]> git.ipfire.org Git - thirdparty/u-boot.git/blob - drivers/mtd/nand/fsl_elbc_nand.c
Add GPL-2.0+ SPDX-License-Identifier to source files
[thirdparty/u-boot.git] / drivers / mtd / nand / fsl_elbc_nand.c
1 /* Freescale Enhanced Local Bus Controller FCM NAND driver
2 *
3 * Copyright (c) 2006-2008 Freescale Semiconductor
4 *
5 * Authors: Nick Spence <nick.spence@freescale.com>,
6 * Scott Wood <scottwood@freescale.com>
7 *
8 * SPDX-License-Identifier: GPL-2.0+
9 */
10
11 #include <common.h>
12 #include <malloc.h>
13 #include <nand.h>
14
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/nand.h>
17 #include <linux/mtd/nand_ecc.h>
18
19 #include <asm/io.h>
20 #include <asm/errno.h>
21
22 #ifdef VERBOSE_DEBUG
23 #define DEBUG_ELBC
24 #define vdbg(format, arg...) printf("DEBUG: " format, ##arg)
25 #else
26 #define vdbg(format, arg...) do {} while (0)
27 #endif
28
29 /* Can't use plain old DEBUG because the linux mtd
30 * headers define it as a macro.
31 */
32 #ifdef DEBUG_ELBC
33 #define dbg(format, arg...) printf("DEBUG: " format, ##arg)
34 #else
35 #define dbg(format, arg...) do {} while (0)
36 #endif
37
38 #define MAX_BANKS 8
39 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
40 #define FCM_TIMEOUT_MSECS 10 /* Maximum number of mSecs to wait for FCM */
41
42 #define LTESR_NAND_MASK (LTESR_FCT | LTESR_PAR | LTESR_CC)
43
44 struct fsl_elbc_ctrl;
45
46 /* mtd information per set */
47
48 struct fsl_elbc_mtd {
49 struct nand_chip chip;
50 struct fsl_elbc_ctrl *ctrl;
51
52 struct device *dev;
53 int bank; /* Chip select bank number */
54 u8 __iomem *vbase; /* Chip select base virtual address */
55 int page_size; /* NAND page size (0=512, 1=2048) */
56 unsigned int fmr; /* FCM Flash Mode Register value */
57 };
58
59 /* overview of the fsl elbc controller */
60
61 struct fsl_elbc_ctrl {
62 struct nand_hw_control controller;
63 struct fsl_elbc_mtd *chips[MAX_BANKS];
64
65 /* device info */
66 fsl_lbc_t *regs;
67 u8 __iomem *addr; /* Address of assigned FCM buffer */
68 unsigned int page; /* Last page written to / read from */
69 unsigned int read_bytes; /* Number of bytes read during command */
70 unsigned int column; /* Saved column from SEQIN */
71 unsigned int index; /* Pointer to next byte to 'read' */
72 unsigned int status; /* status read from LTESR after last op */
73 unsigned int mdr; /* UPM/FCM Data Register value */
74 unsigned int use_mdr; /* Non zero if the MDR is to be set */
75 unsigned int oob; /* Non zero if operating on OOB data */
76 };
77
78 /* These map to the positions used by the FCM hardware ECC generator */
79
80 /* Small Page FLASH with FMR[ECCM] = 0 */
81 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
82 .eccbytes = 3,
83 .eccpos = {6, 7, 8},
84 .oobfree = { {0, 5}, {9, 7} },
85 };
86
87 /* Small Page FLASH with FMR[ECCM] = 1 */
88 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
89 .eccbytes = 3,
90 .eccpos = {8, 9, 10},
91 .oobfree = { {0, 5}, {6, 2}, {11, 5} },
92 };
93
94 /* Large Page FLASH with FMR[ECCM] = 0 */
95 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
96 .eccbytes = 12,
97 .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
98 .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
99 };
100
101 /* Large Page FLASH with FMR[ECCM] = 1 */
102 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
103 .eccbytes = 12,
104 .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
105 .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
106 };
107
108 /*
109 * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
110 * 1, so we have to adjust bad block pattern. This pattern should be used for
111 * x8 chips only. So far hardware does not support x16 chips anyway.
