]> git.ipfire.org Git - thirdparty/u-boot.git/blob - drivers/mtd/nand/mxs_nand.c
SPDX: Convert all of our single license tags to Linux Kernel style
[thirdparty/u-boot.git] / drivers / mtd / nand / mxs_nand.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Freescale i.MX28 NAND flash driver
4 *
5 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
6 * on behalf of DENX Software Engineering GmbH
7 *
8 * Based on code from LTIB:
9 * Freescale GPMI NFC NAND Flash Driver
10 *
11 * Copyright (C) 2010 Freescale Semiconductor, Inc.
12 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
13 */
14
15 #include <common.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/types.h>
19 #include <malloc.h>
20 #include <linux/errno.h>
21 #include <asm/io.h>
22 #include <asm/arch/clock.h>
23 #include <asm/arch/imx-regs.h>
24 #include <asm/mach-imx/regs-bch.h>
25 #include <asm/mach-imx/regs-gpmi.h>
26 #include <asm/arch/sys_proto.h>
27 #include <asm/mach-imx/dma.h>
28
29 #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
30
31 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512
32 #if (defined(CONFIG_MX6) || defined(CONFIG_MX7))
33 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 2
34 #else
35 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 0
36 #endif
37 #define MXS_NAND_METADATA_SIZE 10
38 #define MXS_NAND_BITS_PER_ECC_LEVEL 13
39
40 #if !defined(CONFIG_SYS_CACHELINE_SIZE) || CONFIG_SYS_CACHELINE_SIZE < 32
41 #define MXS_NAND_COMMAND_BUFFER_SIZE 32
42 #else
43 #define MXS_NAND_COMMAND_BUFFER_SIZE CONFIG_SYS_CACHELINE_SIZE
44 #endif
45
46 #define MXS_NAND_BCH_TIMEOUT 10000
47
48 struct mxs_nand_info {
49 int cur_chip;
50
51 uint32_t cmd_queue_len;
52 uint32_t data_buf_size;
53
54 uint8_t *cmd_buf;
55 uint8_t *data_buf;
56 uint8_t *oob_buf;
57
58 uint8_t marking_block_bad;
59 uint8_t raw_oob_mode;
60
61 /* Functions with altered behaviour */
62 int (*hooked_read_oob)(struct mtd_info *mtd,
63 loff_t from, struct mtd_oob_ops *ops);
64 int (*hooked_write_oob)(struct mtd_info *mtd,
65 loff_t to, struct mtd_oob_ops *ops);
66 int (*hooked_block_markbad)(struct mtd_info *mtd,
67 loff_t ofs);
68
69 /* DMA descriptors */
70 struct mxs_dma_desc **desc;
71 uint32_t desc_index;
72 };
73
74 struct nand_ecclayout fake_ecc_layout;
75 static int chunk_data_size = MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
76 static int galois_field = 13;
77
78 /*
79 * Cache management functions
80 */
81 #ifndef CONFIG_SYS_DCACHE_OFF
82 static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
83 {
84 uint32_t addr = (uint32_t)info->data_buf;
85
86 flush_dcache_range(addr, addr + info->data_buf_size);
87 }
88
89 static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
90 {
91 uint32_t addr = (uint32_t)info->data_buf;
92
93 invalidate_dcache_range(addr, addr + info->data_buf_size);
94 }
95
96 static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
97 {
98 uint32_t addr = (uint32_t)info->cmd_buf;
99
100 flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
101 }
102 #else
103 static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
104 static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
105 static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
106 #endif
107
108 static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
109 {
110 struct mxs_dma_desc *desc;
111
112 if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
113 printf("MXS NAND: Too many DMA descriptors requested\n");
114 return NULL;
115 }
116
117 desc = info->desc[info->desc_index];
118 info->desc_index++;
119
120 return desc;
121 }
122
123 static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
124 {
125 int i;
126 struct mxs_dma_desc *desc;
127
128 for (i = 0; i < info->desc_index; i++) {
129 desc = info->desc[i];
130 memset(desc, 0, sizeof(struct mxs_dma_desc));
131 desc->address = (dma_addr_t)desc;
132 }
133
134 info->desc_index = 0;
135 }
136
137 static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
138 {
139 return page_data_size / chunk_data_size;
140 }
141
142 static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
143 {
144 return ecc_strength * galois_field;
145 }
146
147 static uint32_t mxs_nand_aux_status_offset(void)
148 {
149 return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
150 }
151
152 static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
153 uint32_t page_oob_size)
154 {
155 int ecc_strength;
156 int max_ecc_strength_supported;
157
158 /* Refer to Chapter 17 for i.MX6DQ, Chapter 18 for i.MX6SX */
159 if (is_mx6sx() || is_mx7())
160 max_ecc_strength_supported = 62;
161 else
162 max_ecc_strength_supported = 40;
163
164 /*
165 * Determine the ECC layout with the formula:
