]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - drivers/mtd/nand/mtk_nand.c
Merge branch 'linus' into sched/core, to pick up fixes
[thirdparty/kernel/linux.git] / drivers / mtd / nand / mtk_nand.c
1 /*
2 * MTK NAND Flash controller driver.
3 * Copyright (C) 2016 MediaTek Inc.
4 * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
5 * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17 #include <linux/platform_device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/clk.h>
22 #include <linux/mtd/nand.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/module.h>
25 #include <linux/iopoll.h>
26 #include <linux/of.h>
27 #include "mtk_ecc.h"
28
29 /* NAND controller register definition */
30 #define NFI_CNFG (0x00)
31 #define CNFG_AHB BIT(0)
32 #define CNFG_READ_EN BIT(1)
33 #define CNFG_DMA_BURST_EN BIT(2)
34 #define CNFG_BYTE_RW BIT(6)
35 #define CNFG_HW_ECC_EN BIT(8)
36 #define CNFG_AUTO_FMT_EN BIT(9)
37 #define CNFG_OP_CUST (6 << 12)
38 #define NFI_PAGEFMT (0x04)
39 #define PAGEFMT_FDM_ECC_SHIFT (12)
40 #define PAGEFMT_FDM_SHIFT (8)
41 #define PAGEFMT_SPARE_16 (0)
42 #define PAGEFMT_SPARE_26 (1)
43 #define PAGEFMT_SPARE_27 (2)
44 #define PAGEFMT_SPARE_28 (3)
45 #define PAGEFMT_SPARE_32 (4)
46 #define PAGEFMT_SPARE_36 (5)
47 #define PAGEFMT_SPARE_40 (6)
48 #define PAGEFMT_SPARE_44 (7)
49 #define PAGEFMT_SPARE_48 (8)
50 #define PAGEFMT_SPARE_49 (9)
51 #define PAGEFMT_SPARE_50 (0xa)
52 #define PAGEFMT_SPARE_51 (0xb)
53 #define PAGEFMT_SPARE_52 (0xc)
54 #define PAGEFMT_SPARE_62 (0xd)
55 #define PAGEFMT_SPARE_63 (0xe)
56 #define PAGEFMT_SPARE_64 (0xf)
57 #define PAGEFMT_SPARE_SHIFT (4)
58 #define PAGEFMT_SEC_SEL_512 BIT(2)
59 #define PAGEFMT_512_2K (0)
60 #define PAGEFMT_2K_4K (1)
61 #define PAGEFMT_4K_8K (2)
62 #define PAGEFMT_8K_16K (3)
63 /* NFI control */
64 #define NFI_CON (0x08)
65 #define CON_FIFO_FLUSH BIT(0)
66 #define CON_NFI_RST BIT(1)
67 #define CON_BRD BIT(8) /* burst read */
68 #define CON_BWR BIT(9) /* burst write */
69 #define CON_SEC_SHIFT (12)
70 /* Timming control register */
71 #define NFI_ACCCON (0x0C)
72 #define NFI_INTR_EN (0x10)
73 #define INTR_AHB_DONE_EN BIT(6)
74 #define NFI_INTR_STA (0x14)
75 #define NFI_CMD (0x20)
76 #define NFI_ADDRNOB (0x30)
77 #define NFI_COLADDR (0x34)
78 #define NFI_ROWADDR (0x38)
79 #define NFI_STRDATA (0x40)
80 #define STAR_EN (1)
81 #define STAR_DE (0)
82 #define NFI_CNRNB (0x44)
83 #define NFI_DATAW (0x50)
84 #define NFI_DATAR (0x54)
85 #define NFI_PIO_DIRDY (0x58)
86 #define PIO_DI_RDY (0x01)
87 #define NFI_STA (0x60)
88 #define STA_CMD BIT(0)
89 #define STA_ADDR BIT(1)
90 #define STA_BUSY BIT(8)
91 #define STA_EMP_PAGE BIT(12)
92 #define NFI_FSM_CUSTDATA (0xe << 16)
93 #define NFI_FSM_MASK (0xf << 16)
94 #define NFI_ADDRCNTR (0x70)
95 #define CNTR_MASK GENMASK(16, 12)
96 #define ADDRCNTR_SEC_SHIFT (12)
97 #define ADDRCNTR_SEC(val) \
98 (((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
99 #define NFI_STRADDR (0x80)
100 #define NFI_BYTELEN (0x84)
101 #define NFI_CSEL (0x90)
102 #define NFI_FDML(x) (0xA0 + (x) * sizeof(u32) * 2)
103 #define NFI_FDMM(x) (0xA4 + (x) * sizeof(u32) * 2)
104 #define NFI_FDM_MAX_SIZE (8)
105 #define NFI_FDM_MIN_SIZE (1)
106 #define NFI_MASTER_STA (0x224)
107 #define MASTER_STA_MASK (0x0FFF)
108 #define NFI_EMPTY_THRESH (0x23C)
109
110 #define MTK_NAME "mtk-nand"
111 #define KB(x) ((x) * 1024UL)
112 #define MB(x) (KB(x) * 1024UL)
113
114 #define MTK_TIMEOUT (500000)
115 #define MTK_RESET_TIMEOUT (1000000)
116 #define MTK_MAX_SECTOR (16)
117 #define MTK_NAND_MAX_NSELS (2)
118
119 struct mtk_nfc_bad_mark_ctl {
120 void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
121 u32 sec;
122 u32 pos;
123 };
124
125 /*
126 * FDM: region used to store free OOB data
127 */
128 struct mtk_nfc_fdm {
129 u32 reg_size;
130 u32 ecc_size;
131 };
132
133 struct mtk_nfc_nand_chip {
134 struct list_head node;
135 struct nand_chip nand;
136
137 struct mtk_nfc_bad_mark_ctl bad_mark;
138 struct mtk_nfc_fdm fdm;
139 u32 spare_per_sector;
140
141 int nsels;
142 u8 sels[0];
143 /* nothing after this field */
144 };
145
146 struct mtk_nfc_clk {
147 struct clk *nfi_clk;
148 struct clk *pad_clk;
149 };
150
151 struct mtk_nfc {
152 struct nand_hw_control controller;
153 struct mtk_ecc_config ecc_cfg;
154 struct mtk_nfc_clk clk;
155 struct mtk_ecc *ecc;
156
157 struct device *dev;
158 void __iomem *regs;
159
160 struct completion done;
161 struct list_head chips;
162
163 u8 *buffer;
164 };
165
166 static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
167 {
168 return container_of(nand, struct mtk_nfc_nand_chip, nand);
169 }
170
171 static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
172 {
173 return (u8 *)p + i * chip->ecc.size;
174 }
175
176 static inline u8 *oob_ptr(struct nand_chip *chip, int i)
177 {
178 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
179 u8 *poi;
180
181 /* map the sector's FDM data to free oob:
182 * the beginning of the oob area stores the FDM data of bad mark sectors
183 */
184
185 if (i < mtk_nand->bad_mark.sec)
186 poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
187 else if (i == mtk_nand->bad_mark.sec)
188 poi = chip->oob_poi;
189 else
190 poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;
191
192 return poi;
193 }
194
195 static inline int mtk_data_len(struct nand_chip *chip)
196 {
197 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
198
199 return chip->ecc.size + mtk_nand->spare_per_sector;
200 }
201
202 static inline u8 *mtk_data_ptr(struct nand_chip *chip, int i)
203 {
204 struct mtk_nfc *nfc = nand_get_controller_data(chip);