112 */
113 static u8 scan_ff_pattern[] = { 0xff, };
114
115 static struct nand_bbt_descr largepage_memorybased = {
116 .options = 0,
117 .offs = 0,
118 .len = 1,
119 .pattern = scan_ff_pattern,
120 };
121
122 /*
123 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
124 * interfere with ECC positions, that's why we implement our own descriptors.
125 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
126 */
127 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
128 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
129
130 static struct nand_bbt_descr bbt_main_descr = {
131 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
132 NAND_BBT_2BIT | NAND_BBT_VERSION,
133 .offs = 11,
134 .len = 4,
135 .veroffs = 15,
136 .maxblocks = 4,
137 .pattern = bbt_pattern,
138 };
139
140 static struct nand_bbt_descr bbt_mirror_descr = {
141 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
142 NAND_BBT_2BIT | NAND_BBT_VERSION,
143 .offs = 11,
144 .len = 4,
145 .veroffs = 15,
146 .maxblocks = 4,
147 .pattern = mirror_pattern,
148 };
149
150 /*=================================*/
151
152 /*
153 * Set up the FCM hardware block and page address fields, and the fcm
154 * structure addr field to point to the correct FCM buffer in memory
155 */
156 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
157 {
158 struct nand_chip *chip = mtd->priv;
159 struct fsl_elbc_mtd *priv = chip->priv;
160 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
161 fsl_lbc_t *lbc = ctrl->regs;
162 int buf_num;
163
164 ctrl->page = page_addr;
165
166 if (priv->page_size) {
167 out_be32(&lbc->fbar, page_addr >> 6);
168 out_be32(&lbc->fpar,
169 ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
170 (oob ? FPAR_LP_MS : 0) | column);
171 buf_num = (page_addr & 1) << 2;
172 } else {
173 out_be32(&lbc->fbar, page_addr >> 5);
174 out_be32(&lbc->fpar,
175 ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
176 (oob ? FPAR_SP_MS : 0) | column);
177 buf_num = page_addr & 7;
178 }
179
180 ctrl->addr = priv->vbase + buf_num * 1024;
181 ctrl->index = column;
182
183 /* for OOB data point to the second half of the buffer */
184 if (oob)
185 ctrl->index += priv->page_size ? 2048 : 512;
186
187 vdbg("set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
188 "index %x, pes %d ps %d\n",
189 buf_num, ctrl->addr, priv->vbase, ctrl->index,
190 chip->phys_erase_shift, chip->page_shift);
191 }
192
193 /*
194 * execute FCM command and wait for it to complete
195 */
196 static int fsl_elbc_run_command(struct mtd_info *mtd)
197 {
198 struct nand_chip *chip = mtd->priv;
199 struct fsl_elbc_mtd *priv = chip->priv;
200 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
201 fsl_lbc_t *lbc = ctrl->regs;
202 long long end_tick;
203 u32 ltesr;
204
205 /* Setup the FMR[OP] to execute without write protection */
206 out_be32(&lbc->fmr, priv->fmr | 3);
207 if (ctrl->use_mdr)
208 out_be32(&lbc->mdr, ctrl->mdr);
209
210 vdbg("fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
211 in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
212 vdbg("fsl_elbc_run_command: fbar=%08x fpar=%08x "
213 "fbcr=%08x bank=%d\n",
214 in_be32(&lbc->fbar), in_be32(&lbc->fpar),
215 in_be32(&lbc->fbcr), priv->bank);
216
217 /* execute special operation */
218 out_be32(&lbc->lsor, priv->bank);
219
220 /* wait for FCM complete flag or timeout */
221 end_tick = usec2ticks(FCM_TIMEOUT_MSECS * 1000) + get_ticks();
222
223 ltesr = 0;
224 while (end_tick > get_ticks()) {
225 ltesr = in_be32(&lbc->ltesr);
226 if (ltesr & LTESR_CC)
227 break;
228 }
229