166 * ECC bits per chunk = (total page spare data bits) /
167 * (bits per ECC level) / (chunks per page)
168 * where:
169 * total page spare data bits =
170 * (page oob size - meta data size) * (bits per byte)
171 */
172 ecc_strength = ((page_oob_size - MXS_NAND_METADATA_SIZE) * 8)
173 / (galois_field *
174 mxs_nand_ecc_chunk_cnt(page_data_size));
175
176 return min(round_down(ecc_strength, 2), max_ecc_strength_supported);
177 }
178
179 static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
180 uint32_t ecc_strength)
181 {
182 uint32_t chunk_data_size_in_bits;
183 uint32_t chunk_ecc_size_in_bits;
184 uint32_t chunk_total_size_in_bits;
185 uint32_t block_mark_chunk_number;
186 uint32_t block_mark_chunk_bit_offset;
187 uint32_t block_mark_bit_offset;
188
189 chunk_data_size_in_bits = chunk_data_size * 8;
190 chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength);
191
192 chunk_total_size_in_bits =
193 chunk_data_size_in_bits + chunk_ecc_size_in_bits;
194
195 /* Compute the bit offset of the block mark within the physical page. */
196 block_mark_bit_offset = page_data_size * 8;
197
198 /* Subtract the metadata bits. */
199 block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
200
201 /*
202 * Compute the chunk number (starting at zero) in which the block mark
203 * appears.
204 */
205 block_mark_chunk_number =
206 block_mark_bit_offset / chunk_total_size_in_bits;
207
208 /*
209 * Compute the bit offset of the block mark within its chunk, and
210 * validate it.
211 */
212 block_mark_chunk_bit_offset = block_mark_bit_offset -
213 (block_mark_chunk_number * chunk_total_size_in_bits);
214
215 if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
216 return 1;
217
218 /*
219 * Now that we know the chunk number in which the block mark appears,
220 * we can subtract all the ECC bits that appear before it.
221 */
222 block_mark_bit_offset -=
223 block_mark_chunk_number * chunk_ecc_size_in_bits;
224
225 return block_mark_bit_offset;
226 }
227
228 static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
229 {
230 uint32_t ecc_strength;
231 ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
232 return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
233 }
234
235 static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
236 {
237 uint32_t ecc_strength;
238 ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
239 return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
240 }
241
242 /*
243 * Wait for BCH complete IRQ and clear the IRQ
244 */
245 static int mxs_nand_wait_for_bch_complete(void)
246 {
247 struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
248 int timeout = MXS_NAND_BCH_TIMEOUT;
249 int ret;
250
251 ret = mxs_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
252 BCH_CTRL_COMPLETE_IRQ, timeout);
253
254 writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);
255
256 return ret;
257 }
258
259 /*
260 * This is the function that we install in the cmd_ctrl function pointer of the
261 * owning struct nand_chip. The only functions in the reference implementation
262 * that use these functions pointers are cmdfunc and select_chip.
263 *
264 * In this driver, we implement our own select_chip, so this function will only
265 * be called by the reference implementation's cmdfunc. For this reason, we can
266 * ignore the chip enable bit and concentrate only on sending bytes to the NAND
267 * Flash.
268 */
269 static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
270 {
271 struct nand_chip *nand = mtd_to_nand(mtd);
272 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
273 struct mxs_dma_desc *d;
274 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
275 int ret;
276
277 /*
278 * If this condition is true, something is _VERY_ wrong in MTD
279 * subsystem!
280 */
281 if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
282 printf("MXS NAND: Command queue too long\n");
283 return;
284 }
285
286 /*
287 * Every operation begins with a command byte and a series of zero or
288 * more address bytes. These are distinguished by either the Address
289 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
290 * asserted. When MTD is ready to execute the command, it will
291 * deasert both latch enables.
292 *
293 * Rather than run a separate DMA operation for every single byte, we
294 * queue them up and run a single DMA operation for the entire series
295 * of command and data bytes.
296 */
297 if (ctrl & (NAND_ALE | NAND_CLE)) {
298 if (data != NAND_CMD_NONE)
299 nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
300 return;
301 }
302
303 /*
304 * If control arrives here, MTD has deasserted both the ALE and CLE,
305 * which means it's ready to run an operation. Check if we have any
306 * bytes to send.
