CDSNDeviceSelect);
694
695 doc200x_hwcontrol(mtd, NAND_CTL_SETNCE);
696
697 doc->curchip = chip;
698 doc->curfloor = floor;
699 }
700
701 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd)
702 {
703 struct nand_chip *this = mtd->priv;
704 struct doc_priv *doc = this->priv;
705 void __iomem *docptr = doc->virtadr;
706
707 switch(cmd) {
708 case NAND_CTL_SETNCE:
709 doc->CDSNControl |= CDSN_CTRL_CE;
710 break;
711 case NAND_CTL_CLRNCE:
712 doc->CDSNControl &= ~CDSN_CTRL_CE;
713 break;
714 case NAND_CTL_SETCLE:
715 doc->CDSNControl |= CDSN_CTRL_CLE;
716 break;
717 case NAND_CTL_CLRCLE:
718 doc->CDSNControl &= ~CDSN_CTRL_CLE;
719 break;
720 case NAND_CTL_SETALE:
721 doc->CDSNControl |= CDSN_CTRL_ALE;
722 break;
723 case NAND_CTL_CLRALE:
724 doc->CDSNControl &= ~CDSN_CTRL_ALE;
725 break;
726 case NAND_CTL_SETWP:
727 doc->CDSNControl |= CDSN_CTRL_WP;
728 break;
729 case NAND_CTL_CLRWP:
730 doc->CDSNControl &= ~CDSN_CTRL_WP;
731 break;
732 }
733 if (debug)printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
734 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
735 /* 11.4.3 -- 4 NOPs after CSDNControl write */
736 DoC_Delay(doc, 4);
737 }
738
739 static void doc2001plus_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
740 {
741 struct nand_chip *this = mtd->priv;
742 struct doc_priv *doc = this->priv;
743 void __iomem *docptr = doc->virtadr;
744
745 /*
746 * Must terminate write pipeline before sending any commands
747 * to the device.
748 */
749 if (command == NAND_CMD_PAGEPROG) {
750 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
751 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
752 }
753
754 /*
755 * Write out the command to the device.
756 */
757 if (command == NAND_CMD_SEQIN) {
758 int readcmd;
759
760 if (column >= mtd->oobblock) {
761 /* OOB area */
762 column -= mtd->oobblock;
763 readcmd = NAND_CMD_READOOB;
764 } else if (column < 256) {
765 /* First 256 bytes --> READ0 */
766 readcmd = NAND_CMD_READ0;
767 } else {
768 column -= 256;
769 readcmd = NAND_CMD_READ1;
770 }
771 WriteDOC(readcmd, docptr, Mplus_FlashCmd);
772 }
773 WriteDOC(command, docptr, Mplus_FlashCmd);
774 WriteDOC(0, docptr, Mplus_WritePipeTerm);
775 WriteDOC(0, docptr, Mplus_WritePipeTerm);
776
777 if (column != -1 || page_addr != -1) {
778 /* Serially input address */
779 if (column != -1) {
780 /* Adjust columns for 16 bit buswidth */
781 if (this->options & NAND_BUSWIDTH_16)
782 column >>= 1;
783 WriteDOC(column, docptr, Mplus_FlashAddress);
784 }
785 if (page_addr != -1) {
786 WriteDOC((unsigned char) (page_addr & 0xff), docptr, Mplus_FlashAddress);
787 WriteDOC((unsigned char) ((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
788 /* One more address cycle for higher density devices */
789 if (this->chipsize & 0x0c000000) {
790 WriteDOC((unsigned char) ((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
791 printk("high density\n");
792 }
793 }
794 WriteDOC(0, docptr, Mplus_WritePipeTerm);
795 WriteDOC(0, docptr, Mplus_WritePipeTerm);
796 /* deassert ALE */
797 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || command == NAND_CMD_READOOB || command == NAND_CMD_READID)
798 WriteDOC(0, docptr, Mplus_FlashControl);
799 }
800
801 /*
802 * program and erase have their own busy handlers
803 * status and sequential in needs no delay
804 */
805 switch (command) {
806
807 case NAND_CMD_PAGEPROG:
808 case NAND_CMD_ERASE1:
809 case NAND_CMD_ERASE2:
810 case NAND_CMD_SEQIN:
811 case NAND_CMD_STATUS:
812 return;
813
814 case NAND_CMD_RESET:
815 if (this->dev_ready)
816 break;
817 udelay(this->chip_delay);
818 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
819 WriteDOC(0, docptr, Mplus_WritePipeTerm);
820 WriteDOC(0, docptr, Mplus_WritePipeTerm);
821 while ( !(this->read_byte(mtd) & 0x40));
822 return;
823
824 /* This applies to read commands */
825 default:
826 /*
827 * If we don't have access to the busy pin, we apply the given
828 * command delay
829 */
830 if (!this->dev_ready) {
831 udelay (this->chip_delay);
832 return;
833 }
834 }
835