230 ctrl->status = ltesr & LTESR_NAND_MASK;
231 out_be32(&lbc->ltesr, ctrl->status);
232 out_be32(&lbc->lteatr, 0);
233
234 /* store mdr value in case it was needed */
235 if (ctrl->use_mdr)
236 ctrl->mdr = in_be32(&lbc->mdr);
237
238 ctrl->use_mdr = 0;
239
240 vdbg("fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
241 ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
242
243 /* returns 0 on success otherwise non-zero) */
244 return ctrl->status == LTESR_CC ? 0 : -EIO;
245 }
246
247 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
248 {
249 struct fsl_elbc_mtd *priv = chip->priv;
250 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
251 fsl_lbc_t *lbc = ctrl->regs;
252
253 if (priv->page_size) {
254 out_be32(&lbc->fir,
255 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
256 (FIR_OP_CA << FIR_OP1_SHIFT) |
257 (FIR_OP_PA << FIR_OP2_SHIFT) |
258 (FIR_OP_CW1 << FIR_OP3_SHIFT) |
259 (FIR_OP_RBW << FIR_OP4_SHIFT));
260
261 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
262 (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
263 } else {
264 out_be32(&lbc->fir,
265 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
266 (FIR_OP_CA << FIR_OP1_SHIFT) |
267 (FIR_OP_PA << FIR_OP2_SHIFT) |
268 (FIR_OP_RBW << FIR_OP3_SHIFT));
269
270 if (oob)
271 out_be32(&lbc->fcr,
272 NAND_CMD_READOOB << FCR_CMD0_SHIFT);
273 else
274 out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
275 }
276 }
277
278 /* cmdfunc send commands to the FCM */
279 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
280 int column, int page_addr)
281 {
282 struct nand_chip *chip = mtd->priv;
283 struct fsl_elbc_mtd *priv = chip->priv;
284 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
285 fsl_lbc_t *lbc = ctrl->regs;
286
287 ctrl->use_mdr = 0;
288
289 /* clear the read buffer */
290 ctrl->read_bytes = 0;
291 if (command != NAND_CMD_PAGEPROG)
292 ctrl->index = 0;
293
294 switch (command) {
295 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
296 case NAND_CMD_READ1:
297 column += 256;
298
299 /* fall-through */
300 case NAND_CMD_READ0:
301 vdbg("fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
302 " 0x%x, column: 0x%x.\n", page_addr, column);
303
304 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
305 set_addr(mtd, 0, page_addr, 0);
306
307 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
308 ctrl->index += column;
309
310 fsl_elbc_do_read(chip, 0);
311 fsl_elbc_run_command(mtd);
312 return;
313
314 /* READOOB reads only the OOB because no ECC is performed. */
315 case NAND_CMD_READOOB:
316 vdbg("fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
317 " 0x%x, column: 0x%x.\n", page_addr, column);
318
319 out_be32(&lbc->fbcr, mtd->oobsize - column);
320 set_addr(mtd, column, page_addr, 1);
321
322 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
323
324 fsl_elbc_do_read(chip, 1);
325 fsl_elbc_run_command(mtd);
326
327 return;
328
329 /* READID must read all 5 possible bytes while CEB is active */
330 case NAND_CMD_READID:
331 case NAND_CMD_PARAM:
332 vdbg("fsl_elbc_cmdfunc: NAND_CMD 0x%x.\n", command);
333
334 out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
335 (FIR_OP_UA << FIR_OP1_SHIFT) |
336 (FIR_OP_RBW << FIR_OP2_SHIFT));
337 out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
338 /*
339 * although currently it's 8 bytes for READID, we always read
340 * the maximum 256 bytes(for PARAM)
341 */
342 out_be32(&lbc->fbcr, 256);
343 ctrl->read_bytes = 256;
344 ctrl->use_mdr = 1;
345 ctrl->mdr = column;
346 set_addr(mtd, 0, 0, 0);
347 fsl_elbc_run_command(mtd);
