]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/fsl_ifc_spl.c
Use correct spelling of "U-Boot"
[people/ms/u-boot.git] / drivers / mtd / nand / fsl_ifc_spl.c
1 /*
2 * NAND boot for Freescale Integrated Flash Controller, NAND FCM
3 *
4 * Copyright 2011 Freescale Semiconductor, Inc.
5 * Author: Dipen Dudhat <dipen.dudhat@freescale.com>
6 *
7 * SPDX-License-Identifier: GPL-2.0+
8 */
9
10 #include <common.h>
11 #include <asm/io.h>
12 #include <fsl_ifc.h>
13 #include <linux/mtd/nand.h>
14
15 static inline int is_blank(uchar *addr, int page_size)
16 {
17 int i;
18
19 for (i = 0; i < page_size; i++) {
20 if (__raw_readb(&addr[i]) != 0xff)
21 return 0;
22 }
23
24 /*
25 * For the SPL, don't worry about uncorrectable errors
26 * where the main area is all FFs but shouldn't be.
27 */
28 return 1;
29 }
30
31 /* returns nonzero if entire page is blank */
32 static inline int check_read_ecc(uchar *buf, u32 *eccstat,
33 unsigned int bufnum, int page_size)
34 {
35 u32 reg = eccstat[bufnum / 4];
36 int errors = (reg >> ((3 - bufnum % 4) * 8)) & 0xf;
37
38 if (errors == 0xf) { /* uncorrectable */
39 /* Blank pages fail hw ECC checks */
40 if (is_blank(buf, page_size))
41 return 1;
42
43 puts("ecc error\n");
44 for (;;)
45 ;
46 }
47
48 return 0;
49 }
50
51 static inline struct fsl_ifc_runtime *runtime_regs_address(void)
52 {
53 struct fsl_ifc regs = {(void *)CONFIG_SYS_IFC_ADDR, NULL};
54 int ver = 0;
55
56 ver = ifc_in32(&regs.gregs->ifc_rev);
57 if (ver >= FSL_IFC_V2_0_0)
58 regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_64KOFFSET;
59 else
60 regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_4KOFFSET;
61
62 return regs.rregs;
63 }
64
65 static inline void nand_wait(uchar *buf, int bufnum, int page_size)
66 {
67 struct fsl_ifc_runtime *ifc = runtime_regs_address();
68 u32 status;
69 u32 eccstat[8];
70 int bufperpage = page_size / 512;
71 int bufnum_end, i;
72
73 bufnum *= bufperpage;
74 bufnum_end = bufnum + bufperpage - 1;
75
76 do {
77 status = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
78 } while (!(status & IFC_NAND_EVTER_STAT_OPC));
79
80 if (status & IFC_NAND_EVTER_STAT_FTOER) {
81 puts("flash time out error\n");
82 for (;;)
83 ;
84 }
85
86 for (i = bufnum / 4; i <= bufnum_end / 4; i++)
87 eccstat[i] = ifc_in32(&ifc->ifc_nand.nand_eccstat[i]);
88
89 for (i = bufnum; i <= bufnum_end; i++) {
90 if (check_read_ecc(buf, eccstat, i, page_size))
91 break;
92 }
93
94 ifc_out32(&ifc->ifc_nand.nand_evter_stat, status);
95 }
96
97 static inline int bad_block(uchar *marker, int port_size)
98 {
99 if (port_size == 8)
100 return __raw_readb(marker) != 0xff;
101 else
102 return __raw_readw((u16 *)marker) != 0xffff;
103 }
104
105 int nand_spl_load_image(uint32_t offs, unsigned int uboot_size, void *vdst)
106 {
107 struct fsl_ifc_fcm *gregs = (void *)CONFIG_SYS_IFC_ADDR;
108 struct fsl_ifc_runtime *ifc = NULL;
109 uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE;
110 int page_size;
111 int port_size;
112 int pages_per_blk;
113 int blk_size;
114 int bad_marker = 0;
115 int bufnum_mask, bufnum, ver = 0;
116
117 int csor, cspr;
118 int pos = 0;
119 int j = 0;
120
121 int sram_addr;
122 int pg_no;
123 uchar *dst = vdst;
124
125 ifc = runtime_regs_address();
126
127 /* Get NAND Flash configuration */
128 csor = CONFIG_SYS_NAND_CSOR;
129 cspr = CONFIG_SYS_NAND_CSPR;
130
131 port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8;
132
133 if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_8K) {
134 page_size = 8192;
135 bufnum_mask = 0x0;
136 } else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_4K) {
137 page_size = 4096;
138 bufnum_mask = 0x1;
139 } else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_2K) {
140 page_size = 2048;
141 bufnum_mask = 0x3;
142 } else {
143 page_size = 512;
144 bufnum_mask = 0xf;
145
146 if (port_size == 8)
147 bad_marker = 5;
148 }
149
150 ver = ifc_in32(&gregs->ifc_rev);
151 if (ver >= FSL_IFC_V2_0_0)
152 bufnum_mask = (bufnum_mask * 2) + 1;
153
