]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/fsl_ifc_nand.c
arm64: dts: sun50i: h5: Order nodes in alphabetic for orangepi-prime
[people/ms/u-boot.git] / drivers / mtd / nand / fsl_ifc_nand.c
1 /* Integrated Flash Controller NAND Machine Driver
2 *
3 * Copyright (c) 2012 Freescale Semiconductor, Inc
4 *
5 * Authors: Dipen Dudhat <Dipen.Dudhat@freescale.com>
6 *
7 * SPDX-License-Identifier: GPL-2.0+
8 */
9
10 #include <common.h>
11 #include <malloc.h>
12 #include <nand.h>
13
14 #include <linux/mtd/mtd.h>
15 #include <linux/mtd/nand.h>
16 #include <linux/mtd/nand_ecc.h>
17
18 #include <asm/io.h>
19 #include <linux/errno.h>
20 #include <fsl_ifc.h>
21
22 #ifndef CONFIG_SYS_FSL_IFC_BANK_COUNT
23 #define CONFIG_SYS_FSL_IFC_BANK_COUNT 4
24 #endif
25
26 #define MAX_BANKS CONFIG_SYS_FSL_IFC_BANK_COUNT
27 #define ERR_BYTE 0xFF /* Value returned for read bytes
28 when read failed */
29
30 struct fsl_ifc_ctrl;
31
32 /* mtd information per set */
33 struct fsl_ifc_mtd {
34 struct nand_chip chip;
35 struct fsl_ifc_ctrl *ctrl;
36
37 struct device *dev;
38 int bank; /* Chip select bank number */
39 unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
40 u8 __iomem *vbase; /* Chip select base virtual address */
41 };
42
43 /* overview of the fsl ifc controller */
44 struct fsl_ifc_ctrl {
45 struct nand_hw_control controller;
46 struct fsl_ifc_mtd *chips[MAX_BANKS];
47
48 /* device info */
49 struct fsl_ifc regs;
50 void __iomem *addr; /* Address of assigned IFC buffer */
51 unsigned int page; /* Last page written to / read from */
52 unsigned int read_bytes; /* Number of bytes read during command */
53 unsigned int column; /* Saved column from SEQIN */
54 unsigned int index; /* Pointer to next byte to 'read' */
55 unsigned int status; /* status read from NEESR after last op */
56 unsigned int oob; /* Non zero if operating on OOB data */
57 unsigned int eccread; /* Non zero for a full-page ECC read */
58 };
59
60 static struct fsl_ifc_ctrl *ifc_ctrl;
61
62 /* 512-byte page with 4-bit ECC, 8-bit */
63 static struct nand_ecclayout oob_512_8bit_ecc4 = {
64 .eccbytes = 8,
65 .eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
66 .oobfree = { {0, 5}, {6, 2} },
67 };
68
69 /* 512-byte page with 4-bit ECC, 16-bit */
70 static struct nand_ecclayout oob_512_16bit_ecc4 = {
71 .eccbytes = 8,
72 .eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
73 .oobfree = { {2, 6}, },
74 };
75
76 /* 2048-byte page size with 4-bit ECC */
77 static struct nand_ecclayout oob_2048_ecc4 = {
78 .eccbytes = 32,
79 .eccpos = {
80 8, 9, 10, 11, 12, 13, 14, 15,
81 16, 17, 18, 19, 20, 21, 22, 23,
82 24, 25, 26, 27, 28, 29, 30, 31,
83 32, 33, 34, 35, 36, 37, 38, 39,
84 },
85 .oobfree = { {2, 6}, {40, 24} },
86 };
87
88 /* 4096-byte page size with 4-bit ECC */
89 static struct nand_ecclayout oob_4096_ecc4 = {
90 .eccbytes = 64,
91 .eccpos = {
92 8, 9, 10, 11, 12, 13, 14, 15,
93 16, 17, 18, 19, 20, 21, 22, 23,
94 24, 25, 26, 27, 28, 29, 30, 31,
95 32, 33, 34, 35, 36, 37, 38, 39,
96 40, 41, 42, 43, 44, 45, 46, 47,
97 48, 49, 50, 51, 52, 53, 54, 55,
98 56, 57, 58, 59, 60, 61, 62, 63,
99 64, 65, 66, 67, 68, 69, 70, 71,
100 },
101 .oobfree = { {2, 6}, {72, 56} },
102 };
103
104 /* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */
105 static struct nand_ecclayout oob_4096_ecc8 = {
106 .eccbytes = 128,
107 .eccpos = {
108 8, 9, 10, 11, 12, 13, 14, 15,
109 16, 17, 18, 19, 20, 21, 22, 23,
110 24, 25, 26, 27, 28, 29, 30, 31,
111 32, 33, 34, 35, 36, 37, 38, 39,
112 40, 41, 42, 43, 44, 45, 46, 47,
113 48, 49, 50, 51, 52, 53, 54, 55,
114 56, 57, 58, 59, 60, 61, 62, 63,
115 64, 65, 66, 67, 68, 69, 70, 71,
116 72, 73, 74, 75, 76, 77, 78, 79,
