]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/mxs_nand.c
Merge branch 'master' of git://git.denx.de/u-boot-video
[people/ms/u-boot.git] / drivers / mtd / nand / mxs_nand.c
1 /*
2 * Freescale i.MX28 NAND flash driver
3 *
4 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
5 * on behalf of DENX Software Engineering GmbH
6 *
7 * Based on code from LTIB:
8 * Freescale GPMI NFC NAND Flash Driver
9 *
10 * Copyright (C) 2010 Freescale Semiconductor, Inc.
11 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License along
24 * with this program; if not, write to the Free Software Foundation, Inc.,
25 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 */
27
28 #include <common.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/types.h>
32 #include <malloc.h>
33 #include <asm/errno.h>
34 #include <asm/io.h>
35 #include <asm/arch/clock.h>
36 #include <asm/arch/imx-regs.h>
37 #include <asm/imx-common/regs-bch.h>
38 #include <asm/imx-common/regs-gpmi.h>
39 #include <asm/arch/sys_proto.h>
40 #include <asm/imx-common/dma.h>
41
42 #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
43
44 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512
45 #if defined(CONFIG_MX6)
46 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 2
47 #else
48 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 0
49 #endif
50 #define MXS_NAND_METADATA_SIZE 10
51
52 #define MXS_NAND_COMMAND_BUFFER_SIZE 32
53
54 #define MXS_NAND_BCH_TIMEOUT 10000
55
56 struct mxs_nand_info {
57 int cur_chip;
58
59 uint32_t cmd_queue_len;
60 uint32_t data_buf_size;
61
62 uint8_t *cmd_buf;
63 uint8_t *data_buf;
64 uint8_t *oob_buf;
65
66 uint8_t marking_block_bad;
67 uint8_t raw_oob_mode;
68
69 /* Functions with altered behaviour */
70 int (*hooked_read_oob)(struct mtd_info *mtd,
71 loff_t from, struct mtd_oob_ops *ops);
72 int (*hooked_write_oob)(struct mtd_info *mtd,
73 loff_t to, struct mtd_oob_ops *ops);
74 int (*hooked_block_markbad)(struct mtd_info *mtd,
75 loff_t ofs);
76
77 /* DMA descriptors */
78 struct mxs_dma_desc **desc;
79 uint32_t desc_index;
80 };
81
82 struct nand_ecclayout fake_ecc_layout;
83
84 /*
85 * Cache management functions
86 */
87 #ifndef CONFIG_SYS_DCACHE_OFF
88 static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
89 {
90 uint32_t addr = (uint32_t)info->data_buf;
91
92 flush_dcache_range(addr, addr + info->data_buf_size);
93 }
94
95 static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
96 {
97 uint32_t addr = (uint32_t)info->data_buf;
98
99 invalidate_dcache_range(addr, addr + info->data_buf_size);
100 }
101
102 static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
103 {
104 uint32_t addr = (uint32_t)info->cmd_buf;
105
106 flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
107 }
108 #else
109 static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
110 static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
111 static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
112 #endif
113
114 static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
115 {
116 struct mxs_dma_desc *desc;
117
118 if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
119 printf("MXS NAND: Too many DMA descriptors requested\n");
120 return NULL;
121 }
122
123 desc = info->desc[info->desc_index];
124 info->desc_index++;
125
126 return desc;
127 }
128
129 static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
130 {
131 int i;
132 struct mxs_dma_desc *desc;
133
134 for (i = 0; i < info->desc_index; i++) {
135 desc = info->desc[i];
136 memset(desc, 0, sizeof(struct mxs_dma_desc));
137 desc->address = (dma_addr_t)desc;
138 }
139
140 info->desc_index = 0;
141 }
142
143 static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
144 {
145 return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
146 }
147
148 static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
149 {
150 return ecc_strength * 13;
151 }
152
153 static uint32_t mxs_nand_aux_status_offset(void)
154 {
155 return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
156 }
157
158 static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
159 uint32_t page_oob_size)
160 {
161 if (page_data_size == 2048)
162 return 8;
163
164 if (page_data_size == 4096) {
165 if (page_oob_size == 128)
166 return 8;
167
168 if (page_oob_size == 218)
169 return 16;
170 }
171
172 return 0;
173 }
174
175 static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
176 uint32_t ecc_strength)
177 {
178 uint32_t chunk_data_size_in_bits;
179 uint32_t chunk_ecc_size_in_bits;
180 uint32_t chunk_total_size_in_bits;
181 uint32_t block_mark_chunk_number;
182 uint32_t block_mark_chunk_bit_offset;
183 uint32_t block_mark_bit_offset;
184
185 chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8;
186 chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength);
187
188 chunk_total_size_in_bits =
189 chunk_data_size_in_bits + chunk_ecc_size_in_bits;
190
191 /* Compute the bit offset of the block mark within the physical page. */
192 block_mark_bit_offset = page_data_size * 8;
193
194 /* Subtract the metadata bits. */
195 block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
196
197 /*
198 * Compute the chunk number (starting at zero) in which the block mark
199 * appears.