307 */
308 if (nand_info->cmd_queue_len == 0)
309 return;
310
311 /* Compile the DMA descriptor -- a descriptor that sends command. */
312 d = mxs_nand_get_dma_desc(nand_info);
313 d->cmd.data =
314 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
315 MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
316 MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
317 (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
318
319 d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
320
321 d->cmd.pio_words[0] =
322 GPMI_CTRL0_COMMAND_MODE_WRITE |
323 GPMI_CTRL0_WORD_LENGTH |
324 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
325 GPMI_CTRL0_ADDRESS_NAND_CLE |
326 GPMI_CTRL0_ADDRESS_INCREMENT |
327 nand_info->cmd_queue_len;
328
329 mxs_dma_desc_append(channel, d);
330
331 /* Flush caches */
332 mxs_nand_flush_cmd_buf(nand_info);
333
334 /* Execute the DMA chain. */
335 ret = mxs_dma_go(channel);
336 if (ret)
337 printf("MXS NAND: Error sending command\n");
338
339 mxs_nand_return_dma_descs(nand_info);
340
341 /* Reset the command queue. */
342 nand_info->cmd_queue_len = 0;
343 }
344
345 /*
346 * Test if the NAND flash is ready.
347 */
348 static int mxs_nand_device_ready(struct mtd_info *mtd)
349 {
350 struct nand_chip *chip = mtd_to_nand(mtd);
351 struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
352 struct mxs_gpmi_regs *gpmi_regs =
353 (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
354 uint32_t tmp;
355
356 tmp = readl(&gpmi_regs->hw_gpmi_stat);
357 tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
358
359 return tmp & 1;
360 }
361
362 /*
363 * Select the NAND chip.
364 */
365 static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
366 {
367 struct nand_chip *nand = mtd_to_nand(mtd);
368 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
369
370 nand_info->cur_chip = chip;
371 }
372
373 /*
374 * Handle block mark swapping.
375 *
376 * Note that, when this function is called, it doesn't know whether it's
377 * swapping the block mark, or swapping it *back* -- but it doesn't matter
378 * because the the operation is the same.
379 */
380 static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
381 uint8_t *data_buf, uint8_t *oob_buf)
382 {
383 uint32_t bit_offset;
384 uint32_t buf_offset;
385
386 uint32_t src;
387 uint32_t dst;
388
389 bit_offset = mxs_nand_mark_bit_offset(mtd);
390 buf_offset = mxs_nand_mark_byte_offset(mtd);
391
392 /*
393 * Get the byte from the data area that overlays the block mark. Since
394 * the ECC engine applies its own view to the bits in the page, the
395 * physical block mark won't (in general) appear on a byte boundary in
396 * the data.
397 */
398 src = data_buf[buf_offset] >> bit_offset;
399 src |= data_buf[buf_offset + 1] << (8 - bit_offset);
400
401 dst = oob_buf[0];
402
403 oob_buf[0] = src;
404
405 data_buf[buf_offset] &= ~(0xff << bit_offset);
406 data_buf[buf_offset + 1] &= 0xff << bit_offset;
407
408 data_buf[buf_offset] |= dst << bit_offset;
409 data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
410 }
411
412 /*
413 * Read data from NAND.
414 */
415 static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
416 {
417 struct nand_chip *nand = mtd_to_nand(mtd);
418 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
419 struct mxs_dma_desc *d;
420 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
421 int ret;
422
423 if (length > NAND_MAX_PAGESIZE) {
424 printf("MXS NAND: DMA buffer too big\n");
425 return;
426 }
427
428 if (!buf) {
429 printf("MXS NAND: DMA buffer is NULL\n");
430 return;
431 }
432
433 /* Compile the DMA descriptor - a descriptor that reads data. */
434 d = mxs_nand_get_dma_desc(nand_info);
435 d->cmd.data =
436 MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
437 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
438 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
439 (length << MXS_DMA_DESC_BYTES_OFFSET);
440
441 d->cmd.address = (dma_addr_t)nand_info->data_buf;
442
443 d->cmd.pio_words[0] =
444 GPMI_CTRL0_COMMAND_MODE_READ |
445 GPMI_CTRL0_WORD_LENGTH |
446 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
447 GPMI_CTRL0_ADDRESS_NAND_DATA |
448 length;
449
450 mxs_dma_desc_append(channel, d);
451
452 /*
453 * A DMA descriptor that waits for the command to end and the chip to
454 * become ready.
455 *
456 * I think we actually should *not* be waiting for the chip to become
457 * ready because, after all, we don't care. I think the original code
458 * did that and no one has re-thought it yet.