205
206 return nfc->buffer + i * mtk_data_len(chip);
207 }
208
209 static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
210 {
211 struct mtk_nfc *nfc = nand_get_controller_data(chip);
212
213 return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
214 }
215
216 static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
217 {
218 writel(val, nfc->regs + reg);
219 }
220
221 static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
222 {
223 writew(val, nfc->regs + reg);
224 }
225
226 static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
227 {
228 writeb(val, nfc->regs + reg);
229 }
230
231 static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
232 {
233 return readl_relaxed(nfc->regs + reg);
234 }
235
236 static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
237 {
238 return readw_relaxed(nfc->regs + reg);
239 }
240
241 static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
242 {
243 return readb_relaxed(nfc->regs + reg);
244 }
245
246 static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
247 {
248 struct device *dev = nfc->dev;
249 u32 val;
250 int ret;
251
252 /* reset all registers and force the NFI master to terminate */
253 nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
254
255 /* wait for the master to finish the last transaction */
256 ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
257 !(val & MASTER_STA_MASK), 50,
258 MTK_RESET_TIMEOUT);
259 if (ret)
260 dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
261 NFI_MASTER_STA, val);
262
263 /* ensure any status register affected by the NFI master is reset */
264 nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
265 nfi_writew(nfc, STAR_DE, NFI_STRDATA);
266 }
267
268 static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
269 {
270 struct device *dev = nfc->dev;
271 u32 val;
272 int ret;
273
274 nfi_writel(nfc, command, NFI_CMD);
275
276 ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
277 !(val & STA_CMD), 10, MTK_TIMEOUT);
278 if (ret) {
279 dev_warn(dev, "nfi core timed out entering command mode\n");
280 return -EIO;
281 }
282
283 return 0;
284 }
285
286 static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
287 {
288 struct device *dev = nfc->dev;
289 u32 val;
290 int ret;
291
292 nfi_writel(nfc, addr, NFI_COLADDR);
293 nfi_writel(nfc, 0, NFI_ROWADDR);
294 nfi_writew(nfc, 1, NFI_ADDRNOB);
295
296 ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
297 !(val & STA_ADDR), 10, MTK_TIMEOUT);
298 if (ret) {
299 dev_warn(dev, "nfi core timed out entering address mode\n");
300 return -EIO;
301 }
302
303 return 0;
304 }
305
306 static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
307 {
308 struct nand_chip *chip = mtd_to_nand(mtd);
309 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
310 struct mtk_nfc *nfc = nand_get_controller_data(chip);
311 u32 fmt, spare;
312
313 if (!mtd->writesize)
314 return 0;
315
316 spare = mtk_nand->spare_per_sector;
317
318 switch (mtd->writesize) {
319 case 512:
320 fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
321 break;
322 case KB(2):
323 if (chip->ecc.size == 512)
324 fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
325 else
326 fmt = PAGEFMT_512_2K;
327 break;
328 case KB(4):
329 if (chip->ecc.size == 512)
330 fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
331 else
332 fmt = PAGEFMT_2K_4K;
333 break;
334 case KB(8):
335 if (chip->ecc.size == 512)
336 fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
337 else
338 fmt = PAGEFMT_4K_8K;
339 break;
340 case KB(16):
341 fmt = PAGEFMT_8K_16K;
342 break;
343 default:
344 dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
345 return -EINVAL;
346 }
347
348 /*
349 * the hardware will double the value for this eccsize, so we need to
350 * halve it
351 */
352 if (chip->ecc.size == 1024)
353 spare >>= 1;
354
355 switch (spare) {
356 case 16:
357 fmt |= (PAGEFMT_SPARE_16 << PAGEFMT_SPARE_SHIFT);
358 break;
359 case 26:
360 fmt |= (PAGEFMT_SPARE_26 << PAGEFMT_SPARE_SHIFT);
361 break;
362 case 27:
363 fmt |= (PAGEFMT_SPARE_27 << PAGEFMT_SPARE_SHIFT);
364 break;
365 case 28:
366 fmt |= (PAGEFMT_SPARE_28 << PAGEFMT_SPARE_SHIFT);
367 break;
368 case 32:
369 fmt |= (PAGEFMT_SPARE_32 << PAGEFMT_SPARE_SHIFT);
370 break;
371 case 36:
372 fmt |= (PAGEFMT_SPARE_36 << PAGEFMT_SPARE_SHIFT);
373 break;
374 case 40:
375 fmt |= (PAGEFMT_SPARE_40 << PAGEFMT_SPARE_SHIFT);
376 break;
377 case 44:
378 fmt |= (PAGEFMT_SPARE_44 << PAGEFMT_SPARE_SHIFT);
379 break;
380 case 48:
381 fmt |= (PAGEFMT_SPARE_48 << PAGEFMT_SPARE_SHIFT);
382 break;
383 case 49:
384 fmt |= (PAGEFMT_SPARE_49 << PAGEFMT_SPARE_SHIFT);
385 break;
386 case 50:
387 fmt |= (PAGEFMT_SPARE_50 << PAGEFMT_SPARE_SHIFT);
388 break;
389 case 51:
390 fmt |= (PAGEFMT_SPARE_51 << PAGEFMT_SPARE_SHIFT);
391 break;
392 case 52:
393 fmt |= (PAGEFMT_SPARE_52 << PAGEFMT_SPARE_SHIFT);
394 break;
395 case 62:
396 fmt |= (PAGEFMT_SPARE_62 << PAGEFMT_SPARE_SHIFT);
397 break;
398 case 63:
399 fmt |= (PAGEFMT_SPARE_63 << PAGEFMT_SPARE_SHIFT);
400 break;
401 case 64:
402 fmt |= (PAGEFMT_SPARE_64 << PAGEFMT_SPARE_SHIFT);
403 break;
404 default:
405 dev_err(nfc->dev, "invalid spare per sector %d\n", spare);
406 return -EINVAL;
407 }
408
409 fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
410 fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
411 nfi_writew(nfc, fmt, NFI_PAGEFMT);
412
413 nfc->ecc_cfg.strength = chip->ecc.strength;
414 nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
415
416 return 0;
417 }
418
419 static void mtk_nfc_select_chip(struct mtd_info *mtd, int chip)
420 {