200 */
201 block_mark_chunk_number =
202 block_mark_bit_offset / chunk_total_size_in_bits;
203
204 /*
205 * Compute the bit offset of the block mark within its chunk, and
206 * validate it.
207 */
208 block_mark_chunk_bit_offset = block_mark_bit_offset -
209 (block_mark_chunk_number * chunk_total_size_in_bits);
210
211 if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
212 return 1;
213
214 /*
215 * Now that we know the chunk number in which the block mark appears,
216 * we can subtract all the ECC bits that appear before it.
217 */
218 block_mark_bit_offset -=
219 block_mark_chunk_number * chunk_ecc_size_in_bits;
220
221 return block_mark_bit_offset;
222 }
223
224 static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
225 {
226 uint32_t ecc_strength;
227 ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
228 return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
229 }
230
231 static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
232 {
233 uint32_t ecc_strength;
234 ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
235 return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
236 }
237
238 /*
239 * Wait for BCH complete IRQ and clear the IRQ
240 */
241 static int mxs_nand_wait_for_bch_complete(void)
242 {
243 struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
244 int timeout = MXS_NAND_BCH_TIMEOUT;
245 int ret;
246
247 ret = mxs_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
248 BCH_CTRL_COMPLETE_IRQ, timeout);
249
250 writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);
251
252 return ret;
253 }
254
255 /*
256 * This is the function that we install in the cmd_ctrl function pointer of the
257 * owning struct nand_chip. The only functions in the reference implementation
258 * that use these functions pointers are cmdfunc and select_chip.
259 *
260 * In this driver, we implement our own select_chip, so this function will only
261 * be called by the reference implementation's cmdfunc. For this reason, we can
262 * ignore the chip enable bit and concentrate only on sending bytes to the NAND
263 * Flash.
264 */
265 static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
266 {
267 struct nand_chip *nand = mtd->priv;
268 struct mxs_nand_info *nand_info = nand->priv;
269 struct mxs_dma_desc *d;
270 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
271 int ret;
272
273 /*
274 * If this condition is true, something is _VERY_ wrong in MTD
275 * subsystem!
276 */
277 if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
278 printf("MXS NAND: Command queue too long\n");
279 return;
280 }
281
282 /*
283 * Every operation begins with a command byte and a series of zero or
284 * more address bytes. These are distinguished by either the Address
285 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
286 * asserted. When MTD is ready to execute the command, it will
287 * deasert both latch enables.
288 *
289 * Rather than run a separate DMA operation for every single byte, we
290 * queue them up and run a single DMA operation for the entire series
291 * of command and data bytes.
292 */
293 if (ctrl & (NAND_ALE | NAND_CLE)) {
294 if (data != NAND_CMD_NONE)
295 nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
296 return;
297 }
298
299 /*
300 * If control arrives here, MTD has deasserted both the ALE and CLE,
301 * which means it's ready to run an operation. Check if we have any
302 * bytes to send.
303 */
304 if (nand_info->cmd_queue_len == 0)
305 return;
306
307 /* Compile the DMA descriptor -- a descriptor that sends command. */
308 d = mxs_nand_get_dma_desc(nand_info);
309 d->cmd.data =
310 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
311 MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
312 MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
313 (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
314
315 d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
316
317 d->cmd.pio_words[0] =
318 GPMI_CTRL0_COMMAND_MODE_WRITE |
319 GPMI_CTRL0_WORD_LENGTH |
320 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
321 GPMI_CTRL0_ADDRESS_NAND_CLE |
322 GPMI_CTRL0_ADDRESS_INCREMENT |
323 nand_info->cmd_queue_len;
324
325 mxs_dma_desc_append(channel, d);
326
327 /* Flush caches */
328 mxs_nand_flush_cmd_buf(nand_info);
329
330 /* Execute the DMA chain. */
331 ret = mxs_dma_go(channel);
332 if (ret)
333 printf("MXS NAND: Error sending command\n");
334
335 mxs_nand_return_dma_descs(nand_info);
336
337 /* Reset the command queue. */
338 nand_info->cmd_queue_len = 0;
339 }
340
341 /*
342 * Test if the NAND flash is ready.
343 */
344 static int mxs_nand_device_ready(struct mtd_info *mtd)
345 {
346 struct nand_chip *chip = mtd->priv;
347 struct mxs_nand_info *nand_info = chip->priv;
348 struct mxs_gpmi_regs *gpmi_regs =
349 (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
350 uint32_t tmp;
351
352 tmp = readl(&gpmi_regs->hw_gpmi_stat);
353 tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
354
355 return tmp & 1;
356 }
357
358 /*
359 * Select the NAND chip.