348 return;
349
350 /* ERASE1 stores the block and page address */
351 case NAND_CMD_ERASE1:
352 vdbg("fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
353 "page_addr: 0x%x.\n", page_addr);
354 set_addr(mtd, 0, page_addr, 0);
355 return;
356
357 /* ERASE2 uses the block and page address from ERASE1 */
358 case NAND_CMD_ERASE2:
359 vdbg("fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
360
361 out_be32(&lbc->fir,
362 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
363 (FIR_OP_PA << FIR_OP1_SHIFT) |
364 (FIR_OP_CM1 << FIR_OP2_SHIFT));
365
366 out_be32(&lbc->fcr,
367 (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
368 (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
369
370 out_be32(&lbc->fbcr, 0);
371 ctrl->read_bytes = 0;
372
373 fsl_elbc_run_command(mtd);
374 return;
375
376 /* SEQIN sets up the addr buffer and all registers except the length */
377 case NAND_CMD_SEQIN: {
378 u32 fcr;
379 vdbg("fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
380 "page_addr: 0x%x, column: 0x%x.\n",
381 page_addr, column);
382
383 ctrl->column = column;
384 ctrl->oob = 0;
385
386 if (priv->page_size) {
387 fcr = (NAND_CMD_SEQIN << FCR_CMD0_SHIFT) |
388 (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT);
389
390 out_be32(&lbc->fir,
391 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
392 (FIR_OP_CA << FIR_OP1_SHIFT) |
393 (FIR_OP_PA << FIR_OP2_SHIFT) |
394 (FIR_OP_WB << FIR_OP3_SHIFT) |
395 (FIR_OP_CW1 << FIR_OP4_SHIFT));
396 } else {
397 fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
398 (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
399
400 out_be32(&lbc->fir,
401 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
402 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
403 (FIR_OP_CA << FIR_OP2_SHIFT) |
404 (FIR_OP_PA << FIR_OP3_SHIFT) |
405 (FIR_OP_WB << FIR_OP4_SHIFT) |
406 (FIR_OP_CW1 << FIR_OP5_SHIFT));
407
408 if (column >= mtd->writesize) {
409 /* OOB area --> READOOB */
410 column -= mtd->writesize;
411 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
412 ctrl->oob = 1;
413 } else if (column < 256) {
414 /* First 256 bytes --> READ0 */
415 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
416 } else {
417 /* Second 256 bytes --> READ1 */
418 fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
419 }
420 }
421
422 out_be32(&lbc->fcr, fcr);
423 set_addr(mtd, column, page_addr, ctrl->oob);
424 return;
425 }
426
427 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
428 case NAND_CMD_PAGEPROG: {
429 vdbg("fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
430 "writing %d bytes.\n", ctrl->index);
431
432 /* if the write did not start at 0 or is not a full page
433 * then set the exact length, otherwise use a full page
434 * write so the HW generates the ECC.
435 */
436 if (ctrl->oob || ctrl->column != 0 ||
437 ctrl->index != mtd->writesize + mtd->oobsize)
438 out_be32(&lbc->fbcr, ctrl->index);
439 else
440 out_be32(&lbc->fbcr, 0);
441
442 fsl_elbc_run_command(mtd);
443
444 return;
445 }
446
447 /* CMD_STATUS must read the status byte while CEB is active */
448 /* Note - it does not wait for the ready line */
449 case NAND_CMD_STATUS:
450 out_be32(&lbc->fir,
451 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
452 (FIR_OP_RBW << FIR_OP1_SHIFT));
453 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
454 out_be32(&lbc->fbcr, 1);
455 set_addr(mtd, 0, 0, 0);
456 ctrl->read_bytes = 1;
457
458 fsl_elbc_run_command(mtd);
459
460 /* The chip always seems to report that it is
461 * write-protected, even when it is not.