421 struct nand_chip *nand = mtd_to_nand(mtd);
422 struct mtk_nfc *nfc = nand_get_controller_data(nand);
423 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
424
425 if (chip < 0)
426 return;
427
428 mtk_nfc_hw_runtime_config(mtd);
429
430 nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL);
431 }
432
433 static int mtk_nfc_dev_ready(struct mtd_info *mtd)
434 {
435 struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
436
437 if (nfi_readl(nfc, NFI_STA) & STA_BUSY)
438 return 0;
439
440 return 1;
441 }
442
443 static void mtk_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
444 {
445 struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
446
447 if (ctrl & NAND_ALE) {
448 mtk_nfc_send_address(nfc, dat);
449 } else if (ctrl & NAND_CLE) {
450 mtk_nfc_hw_reset(nfc);
451
452 nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
453 mtk_nfc_send_command(nfc, dat);
454 }
455 }
456
457 static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
458 {
459 int rc;
460 u8 val;
461
462 rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
463 val & PIO_DI_RDY, 10, MTK_TIMEOUT);
464 if (rc < 0)
465 dev_err(nfc->dev, "data not ready\n");
466 }
467
468 static inline u8 mtk_nfc_read_byte(struct mtd_info *mtd)
469 {
470 struct nand_chip *chip = mtd_to_nand(mtd);
471 struct mtk_nfc *nfc = nand_get_controller_data(chip);
472 u32 reg;
473
474 /* after each byte read, the NFI_STA reg is reset by the hardware */
475 reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
476 if (reg != NFI_FSM_CUSTDATA) {
477 reg = nfi_readw(nfc, NFI_CNFG);
478 reg |= CNFG_BYTE_RW | CNFG_READ_EN;
479 nfi_writew(nfc, reg, NFI_CNFG);
480
481 /*
482 * set to max sector to allow the HW to continue reading over
483 * unaligned accesses
484 */
485 reg = (MTK_MAX_SECTOR << CON_SEC_SHIFT) | CON_BRD;
486 nfi_writel(nfc, reg, NFI_CON);
487
488 /* trigger to fetch data */
489 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
490 }
491
492 mtk_nfc_wait_ioready(nfc);
493
494 return nfi_readb(nfc, NFI_DATAR);
495 }
496
497 static void mtk_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
498 {
499 int i;
500
501 for (i = 0; i < len; i++)
502 buf[i] = mtk_nfc_read_byte(mtd);
503 }
504
505 static void mtk_nfc_write_byte(struct mtd_info *mtd, u8 byte)
506 {
507 struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
508 u32 reg;
509
510 reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
511
512 if (reg != NFI_FSM_CUSTDATA) {
513 reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
514 nfi_writew(nfc, reg, NFI_CNFG);
515
516 reg = MTK_MAX_SECTOR << CON_SEC_SHIFT | CON_BWR;
517 nfi_writel(nfc, reg, NFI_CON);
518
519 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
520 }
521
522 mtk_nfc_wait_ioready(nfc);
523 nfi_writeb(nfc, byte, NFI_DATAW);
524 }
525
526 static void mtk_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
527 {
528 int i;
529
530 for (i = 0; i < len; i++)
531 mtk_nfc_write_byte(mtd, buf[i]);
532 }
533
534 static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
535 {
536 struct mtk_nfc *nfc = nand_get_controller_data(chip);
537 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
538 int size = chip->ecc.size + mtk_nand->fdm.reg_size;
539
540 nfc->ecc_cfg.mode = ECC_DMA_MODE;
541 nfc->ecc_cfg.op = ECC_ENCODE;
542
543 return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
544 }
545
546 static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
547 {
548 /* nop */
549 }
550
551 static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
552 {
553 struct nand_chip *chip = mtd_to_nand(mtd);
554 struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
555 u32 bad_pos = nand->bad_mark.pos;
556
557 if (raw)
558 bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
559 else
560 bad_pos += nand->bad_mark.sec * chip->ecc.size;
561
562 swap(chip->oob_poi[0], buf[bad_pos]);
563 }
564
565 static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
566 u32 len, const u8 *buf)
567 {
568 struct nand_chip *chip = mtd_to_nand(mtd);
569 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
570 struct mtk_nfc *nfc = nand_get_controller_data(chip);
571 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
572 u32 start, end;
573 int i, ret;
574
575 start = offset / chip->ecc.size;
576 end = DIV_ROUND_UP(offset + len, chip->ecc.size);
577
578 memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
579 for (i = 0; i < chip->ecc.steps; i++) {
580 memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
581 chip->ecc.size);
582
583 if (start > i || i >= end)
584 continue;
585
586 if (i == mtk_nand->bad_mark.sec)
587 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
588
589 memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
590
591 /* program the CRC back to the OOB */
592 ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
593 if (ret < 0)
594 return ret;
595 }
596
597 return 0;
598 }
599
600 static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
601 {
602 struct nand_chip *chip = mtd_to_nand(mtd);
603 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
604 struct mtk_nfc *nfc = nand_get_controller_data(chip);
605 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
606 u32 i;
607
608 memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
609 for (i = 0; i < chip->ecc.steps; i++) {
610 if (buf)
611 memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
612 chip->ecc.size);
613
614 if (i == mtk_nand->bad_mark.sec)
615 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
616
617 memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
618 }
619 }
620