117 80, 81, 82, 83, 84, 85, 86, 87,
118 88, 89, 90, 91, 92, 93, 94, 95,
119 96, 97, 98, 99, 100, 101, 102, 103,
120 104, 105, 106, 107, 108, 109, 110, 111,
121 112, 113, 114, 115, 116, 117, 118, 119,
122 120, 121, 122, 123, 124, 125, 126, 127,
123 128, 129, 130, 131, 132, 133, 134, 135,
124 },
125 .oobfree = { {2, 6}, {136, 82} },
126 };
127
128 /* 8192-byte page size with 4-bit ECC */
129 static struct nand_ecclayout oob_8192_ecc4 = {
130 .eccbytes = 128,
131 .eccpos = {
132 8, 9, 10, 11, 12, 13, 14, 15,
133 16, 17, 18, 19, 20, 21, 22, 23,
134 24, 25, 26, 27, 28, 29, 30, 31,
135 32, 33, 34, 35, 36, 37, 38, 39,
136 40, 41, 42, 43, 44, 45, 46, 47,
137 48, 49, 50, 51, 52, 53, 54, 55,
138 56, 57, 58, 59, 60, 61, 62, 63,
139 64, 65, 66, 67, 68, 69, 70, 71,
140 72, 73, 74, 75, 76, 77, 78, 79,
141 80, 81, 82, 83, 84, 85, 86, 87,
142 88, 89, 90, 91, 92, 93, 94, 95,
143 96, 97, 98, 99, 100, 101, 102, 103,
144 104, 105, 106, 107, 108, 109, 110, 111,
145 112, 113, 114, 115, 116, 117, 118, 119,
146 120, 121, 122, 123, 124, 125, 126, 127,
147 128, 129, 130, 131, 132, 133, 134, 135,
148 },
149 .oobfree = { {2, 6}, {136, 208} },
150 };
151
152 /* 8192-byte page size with 8-bit ECC -- requires 218-byte OOB */
153 static struct nand_ecclayout oob_8192_ecc8 = {
154 .eccbytes = 256,
155 .eccpos = {
156 8, 9, 10, 11, 12, 13, 14, 15,
157 16, 17, 18, 19, 20, 21, 22, 23,
158 24, 25, 26, 27, 28, 29, 30, 31,
159 32, 33, 34, 35, 36, 37, 38, 39,
160 40, 41, 42, 43, 44, 45, 46, 47,
161 48, 49, 50, 51, 52, 53, 54, 55,
162 56, 57, 58, 59, 60, 61, 62, 63,
163 64, 65, 66, 67, 68, 69, 70, 71,
164 72, 73, 74, 75, 76, 77, 78, 79,
165 80, 81, 82, 83, 84, 85, 86, 87,
166 88, 89, 90, 91, 92, 93, 94, 95,
167 96, 97, 98, 99, 100, 101, 102, 103,
168 104, 105, 106, 107, 108, 109, 110, 111,
169 112, 113, 114, 115, 116, 117, 118, 119,
170 120, 121, 122, 123, 124, 125, 126, 127,
171 128, 129, 130, 131, 132, 133, 134, 135,
172 136, 137, 138, 139, 140, 141, 142, 143,
173 144, 145, 146, 147, 148, 149, 150, 151,
174 152, 153, 154, 155, 156, 157, 158, 159,
175 160, 161, 162, 163, 164, 165, 166, 167,
176 168, 169, 170, 171, 172, 173, 174, 175,
177 176, 177, 178, 179, 180, 181, 182, 183,
178 184, 185, 186, 187, 188, 189, 190, 191,
179 192, 193, 194, 195, 196, 197, 198, 199,
180 200, 201, 202, 203, 204, 205, 206, 207,
181 208, 209, 210, 211, 212, 213, 214, 215,
182 216, 217, 218, 219, 220, 221, 222, 223,
183 224, 225, 226, 227, 228, 229, 230, 231,
184 232, 233, 234, 235, 236, 237, 238, 239,
185 240, 241, 242, 243, 244, 245, 246, 247,
186 248, 249, 250, 251, 252, 253, 254, 255,
187 256, 257, 258, 259, 260, 261, 262, 263,
188 },
189 .oobfree = { {2, 6}, {264, 80} },
190 };
191
192 /*
193 * Generic flash bbt descriptors
194 */
195 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
196 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
197
198 static struct nand_bbt_descr bbt_main_descr = {
199 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
200 NAND_BBT_2BIT | NAND_BBT_VERSION,
201 .offs = 2, /* 0 on 8-bit small page */
202 .len = 4,
203 .veroffs = 6,
204 .maxblocks = 4,
205 .pattern = bbt_pattern,
206 };
207
208 static struct nand_bbt_descr bbt_mirror_descr = {
209 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
210 NAND_BBT_2BIT | NAND_BBT_VERSION,
211 .offs = 2, /* 0 on 8-bit small page */
212 .len = 4,
213 .veroffs = 6,
214 .maxblocks = 4,
215 .pattern = mirror_pattern,
216 };
217
218 /*
219 * Set up the IFC hardware block and page address fields, and the ifc nand
220 * structure addr field to point to the correct IFC buffer in memory
221 */
222 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
223 {