462 */
463 out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP);
464 return;
465
466 /* RESET without waiting for the ready line */
467 case NAND_CMD_RESET:
468 dbg("fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
469 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
470 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
471 fsl_elbc_run_command(mtd);
472 return;
473
474 default:
475 printf("fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
476 command);
477 }
478 }
479
480 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
481 {
482 /* The hardware does not seem to support multiple
483 * chips per bank.
484 */
485 }
486
487 /*
488 * Write buf to the FCM Controller Data Buffer
489 */
490 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
491 {
492 struct nand_chip *chip = mtd->priv;
493 struct fsl_elbc_mtd *priv = chip->priv;
494 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
495 unsigned int bufsize = mtd->writesize + mtd->oobsize;
496
497 if (len <= 0) {
498 printf("write_buf of %d bytes", len);
499 ctrl->status = 0;
500 return;
501 }
502
503 if ((unsigned int)len > bufsize - ctrl->index) {
504 printf("write_buf beyond end of buffer "
505 "(%d requested, %u available)\n",
506 len, bufsize - ctrl->index);
507 len = bufsize - ctrl->index;
508 }
509
510 memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
511 /*
512 * This is workaround for the weird elbc hangs during nand write,
513 * Scott Wood says: "...perhaps difference in how long it takes a
514 * write to make it through the localbus compared to a write to IMMR
515 * is causing problems, and sync isn't helping for some reason."
516 * Reading back the last byte helps though.
517 */
518 in_8(&ctrl->addr[ctrl->index] + len - 1);
519
520 ctrl->index += len;
521 }
522
523 /*
524 * read a byte from either the FCM hardware buffer if it has any data left
525 * otherwise issue a command to read a single byte.
526 */
527 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
528 {
529 struct nand_chip *chip = mtd->priv;
530 struct fsl_elbc_mtd *priv = chip->priv;
531 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
532
533 /* If there are still bytes in the FCM, then use the next byte. */
534 if (ctrl->index < ctrl->read_bytes)
535 return in_8(&ctrl->addr[ctrl->index++]);
536
537 printf("read_byte beyond end of buffer\n");
538 return ERR_BYTE;
539 }
540
541 /*
542 * Read from the FCM Controller Data Buffer
543 */
544 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
545 {
546 struct nand_chip *chip = mtd->priv;
547 struct fsl_elbc_mtd *priv = chip->priv;
548 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
549 int avail;
550
551 if (len < 0)
552 return;
553
554 avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
555 memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
556 ctrl->index += avail;
557
558 if (len > avail)
559 printf("read_buf beyond end of buffer "
560 "(%d requested, %d available)\n",
561 len, avail);
562 }
563
564 /*
565 * Verify buffer against the FCM Controller Data Buffer
566 */
567 static int fsl_elbc_verify_buf(struct mtd_info *mtd,
568 const u_char *buf, int len)
569 {
570 struct nand_chip *chip = mtd->priv;
571 struct fsl_elbc_mtd *priv = chip->priv;
572 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
573 int i;
574
575 if (len < 0) {
576 printf("write_buf of %d bytes", len);
577 return -EINVAL;
578 }
579
580 if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
581 printf("verify_buf beyond end of buffer "
582 "(%d requested, %u available)\n",
583 len, ctrl->read_bytes - ctrl->index);
584
585 ctrl->index = ctrl->read_bytes;
586 return -EINVAL;
587 }
588
589 for (i = 0; i < len; i++)
590 if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
591 break;
592
593 ctrl->index += len;
594 return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
595 }
596
597 /* This function is called after Program and Erase Operations to
598 * check for success or failure.