621 static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
622 u32 sectors)
623 {
624 struct mtk_nfc *nfc = nand_get_controller_data(chip);
625 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
626 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
627 u32 vall, valm;
628 u8 *oobptr;
629 int i, j;
630
631 for (i = 0; i < sectors; i++) {
632 oobptr = oob_ptr(chip, start + i);
633 vall = nfi_readl(nfc, NFI_FDML(i));
634 valm = nfi_readl(nfc, NFI_FDMM(i));
635
636 for (j = 0; j < fdm->reg_size; j++)
637 oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
638 }
639 }
640
641 static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
642 {
643 struct mtk_nfc *nfc = nand_get_controller_data(chip);
644 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
645 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
646 u32 vall, valm;
647 u8 *oobptr;
648 int i, j;
649
650 for (i = 0; i < chip->ecc.steps; i++) {
651 oobptr = oob_ptr(chip, i);
652 vall = 0;
653 valm = 0;
654 for (j = 0; j < 8; j++) {
655 if (j < 4)
656 vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
657 << (j * 8);
658 else
659 valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
660 << ((j - 4) * 8);
661 }
662 nfi_writel(nfc, vall, NFI_FDML(i));
663 nfi_writel(nfc, valm, NFI_FDMM(i));
664 }
665 }
666
667 static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
668 const u8 *buf, int page, int len)
669 {
670 struct mtk_nfc *nfc = nand_get_controller_data(chip);
671 struct device *dev = nfc->dev;
672 dma_addr_t addr;
673 u32 reg;
674 int ret;
675
676 addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
677 ret = dma_mapping_error(nfc->dev, addr);
678 if (ret) {
679 dev_err(nfc->dev, "dma mapping error\n");
680 return -EINVAL;
681 }
682
683 reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
684 nfi_writew(nfc, reg, NFI_CNFG);
685
686 nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
687 nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
688 nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
689
690 init_completion(&nfc->done);
691
692 reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
693 nfi_writel(nfc, reg, NFI_CON);
694 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
695
696 ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
697 if (!ret) {
698 dev_err(dev, "program ahb done timeout\n");
699 nfi_writew(nfc, 0, NFI_INTR_EN);
700 ret = -ETIMEDOUT;
701 goto timeout;
702 }
703
704 ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
705 ADDRCNTR_SEC(reg) >= chip->ecc.steps,
706 10, MTK_TIMEOUT);
707 if (ret)
708 dev_err(dev, "hwecc write timeout\n");
709
710 timeout:
711
712 dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
713 nfi_writel(nfc, 0, NFI_CON);
714
715 return ret;
716 }
717
718 static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
719 const u8 *buf, int page, int raw)
720 {
721 struct mtk_nfc *nfc = nand_get_controller_data(chip);
722 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
723 size_t len;
724 const u8 *bufpoi;
725 u32 reg;
726 int ret;
727
728 if (!raw) {
729 /* OOB => FDM: from register, ECC: from HW */
730 reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
731 nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);
732
733 nfc->ecc_cfg.op = ECC_ENCODE;
734 nfc->ecc_cfg.mode = ECC_NFI_MODE;
735 ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
736 if (ret) {
737 /* clear NFI config */
738 reg = nfi_readw(nfc, NFI_CNFG);
739 reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
740 nfi_writew(nfc, reg, NFI_CNFG);
741
742 return ret;
743 }
744
745 memcpy(nfc->buffer, buf, mtd->writesize);
746 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
747 bufpoi = nfc->buffer;
748
749 /* write OOB into the FDM registers (OOB area in MTK NAND) */
750 mtk_nfc_write_fdm(chip);
751 } else {
752 bufpoi = buf;
753 }
754
755 len = mtd->writesize + (raw ? mtd->oobsize : 0);
756 ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);
757
758 if (!raw)
759 mtk_ecc_disable(nfc->ecc);
760
761 return ret;
762 }
763
764 static int mtk_nfc_write_page_hwecc(struct mtd_info *mtd,
765 struct nand_chip *chip, const u8 *buf,
766 int oob_on, int page)
767 {
768 return mtk_nfc_write_page(mtd, chip, buf, page, 0);
769 }
770
771 static int mtk_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
772 const u8 *buf, int oob_on, int pg)
773 {
774 struct mtk_nfc *nfc = nand_get_controller_data(chip);
775
776 mtk_nfc_format_page(mtd, buf);
777 return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
778 }
779
780 static int mtk_nfc_write_subpage_hwecc(struct mtd_info *mtd,
781 struct nand_chip *chip, u32 offset,
782 u32 data_len, const u8 *buf,
783 int oob_on, int page)
784 {
785 struct mtk_nfc *nfc = nand_get_controller_data(chip);
786 int ret;
787
788 ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
789 if (ret < 0)
790 return ret;
791
792 /* use the data in the private buffer (now with FDM and CRC) */
793 return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
794 }
795
796 static int mtk_nfc_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
797 int page)
798 {
799 int ret;
800
801 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
802
803 ret = mtk_nfc_write_page_raw(mtd, chip, NULL, 1, page);
804 if (ret < 0)
805 return -EIO;
806
807 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
808 ret = chip->waitfunc(mtd, chip);
809
810 return ret & NAND_STATUS_FAIL ? -EIO : 0;
811 }
812
813 static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors)
814 {
815 struct nand_chip *chip = mtd_to_nand(mtd);