836 /* Apply this short delay always to ensure that we do wait tWB in
837 * any case on any machine. */
838 ndelay (100);
839 /* wait until command is processed */
840 while (!this->dev_ready(mtd));
841 }
842
843 static int doc200x_dev_ready(struct mtd_info *mtd)
844 {
845 struct nand_chip *this = mtd->priv;
846 struct doc_priv *doc = this->priv;
847 void __iomem *docptr = doc->virtadr;
848
849 if (DoC_is_MillenniumPlus(doc)) {
850 /* 11.4.2 -- must NOP four times before checking FR/B# */
851 DoC_Delay(doc, 4);
852 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
853 if(debug)
854 printk("not ready\n");
855 return 0;
856 }
857 if (debug)printk("was ready\n");
858 return 1;
859 } else {
860 /* 11.4.2 -- must NOP four times before checking FR/B# */
861 DoC_Delay(doc, 4);
862 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
863 if(debug)
864 printk("not ready\n");
865 return 0;
866 }
867 /* 11.4.2 -- Must NOP twice if it's ready */
868 DoC_Delay(doc, 2);
869 if (debug)printk("was ready\n");
870 return 1;
871 }
872 }
873
874 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
875 {
876 /* This is our last resort if we couldn't find or create a BBT. Just
877 pretend all blocks are good. */
878 return 0;
879 }
880
881 static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
882 {
883 struct nand_chip *this = mtd->priv;
884 struct doc_priv *doc = this->priv;
885 void __iomem *docptr = doc->virtadr;
886
887 /* Prime the ECC engine */
888 switch(mode) {
889 case NAND_ECC_READ:
890 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
891 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
892 break;
893 case NAND_ECC_WRITE:
894 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
895 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
896 break;
897 }
898 }
899
900 static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
901 {
902 struct nand_chip *this = mtd->priv;
903 struct doc_priv *doc = this->priv;
904 void __iomem *docptr = doc->virtadr;
905
906 /* Prime the ECC engine */
907 switch(mode) {
908 case NAND_ECC_READ:
909 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
910 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
911 break;
912 case NAND_ECC_WRITE:
913 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
914 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
915 break;
916 }
917 }
918
919 /* This code is only called on write */
920 static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
921 unsigned char *ecc_code)
922 {
923 struct nand_chip *this = mtd->priv;
924 struct doc_priv *doc = this->priv;
925 void __iomem *docptr = doc->virtadr;
926 int i;
927 int emptymatch = 1;
928
929 /* flush the pipeline */
930 if (DoC_is_2000(doc)) {
931 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
932 WriteDOC(0, docptr, 2k_CDSN_IO);
933 WriteDOC(0, docptr, 2k_CDSN_IO);
934 WriteDOC(0, docptr, 2k_CDSN_IO);
935 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
936 } else if (DoC_is_MillenniumPlus(doc)) {
937 WriteDOC(0, docptr, Mplus_NOP);
938 WriteDOC(0, docptr, Mplus_NOP);
939 WriteDOC(0, docptr, Mplus_NOP);
940 } else {
941 WriteDOC(0, docptr, NOP);
942 WriteDOC(0, docptr, NOP);
943 WriteDOC(0, docptr, NOP);
944 }
945
946 for (i = 0; i < 6; i++) {
947 if (DoC_is_MillenniumPlus(doc))
948 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
949 else
950 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
951 if (ecc_code[i] != empty_write_ecc[i])
952 emptymatch = 0;
953 }
954 if (DoC_is_MillenniumPlus(doc))
955 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
956 else
957 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
958 #if 0
959 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
960 if (emptymatch) {
961 /* Note: this somewhat expensive test should not be triggered
962 often. It could be optimized away by examining the data in
963 the writebuf routine, and remembering the result. */
964 for (i = 0; i < 512; i++) {
965 if (dat[i] == 0xff) continue;
966 emptymatch = 0;
967 break;
968 }
969 }
970 /* If emptymatch still =1, we do have an all-0xff data buffer.