154 pages_per_blk =
155 32 << ((csor & CSOR_NAND_PB_MASK) >> CSOR_NAND_PB_SHIFT);
156
157 blk_size = pages_per_blk * page_size;
158
159 /* Open Full SRAM mapping for spare are access */
160 ifc_out32(&ifc->ifc_nand.ncfgr, 0x0);
161
162 /* Clear Boot events */
163 ifc_out32(&ifc->ifc_nand.nand_evter_stat, 0xffffffff);
164
165 /* Program FIR/FCR for Large/Small page */
166 if (page_size > 512) {
167 ifc_out32(&ifc->ifc_nand.nand_fir0,
168 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
169 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
170 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
171 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
172 (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT));
173 ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
174
175 ifc_out32(&ifc->ifc_nand.nand_fcr0,
176 (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
177 (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
178 } else {
179 ifc_out32(&ifc->ifc_nand.nand_fir0,
180 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
181 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
182 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
183 (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT));
184 ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
185
186 ifc_out32(&ifc->ifc_nand.nand_fcr0,
187 NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
188 }
189
190 /* Program FBCR = 0 for full page read */
191 ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
192
193 /* Read and copy u-boot on SDRAM from NAND device, In parallel
194 * check for Bad block if found skip it and read continue to
195 * next Block
196 */
197 while (pos < uboot_size) {
198 int i = 0;
199 do {
200 pg_no = offs / page_size;
201 bufnum = pg_no & bufnum_mask;
202 sram_addr = bufnum * page_size * 2;
203
204 ifc_out32(&ifc->ifc_nand.row0, pg_no);
205 ifc_out32(&ifc->ifc_nand.col0, 0);
206 /* start read */
207 ifc_out32(&ifc->ifc_nand.nandseq_strt,
208 IFC_NAND_SEQ_STRT_FIR_STRT);
209
210 /* wait for read to complete */
211 nand_wait(&buf[sram_addr], bufnum, page_size);
212
213 /*
214 * If either of the first two pages are marked bad,
215 * continue to the next block.
216 */
217 if (i++ < 2 &&
218 bad_block(&buf[sram_addr + page_size + bad_marker],
219 port_size)) {
220 puts("skipping\n");
221 offs = (offs + blk_size) & ~(blk_size - 1);
222 pos &= ~(blk_size - 1);
223 break;
224 }
225
226 for (j = 0; j < page_size; j++)
227 dst[pos + j] = __raw_readb(&buf[sram_addr + j]);
228
229 pos += page_size;
230 offs += page_size;
231 } while ((offs & (blk_size - 1)) && (pos < uboot_size));
232 }
233
234 return 0;
235 }
236
237 /*
238 * Main entrypoint for NAND Boot. It's necessary that SDRAM is already
239 * configured and available since this code loads the main U-Boot image
240 * from NAND into SDRAM and starts from there.
241 */
242 void nand_boot(void)
243 {
244 __attribute__((noreturn)) void (*uboot)(void);
245 /*
246 * Load U-Boot image from NAND into RAM
247 */
248 nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS,
249 CONFIG_SYS_NAND_U_BOOT_SIZE,
250 (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
251
252 #ifdef CONFIG_NAND_ENV_DST
253 nand_spl_load_image(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
254 (uchar *)CONFIG_NAND_ENV_DST);
255
256 #ifdef CONFIG_ENV_OFFSET_REDUND
257 nand_spl_load_image(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
258 (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
259 #endif
260 #endif
261 /*
262 * Jump to U-Boot image
263 */
264 #ifdef CONFIG_SPL_FLUSH_IMAGE
265 /*
266 * Clean d-cache and invalidate i-cache, to
267 * make sure that no stale data is executed.
268 */
269 flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE);
270 #endif
271 uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
272 uboot();
273 }
274
275 #ifndef CONFIG_SPL_NAND_INIT
276 void nand_init(void)
277 {
278 }
279
280 void nand_deselect(void)
281 {
282 }
283 #endif