816 struct mtk_nfc *nfc = nand_get_controller_data(chip);
817 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
818 struct mtk_ecc_stats stats;
819 int rc, i;
820
821 rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
822 if (rc) {
823 memset(buf, 0xff, sectors * chip->ecc.size);
824 for (i = 0; i < sectors; i++)
825 memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size);
826 return 0;
827 }
828
829 mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
830 mtd->ecc_stats.corrected += stats.corrected;
831 mtd->ecc_stats.failed += stats.failed;
832
833 return stats.bitflips;
834 }
835
836 static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
837 u32 data_offs, u32 readlen,
838 u8 *bufpoi, int page, int raw)
839 {
840 struct mtk_nfc *nfc = nand_get_controller_data(chip);
841 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
842 u32 spare = mtk_nand->spare_per_sector;
843 u32 column, sectors, start, end, reg;
844 dma_addr_t addr;
845 int bitflips;
846 size_t len;
847 u8 *buf;
848 int rc;
849
850 start = data_offs / chip->ecc.size;
851 end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
852
853 sectors = end - start;
854 column = start * (chip->ecc.size + spare);
855
856 len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
857 buf = bufpoi + start * chip->ecc.size;
858
859 if (column != 0)
860 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, column, -1);
861
862 addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
863 rc = dma_mapping_error(nfc->dev, addr);
864 if (rc) {
865 dev_err(nfc->dev, "dma mapping error\n");
866
867 return -EINVAL;
868 }
869
870 reg = nfi_readw(nfc, NFI_CNFG);
871 reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
872 if (!raw) {
873 reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
874 nfi_writew(nfc, reg, NFI_CNFG);
875
876 nfc->ecc_cfg.mode = ECC_NFI_MODE;
877 nfc->ecc_cfg.sectors = sectors;
878 nfc->ecc_cfg.op = ECC_DECODE;
879 rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
880 if (rc) {
881 dev_err(nfc->dev, "ecc enable\n");
882 /* clear NFI_CNFG */
883 reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
884 CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
885 nfi_writew(nfc, reg, NFI_CNFG);
886 dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
887
888 return rc;
889 }
890 } else {
891 nfi_writew(nfc, reg, NFI_CNFG);
892 }
893
894 nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
895 nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
896 nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
897
898 init_completion(&nfc->done);
899 reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
900 nfi_writel(nfc, reg, NFI_CON);
901 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
902
903 rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
904 if (!rc)
905 dev_warn(nfc->dev, "read ahb/dma done timeout\n");
906
907 rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
908 ADDRCNTR_SEC(reg) >= sectors, 10,
909 MTK_TIMEOUT);
910 if (rc < 0) {
911 dev_err(nfc->dev, "subpage done timeout\n");
912 bitflips = -EIO;
913 } else {
914 bitflips = 0;
915 if (!raw) {
916 rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
917 bitflips = rc < 0 ? -ETIMEDOUT :
918 mtk_nfc_update_ecc_stats(mtd, buf, sectors);
919 mtk_nfc_read_fdm(chip, start, sectors);
920 }
921 }
922
923 dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
924
925 if (raw)
926 goto done;
927
928 mtk_ecc_disable(nfc->ecc);
929
930 if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
931 mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
932 done:
933 nfi_writel(nfc, 0, NFI_CON);
934
935 return bitflips;
936 }
937
938 static int mtk_nfc_read_subpage_hwecc(struct mtd_info *mtd,
939 struct nand_chip *chip, u32 off,
940 u32 len, u8 *p, int pg)
941 {
942 return mtk_nfc_read_subpage(mtd, chip, off, len, p, pg, 0);
943 }
944
945 static int mtk_nfc_read_page_hwecc(struct mtd_info *mtd,
946 struct nand_chip *chip, u8 *p,
947 int oob_on, int pg)
948 {
949 return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
950 }
951
952 static int mtk_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
953 u8 *buf, int oob_on, int page)
954 {
955 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
956 struct mtk_nfc *nfc = nand_get_controller_data(chip);
957 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
958 int i, ret;
959
960 memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
961 ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
962 page, 1);
963 if (ret < 0)
964 return ret;
965
966 for (i = 0; i < chip->ecc.steps; i++) {
967 memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);
968
969 if (i == mtk_nand->bad_mark.sec)
970 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
971
972 if (buf)
973 memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
974 chip->ecc.size);
975 }
976
977 return ret;
978 }
979
980 static int mtk_nfc_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
981 int page)
982 {
983 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
984
985 return mtk_nfc_read_page_raw(mtd, chip, NULL, 1, page);
986 }
987
988 static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
989 {
990 /*
991 * ACCON: access timing control register
992 * -------------------------------------
993 * 31:28: minimum required time for CS post pulling down after accessing
994 * the device
995 * 27:22: minimum required time for CS pre pulling down before accessing
996 * the device
997 * 21:16: minimum required time from NCEB low to NREB low
998 * 15:12: minimum required time from NWEB high to NREB low.