971 Return all-0xff ecc value instead of the computed one, so
972 it'll look just like a freshly-erased page. */
973 if (emptymatch) memset(ecc_code, 0xff, 6);
974 #endif
975 return 0;
976 }
977
978 static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
979 {
980 int i, ret = 0;
981 struct nand_chip *this = mtd->priv;
982 struct doc_priv *doc = this->priv;
983 void __iomem *docptr = doc->virtadr;
984 volatile u_char dummy;
985 int emptymatch = 1;
986
987 /* flush the pipeline */
988 if (DoC_is_2000(doc)) {
989 dummy = ReadDOC(docptr, 2k_ECCStatus);
990 dummy = ReadDOC(docptr, 2k_ECCStatus);
991 dummy = ReadDOC(docptr, 2k_ECCStatus);
992 } else if (DoC_is_MillenniumPlus(doc)) {
993 dummy = ReadDOC(docptr, Mplus_ECCConf);
994 dummy = ReadDOC(docptr, Mplus_ECCConf);
995 dummy = ReadDOC(docptr, Mplus_ECCConf);
996 } else {
997 dummy = ReadDOC(docptr, ECCConf);
998 dummy = ReadDOC(docptr, ECCConf);
999 dummy = ReadDOC(docptr, ECCConf);
1000 }
1001
1002 /* Error occured ? */
1003 if (dummy & 0x80) {
1004 for (i = 0; i < 6; i++) {
1005 if (DoC_is_MillenniumPlus(doc))
1006 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
1007 else
1008 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
1009 if (calc_ecc[i] != empty_read_syndrome[i])
1010 emptymatch = 0;
1011 }
1012 /* If emptymatch=1, the read syndrome is consistent with an
1013 all-0xff data and stored ecc block. Check the stored ecc. */
1014 if (emptymatch) {
1015 for (i = 0; i < 6; i++) {
1016 if (read_ecc[i] == 0xff) continue;
1017 emptymatch = 0;
1018 break;
1019 }
1020 }
1021 /* If emptymatch still =1, check the data block. */
1022 if (emptymatch) {
1023 /* Note: this somewhat expensive test should not be triggered
1024 often. It could be optimized away by examining the data in
1025 the readbuf routine, and remembering the result. */
1026 for (i = 0; i < 512; i++) {
1027 if (dat[i] == 0xff) continue;
1028 emptymatch = 0;
1029 break;
1030 }
1031 }
1032 /* If emptymatch still =1, this is almost certainly a freshly-
1033 erased block, in which case the ECC will not come out right.
1034 We'll suppress the error and tell the caller everything's
1035 OK. Because it is. */
1036 if (!emptymatch) ret = doc_ecc_decode (rs_decoder, dat, calc_ecc);
1037 if (ret > 0)
1038 printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1039 }
1040 if (DoC_is_MillenniumPlus(doc))
1041 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1042 else
1043 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1044 if (no_ecc_failures && (ret == -1)) {
1045 printk(KERN_ERR "suppressing ECC failure\n");
1046 ret = 0;
1047 }
1048 return ret;
1049 }
1050
1051 /*u_char mydatabuf[528]; */
1052
1053 static struct nand_oobinfo doc200x_oobinfo = {
1054 .useecc = MTD_NANDECC_AUTOPLACE,
1055 .eccbytes = 6,
1056 .eccpos = {0, 1, 2, 3, 4, 5},
1057 .oobfree = { {8, 8} }
1058 };
1059
1060 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1061 On sucessful return, buf will contain a copy of the media header for
1062 further processing. id is the string to scan for, and will presumably be
1063 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1064 header. The page #s of the found media headers are placed in mh0_page and
1065 mh1_page in the DOC private structure. */
1066 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf,
1067 const char *id, int findmirror)
1068 {
1069 struct nand_chip *this = mtd->priv;
1070 struct doc_priv *doc = this->priv;
1071 unsigned offs, end = (MAX_MEDIAHEADER_SCAN << this->phys_erase_shift);
1072 int ret;
1073 size_t retlen;
1074
1075 end = min(end, mtd->size); /* paranoia */
1076 for (offs = 0; offs < end; offs += mtd->erasesize) {
1077 ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
1078 if (retlen != mtd->oobblock) continue;
1079 if (ret) {
1080 printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n",
1081 offs);
1082 }
1083 if (memcmp(buf, id, 6)) continue;
1084 printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1085 if (doc->mh0_page == -1) {
1086 doc->mh0_page = offs >> this->page_shift;
1087 if (!findmirror) return 1;
1088 continue;
1089 }
1090 doc->mh1_page = offs >> this->page_shift;
1091 return 2;
1092 }
1093 if (doc->mh0_page == -1) {
1094 printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1095 return 0;
1096 }
1097 /* Only one mediaheader was found. We want buf to contain a
1098 mediaheader on return, so we'll have to re-read the one we found. */
1099 offs = doc->mh0_page << this->page_shift;
1100 ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
1101 if (retlen != mtd->oobblock) {
1102 /* Insanity. Give up. */
1103 printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1104 return 0;
1105 }
1106 return 1;
1107 }
1108
1109 static inline int __init nftl_partscan(struct mtd_info *mtd,
1110 struct mtd_partition *parts)
1111 {
1112 struct nand_chip *this = mtd->priv;
1113 struct doc_priv *doc = this->priv;
1114 int ret = 0;
1115 u_char *buf;
1116 struct NFTLMediaHeader *mh;
1117 const unsigned psize = 1 << this->page_shift;
1118 unsigned blocks, maxblocks;
1119 int offs, numheaders;
1120
1121 buf = kmalloc(mtd->oobblock, GFP_KERNEL);
1122 if (!buf) {
1123 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1124 return 0;
1125 }
1126 if (!(numheaders=find_media_headers(mtd, buf, "ANAND", 1))) goto out;
1127 mh = (struct NFTLMediaHeader *) buf;
1128
1129 /*#ifdef CONFIG_MTD_DEBUG_VERBOSE */
1130 /* if (CONFIG_MTD_DEBUG_VERBOSE >= 2) */
1131 printk(KERN_INFO " DataOrgID = %s\n"
1132 " NumEraseUnits = %d\n"
1133 " FirstPhysicalEUN = %d\n"
1134 " FormattedSize = %d\n"
1135 " UnitSizeFactor = %d\n",
1136 mh->DataOrgID, mh->NumEraseUnits,
1137 mh->FirstPhysicalEUN, mh->FormattedSize,
1138 mh->UnitSizeFactor);
1139 /*#endif */
1140
1141 blocks = mtd->size >> this->phys_erase_shift;
1142 maxblocks = min(32768U, mtd->erasesize - psize);
1143
1144 if (mh->UnitSizeFactor == 0x00) {
1145 /* Auto-determine UnitSizeFactor. The constraints are:
1146 - There can be at most 32768 virtual blocks.