459 */
460 d = mxs_nand_get_dma_desc(nand_info);
461 d->cmd.data =
462 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
463 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
464 MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
465
466 d->cmd.address = 0;
467
468 d->cmd.pio_words[0] =
469 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
470 GPMI_CTRL0_WORD_LENGTH |
471 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
472 GPMI_CTRL0_ADDRESS_NAND_DATA;
473
474 mxs_dma_desc_append(channel, d);
475
476 /* Invalidate caches */
477 mxs_nand_inval_data_buf(nand_info);
478
479 /* Execute the DMA chain. */
480 ret = mxs_dma_go(channel);
481 if (ret) {
482 printf("MXS NAND: DMA read error\n");
483 goto rtn;
484 }
485
486 /* Invalidate caches */
487 mxs_nand_inval_data_buf(nand_info);
488
489 memcpy(buf, nand_info->data_buf, length);
490
491 rtn:
492 mxs_nand_return_dma_descs(nand_info);
493 }
494
495 /*
496 * Write data to NAND.
497 */
498 static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
499 int length)
500 {
501 struct nand_chip *nand = mtd_to_nand(mtd);
502 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
503 struct mxs_dma_desc *d;
504 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
505 int ret;
506
507 if (length > NAND_MAX_PAGESIZE) {
508 printf("MXS NAND: DMA buffer too big\n");
509 return;
510 }
511
512 if (!buf) {
513 printf("MXS NAND: DMA buffer is NULL\n");
514 return;
515 }
516
517 memcpy(nand_info->data_buf, buf, length);
518
519 /* Compile the DMA descriptor - a descriptor that writes data. */
520 d = mxs_nand_get_dma_desc(nand_info);
521 d->cmd.data =
522 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
523 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
524 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
525 (length << MXS_DMA_DESC_BYTES_OFFSET);
526
527 d->cmd.address = (dma_addr_t)nand_info->data_buf;
528
529 d->cmd.pio_words[0] =
530 GPMI_CTRL0_COMMAND_MODE_WRITE |
531 GPMI_CTRL0_WORD_LENGTH |
532 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
533 GPMI_CTRL0_ADDRESS_NAND_DATA |
534 length;
535
536 mxs_dma_desc_append(channel, d);
537
538 /* Flush caches */
539 mxs_nand_flush_data_buf(nand_info);
540
541 /* Execute the DMA chain. */
542 ret = mxs_dma_go(channel);
543 if (ret)
544 printf("MXS NAND: DMA write error\n");
545
546 mxs_nand_return_dma_descs(nand_info);
547 }
548
549 /*
550 * Read a single byte from NAND.
551 */
552 static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
553 {
554 uint8_t buf;
555 mxs_nand_read_buf(mtd, &buf, 1);
556 return buf;
557 }
558
559 /*
560 * Read a page from NAND.
561 */
562 static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
563 uint8_t *buf, int oob_required,
564 int page)
565 {
566 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
567 struct mxs_dma_desc *d;
568 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
569 uint32_t corrected = 0, failed = 0;
570 uint8_t *status;
571 int i, ret;
572
573 /* Compile the DMA descriptor - wait for ready. */
574 d = mxs_nand_get_dma_desc(nand_info);
575 d->cmd.data =
576 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
577 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
578 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
579
580 d->cmd.address = 0;
581
582 d->cmd.pio_words[0] =
583 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
584 GPMI_CTRL0_WORD_LENGTH |
585 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
586 GPMI_CTRL0_ADDRESS_NAND_DATA;
587
588 mxs_dma_desc_append(channel, d);
589
590 /* Compile the DMA descriptor - enable the BCH block and read. */
591 d = mxs_nand_get_dma_desc(nand_info);
592 d->cmd.data =
593 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
594 MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
595
596 d->cmd.address = 0;
597
598 d->cmd.pio_words[0] =
599 GPMI_CTRL0_COMMAND_MODE_READ |
600 GPMI_CTRL0_WORD_LENGTH |
601 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
602 GPMI_CTRL0_ADDRESS_NAND_DATA |
603 (mtd->writesize + mtd->oobsize);
604 d->cmd.pio_words[1] = 0;
605 d->cmd.pio_words[2] =
606 GPMI_ECCCTRL_ENABLE_ECC |
607 GPMI_ECCCTRL_ECC_CMD_DECODE |
608 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
609 d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
610 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
611 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
612
613 mxs_dma_desc_append(channel, d);
614
615 /* Compile the DMA descriptor - disable the BCH block. */
616 d = mxs_nand_get_dma_desc(nand_info);
617 d->cmd.data =