999 * 11:08: write enable hold time
1000 * 07:04: write wait states
1001 * 03:00: read wait states
1002 */
1003 nfi_writel(nfc, 0x10804211, NFI_ACCCON);
1004
1005 /*
1006 * CNRNB: nand ready/busy register
1007 * -------------------------------
1008 * 7:4: timeout register for polling the NAND busy/ready signal
1009 * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles.
1010 */
1011 nfi_writew(nfc, 0xf1, NFI_CNRNB);
1012 nfi_writew(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
1013
1014 mtk_nfc_hw_reset(nfc);
1015
1016 nfi_readl(nfc, NFI_INTR_STA);
1017 nfi_writel(nfc, 0, NFI_INTR_EN);
1018 }
1019
1020 static irqreturn_t mtk_nfc_irq(int irq, void *id)
1021 {
1022 struct mtk_nfc *nfc = id;
1023 u16 sta, ien;
1024
1025 sta = nfi_readw(nfc, NFI_INTR_STA);
1026 ien = nfi_readw(nfc, NFI_INTR_EN);
1027
1028 if (!(sta & ien))
1029 return IRQ_NONE;
1030
1031 nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
1032 complete(&nfc->done);
1033
1034 return IRQ_HANDLED;
1035 }
1036
1037 static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk)
1038 {
1039 int ret;
1040
1041 ret = clk_prepare_enable(clk->nfi_clk);
1042 if (ret) {
1043 dev_err(dev, "failed to enable nfi clk\n");
1044 return ret;
1045 }
1046
1047 ret = clk_prepare_enable(clk->pad_clk);
1048 if (ret) {
1049 dev_err(dev, "failed to enable pad clk\n");
1050 clk_disable_unprepare(clk->nfi_clk);
1051 return ret;
1052 }
1053
1054 return 0;
1055 }
1056
1057 static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk)
1058 {
1059 clk_disable_unprepare(clk->nfi_clk);
1060 clk_disable_unprepare(clk->pad_clk);
1061 }
1062
1063 static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1064 struct mtd_oob_region *oob_region)
1065 {
1066 struct nand_chip *chip = mtd_to_nand(mtd);
1067 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1068 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
1069 u32 eccsteps;
1070
1071 eccsteps = mtd->writesize / chip->ecc.size;
1072
1073 if (section >= eccsteps)
1074 return -ERANGE;
1075
1076 oob_region->length = fdm->reg_size - fdm->ecc_size;
1077 oob_region->offset = section * fdm->reg_size + fdm->ecc_size;
1078
1079 return 0;
1080 }
1081
1082 static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1083 struct mtd_oob_region *oob_region)
1084 {
1085 struct nand_chip *chip = mtd_to_nand(mtd);
1086 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1087 u32 eccsteps;
1088
1089 if (section)
1090 return -ERANGE;
1091
1092 eccsteps = mtd->writesize / chip->ecc.size;
1093 oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
1094 oob_region->length = mtd->oobsize - oob_region->offset;
1095
1096 return 0;
1097 }
1098
1099 static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
1100 .free = mtk_nfc_ooblayout_free,
1101 .ecc = mtk_nfc_ooblayout_ecc,
1102 };
1103
1104 static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
1105 {
1106 struct nand_chip *nand = mtd_to_nand(mtd);
1107 struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
1108 u32 ecc_bytes;
1109
1110 ecc_bytes = DIV_ROUND_UP(nand->ecc.strength * ECC_PARITY_BITS, 8);
1111
1112 fdm->reg_size = chip->spare_per_sector - ecc_bytes;
1113 if (fdm->reg_size > NFI_FDM_MAX_SIZE)
1114 fdm->reg_size = NFI_FDM_MAX_SIZE;
1115
1116 /* bad block mark storage */
1117 fdm->ecc_size = 1;
1118 }
1119
1120 static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
1121 struct mtd_info *mtd)
1122 {
1123 struct nand_chip *nand = mtd_to_nand(mtd);
1124
1125 if (mtd->writesize == 512) {
1126 bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
1127 } else {
1128 bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
1129 bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
1130 bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
1131 }
1132 }
1133
1134 static void mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
1135 {
1136 struct nand_chip *nand = mtd_to_nand(mtd);
1137 u32 spare[] = {16, 26, 27, 28, 32, 36, 40, 44,
1138 48, 49, 50, 51, 52, 62, 63, 64};
1139 u32 eccsteps, i;
1140
1141 eccsteps = mtd->writesize / nand->ecc.size;
1142 *sps = mtd->oobsize / eccsteps;
1143
1144 if (nand->ecc.size == 1024)
1145 *sps >>= 1;
1146
1147 for (i = 0; i < ARRAY_SIZE(spare); i++) {
1148 if (*sps <= spare[i]) {
1149 if (!i)
1150 *sps = spare[i];
1151 else if (*sps != spare[i])
1152 *sps = spare[i - 1];
1153 break;
1154 }
1155 }
1156
1157 if (i >= ARRAY_SIZE(spare))
1158 *sps = spare[ARRAY_SIZE(spare) - 1];
1159
1160 if (nand->ecc.size == 1024)
1161 *sps <<= 1;
1162 }
1163
1164 static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
1165 {
1166 struct nand_chip *nand = mtd_to_nand(mtd);
1167 u32 spare;
1168 int free;
1169
1170 /* support only ecc hw mode */
1171 if (nand->ecc.mode != NAND_ECC_HW) {
1172 dev_err(dev, "ecc.mode not supported\n");
1173 return -EINVAL;
1174 }
1175
1176 /* if optional dt settings not present */
1177 if (!nand->ecc.size || !nand->ecc.strength) {
1178 /* use datasheet requirements */
1179 nand->ecc.strength = nand->ecc_strength_ds;
1180 nand->ecc.size = nand->ecc_step_ds;
1181
1182 /*
1183 * align eccstrength and eccsize
1184 * this controller only supports 512 and 1024 sizes
1185 */
1186 if (nand->ecc.size < 1024) {
1187 if (mtd->writesize > 512) {
1188 nand->ecc.size = 1024;
1189 nand->ecc.strength <<= 1;
1190 } else {
1191 nand->ecc.size = 512;
1192 }
1193 } else {
1194 nand->ecc.size = 1024;
1195 }
1196
1197 mtk_nfc_set_spare_per_sector(&spare, mtd);
1198
1199 /* calculate oob bytes except ecc parity data */
1200 free = ((nand->ecc.strength * ECC_PARITY_BITS) + 7) >> 3;
1201 free = spare - free;
1202
1203 /*
1204 * enhance ecc strength if oob left is bigger than max FDM size
1205 * or reduce ecc strength if oob size is not enough for ecc
1206 * parity data.