1147 - There can be at most (virtual block size - page size)
1148 virtual blocks (because MediaHeader+BBT must fit in 1).
1149 */
1150 mh->UnitSizeFactor = 0xff;
1151 while (blocks > maxblocks) {
1152 blocks >>= 1;
1153 maxblocks = min(32768U, (maxblocks << 1) + psize);
1154 mh->UnitSizeFactor--;
1155 }
1156 printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1157 }
1158
1159 /* NOTE: The lines below modify internal variables of the NAND and MTD
1160 layers; variables with have already been configured by nand_scan.
1161 Unfortunately, we didn't know before this point what these values
1162 should be. Thus, this code is somewhat dependant on the exact
1163 implementation of the NAND layer. */
1164 if (mh->UnitSizeFactor != 0xff) {
1165 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1166 mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1167 printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1168 blocks = mtd->size >> this->bbt_erase_shift;
1169 maxblocks = min(32768U, mtd->erasesize - psize);
1170 }
1171
1172 if (blocks > maxblocks) {
1173 printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
1174 goto out;
1175 }
1176
1177 /* Skip past the media headers. */
1178 offs = max(doc->mh0_page, doc->mh1_page);
1179 offs <<= this->page_shift;
1180 offs += mtd->erasesize;
1181
1182 /*parts[0].name = " DiskOnChip Boot / Media Header partition"; */
1183 /*parts[0].offset = 0; */
1184 /*parts[0].size = offs; */
1185
1186 parts[0].name = " DiskOnChip BDTL partition";
1187 parts[0].offset = offs;
1188 parts[0].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1189
1190 offs += parts[0].size;
1191 if (offs < mtd->size) {
1192 parts[1].name = " DiskOnChip Remainder partition";
1193 parts[1].offset = offs;
1194 parts[1].size = mtd->size - offs;
1195 ret = 2;
1196 goto out;
1197 }
1198 ret = 1;
1199 out:
1200 kfree(buf);
1201 return ret;
1202 }
1203
1204 /* This is a stripped-down copy of the code in inftlmount.c */
1205 static inline int __init inftl_partscan(struct mtd_info *mtd,
1206 struct mtd_partition *parts)
1207 {
1208 struct nand_chip *this = mtd->priv;
1209 struct doc_priv *doc = this->priv;
1210 int ret = 0;
1211 u_char *buf;
1212 struct INFTLMediaHeader *mh;
1213 struct INFTLPartition *ip;
1214 int numparts = 0;
1215 int blocks;
1216 int vshift, lastvunit = 0;
1217 int i;
1218 int end = mtd->size;
1219
1220 if (inftl_bbt_write)
1221 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1222
1223 buf = kmalloc(mtd->oobblock, GFP_KERNEL);
1224 if (!buf) {
1225 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1226 return 0;
1227 }
1228
1229 if (!find_media_headers(mtd, buf, "BNAND", 0)) goto out;
1230 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1231 mh = (struct INFTLMediaHeader *) buf;
1232
1233 mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
1234 mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
1235 mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
1236 mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
1237 mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
1238 mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
1239
1240 /*#ifdef CONFIG_MTD_DEBUG_VERBOSE */
1241 /* if (CONFIG_MTD_DEBUG_VERBOSE >= 2) */
1242 printk(KERN_INFO " bootRecordID = %s\n"
1243 " NoOfBootImageBlocks = %d\n"
1244 " NoOfBinaryPartitions = %d\n"
1245 " NoOfBDTLPartitions = %d\n"
1246 " BlockMultiplerBits = %d\n"
1247 " FormatFlgs = %d\n"
1248 " OsakVersion = %d.%d.%d.%d\n"
1249 " PercentUsed = %d\n",
1250 mh->bootRecordID, mh->NoOfBootImageBlocks,
1251 mh->NoOfBinaryPartitions,
1252 mh->NoOfBDTLPartitions,
1253 mh->BlockMultiplierBits, mh->FormatFlags,
1254 ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1255 ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1256 ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1257 ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1258 mh->PercentUsed);
1259 /*#endif */
1260
1261 vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1262
1263 blocks = mtd->size >> vshift;
1264 if (blocks > 32768) {
1265 printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
1266 goto out;
1267 }
1268
1269 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1270 if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1271 printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1272 goto out;