618 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
619 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
620 (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
621
622 d->cmd.address = 0;
623
624 d->cmd.pio_words[0] =
625 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
626 GPMI_CTRL0_WORD_LENGTH |
627 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
628 GPMI_CTRL0_ADDRESS_NAND_DATA |
629 (mtd->writesize + mtd->oobsize);
630 d->cmd.pio_words[1] = 0;
631 d->cmd.pio_words[2] = 0;
632
633 mxs_dma_desc_append(channel, d);
634
635 /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
636 d = mxs_nand_get_dma_desc(nand_info);
637 d->cmd.data =
638 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
639 MXS_DMA_DESC_DEC_SEM;
640
641 d->cmd.address = 0;
642
643 mxs_dma_desc_append(channel, d);
644
645 /* Invalidate caches */
646 mxs_nand_inval_data_buf(nand_info);
647
648 /* Execute the DMA chain. */
649 ret = mxs_dma_go(channel);
650 if (ret) {
651 printf("MXS NAND: DMA read error\n");
652 goto rtn;
653 }
654
655 ret = mxs_nand_wait_for_bch_complete();
656 if (ret) {
657 printf("MXS NAND: BCH read timeout\n");
658 goto rtn;
659 }
660
661 /* Invalidate caches */
662 mxs_nand_inval_data_buf(nand_info);
663
664 /* Read DMA completed, now do the mark swapping. */
665 mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
666
667 /* Loop over status bytes, accumulating ECC status. */
668 status = nand_info->oob_buf + mxs_nand_aux_status_offset();
669 for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
670 if (status[i] == 0x00)
671 continue;
672
673 if (status[i] == 0xff)
674 continue;
675
676 if (status[i] == 0xfe) {
677 failed++;
678 continue;
679 }
680
681 corrected += status[i];
682 }
683
684 /* Propagate ECC status to the owning MTD. */
685 mtd->ecc_stats.failed += failed;
686 mtd->ecc_stats.corrected += corrected;
687
688 /*
689 * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
690 * details about our policy for delivering the OOB.
691 *
692 * We fill the caller's buffer with set bits, and then copy the block
693 * mark to the caller's buffer. Note that, if block mark swapping was
694 * necessary, it has already been done, so we can rely on the first
695 * byte of the auxiliary buffer to contain the block mark.
696 */
697 memset(nand->oob_poi, 0xff, mtd->oobsize);
698
699 nand->oob_poi[0] = nand_info->oob_buf[0];
700
701 memcpy(buf, nand_info->data_buf, mtd->writesize);
702
703 rtn:
704 mxs_nand_return_dma_descs(nand_info);
705
706 return ret;
707 }
708
709 /*
710 * Write a page to NAND.
711 */
712 static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
713 struct nand_chip *nand, const uint8_t *buf,
714 int oob_required, int page)
715 {
716 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
717 struct mxs_dma_desc *d;
718 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
719 int ret;
720
721 memcpy(nand_info->data_buf, buf, mtd->writesize);
722 memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
723
724 /* Handle block mark swapping. */
725 mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
726
727 /* Compile the DMA descriptor - write data. */
728 d = mxs_nand_get_dma_desc(nand_info);
729 d->cmd.data =
730 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
731 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
732 (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
733
734 d->cmd.address = 0;
735
736 d->cmd.pio_words[0] =
737 GPMI_CTRL0_COMMAND_MODE_WRITE |
738 GPMI_CTRL0_WORD_LENGTH |
739 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
740 GPMI_CTRL0_ADDRESS_NAND_DATA;
741 d->cmd.pio_words[1] = 0;
742 d->cmd.pio_words[2] =
743 GPMI_ECCCTRL_ENABLE_ECC |
744 GPMI_ECCCTRL_ECC_CMD_ENCODE |
745 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
746 d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
747 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
748 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
749
750 mxs_dma_desc_append(channel, d);
751
752 /* Flush caches */
753 mxs_nand_flush_data_buf(nand_info);
754
755 /* Execute the DMA chain. */
756 ret = mxs_dma_go(channel);
757 if (ret) {
758 printf("MXS NAND: DMA write error\n");
759 goto rtn;
760 }
761
762 ret = mxs_nand_wait_for_bch_complete();
763 if (ret) {
764 printf("MXS NAND: BCH write timeout\n");
765 goto rtn;
766 }
767
768 rtn:
769 mxs_nand_return_dma_descs(nand_info);
770 return 0;
771 }
772
773 /*
774 * Read OOB from NAND.
775 *
776 * This function is a veneer that replaces the function originally installed by
777 * the NAND Flash MTD code.