224 struct nand_chip *chip = mtd_to_nand(mtd);
225 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
226 struct fsl_ifc_ctrl *ctrl = priv->ctrl;
227 struct fsl_ifc_runtime *ifc = ctrl->regs.rregs;
228 int buf_num;
229
230 ctrl->page = page_addr;
231
232 /* Program ROW0/COL0 */
233 ifc_out32(&ifc->ifc_nand.row0, page_addr);
234 ifc_out32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column);
235
236 buf_num = page_addr & priv->bufnum_mask;
237
238 ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
239 ctrl->index = column;
240
241 /* for OOB data point to the second half of the buffer */
242 if (oob)
243 ctrl->index += mtd->writesize;
244 }
245
246 static int is_blank(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
247 unsigned int bufnum)
248 {
249 struct nand_chip *chip = mtd_to_nand(mtd);
250 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
251 u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2);
252 u32 __iomem *main = (u32 *)addr;
253 u8 __iomem *oob = addr + mtd->writesize;
254 int i;
255
256 for (i = 0; i < mtd->writesize / 4; i++) {
257 if (__raw_readl(&main[i]) != 0xffffffff)
258 return 0;
259 }
260
261 for (i = 0; i < chip->ecc.layout->eccbytes; i++) {
262 int pos = chip->ecc.layout->eccpos[i];
263
264 if (__raw_readb(&oob[pos]) != 0xff)
265 return 0;
266 }
267
268 return 1;
269 }
270
271 /* returns nonzero if entire page is blank */
272 static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
273 u32 *eccstat, unsigned int bufnum)
274 {
275 u32 reg = eccstat[bufnum / 4];
276 int errors;
277
278 errors = (reg >> ((3 - bufnum % 4) * 8)) & 15;
279
280 return errors;
281 }
282
283 /*
284 * execute IFC NAND command and wait for it to complete
285 */
286 static int fsl_ifc_run_command(struct mtd_info *mtd)
287 {
288 struct nand_chip *chip = mtd_to_nand(mtd);
289 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
290 struct fsl_ifc_ctrl *ctrl = priv->ctrl;
291 struct fsl_ifc_runtime *ifc = ctrl->regs.rregs;
292 u32 timeo = (CONFIG_SYS_HZ * 10) / 1000;
293 u32 time_start;
294 u32 eccstat[8] = {0};
295 int i;
296
297 /* set the chip select for NAND Transaction */
298 ifc_out32(&ifc->ifc_nand.nand_csel, priv->bank << IFC_NAND_CSEL_SHIFT);
299
300 /* start read/write seq */
301 ifc_out32(&ifc->ifc_nand.nandseq_strt,
302 IFC_NAND_SEQ_STRT_FIR_STRT);
303
304 /* wait for NAND Machine complete flag or timeout */
305 time_start = get_timer(0);
306
307 while (get_timer(time_start) < timeo) {
308 ctrl->status = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
309
310 if (ctrl->status & IFC_NAND_EVTER_STAT_OPC)
311 break;
312 }
313
314 ifc_out32(&ifc->ifc_nand.nand_evter_stat, ctrl->status);
315
316 if (ctrl->status & IFC_NAND_EVTER_STAT_FTOER)
317 printf("%s: Flash Time Out Error\n", __func__);
318 if (ctrl->status & IFC_NAND_EVTER_STAT_WPER)
319 printf("%s: Write Protect Error\n", __func__);
320
321 if (ctrl->eccread) {
322 int errors;
323 int bufnum = ctrl->page & priv->bufnum_mask;
324 int sector = bufnum * chip->ecc.steps;
325 int sector_end = sector + chip->ecc.steps - 1;
326
327 for (i = sector / 4; i <= sector_end / 4; i++) {
328 if (i >= ARRAY_SIZE(eccstat)) {
329 printf("%s: eccstat too small for %d\n",
330 __func__, i);
331 return -EIO;
332 }
333
334 eccstat[i] = ifc_in32(&ifc->ifc_nand.nand_eccstat[i]);
335 }
336
337 for (i = sector; i <= sector_end; i++) {
338 errors = check_read_ecc(mtd, ctrl, eccstat, i);
339
340 if (errors == 15) {
341 /*
342 * Uncorrectable error.
343 * OK only if the whole page is blank.
344 *
345 * We disable ECCER reporting due to erratum
346 * IFC-A002770 -- so report it now if we
347 * see an uncorrectable error in ECCSTAT.