1273 }
1274
1275 /* Scan the partitions */
1276 for (i = 0; (i < 4); i++) {
1277 ip = &(mh->Partitions[i]);
1278 ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
1279 ip->firstUnit = le32_to_cpu(ip->firstUnit);
1280 ip->lastUnit = le32_to_cpu(ip->lastUnit);
1281 ip->flags = le32_to_cpu(ip->flags);
1282 ip->spareUnits = le32_to_cpu(ip->spareUnits);
1283 ip->Reserved0 = le32_to_cpu(ip->Reserved0);
1284
1285 /*#ifdef CONFIG_MTD_DEBUG_VERBOSE */
1286 /* if (CONFIG_MTD_DEBUG_VERBOSE >= 2) */
1287 printk(KERN_INFO " PARTITION[%d] ->\n"
1288 " virtualUnits = %d\n"
1289 " firstUnit = %d\n"
1290 " lastUnit = %d\n"
1291 " flags = 0x%x\n"
1292 " spareUnits = %d\n",
1293 i, ip->virtualUnits, ip->firstUnit,
1294 ip->lastUnit, ip->flags,
1295 ip->spareUnits);
1296 /*#endif */
1297
1298 /*
1299 if ((i == 0) && (ip->firstUnit > 0)) {
1300 parts[0].name = " DiskOnChip IPL / Media Header partition";
1301 parts[0].offset = 0;
1302 parts[0].size = mtd->erasesize * ip->firstUnit;
1303 numparts = 1;
1304 }
1305 */
1306
1307 if (ip->flags & INFTL_BINARY)
1308 parts[numparts].name = " DiskOnChip BDK partition";
1309 else
1310 parts[numparts].name = " DiskOnChip BDTL partition";
1311 parts[numparts].offset = ip->firstUnit << vshift;
1312 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1313 numparts++;
1314 if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit;
1315 if (ip->flags & INFTL_LAST) break;
1316 }
1317 lastvunit++;
1318 if ((lastvunit << vshift) < end) {
1319 parts[numparts].name = " DiskOnChip Remainder partition";
1320 parts[numparts].offset = lastvunit << vshift;
1321 parts[numparts].size = end - parts[numparts].offset;
1322 numparts++;
1323 }
1324 ret = numparts;
1325 out:
1326 kfree(buf);
1327 return ret;
1328 }
1329
1330 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1331 {
1332 int ret, numparts;
1333 struct nand_chip *this = mtd->priv;
1334 struct doc_priv *doc = this->priv;
1335 struct mtd_partition parts[2];
1336
1337 memset((char *) parts, 0, sizeof(parts));
1338 /* On NFTL, we have to find the media headers before we can read the
1339 BBTs, since they're stored in the media header eraseblocks. */
1340 numparts = nftl_partscan(mtd, parts);
1341 if (!numparts) return -EIO;
1342 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1343 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1344 NAND_BBT_VERSION;
1345 this->bbt_td->veroffs = 7;
1346 this->bbt_td->pages[0] = doc->mh0_page + 1;
1347 if (doc->mh1_page != -1) {
1348 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1349 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1350 NAND_BBT_VERSION;
1351 this->bbt_md->veroffs = 7;
1352 this->bbt_md->pages[0] = doc->mh1_page + 1;
1353 } else {
1354 this->bbt_md = NULL;
1355 }
1356
1357 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1358 At least as nand_bbt.c is currently written. */
1359 if ((ret = nand_scan_bbt(mtd, NULL)))
1360 return ret;
1361 add_mtd_device(mtd);
1362 #ifdef CONFIG_MTD_PARTITIONS
1363 if (!no_autopart)
1364 add_mtd_partitions(mtd, parts, numparts);
1365 #endif
1366 return 0;
1367 }
1368
1369 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1370 {
1371 int ret, numparts;
1372 struct nand_chip *this = mtd->priv;
1373 struct doc_priv *doc = this->priv;
1374 struct mtd_partition parts[5];
1375
1376 if (this->numchips > doc->chips_per_floor) {
1377 printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1378 return -EIO;
1379 }
1380
1381 if (DoC_is_MillenniumPlus(doc)) {
1382 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1383 if (inftl_bbt_write)
1384 this->bbt_td->options |= NAND_BBT_WRITE;
1385 this->bbt_td->pages[0] = 2;
1386 this->bbt_md = NULL;
1387 } else {
1388 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
1389 NAND_BBT_VERSION;
1390 if (inftl_bbt_write)
1391 this->bbt_td->options |= NAND_BBT_WRITE;
1392 this->bbt_td->offs = 8;
1393 this->bbt_td->len = 8;
1394 this->bbt_td->veroffs = 7;
1395 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1396 this->bbt_td->reserved_block_code = 0x01;
1397 this->bbt_td->pattern = "MSYS_BBT";
1398
1399 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
1400 NAND_BBT_VERSION;