778 */
779 static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
780 struct mtd_oob_ops *ops)
781 {
782 struct nand_chip *chip = mtd_to_nand(mtd);
783 struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
784 int ret;
785
786 if (ops->mode == MTD_OPS_RAW)
787 nand_info->raw_oob_mode = 1;
788 else
789 nand_info->raw_oob_mode = 0;
790
791 ret = nand_info->hooked_read_oob(mtd, from, ops);
792
793 nand_info->raw_oob_mode = 0;
794
795 return ret;
796 }
797
798 /*
799 * Write OOB to NAND.
800 *
801 * This function is a veneer that replaces the function originally installed by
802 * the NAND Flash MTD code.
803 */
804 static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
805 struct mtd_oob_ops *ops)
806 {
807 struct nand_chip *chip = mtd_to_nand(mtd);
808 struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
809 int ret;
810
811 if (ops->mode == MTD_OPS_RAW)
812 nand_info->raw_oob_mode = 1;
813 else
814 nand_info->raw_oob_mode = 0;
815
816 ret = nand_info->hooked_write_oob(mtd, to, ops);
817
818 nand_info->raw_oob_mode = 0;
819
820 return ret;
821 }
822
823 /*
824 * Mark a block bad in NAND.
825 *
826 * This function is a veneer that replaces the function originally installed by
827 * the NAND Flash MTD code.
828 */
829 static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
830 {
831 struct nand_chip *chip = mtd_to_nand(mtd);
832 struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
833 int ret;
834
835 nand_info->marking_block_bad = 1;
836
837 ret = nand_info->hooked_block_markbad(mtd, ofs);
838
839 nand_info->marking_block_bad = 0;
840
841 return ret;
842 }
843
844 /*
845 * There are several places in this driver where we have to handle the OOB and
846 * block marks. This is the function where things are the most complicated, so
847 * this is where we try to explain it all. All the other places refer back to
848 * here.
849 *
850 * These are the rules, in order of decreasing importance:
851 *
852 * 1) Nothing the caller does can be allowed to imperil the block mark, so all
853 * write operations take measures to protect it.
854 *
855 * 2) In read operations, the first byte of the OOB we return must reflect the
856 * true state of the block mark, no matter where that block mark appears in
857 * the physical page.
858 *
859 * 3) ECC-based read operations return an OOB full of set bits (since we never
860 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
861 * return).
862 *
863 * 4) "Raw" read operations return a direct view of the physical bytes in the
864 * page, using the conventional definition of which bytes are data and which
865 * are OOB. This gives the caller a way to see the actual, physical bytes
866 * in the page, without the distortions applied by our ECC engine.
867 *
868 * What we do for this specific read operation depends on whether we're doing
869 * "raw" read, or an ECC-based read.
870 *
871 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
872 * easy. When reading a page, for example, the NAND Flash MTD code calls our
873 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
874 * ECC-based or raw view of the page is implicit in which function it calls
875 * (there is a similar pair of ECC-based/raw functions for writing).
876 *
877 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
878 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
879 * caller wants an ECC-based or raw view of the page is not propagated down to
880 * this driver.
881 *
882 * Since our OOB *is* covered by ECC, we need this information. So, we hook the
883 * ecc.read_oob and ecc.write_oob function pointers in the owning
884 * struct mtd_info with our own functions. These hook functions set the
885 * raw_oob_mode field so that, when control finally arrives here, we'll know
886 * what to do.
887 */
888 static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
889 int page)
890 {
891 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
892
893 /*
894 * First, fill in the OOB buffer. If we're doing a raw read, we need to
895 * get the bytes from the physical page. If we're not doing a raw read,
896 * we need to fill the buffer with set bits.
897 */
898 if (nand_info->raw_oob_mode) {
899 /*
900 * If control arrives here, we're doing a "raw" read. Send the
901 * command to read the conventional OOB and read it.
902 */
903 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
904 nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
905 } else {
906 /*
907 * If control arrives here, we're not doing a "raw" read. Fill
908 * the OOB buffer with set bits and correct the block mark.
909 */
910 memset(nand->oob_poi, 0xff, mtd->oobsize);
911
912 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
913 mxs_nand_read_buf(mtd, nand->oob_poi, 1);
914 }
915
916 return 0;
917
918 }
919
920 /*
921 * Write OOB data to NAND.
922 */
923 static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
924 int page)
925 {
926 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
927 uint8_t block_mark = 0;
928
929 /*
930 * There are fundamental incompatibilities between the i.MX GPMI NFC and
931 * the NAND Flash MTD model that make it essentially impossible to write
932 * the out-of-band bytes.
933 *
934 * We permit *ONE* exception. If the *intent* of writing the OOB is to
935 * mark a block bad, we can do that.