348 */
349 if (!is_blank(mtd, ctrl, bufnum))
350 ctrl->status |=
351 IFC_NAND_EVTER_STAT_ECCER;
352 break;
353 }
354
355 mtd->ecc_stats.corrected += errors;
356 }
357
358 ctrl->eccread = 0;
359 }
360
361 /* returns 0 on success otherwise non-zero) */
362 return ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO;
363 }
364
365 static void fsl_ifc_do_read(struct nand_chip *chip,
366 int oob,
367 struct mtd_info *mtd)
368 {
369 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
370 struct fsl_ifc_ctrl *ctrl = priv->ctrl;
371 struct fsl_ifc_runtime *ifc = ctrl->regs.rregs;
372
373 /* Program FIR/IFC_NAND_FCR0 for Small/Large page */
374 if (mtd->writesize > 512) {
375 ifc_out32(&ifc->ifc_nand.nand_fir0,
376 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
377 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
378 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
379 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
380 (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT));
381 ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
382
383 ifc_out32(&ifc->ifc_nand.nand_fcr0,
384 (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
385 (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
386 } else {
387 ifc_out32(&ifc->ifc_nand.nand_fir0,
388 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
389 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
390 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
391 (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT));
392
393 if (oob)
394 ifc_out32(&ifc->ifc_nand.nand_fcr0,
395 NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT);
396 else
397 ifc_out32(&ifc->ifc_nand.nand_fcr0,
398 NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
399 }
400 }
401
402 /* cmdfunc send commands to the IFC NAND Machine */
403 static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
404 int column, int page_addr)
405 {
406 struct nand_chip *chip = mtd_to_nand(mtd);
407 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
408 struct fsl_ifc_ctrl *ctrl = priv->ctrl;
409 struct fsl_ifc_runtime *ifc = ctrl->regs.rregs;
410
411 /* clear the read buffer */
412 ctrl->read_bytes = 0;
413 if (command != NAND_CMD_PAGEPROG)
414 ctrl->index = 0;
415
416 switch (command) {
417 /* READ0 read the entire buffer to use hardware ECC. */
418 case NAND_CMD_READ0: {
419 ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
420 set_addr(mtd, 0, page_addr, 0);
421
422 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
423 ctrl->index += column;
424
425 if (chip->ecc.mode == NAND_ECC_HW)
426 ctrl->eccread = 1;
427
428 fsl_ifc_do_read(chip, 0, mtd);
429 fsl_ifc_run_command(mtd);
430 return;
431 }
432
433 /* READOOB reads only the OOB because no ECC is performed. */
434 case NAND_CMD_READOOB:
435 ifc_out32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column);
436 set_addr(mtd, column, page_addr, 1);
437
438 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
439
440 fsl_ifc_do_read(chip, 1, mtd);
441 fsl_ifc_run_command(mtd);
442
443 return;
444
445 /* READID must read all possible bytes while CEB is active */
446 case NAND_CMD_READID:
447 case NAND_CMD_PARAM: {
448 int timing = IFC_FIR_OP_RB;
449 if (command == NAND_CMD_PARAM)
450 timing = IFC_FIR_OP_RBCD;
451
452 ifc_out32(&ifc->ifc_nand.nand_fir0,
453 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
454 (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) |
455 (timing << IFC_NAND_FIR0_OP2_SHIFT));
456 ifc_out32(&ifc->ifc_nand.nand_fcr0,
457 command << IFC_NAND_FCR0_CMD0_SHIFT);
458 ifc_out32(&ifc->ifc_nand.row3, column);
459
460 /*
461 * although currently it's 8 bytes for READID, we always read
462 * the maximum 256 bytes(for PARAM)
463 */
464 ifc_out32(&ifc->ifc_nand.nand_fbcr, 256);
465 ctrl->read_bytes = 256;
466
467 set_addr(mtd, 0, 0, 0);
468 fsl_ifc_run_command(mtd);
469 return;
470 }
471
472 /* ERASE1 stores the block and page address */
473 case NAND_CMD_ERASE1:
474 set_addr(mtd, 0, page_addr, 0);
475 return;
476
477 /* ERASE2 uses the block and page address from ERASE1 */
478 case NAND_CMD_ERASE2:
479 ifc_out32(&ifc->ifc_nand.nand_fir0,
480 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
481 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
482 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT));
483
484 ifc_out32(&ifc->ifc_nand.nand_fcr0,
485 (NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
486 (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT));
487
488 ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
489 ctrl->read_bytes = 0;
490 fsl_ifc_run_command(mtd);
491 return;
492
493 /* SEQIN sets up the addr buffer and all registers except the length */
494 case NAND_CMD_SEQIN: {
495 u32 nand_fcr0;