1207 */
1208 if (free > NFI_FDM_MAX_SIZE) {
1209 spare -= NFI_FDM_MAX_SIZE;
1210 nand->ecc.strength = (spare << 3) / ECC_PARITY_BITS;
1211 } else if (free < 0) {
1212 spare -= NFI_FDM_MIN_SIZE;
1213 nand->ecc.strength = (spare << 3) / ECC_PARITY_BITS;
1214 }
1215 }
1216
1217 mtk_ecc_adjust_strength(&nand->ecc.strength);
1218
1219 dev_info(dev, "eccsize %d eccstrength %d\n",
1220 nand->ecc.size, nand->ecc.strength);
1221
1222 return 0;
1223 }
1224
1225 static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
1226 struct device_node *np)
1227 {
1228 struct mtk_nfc_nand_chip *chip;
1229 struct nand_chip *nand;
1230 struct mtd_info *mtd;
1231 int nsels, len;
1232 u32 tmp;
1233 int ret;
1234 int i;
1235
1236 if (!of_get_property(np, "reg", &nsels))
1237 return -ENODEV;
1238
1239 nsels /= sizeof(u32);
1240 if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
1241 dev_err(dev, "invalid reg property size %d\n", nsels);
1242 return -EINVAL;
1243 }
1244
1245 chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
1246 GFP_KERNEL);
1247 if (!chip)
1248 return -ENOMEM;
1249
1250 chip->nsels = nsels;
1251 for (i = 0; i < nsels; i++) {
1252 ret = of_property_read_u32_index(np, "reg", i, &tmp);
1253 if (ret) {
1254 dev_err(dev, "reg property failure : %d\n", ret);
1255 return ret;
1256 }
1257 chip->sels[i] = tmp;
1258 }
1259
1260 nand = &chip->nand;
1261 nand->controller = &nfc->controller;
1262
1263 nand_set_flash_node(nand, np);
1264 nand_set_controller_data(nand, nfc);
1265
1266 nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ;
1267 nand->dev_ready = mtk_nfc_dev_ready;
1268 nand->select_chip = mtk_nfc_select_chip;
1269 nand->write_byte = mtk_nfc_write_byte;
1270 nand->write_buf = mtk_nfc_write_buf;
1271 nand->read_byte = mtk_nfc_read_byte;
1272 nand->read_buf = mtk_nfc_read_buf;
1273 nand->cmd_ctrl = mtk_nfc_cmd_ctrl;
1274
1275 /* set default mode in case dt entry is missing */
1276 nand->ecc.mode = NAND_ECC_HW;
1277
1278 nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
1279 nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
1280 nand->ecc.write_page = mtk_nfc_write_page_hwecc;
1281 nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
1282 nand->ecc.write_oob = mtk_nfc_write_oob_std;
1283
1284 nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
1285 nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
1286 nand->ecc.read_page = mtk_nfc_read_page_hwecc;
1287 nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
1288 nand->ecc.read_oob = mtk_nfc_read_oob_std;
1289
1290 mtd = nand_to_mtd(nand);
1291 mtd->owner = THIS_MODULE;
1292 mtd->dev.parent = dev;
1293 mtd->name = MTK_NAME;
1294 mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);
1295
1296 mtk_nfc_hw_init(nfc);
1297
1298 ret = nand_scan_ident(mtd, nsels, NULL);
1299 if (ret)
1300 return -ENODEV;
1301
1302 /* store bbt magic in page, cause OOB is not protected */
1303 if (nand->bbt_options & NAND_BBT_USE_FLASH)
1304 nand->bbt_options |= NAND_BBT_NO_OOB;
1305
1306 ret = mtk_nfc_ecc_init(dev, mtd);
1307 if (ret)
1308 return -EINVAL;
1309
1310 if (nand->options & NAND_BUSWIDTH_16) {
1311 dev_err(dev, "16bits buswidth not supported");
1312 return -EINVAL;
1313 }
1314
1315 mtk_nfc_set_spare_per_sector(&chip->spare_per_sector, mtd);
1316 mtk_nfc_set_fdm(&chip->fdm, mtd);
1317 mtk_nfc_set_bad_mark_ctl(&chip->bad_mark, mtd);
1318
1319 len = mtd->writesize + mtd->oobsize;
1320 nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
1321 if (!nfc->buffer)
1322 return -ENOMEM;
1323
1324 ret = nand_scan_tail(mtd);
1325 if (ret)
1326 return -ENODEV;
1327
1328 ret = mtd_device_parse_register(mtd, NULL, NULL, NULL, 0);
1329 if (ret) {
1330 dev_err(dev, "mtd parse partition error\n");
1331 nand_release(mtd);
1332 return ret;
1333 }
1334
1335 list_add_tail(&chip->node, &nfc->chips);
1336
1337 return 0;
1338 }
1339
1340 static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
1341 {
1342 struct device_node *np = dev->of_node;
1343 struct device_node *nand_np;
1344 int ret;
1345
1346 for_each_child_of_node(np, nand_np) {
1347 ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
1348 if (ret) {
1349 of_node_put(nand_np);
1350 return ret;
1351 }
1352 }
1353
1354 return 0;
1355 }
1356
1357 static int mtk_nfc_probe(struct platform_device *pdev)
1358 {