936 */
937
938 if (!nand_info->marking_block_bad) {
939 printf("NXS NAND: Writing OOB isn't supported\n");
940 return -EIO;
941 }
942
943 /* Write the block mark. */
944 nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
945 nand->write_buf(mtd, &block_mark, 1);
946 nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
947
948 /* Check if it worked. */
949 if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
950 return -EIO;
951
952 return 0;
953 }
954
955 /*
956 * Claims all blocks are good.
957 *
958 * In principle, this function is *only* called when the NAND Flash MTD system
959 * isn't allowed to keep an in-memory bad block table, so it is forced to ask
960 * the driver for bad block information.
961 *
962 * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
963 * this function is *only* called when we take it away.
964 *
965 * Thus, this function is only called when we want *all* blocks to look good,
966 * so it *always* return success.
967 */
968 static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
969 {
970 return 0;
971 }
972
973 /*
974 * Nominally, the purpose of this function is to look for or create the bad
975 * block table. In fact, since the we call this function at the very end of
976 * the initialization process started by nand_scan(), and we doesn't have a
977 * more formal mechanism, we "hook" this function to continue init process.
978 *
979 * At this point, the physical NAND Flash chips have been identified and
980 * counted, so we know the physical geometry. This enables us to make some
981 * important configuration decisions.
982 *
983 * The return value of this function propagates directly back to this driver's
984 * call to nand_scan(). Anything other than zero will cause this driver to
985 * tear everything down and declare failure.
986 */
987 static int mxs_nand_scan_bbt(struct mtd_info *mtd)
988 {
989 struct nand_chip *nand = mtd_to_nand(mtd);
990 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
991 struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
992 uint32_t tmp;
993
994 if (mtd->oobsize > MXS_NAND_CHUNK_DATA_CHUNK_SIZE) {
995 galois_field = 14;
996 chunk_data_size = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 2;
997 }
998
999 if (mtd->oobsize > chunk_data_size) {
1000 printf("Not support the NAND chips whose oob size is larger then %d bytes!\n", chunk_data_size);
1001 return -EINVAL;
1002 }
1003
1004 /* Configure BCH and set NFC geometry */
1005 mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
1006
1007 /* Configure layout 0 */
1008 tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
1009 << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
1010 tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
1011 tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
1012 << BCH_FLASHLAYOUT0_ECC0_OFFSET;
1013 tmp |= chunk_data_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
1014 tmp |= (14 == galois_field ? 1 : 0) <<
1015 BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET;
1016 writel(tmp, &bch_regs->hw_bch_flash0layout0);
1017
1018 tmp = (mtd->writesize + mtd->oobsize)
1019 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
1020 tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
1021 << BCH_FLASHLAYOUT1_ECCN_OFFSET;
1022 tmp |= chunk_data_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
1023 tmp |= (14 == galois_field ? 1 : 0) <<
1024 BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
1025 writel(tmp, &bch_regs->hw_bch_flash0layout1);
1026
1027 /* Set *all* chip selects to use layout 0 */
1028 writel(0, &bch_regs->hw_bch_layoutselect);
1029
1030 /* Enable BCH complete interrupt */
1031 writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
1032
1033 /* Hook some operations at the MTD level. */
1034 if (mtd->_read_oob != mxs_nand_hook_read_oob) {
1035 nand_info->hooked_read_oob = mtd->_read_oob;
1036 mtd->_read_oob = mxs_nand_hook_read_oob;
1037 }
1038
1039 if (mtd->_write_oob != mxs_nand_hook_write_oob) {
1040 nand_info->hooked_write_oob = mtd->_write_oob;
1041 mtd->_write_oob = mxs_nand_hook_write_oob;
1042 }
1043
1044 if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
1045 nand_info->hooked_block_markbad = mtd->_block_markbad;
1046 mtd->_block_markbad = mxs_nand_hook_block_markbad;
1047 }
1048
1049 /* We use the reference implementation for bad block management. */
1050 return nand_default_bbt(mtd);
1051 }
1052
1053 /*
1054 * Allocate DMA buffers
1055 */
1056 int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
1057 {
1058 uint8_t *buf;
1059 const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
1060
1061 nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
1062
1063 /* DMA buffers */
1064 buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
1065 if (!buf) {
1066 printf("MXS NAND: Error allocating DMA buffers\n");
1067 return -ENOMEM;
1068 }
1069
1070 memset(buf, 0, nand_info->data_buf_size);
1071
1072 nand_info->data_buf = buf;
1073 nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
1074 /* Command buffers */
1075 nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
1076 MXS_NAND_COMMAND_BUFFER_SIZE);
1077 if (!nand_info->cmd_buf) {
1078 free(buf);
1079 printf("MXS NAND: Error allocating command buffers\n");
1080 return -ENOMEM;
1081 }
1082 memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
1083 nand_info->cmd_queue_len = 0;
1084
1085 return 0;
1086 }
1087
1088 /*
1089 * Initializes the NFC hardware.