496 ctrl->column = column;
497 ctrl->oob = 0;
498
499 if (mtd->writesize > 512) {
500 nand_fcr0 =
501 (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
502 (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) |
503 (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT);
504
505 ifc_out32(&ifc->ifc_nand.nand_fir0,
506 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
507 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
508 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
509 (IFC_FIR_OP_WBCD <<
510 IFC_NAND_FIR0_OP3_SHIFT) |
511 (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT));
512 ifc_out32(&ifc->ifc_nand.nand_fir1,
513 (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) |
514 (IFC_FIR_OP_RDSTAT <<
515 IFC_NAND_FIR1_OP6_SHIFT) |
516 (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT));
517 } else {
518 nand_fcr0 = ((NAND_CMD_PAGEPROG <<
519 IFC_NAND_FCR0_CMD1_SHIFT) |
520 (NAND_CMD_SEQIN <<
521 IFC_NAND_FCR0_CMD2_SHIFT) |
522 (NAND_CMD_STATUS <<
523 IFC_NAND_FCR0_CMD3_SHIFT));
524
525 ifc_out32(&ifc->ifc_nand.nand_fir0,
526 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
527 (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
528 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
529 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
530 (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT));
531 ifc_out32(&ifc->ifc_nand.nand_fir1,
532 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) |
533 (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) |
534 (IFC_FIR_OP_RDSTAT <<
535 IFC_NAND_FIR1_OP7_SHIFT) |
536 (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT));
537
538 if (column >= mtd->writesize)
539 nand_fcr0 |=
540 NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
541 else
542 nand_fcr0 |=
543 NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
544 }
545
546 if (column >= mtd->writesize) {
547 /* OOB area --> READOOB */
548 column -= mtd->writesize;
549 ctrl->oob = 1;
550 }
551 ifc_out32(&ifc->ifc_nand.nand_fcr0, nand_fcr0);
552 set_addr(mtd, column, page_addr, ctrl->oob);
553 return;
554 }
555
556 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
557 case NAND_CMD_PAGEPROG:
558 if (ctrl->oob)
559 ifc_out32(&ifc->ifc_nand.nand_fbcr,
560 ctrl->index - ctrl->column);
561 else
562 ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
563
564 fsl_ifc_run_command(mtd);
565 return;
566
567 case NAND_CMD_STATUS:
568 ifc_out32(&ifc->ifc_nand.nand_fir0,
569 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
570 (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT));
571 ifc_out32(&ifc->ifc_nand.nand_fcr0,
572 NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT);
573 ifc_out32(&ifc->ifc_nand.nand_fbcr, 1);
574 set_addr(mtd, 0, 0, 0);
575 ctrl->read_bytes = 1;
576
577 fsl_ifc_run_command(mtd);
578
579 /*
580 * The chip always seems to report that it is
581 * write-protected, even when it is not.
582 */
583 if (chip->options & NAND_BUSWIDTH_16)
584 ifc_out16(ctrl->addr,
585 ifc_in16(ctrl->addr) | NAND_STATUS_WP);
586 else
587 out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP);
588 return;
589
590 case NAND_CMD_RESET:
591 ifc_out32(&ifc->ifc_nand.nand_fir0,
592 IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT);
593 ifc_out32(&ifc->ifc_nand.nand_fcr0,
594 NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT);
595 fsl_ifc_run_command(mtd);
596 return;
597
598 default:
599 printf("%s: error, unsupported command 0x%x.\n",
600 __func__, command);
601 }
602 }
603
604 /*
605 * Write buf to the IFC NAND Controller Data Buffer
606 */
607 static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
608 {
609 struct nand_chip *chip = mtd_to_nand(mtd);
610 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
611 struct fsl_ifc_ctrl *ctrl = priv->ctrl;
612 unsigned int bufsize = mtd->writesize + mtd->oobsize;
613
614 if (len <= 0) {
615 printf("%s of %d bytes", __func__, len);
616 ctrl->status = 0;
617 return;
618 }
619
620 if ((unsigned int)len > bufsize - ctrl->index) {
621 printf("%s beyond end of buffer "
622 "(%d requested, %u available)\n",
623 __func__, len, bufsize - ctrl->index);
624 len = bufsize - ctrl->index;
625 }
626
627 memcpy_toio(ctrl->addr + ctrl->index, buf, len);
628 ctrl->index += len;
629 }
630
631 /*
632 * read a byte from either the IFC hardware buffer if it has any data left
633 * otherwise issue a command to read a single byte.
634 */
635 static u8 fsl_ifc_read_byte(struct mtd_info *mtd)
636 {
637 struct nand_chip *chip = mtd_to_nand(mtd);
638 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
639 struct fsl_ifc_ctrl *ctrl = priv->ctrl;
640 unsigned int offset;
641
642 /*
643 * If there are still bytes in the IFC buffer, then use the
644 * next byte.