1401 if (inftl_bbt_write)
1402 this->bbt_md->options |= NAND_BBT_WRITE;
1403 this->bbt_md->offs = 8;
1404 this->bbt_md->len = 8;
1405 this->bbt_md->veroffs = 7;
1406 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1407 this->bbt_md->reserved_block_code = 0x01;
1408 this->bbt_md->pattern = "TBB_SYSM";
1409 }
1410
1411 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1412 At least as nand_bbt.c is currently written. */
1413 if ((ret = nand_scan_bbt(mtd, NULL)))
1414 return ret;
1415 memset((char *) parts, 0, sizeof(parts));
1416 numparts = inftl_partscan(mtd, parts);
1417 /* At least for now, require the INFTL Media Header. We could probably
1418 do without it for non-INFTL use, since all it gives us is
1419 autopartitioning, but I want to give it more thought. */
1420 if (!numparts) return -EIO;
1421 add_mtd_device(mtd);
1422 #ifdef CONFIG_MTD_PARTITIONS
1423 if (!no_autopart)
1424 add_mtd_partitions(mtd, parts, numparts);
1425 #endif
1426 return 0;
1427 }
1428
1429 static inline int __init doc2000_init(struct mtd_info *mtd)
1430 {
1431 struct nand_chip *this = mtd->priv;
1432 struct doc_priv *doc = this->priv;
1433
1434 this->write_byte = doc2000_write_byte;
1435 this->read_byte = doc2000_read_byte;
1436 this->write_buf = doc2000_writebuf;
1437 this->read_buf = doc2000_readbuf;
1438 this->verify_buf = doc2000_verifybuf;
1439 this->scan_bbt = nftl_scan_bbt;
1440
1441 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1442 doc2000_count_chips(mtd);
1443 mtd->name = "DiskOnChip 2000 (NFTL Model)";
1444 return (4 * doc->chips_per_floor);
1445 }
1446
1447 static inline int __init doc2001_init(struct mtd_info *mtd)
1448 {
1449 struct nand_chip *this = mtd->priv;
1450 struct doc_priv *doc = this->priv;
1451
1452 this->write_byte = doc2001_write_byte;
1453 this->read_byte = doc2001_read_byte;
1454 this->write_buf = doc2001_writebuf;
1455 this->read_buf = doc2001_readbuf;
1456 this->verify_buf = doc2001_verifybuf;
1457
1458 ReadDOC(doc->virtadr, ChipID);
1459 ReadDOC(doc->virtadr, ChipID);
1460 ReadDOC(doc->virtadr, ChipID);
1461 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1462 /* It's not a Millennium; it's one of the newer
1463 DiskOnChip 2000 units with a similar ASIC.
1464 Treat it like a Millennium, except that it
1465 can have multiple chips. */
1466 doc2000_count_chips(mtd);
1467 mtd->name = "DiskOnChip 2000 (INFTL Model)";
1468 this->scan_bbt = inftl_scan_bbt;
1469 return (4 * doc->chips_per_floor);
1470 } else {
1471 /* Bog-standard Millennium */
1472 doc->chips_per_floor = 1;
1473 mtd->name = "DiskOnChip Millennium";
1474 this->scan_bbt = nftl_scan_bbt;
1475 return 1;
1476 }
1477 }
1478
1479 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1480 {
1481 struct nand_chip *this = mtd->priv;
1482 struct doc_priv *doc = this->priv;
1483
1484 this->write_byte = NULL;
1485 this->read_byte = doc2001plus_read_byte;
1486 this->write_buf = doc2001plus_writebuf;
1487 this->read_buf = doc2001plus_readbuf;
1488 this->verify_buf = doc2001plus_verifybuf;
1489 this->scan_bbt = inftl_scan_bbt;
1490 this->hwcontrol = NULL;
1491 this->select_chip = doc2001plus_select_chip;
1492 this->cmdfunc = doc2001plus_command;
1493 this->enable_hwecc = doc2001plus_enable_hwecc;
1494
1495 doc->chips_per_floor = 1;
1496 mtd->name = "DiskOnChip Millennium Plus";
1497
1498 return 1;
1499 }
1500
1501 static inline int __init doc_probe(unsigned long physadr)
1502 {
1503 unsigned char ChipID;
1504 struct mtd_info *mtd;
1505 struct nand_chip *nand;
1506 struct doc_priv *doc;
1507 void __iomem *virtadr;
1508 unsigned char save_control;
1509 unsigned char tmp, tmpb, tmpc;
1510 int reg, len, numchips;
1511 int ret = 0;
1512
1513 virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1514 if (!virtadr) {
1515 printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1516 return -EIO;
1517 }
1518
1519 /* It's not possible to cleanly detect the DiskOnChip - the
1520 * bootup procedure will put the device into reset mode, and
1521 * it's not possible to talk to it without actually writing
1522 * to the DOCControl register. So we store the current contents
1523 * of the DOCControl register's location, in case we later decide
1524 * that it's not a DiskOnChip, and want to put it back how we
1525 * found it.