599 */
600 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
601 {
602 struct fsl_elbc_mtd *priv = chip->priv;
603 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
604 fsl_lbc_t *lbc = ctrl->regs;
605
606 if (ctrl->status != LTESR_CC)
607 return NAND_STATUS_FAIL;
608
609 /* Use READ_STATUS command, but wait for the device to be ready */
610 ctrl->use_mdr = 0;
611 out_be32(&lbc->fir,
612 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
613 (FIR_OP_RBW << FIR_OP1_SHIFT));
614 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
615 out_be32(&lbc->fbcr, 1);
616 set_addr(mtd, 0, 0, 0);
617 ctrl->read_bytes = 1;
618
619 fsl_elbc_run_command(mtd);
620
621 if (ctrl->status != LTESR_CC)
622 return NAND_STATUS_FAIL;
623
624 /* The chip always seems to report that it is
625 * write-protected, even when it is not.
626 */
627 out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP);
628 return fsl_elbc_read_byte(mtd);
629 }
630
631 static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
632 uint8_t *buf, int oob_required, int page)
633 {
634 fsl_elbc_read_buf(mtd, buf, mtd->writesize);
635 fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
636
637 if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
638 mtd->ecc_stats.failed++;
639
640 return 0;
641 }
642
643 /* ECC will be calculated automatically, and errors will be detected in
644 * waitfunc.
645 */
646 static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
647 const uint8_t *buf, int oob_required)
648 {
649 fsl_elbc_write_buf(mtd, buf, mtd->writesize);
650 fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
651
652 return 0;
653 }
654
655 static struct fsl_elbc_ctrl *elbc_ctrl;
656
657 static void fsl_elbc_ctrl_init(void)
658 {
659 elbc_ctrl = kzalloc(sizeof(*elbc_ctrl), GFP_KERNEL);
660 if (!elbc_ctrl)
661 return;
662
663 elbc_ctrl->regs = LBC_BASE_ADDR;
664
665 /* clear event registers */
666 out_be32(&elbc_ctrl->regs->ltesr, LTESR_NAND_MASK);
667 out_be32(&elbc_ctrl->regs->lteatr, 0);
668
669 /* Enable interrupts for any detected events */
670 out_be32(&elbc_ctrl->regs->lteir, LTESR_NAND_MASK);
671
672 elbc_ctrl->read_bytes = 0;
673 elbc_ctrl->index = 0;
674 elbc_ctrl->addr = NULL;
675 }
676
677 static int fsl_elbc_chip_init(int devnum, u8 *addr)
678 {
679 struct mtd_info *mtd = &nand_info[devnum];
680 struct nand_chip *nand;
681 struct fsl_elbc_mtd *priv;
682 uint32_t br = 0, or = 0;
683 int ret;
684
685 if (!elbc_ctrl) {
686 fsl_elbc_ctrl_init();
687 if (!elbc_ctrl)
688 return -1;
689 }
690
691 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
692 if (!priv)
693 return -ENOMEM;
694
695 priv->ctrl = elbc_ctrl;
696 priv->vbase = addr;
697
698 /* Find which chip select it is connected to. It'd be nice
699 * if we could pass more than one datum to the NAND driver...