1090 */
1091 int mxs_nand_init(struct mxs_nand_info *info)
1092 {
1093 struct mxs_gpmi_regs *gpmi_regs =
1094 (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
1095 struct mxs_bch_regs *bch_regs =
1096 (struct mxs_bch_regs *)MXS_BCH_BASE;
1097 int i = 0, j, ret = 0;
1098
1099 info->desc = malloc(sizeof(struct mxs_dma_desc *) *
1100 MXS_NAND_DMA_DESCRIPTOR_COUNT);
1101 if (!info->desc) {
1102 ret = -ENOMEM;
1103 goto err1;
1104 }
1105
1106 /* Allocate the DMA descriptors. */
1107 for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
1108 info->desc[i] = mxs_dma_desc_alloc();
1109 if (!info->desc[i]) {
1110 ret = -ENOMEM;
1111 goto err2;
1112 }
1113 }
1114
1115 /* Init the DMA controller. */
1116 mxs_dma_init();
1117 for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
1118 j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
1119 ret = mxs_dma_init_channel(j);
1120 if (ret)
1121 goto err3;
1122 }
1123
1124 /* Reset the GPMI block. */
1125 mxs_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
1126 mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
1127
1128 /*
1129 * Choose NAND mode, set IRQ polarity, disable write protection and
1130 * select BCH ECC.
1131 */
1132 clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
1133 GPMI_CTRL1_GPMI_MODE,
1134 GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
1135 GPMI_CTRL1_BCH_MODE);
1136
1137 return 0;
1138
1139 err3:
1140 for (--j; j >= MXS_DMA_CHANNEL_AHB_APBH_GPMI0; j--)
1141 mxs_dma_release(j);
1142 err2:
1143 for (--i; i >= 0; i--)
1144 mxs_dma_desc_free(info->desc[i]);
1145 free(info->desc);
1146 err1:
1147 if (ret == -ENOMEM)
1148 printf("MXS NAND: Unable to allocate DMA descriptors\n");
1149 return ret;
1150 }
1151
1152 /*!
1153 * This function is called during the driver binding process.
1154 *
1155 * @param pdev the device structure used to store device specific
1156 * information that is used by the suspend, resume and
1157 * remove functions
1158 *
1159 * @return The function always returns 0.
1160 */
1161 int board_nand_init(struct nand_chip *nand)
1162 {
1163 struct mxs_nand_info *nand_info;
1164 int err;
1165
1166 nand_info = malloc(sizeof(struct mxs_nand_info));
1167 if (!nand_info) {
1168 printf("MXS NAND: Failed to allocate private data\n");
1169 return -ENOMEM;
1170 }
1171 memset(nand_info, 0, sizeof(struct mxs_nand_info));
1172
1173 err = mxs_nand_alloc_buffers(nand_info);
1174 if (err)
1175 goto err1;
1176
1177 err = mxs_nand_init(nand_info);
1178 if (err)
1179 goto err2;
1180
1181 memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
1182
1183 nand_set_controller_data(nand, nand_info);
1184 nand->options |= NAND_NO_SUBPAGE_WRITE;
1185
1186 nand->cmd_ctrl = mxs_nand_cmd_ctrl;
1187
1188 nand->dev_ready = mxs_nand_device_ready;
1189 nand->select_chip = mxs_nand_select_chip;
1190 nand->block_bad = mxs_nand_block_bad;
1191 nand->scan_bbt = mxs_nand_scan_bbt;
1192
1193 nand->read_byte = mxs_nand_read_byte;
1194
1195 nand->read_buf = mxs_nand_read_buf;
1196 nand->write_buf = mxs_nand_write_buf;
1197
1198 nand->ecc.read_page = mxs_nand_ecc_read_page;
1199 nand->ecc.write_page = mxs_nand_ecc_write_page;
1200 nand->ecc.read_oob = mxs_nand_ecc_read_oob;
1201 nand->ecc.write_oob = mxs_nand_ecc_write_oob;
1202
1203 nand->ecc.layout = &fake_ecc_layout;
1204 nand->ecc.mode = NAND_ECC_HW;
1205 nand->ecc.bytes = 9;
1206 nand->ecc.size = 512;
1207 nand->ecc.strength = 8;
1208
1209 return 0;
1210
1211 err2:
1212 free(nand_info->data_buf);
1213 free(nand_info->cmd_buf);
1214 err1:
1215 free(nand_info);
1216 return err;
1217 }