645 */
646 if (ctrl->index < ctrl->read_bytes) {
647 offset = ctrl->index++;
648 return in_8(ctrl->addr + offset);
649 }
650
651 printf("%s beyond end of buffer\n", __func__);
652 return ERR_BYTE;
653 }
654
655 /*
656 * Read two bytes from the IFC hardware buffer
657 * read function for 16-bit buswith
658 */
659 static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd)
660 {
661 struct nand_chip *chip = mtd_to_nand(mtd);
662 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
663 struct fsl_ifc_ctrl *ctrl = priv->ctrl;
664 uint16_t data;
665
666 /*
667 * If there are still bytes in the IFC buffer, then use the
668 * next byte.
669 */
670 if (ctrl->index < ctrl->read_bytes) {
671 data = ifc_in16(ctrl->addr + ctrl->index);
672 ctrl->index += 2;
673 return (uint8_t)data;
674 }
675
676 printf("%s beyond end of buffer\n", __func__);
677 return ERR_BYTE;
678 }
679
680 /*
681 * Read from the IFC Controller Data Buffer
682 */
683 static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
684 {
685 struct nand_chip *chip = mtd_to_nand(mtd);
686 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
687 struct fsl_ifc_ctrl *ctrl = priv->ctrl;
688 int avail;
689
690 if (len < 0)
691 return;
692
693 avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
694 memcpy_fromio(buf, ctrl->addr + ctrl->index, avail);
695 ctrl->index += avail;
696
697 if (len > avail)
698 printf("%s beyond end of buffer "
699 "(%d requested, %d available)\n",
700 __func__, len, avail);
701 }
702
703 /* This function is called after Program and Erase Operations to
704 * check for success or failure.
705 */
706 static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
707 {
708 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
709 struct fsl_ifc_ctrl *ctrl = priv->ctrl;
710 struct fsl_ifc_runtime *ifc = ctrl->regs.rregs;
711 u32 nand_fsr;
712
713 if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
714 return NAND_STATUS_FAIL;
715
716 /* Use READ_STATUS command, but wait for the device to be ready */
717 ifc_out32(&ifc->ifc_nand.nand_fir0,
718 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
719 (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT));
720 ifc_out32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS <<
721 IFC_NAND_FCR0_CMD0_SHIFT);
722 ifc_out32(&ifc->ifc_nand.nand_fbcr, 1);
723 set_addr(mtd, 0, 0, 0);
724 ctrl->read_bytes = 1;
725
726 fsl_ifc_run_command(mtd);
727
728 if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
729 return NAND_STATUS_FAIL;
730
731 nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr);
732
733 /* Chip sometimes reporting write protect even when it's not */
734 nand_fsr = nand_fsr | NAND_STATUS_WP;
735 return nand_fsr;
736 }
737
738 static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
739 uint8_t *buf, int oob_required, int page)
740 {
741 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
742 struct fsl_ifc_ctrl *ctrl = priv->ctrl;
743
744 fsl_ifc_read_buf(mtd, buf, mtd->writesize);
745 fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
746
747 if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
748 mtd->ecc_stats.failed++;
749
750 return 0;
751 }
752
753 /* ECC will be calculated automatically, and errors will be detected in
754 * waitfunc.
755 */
756 static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
757 const uint8_t *buf, int oob_required, int page)
758 {
759 fsl_ifc_write_buf(mtd, buf, mtd->writesize);
760 fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
761
762 return 0;
763 }
764
765 static void fsl_ifc_ctrl_init(void)
766 {
767 uint32_t ver = 0;
768 ifc_ctrl = kzalloc(sizeof(*ifc_ctrl), GFP_KERNEL);
769 if (!ifc_ctrl)
770 return;
771
772 ifc_ctrl->regs.gregs = IFC_FCM_BASE_ADDR;
773
774 ver = ifc_in32(&ifc_ctrl->regs.gregs->ifc_rev);
775 if (ver >= FSL_IFC_V2_0_0)
776 ifc_ctrl->regs.rregs =
777 (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_64KOFFSET;
778 else
779 ifc_ctrl->regs.rregs =