700 */
701 for (priv->bank = 0; priv->bank < MAX_BANKS; priv->bank++) {
702 phys_addr_t phys_addr = virt_to_phys(addr);
703
704 br = in_be32(&elbc_ctrl->regs->bank[priv->bank].br);
705 or = in_be32(&elbc_ctrl->regs->bank[priv->bank].or);
706
707 if ((br & BR_V) && (br & BR_MSEL) == BR_MS_FCM &&
708 (br & or & BR_BA) == BR_PHYS_ADDR(phys_addr))
709 break;
710 }
711
712 if (priv->bank >= MAX_BANKS) {
713 printf("fsl_elbc_nand: address did not match any "
714 "chip selects\n");
715 return -ENODEV;
716 }
717
718 nand = &priv->chip;
719 mtd->priv = nand;
720
721 elbc_ctrl->chips[priv->bank] = priv;
722
723 /* fill in nand_chip structure */
724 /* set up function call table */
725 nand->read_byte = fsl_elbc_read_byte;
726 nand->write_buf = fsl_elbc_write_buf;
727 nand->read_buf = fsl_elbc_read_buf;
728 nand->verify_buf = fsl_elbc_verify_buf;
729 nand->select_chip = fsl_elbc_select_chip;
730 nand->cmdfunc = fsl_elbc_cmdfunc;
731 nand->waitfunc = fsl_elbc_wait;
732
733 /* set up nand options */
734 nand->bbt_td = &bbt_main_descr;
735 nand->bbt_md = &bbt_mirror_descr;
736
737 /* set up nand options */
738 nand->options = NAND_NO_SUBPAGE_WRITE;
739 nand->bbt_options = NAND_BBT_USE_FLASH;
740
741 nand->controller = &elbc_ctrl->controller;
742 nand->priv = priv;
743
744 nand->ecc.read_page = fsl_elbc_read_page;
745 nand->ecc.write_page = fsl_elbc_write_page;
746
747 priv->fmr = (15 << FMR_CWTO_SHIFT) | (2 << FMR_AL_SHIFT);
748
749 /* If CS Base Register selects full hardware ECC then use it */
750 if ((br & BR_DECC) == BR_DECC_CHK_GEN) {
751 nand->ecc.mode = NAND_ECC_HW;
752
753 nand->ecc.layout = (priv->fmr & FMR_ECCM) ?
754 &fsl_elbc_oob_sp_eccm1 :
755 &fsl_elbc_oob_sp_eccm0;
756
757 nand->ecc.size = 512;
758 nand->ecc.bytes = 3;
759 nand->ecc.steps = 1;
760 nand->ecc.strength = 1;
761 } else {
762 /* otherwise fall back to default software ECC */
763 nand->ecc.mode = NAND_ECC_SOFT;
764 }
765
766 ret = nand_scan_ident(mtd, 1, NULL);
767 if (ret)
768 return ret;
769
770 /* Large-page-specific setup */
771 if (mtd->writesize == 2048) {
772 setbits_be32(&elbc_ctrl->regs->bank[priv->bank].or,
773 OR_FCM_PGS);
774 in_be32(&elbc_ctrl->regs->bank[priv->bank].or);
775
776 priv->page_size = 1;
777 nand->badblock_pattern = &largepage_memorybased;
778
779 /*
780 * Hardware expects small page has ECCM0, large page has
781 * ECCM1 when booting from NAND, and we follow that even
782 * when not booting from NAND.
783 */
784 priv->fmr |= FMR_ECCM;
785
786 /* adjust ecc setup if needed */
787 if ((br & BR_DECC) == BR_DECC_CHK_GEN) {
788 nand->ecc.steps = 4;
789 nand->ecc.layout = (priv->fmr & FMR_ECCM) ?
790 &fsl_elbc_oob_lp_eccm1 :
791 &fsl_elbc_oob_lp_eccm0;
792 }
793 } else if (mtd->writesize == 512) {
794 clrbits_be32(&elbc_ctrl->regs->bank[priv->bank].or,
795 OR_FCM_PGS);
796 in_be32(&elbc_ctrl->regs->bank[priv->bank].or);
797 } else {
798 return -ENODEV;
799 }
800
801 ret = nand_scan_tail(mtd);
802 if (ret)
803 return ret;
804
805 ret = nand_register(devnum);
806 if (ret)
807 return ret;
808
809 return 0;
810 }
811
812 #ifndef CONFIG_SYS_NAND_BASE_LIST
813 #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
814 #endif
815
816 static unsigned long base_address[CONFIG_SYS_MAX_NAND_DEVICE] =
817 CONFIG_SYS_NAND_BASE_LIST;
818
819 void board_nand_init(void)
820 {
821 int i;
822
823 for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
824 fsl_elbc_chip_init(i, (u8 *)base_address[i]);
825 }