360 */
361 static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
362 {
363 struct nand_chip *nand = mtd->priv;
364 struct mxs_nand_info *nand_info = nand->priv;
365
366 nand_info->cur_chip = chip;
367 }
368
369 /*
370 * Handle block mark swapping.
371 *
372 * Note that, when this function is called, it doesn't know whether it's
373 * swapping the block mark, or swapping it *back* -- but it doesn't matter
374 * because the the operation is the same.
375 */
376 static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
377 uint8_t *data_buf, uint8_t *oob_buf)
378 {
379 uint32_t bit_offset;
380 uint32_t buf_offset;
381
382 uint32_t src;
383 uint32_t dst;
384
385 bit_offset = mxs_nand_mark_bit_offset(mtd);
386 buf_offset = mxs_nand_mark_byte_offset(mtd);
387
388 /*
389 * Get the byte from the data area that overlays the block mark. Since
390 * the ECC engine applies its own view to the bits in the page, the
391 * physical block mark won't (in general) appear on a byte boundary in
392 * the data.
393 */
394 src = data_buf[buf_offset] >> bit_offset;
395 src |= data_buf[buf_offset + 1] << (8 - bit_offset);
396
397 dst = oob_buf[0];
398
399 oob_buf[0] = src;
400
401 data_buf[buf_offset] &= ~(0xff << bit_offset);
402 data_buf[buf_offset + 1] &= 0xff << bit_offset;
403
404 data_buf[buf_offset] |= dst << bit_offset;
405 data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
406 }
407
408 /*
409 * Read data from NAND.
410 */
411 static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
412 {
413 struct nand_chip *nand = mtd->priv;
414 struct mxs_nand_info *nand_info = nand->priv;
415 struct mxs_dma_desc *d;
416 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
417 int ret;
418
419 if (length > NAND_MAX_PAGESIZE) {
420 printf("MXS NAND: DMA buffer too big\n");
421 return;
422 }
423
424 if (!buf) {
425 printf("MXS NAND: DMA buffer is NULL\n");
426 return;
427 }
428
429 /* Compile the DMA descriptor - a descriptor that reads data. */
430 d = mxs_nand_get_dma_desc(nand_info);
431 d->cmd.data =
432 MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
433 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
434 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
435 (length << MXS_DMA_DESC_BYTES_OFFSET);
436
437 d->cmd.address = (dma_addr_t)nand_info->data_buf;
438
439 d->cmd.pio_words[0] =
440 GPMI_CTRL0_COMMAND_MODE_READ |
441 GPMI_CTRL0_WORD_LENGTH |
442 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
443 GPMI_CTRL0_ADDRESS_NAND_DATA |
444 length;
445
446 mxs_dma_desc_append(channel, d);
447
448 /*
449 * A DMA descriptor that waits for the command to end and the chip to
450 * become ready.
451 *
452 * I think we actually should *not* be waiting for the chip to become
453 * ready because, after all, we don't care. I think the original code
454 * did that and no one has re-thought it yet.
455 */
456 d = mxs_nand_get_dma_desc(nand_info);
457 d->cmd.data =
458 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
459 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
460 MXS_DMA_DESC_WAIT4END | (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
461
462 d->cmd.address = 0;
463
464 d->cmd.pio_words[0] =
465 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
466 GPMI_CTRL0_WORD_LENGTH |
467 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
468 GPMI_CTRL0_ADDRESS_NAND_DATA;
469
470 mxs_dma_desc_append(channel, d);
471
472 /* Execute the DMA chain. */
473 ret = mxs_dma_go(channel);
474 if (ret) {
475 printf("MXS NAND: DMA read error\n");
476 goto rtn;
477 }
478
479 /* Invalidate caches */
480 mxs_nand_inval_data_buf(nand_info);
481
482 memcpy(buf, nand_info->data_buf, length);
483
484 rtn:
485 mxs_nand_return_dma_descs(nand_info);
486 }
487
488 /*
489 * Write data to NAND.