780 (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_4KOFFSET;
781
782 /* clear event registers */
783 ifc_out32(&ifc_ctrl->regs.rregs->ifc_nand.nand_evter_stat, ~0U);
784 ifc_out32(&ifc_ctrl->regs.rregs->ifc_nand.pgrdcmpl_evt_stat, ~0U);
785
786 /* Enable error and event for any detected errors */
787 ifc_out32(&ifc_ctrl->regs.rregs->ifc_nand.nand_evter_en,
788 IFC_NAND_EVTER_EN_OPC_EN |
789 IFC_NAND_EVTER_EN_PGRDCMPL_EN |
790 IFC_NAND_EVTER_EN_FTOER_EN |
791 IFC_NAND_EVTER_EN_WPER_EN);
792
793 ifc_out32(&ifc_ctrl->regs.rregs->ifc_nand.ncfgr, 0x0);
794 }
795
796 static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip)
797 {
798 }
799
800 static int fsl_ifc_sram_init(struct fsl_ifc_mtd *priv, uint32_t ver)
801 {
802 struct fsl_ifc_runtime *ifc = ifc_ctrl->regs.rregs;
803 uint32_t cs = 0, csor = 0, csor_8k = 0, csor_ext = 0;
804 uint32_t ncfgr = 0;
805 u32 timeo = (CONFIG_SYS_HZ * 10) / 1000;
806 u32 time_start;
807
808 if (ver > FSL_IFC_V1_1_0) {
809 ncfgr = ifc_in32(&ifc->ifc_nand.ncfgr);
810 ifc_out32(&ifc->ifc_nand.ncfgr, ncfgr | IFC_NAND_SRAM_INIT_EN);
811
812 /* wait for SRAM_INIT bit to be clear or timeout */
813 time_start = get_timer(0);
814 while (get_timer(time_start) < timeo) {
815 ifc_ctrl->status =
816 ifc_in32(&ifc->ifc_nand.nand_evter_stat);
817
818 if (!(ifc_ctrl->status & IFC_NAND_SRAM_INIT_EN))
819 return 0;
820 }
821 printf("fsl-ifc: Failed to Initialise SRAM\n");
822 return 1;
823 }
824
825 cs = priv->bank;
826
827 /* Save CSOR and CSOR_ext */
828 csor = ifc_in32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor);
829 csor_ext = ifc_in32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor_ext);
830
831 /* chage PageSize 8K and SpareSize 1K*/
832 csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000;
833 ifc_out32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor, csor_8k);
834 ifc_out32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor_ext, 0x0000400);
835
836 /* READID */
837 ifc_out32(&ifc->ifc_nand.nand_fir0,
838 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
839 (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) |
840 (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT));
841 ifc_out32(&ifc->ifc_nand.nand_fcr0,
842 NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT);
843 ifc_out32(&ifc->ifc_nand.row3, 0x0);
844
845 ifc_out32(&ifc->ifc_nand.nand_fbcr, 0x0);
846
847 /* Program ROW0/COL0 */
848 ifc_out32(&ifc->ifc_nand.row0, 0x0);
849 ifc_out32(&ifc->ifc_nand.col0, 0x0);
850
851 /* set the chip select for NAND Transaction */
852 ifc_out32(&ifc->ifc_nand.nand_csel, priv->bank << IFC_NAND_CSEL_SHIFT);
853
854 /* start read seq */
855 ifc_out32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT);
856
857 time_start = get_timer(0);
858
859 while (get_timer(time_start) < timeo) {
860 ifc_ctrl->status = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
861
862 if (ifc_ctrl->status & IFC_NAND_EVTER_STAT_OPC)
863 break;
864 }
865
866 if (ifc_ctrl->status != IFC_NAND_EVTER_STAT_OPC) {
867 printf("fsl-ifc: Failed to Initialise SRAM\n");
868 return 1;
869 }
870
871 ifc_out32(&ifc->ifc_nand.nand_evter_stat, ifc_ctrl->status);
872
873 /* Restore CSOR and CSOR_ext */
874 ifc_out32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor, csor);
875 ifc_out32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor_ext, csor_ext);
876
877 return 0;
878 }
879
880 static int fsl_ifc_chip_init(int devnum, u8 *addr)
881 {
882 struct mtd_info *mtd;
883 struct nand_chip *nand;
884 struct fsl_ifc_mtd *priv;
885 struct nand_ecclayout *layout;
886 struct fsl_ifc_fcm *gregs = NULL;
887 uint32_t cspr = 0, csor = 0, ver = 0;
888 int ret = 0;
889
890 if (!ifc_ctrl) {
891 fsl_ifc_ctrl_init();
892 if (!ifc_ctrl)
893 return -1;
894 }
895
896 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
897 if (!priv)
898 return -ENOMEM;
899
900 priv->ctrl = ifc_ctrl;
901 priv->vbase = addr;
902 gregs = ifc_ctrl->regs.gregs;
903
904 /* Find which chip select it is connected to.