1526 */
1527 save_control = ReadDOC(virtadr, DOCControl);
1528
1529 /* Reset the DiskOnChip ASIC */
1530 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
1531 virtadr, DOCControl);
1532 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
1533 virtadr, DOCControl);
1534
1535 /* Enable the DiskOnChip ASIC */
1536 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
1537 virtadr, DOCControl);
1538 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
1539 virtadr, DOCControl);
1540
1541 ChipID = ReadDOC(virtadr, ChipID);
1542
1543 switch(ChipID) {
1544 case DOC_ChipID_Doc2k:
1545 reg = DoC_2k_ECCStatus;
1546 break;
1547 case DOC_ChipID_DocMil:
1548 reg = DoC_ECCConf;
1549 break;
1550 case DOC_ChipID_DocMilPlus16:
1551 case DOC_ChipID_DocMilPlus32:
1552 case 0:
1553 /* Possible Millennium Plus, need to do more checks */
1554 /* Possibly release from power down mode */
1555 for (tmp = 0; (tmp < 4); tmp++)
1556 ReadDOC(virtadr, Mplus_Power);
1557
1558 /* Reset the Millennium Plus ASIC */
1559 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
1560 DOC_MODE_BDECT;
1561 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1562 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1563
1564 mdelay(1);
1565 /* Enable the Millennium Plus ASIC */
1566 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
1567 DOC_MODE_BDECT;
1568 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1569 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1570 mdelay(1);
1571
1572 ChipID = ReadDOC(virtadr, ChipID);
1573
1574 switch (ChipID) {
1575 case DOC_ChipID_DocMilPlus16:
1576 reg = DoC_Mplus_Toggle;
1577 break;
1578 case DOC_ChipID_DocMilPlus32:
1579 printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1580 default:
1581 ret = -ENODEV;
1582 goto notfound;
1583 }
1584 break;
1585
1586 default:
1587 ret = -ENODEV;
1588 goto notfound;
1589 }
1590 /* Check the TOGGLE bit in the ECC register */
1591 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1592 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1593 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1594 if ((tmp == tmpb) || (tmp != tmpc)) {
1595 printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1596 ret = -ENODEV;
1597 goto notfound;
1598 }
1599
1600 for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1601 unsigned char oldval;
1602 unsigned char newval;
1603 nand = mtd->priv;
1604 doc = nand->priv;
1605 /* Use the alias resolution register to determine if this is
1606 in fact the same DOC aliased to a new address. If writes
1607 to one chip's alias resolution register change the value on
1608 the other chip, they're the same chip. */
1609 if (ChipID == DOC_ChipID_DocMilPlus16) {
1610 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1611 newval = ReadDOC(virtadr, Mplus_AliasResolution);
1612 } else {
1613 oldval = ReadDOC(doc->virtadr, AliasResolution);
1614 newval = ReadDOC(virtadr, AliasResolution);
1615 }
1616 if (oldval != newval)
1617 continue;
1618 if (ChipID == DOC_ChipID_DocMilPlus16) {
1619 WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1620 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1621 WriteDOC(newval, virtadr, Mplus_AliasResolution); /* restore it */
1622 } else {
1623 WriteDOC(~newval, virtadr, AliasResolution);
1624 oldval = ReadDOC(doc->virtadr, AliasResolution);
1625 WriteDOC(newval, virtadr, AliasResolution); /* restore it */
1626 }
1627 newval = ~newval;
1628 if (oldval == newval) {
1629 printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1630 goto notfound;
1631 }
1632 }
1633
1634 printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1635
1636 len = sizeof(struct mtd_info) +
1637 sizeof(struct nand_chip) +
1638 sizeof(struct doc_priv) +
1639 (2 * sizeof(struct nand_bbt_descr));
1640 mtd = kmalloc(len, GFP_KERNEL);
1641 if (!mtd) {
1642 printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1643 ret = -ENOMEM;
1644 goto fail;
1645 }
1646 memset(mtd, 0, len);
1647