1359 struct device *dev = &pdev->dev;
1360 struct device_node *np = dev->of_node;
1361 struct mtk_nfc *nfc;
1362 struct resource *res;
1363 int ret, irq;
1364
1365 nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1366 if (!nfc)
1367 return -ENOMEM;
1368
1369 spin_lock_init(&nfc->controller.lock);
1370 init_waitqueue_head(&nfc->controller.wq);
1371 INIT_LIST_HEAD(&nfc->chips);
1372
1373 /* probe defer if not ready */
1374 nfc->ecc = of_mtk_ecc_get(np);
1375 if (IS_ERR(nfc->ecc))
1376 return PTR_ERR(nfc->ecc);
1377 else if (!nfc->ecc)
1378 return -ENODEV;
1379
1380 nfc->dev = dev;
1381
1382 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1383 nfc->regs = devm_ioremap_resource(dev, res);
1384 if (IS_ERR(nfc->regs)) {
1385 ret = PTR_ERR(nfc->regs);
1386 dev_err(dev, "no nfi base\n");
1387 goto release_ecc;
1388 }
1389
1390 nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
1391 if (IS_ERR(nfc->clk.nfi_clk)) {
1392 dev_err(dev, "no clk\n");
1393 ret = PTR_ERR(nfc->clk.nfi_clk);
1394 goto release_ecc;
1395 }
1396
1397 nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk");
1398 if (IS_ERR(nfc->clk.pad_clk)) {
1399 dev_err(dev, "no pad clk\n");
1400 ret = PTR_ERR(nfc->clk.pad_clk);
1401 goto release_ecc;
1402 }
1403
1404 ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1405 if (ret)
1406 goto release_ecc;
1407
1408 irq = platform_get_irq(pdev, 0);
1409 if (irq < 0) {
1410 dev_err(dev, "no nfi irq resource\n");
1411 ret = -EINVAL;
1412 goto clk_disable;
1413 }
1414
1415 ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
1416 if (ret) {
1417 dev_err(dev, "failed to request nfi irq\n");
1418 goto clk_disable;
1419 }
1420
1421 ret = dma_set_mask(dev, DMA_BIT_MASK(32));
1422 if (ret) {
1423 dev_err(dev, "failed to set dma mask\n");
1424 goto clk_disable;
1425 }
1426
1427 platform_set_drvdata(pdev, nfc);
1428
1429 ret = mtk_nfc_nand_chips_init(dev, nfc);
1430 if (ret) {
1431 dev_err(dev, "failed to init nand chips\n");
1432 goto clk_disable;
1433 }
1434
1435 return 0;
1436
1437 clk_disable:
1438 mtk_nfc_disable_clk(&nfc->clk);
1439
1440 release_ecc:
1441 mtk_ecc_release(nfc->ecc);
1442
1443 return ret;
1444 }
1445
1446 static int mtk_nfc_remove(struct platform_device *pdev)
1447 {
1448 struct mtk_nfc *nfc = platform_get_drvdata(pdev);
1449 struct mtk_nfc_nand_chip *chip;
1450
1451 while (!list_empty(&nfc->chips)) {
1452 chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip,
1453 node);
1454 nand_release(nand_to_mtd(&chip->nand));
1455 list_del(&chip->node);
1456 }
1457
1458 mtk_ecc_release(nfc->ecc);
1459 mtk_nfc_disable_clk(&nfc->clk);
1460
1461 return 0;
1462 }
1463
1464 #ifdef CONFIG_PM_SLEEP
1465 static int mtk_nfc_suspend(struct device *dev)
1466 {
1467 struct mtk_nfc *nfc = dev_get_drvdata(dev);
1468
1469 mtk_nfc_disable_clk(&nfc->clk);
1470
1471 return 0;
1472 }
1473
1474 static int mtk_nfc_resume(struct device *dev)
1475 {
1476 struct mtk_nfc *nfc = dev_get_drvdata(dev);
1477 struct mtk_nfc_nand_chip *chip;
1478 struct nand_chip *nand;
1479 struct mtd_info *mtd;
1480 int ret;
1481 u32 i;
1482
1483 udelay(200);
1484
1485 ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1486 if (ret)
1487 return ret;
1488
1489 mtk_nfc_hw_init(nfc);
1490
1491 /* reset NAND chip if VCC was powered off */
1492 list_for_each_entry(chip, &nfc->chips, node) {
1493 nand = &chip->nand;
1494 mtd = nand_to_mtd(nand);
1495 for (i = 0; i < chip->nsels; i++) {
1496 nand->select_chip(mtd, i);
1497 nand->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1498 }
1499 }
1500
1501 return 0;
1502 }
1503
1504 static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
1505 #endif
1506
1507 static const struct of_device_id mtk_nfc_id_table[] = {
1508 { .compatible = "mediatek,mt2701-nfc" },
1509 {}
1510 };
1511 MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
1512
1513 static struct platform_driver mtk_nfc_driver = {
1514 .probe = mtk_nfc_probe,
1515 .remove = mtk_nfc_remove,
1516 .driver = {
1517 .name = MTK_NAME,
1518 .of_match_table = mtk_nfc_id_table,
1519 #ifdef CONFIG_PM_SLEEP
1520 .pm = &mtk_nfc_pm_ops,
1521 #endif
1522 },
1523 };
1524
1525 module_platform_driver(mtk_nfc_driver);
1526
1527 MODULE_LICENSE("GPL");
1528 MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
1529 MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");