905 */
906 for (priv->bank = 0; priv->bank < MAX_BANKS; priv->bank++) {
907 phys_addr_t phys_addr = virt_to_phys(addr);
908
909 cspr = ifc_in32(&gregs->cspr_cs[priv->bank].cspr);
910 csor = ifc_in32(&gregs->csor_cs[priv->bank].csor);
911
912 if ((cspr & CSPR_V) && (cspr & CSPR_MSEL) == CSPR_MSEL_NAND &&
913 (cspr & CSPR_BA) == CSPR_PHYS_ADDR(phys_addr))
914 break;
915 }
916
917 if (priv->bank >= MAX_BANKS) {
918 printf("%s: address did not match any "
919 "chip selects\n", __func__);
920 kfree(priv);
921 return -ENODEV;
922 }
923
924 nand = &priv->chip;
925 mtd = nand_to_mtd(nand);
926
927 ifc_ctrl->chips[priv->bank] = priv;
928
929 /* fill in nand_chip structure */
930 /* set up function call table */
931
932 nand->write_buf = fsl_ifc_write_buf;
933 nand->read_buf = fsl_ifc_read_buf;
934 nand->select_chip = fsl_ifc_select_chip;
935 nand->cmdfunc = fsl_ifc_cmdfunc;
936 nand->waitfunc = fsl_ifc_wait;
937
938 /* set up nand options */
939 nand->bbt_td = &bbt_main_descr;
940 nand->bbt_md = &bbt_mirror_descr;
941
942 /* set up nand options */
943 nand->options = NAND_NO_SUBPAGE_WRITE;
944 nand->bbt_options = NAND_BBT_USE_FLASH;
945
946 if (cspr & CSPR_PORT_SIZE_16) {
947 nand->read_byte = fsl_ifc_read_byte16;
948 nand->options |= NAND_BUSWIDTH_16;
949 } else {
950 nand->read_byte = fsl_ifc_read_byte;
951 }
952
953 nand->controller = &ifc_ctrl->controller;
954 nand_set_controller_data(nand, priv);
955
956 nand->ecc.read_page = fsl_ifc_read_page;
957 nand->ecc.write_page = fsl_ifc_write_page;
958
959 /* Hardware generates ECC per 512 Bytes */
960 nand->ecc.size = 512;
961 nand->ecc.bytes = 8;
962
963 switch (csor & CSOR_NAND_PGS_MASK) {
964 case CSOR_NAND_PGS_512:
965 if (nand->options & NAND_BUSWIDTH_16) {
966 layout = &oob_512_16bit_ecc4;
967 } else {
968 layout = &oob_512_8bit_ecc4;
969
970 /* Avoid conflict with bad block marker */
971 bbt_main_descr.offs = 0;
972 bbt_mirror_descr.offs = 0;
973 }
974
975 nand->ecc.strength = 4;
976 priv->bufnum_mask = 15;
977 break;
978
979 case CSOR_NAND_PGS_2K:
980 layout = &oob_2048_ecc4;
981 nand->ecc.strength = 4;
982 priv->bufnum_mask = 3;
983 break;
984
985 case CSOR_NAND_PGS_4K:
986 if ((csor & CSOR_NAND_ECC_MODE_MASK) ==
987 CSOR_NAND_ECC_MODE_4) {
988 layout = &oob_4096_ecc4;
989 nand->ecc.strength = 4;
990 } else {
991 layout = &oob_4096_ecc8;
992 nand->ecc.strength = 8;
993 nand->ecc.bytes = 16;
994 }
995
996 priv->bufnum_mask = 1;
997 break;
998
999 case CSOR_NAND_PGS_8K:
1000 if ((csor & CSOR_NAND_ECC_MODE_MASK) ==
1001 CSOR_NAND_ECC_MODE_4) {
1002 layout = &oob_8192_ecc4;
1003 nand->ecc.strength = 4;
1004 } else {
1005 layout = &oob_8192_ecc8;
1006 nand->ecc.strength = 8;
1007 nand->ecc.bytes = 16;
1008 }
1009
1010 priv->bufnum_mask = 0;
1011 break;
1012
1013
1014 default:
1015 printf("ifc nand: bad csor %#x: bad page size\n", csor);
1016 return -ENODEV;
1017 }
1018
1019 /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
1020 if (csor & CSOR_NAND_ECC_DEC_EN) {
1021 nand->ecc.mode = NAND_ECC_HW;
1022 nand->ecc.layout = layout;
1023 } else {
1024 nand->ecc.mode = NAND_ECC_SOFT;
1025 }
1026
1027 ver = ifc_in32(&gregs->ifc_rev);
1028 if (ver >= FSL_IFC_V1_1_0)
1029 ret = fsl_ifc_sram_init(priv, ver);
1030 if (ret)
1031 return ret;
1032
1033 if (ver >= FSL_IFC_V2_0_0)
1034 priv->bufnum_mask = (priv->bufnum_mask * 2) + 1;
1035
1036 ret = nand_scan_ident(mtd, 1, NULL);
1037 if (ret)
1038 return ret;
1039
1040 ret = nand_scan_tail(mtd);
1041 if (ret)
1042 return ret;
1043
1044 ret = nand_register(devnum, mtd);
1045 if (ret)
1046 return ret;
1047 return 0;
1048 }
1049
1050 #ifndef CONFIG_SYS_NAND_BASE_LIST
1051 #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
1052 #endif
1053
1054 static unsigned long base_address[CONFIG_SYS_MAX_NAND_DEVICE] =
1055 CONFIG_SYS_NAND_BASE_LIST;
1056
1057 void board_nand_init(void)
1058 {
1059 int i;
1060
1061 for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
1062 fsl_ifc_chip_init(i, (u8 *)base_address[i]);
1063 }