1648 nand = (struct nand_chip *) (mtd + 1);
1649 doc = (struct doc_priv *) (nand + 1);
1650 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
1651 nand->bbt_md = nand->bbt_td + 1;
1652
1653 mtd->priv = nand;
1654 mtd->owner = THIS_MODULE;
1655
1656 nand->priv = doc;
1657 nand->select_chip = doc200x_select_chip;
1658 nand->hwcontrol = doc200x_hwcontrol;
1659 nand->dev_ready = doc200x_dev_ready;
1660 nand->waitfunc = doc200x_wait;
1661 nand->block_bad = doc200x_block_bad;
1662 nand->enable_hwecc = doc200x_enable_hwecc;
1663 nand->calculate_ecc = doc200x_calculate_ecc;
1664 nand->correct_data = doc200x_correct_data;
1665
1666 nand->autooob = &doc200x_oobinfo;
1667 nand->eccmode = NAND_ECC_HW6_512;
1668 nand->options = NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME;
1669
1670 doc->physadr = physadr;
1671 doc->virtadr = virtadr;
1672 doc->ChipID = ChipID;
1673 doc->curfloor = -1;
1674 doc->curchip = -1;
1675 doc->mh0_page = -1;
1676 doc->mh1_page = -1;
1677 doc->nextdoc = doclist;
1678
1679 if (ChipID == DOC_ChipID_Doc2k)
1680 numchips = doc2000_init(mtd);
1681 else if (ChipID == DOC_ChipID_DocMilPlus16)
1682 numchips = doc2001plus_init(mtd);
1683 else
1684 numchips = doc2001_init(mtd);
1685
1686 if ((ret = nand_scan(mtd, numchips))) {
1687 /* DBB note: i believe nand_release is necessary here, as
1688 buffers may have been allocated in nand_base. Check with
1689 Thomas. FIX ME! */
1690 /* nand_release will call del_mtd_device, but we haven't yet
1691 added it. This is handled without incident by
1692 del_mtd_device, as far as I can tell. */
1693 nand_release(mtd);
1694 kfree(mtd);
1695 goto fail;
1696 }
1697
1698 /* Success! */
1699 doclist = mtd;
1700 return 0;
1701
1702 notfound:
1703 /* Put back the contents of the DOCControl register, in case it's not
1704 actually a DiskOnChip. */
1705 WriteDOC(save_control, virtadr, DOCControl);
1706 fail:
1707 iounmap(virtadr);
1708 return ret;
1709 }
1710
1711 static void release_nanddoc(void)
1712 {
1713 struct mtd_info *mtd, *nextmtd;
1714 struct nand_chip *nand;
1715 struct doc_priv *doc;
1716
1717 for (mtd = doclist; mtd; mtd = nextmtd) {
1718 nand = mtd->priv;
1719 doc = nand->priv;
1720
1721 nextmtd = doc->nextdoc;
1722 nand_release(mtd);
1723 iounmap(doc->virtadr);
1724 kfree(mtd);
1725 }
1726 }
1727
1728 static int __init init_nanddoc(void)
1729 {
1730 int i, ret = 0;
1731
1732 /* We could create the decoder on demand, if memory is a concern.
1733 * This way we have it handy, if an error happens
1734 *
1735 * Symbolsize is 10 (bits)
1736 * Primitve polynomial is x^10+x^3+1
1737 * first consecutive root is 510
1738 * primitve element to generate roots = 1
1739 * generator polinomial degree = 4
1740 */
1741 rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1742 if (!rs_decoder) {
1743 printk (KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1744 return -ENOMEM;
1745 }
1746
1747 if (doc_config_location) {
1748 printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1749 ret = doc_probe(doc_config_location);
1750 if (ret < 0)
1751 goto outerr;
1752 } else {
1753 for (i=0; (doc_locations[i] != 0xffffffff); i++) {
1754 doc_probe(doc_locations[i]);
1755 }
1756 }
1757 /* No banner message any more. Print a message if no DiskOnChip
1758 found, so the user knows we at least tried. */
1759 if (!doclist) {
1760 printk(KERN_INFO "No valid DiskOnChip devices found\n");
1761 ret = -ENODEV;
1762 goto outerr;
1763 }
1764 return 0;
1765 outerr:
1766 free_rs(rs_decoder);
1767 return ret;
1768 }
1769
1770 static void __exit cleanup_nanddoc(void)
1771 {
1772 /* Cleanup the nand/DoC resources */
1773 release_nanddoc();
1774
1775 /* Free the reed solomon resources */
1776 if (rs_decoder) {
1777 free_rs(rs_decoder);
1778 }
1779 }
1780
1781 module_init(init_nanddoc);
1782 module_exit(cleanup_nanddoc);
1783
1784 MODULE_LICENSE("GPL");
1785 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1786 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");
1787 #endif