490 */
491 static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
492 int length)
493 {
494 struct nand_chip *nand = mtd->priv;
495 struct mxs_nand_info *nand_info = nand->priv;
496 struct mxs_dma_desc *d;
497 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
498 int ret;
499
500 if (length > NAND_MAX_PAGESIZE) {
501 printf("MXS NAND: DMA buffer too big\n");
502 return;
503 }
504
505 if (!buf) {
506 printf("MXS NAND: DMA buffer is NULL\n");
507 return;
508 }
509
510 memcpy(nand_info->data_buf, buf, length);
511
512 /* Compile the DMA descriptor - a descriptor that writes data. */
513 d = mxs_nand_get_dma_desc(nand_info);
514 d->cmd.data =
515 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
516 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
517 (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
518 (length << MXS_DMA_DESC_BYTES_OFFSET);
519
520 d->cmd.address = (dma_addr_t)nand_info->data_buf;
521
522 d->cmd.pio_words[0] =
523 GPMI_CTRL0_COMMAND_MODE_WRITE |
524 GPMI_CTRL0_WORD_LENGTH |
525 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
526 GPMI_CTRL0_ADDRESS_NAND_DATA |
527 length;
528
529 mxs_dma_desc_append(channel, d);
530
531 /* Flush caches */
532 mxs_nand_flush_data_buf(nand_info);
533
534 /* Execute the DMA chain. */
535 ret = mxs_dma_go(channel);
536 if (ret)
537 printf("MXS NAND: DMA write error\n");
538
539 mxs_nand_return_dma_descs(nand_info);
540 }
541
542 /*
543 * Read a single byte from NAND.
544 */
545 static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
546 {
547 uint8_t buf;
548 mxs_nand_read_buf(mtd, &buf, 1);
549 return buf;
550 }
551
552 /*
553 * Read a page from NAND.
554 */
555 static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
556 uint8_t *buf, int oob_required,
557 int page)
558 {
559 struct mxs_nand_info *nand_info = nand->priv;
560 struct mxs_dma_desc *d;
561 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
562 uint32_t corrected = 0, failed = 0;
563 uint8_t *status;
564 int i, ret;
565
566 /* Compile the DMA descriptor - wait for ready. */
567 d = mxs_nand_get_dma_desc(nand_info);
568 d->cmd.data =
569 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
570 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
571 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
572
573 d->cmd.address = 0;
574
575 d->cmd.pio_words[0] =
576 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
577 GPMI_CTRL0_WORD_LENGTH |
578 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
579 GPMI_CTRL0_ADDRESS_NAND_DATA;
580
581 mxs_dma_desc_append(channel, d);
582
583 /* Compile the DMA descriptor - enable the BCH block and read. */
584 d = mxs_nand_get_dma_desc(nand_info);
585 d->cmd.data =
586 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
587 MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
588
589 d->cmd.address = 0;
590
591 d->cmd.pio_words[0] =
592 GPMI_CTRL0_COMMAND_MODE_READ |
593 GPMI_CTRL0_WORD_LENGTH |
594 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
595 GPMI_CTRL0_ADDRESS_NAND_DATA |
596 (mtd->writesize + mtd->oobsize);
597 d->cmd.pio_words[1] = 0;
598 d->cmd.pio_words[2] =
599 GPMI_ECCCTRL_ENABLE_ECC |
600 GPMI_ECCCTRL_ECC_CMD_DECODE |
601 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
602 d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
603 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
604 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
605
606 mxs_dma_desc_append(channel, d);
607
608 /* Compile the DMA descriptor - disable the BCH block. */
609 d = mxs_nand_get_dma_desc(nand_info);
610 d->cmd.data =
611 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
612 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
613 (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
614
615 d->cmd.address = 0;
616
617 d->cmd.pio_words[0] =
618 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
619 GPMI_CTRL0_WORD_LENGTH |
620 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
621 GPMI_CTRL0_ADDRESS_NAND_DATA |
622 (mtd->writesize + mtd->oobsize);
623 d->cmd.pio_words[1] = 0;
624 d->cmd.pio_words[2] = 0;
625
626 mxs_dma_desc_append(channel, d);
627
628 /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
629 d = mxs_nand_get_dma_desc(nand_info);
630 d->cmd.data =
631 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
632 MXS_DMA_DESC_DEC_SEM;
633
634 d->cmd.address = 0;
635
636 mxs_dma_desc_append(channel, d);
637
638 /* Execute the DMA chain. */
639 ret = mxs_dma_go(channel);
640 if (ret) {
641 printf("MXS NAND: DMA read error\n");
642 goto rtn;
643 }
644
645 ret = mxs_nand_wait_for_bch_complete();
646 if (ret) {
647 printf("MXS NAND: BCH read timeout\n");
648 goto rtn;
649 }
650
651 /* Invalidate caches */
652 mxs_nand_inval_data_buf(nand_info);
653
654 /* Read DMA completed, now do the mark swapping. */
655 mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
656
657 /* Loop over status bytes, accumulating ECC status. */
658 status = nand_info->oob_buf + mxs_nand_aux_status_offset();
659 for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
660 if (status[i] == 0x00)
661 continue;
662
663 if (status[i] == 0xff)
664 continue;
665
666 if (status[i] == 0xfe) {
667 failed++;
668 continue;
669 }
670
671 corrected += status[i];
672 }
673
674 /* Propagate ECC status to the owning MTD. */
675 mtd->ecc_stats.failed += failed;
676 mtd->ecc_stats.corrected += corrected;
677
678 /*
679 * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
680 * details about our policy for delivering the OOB.
681 *
682 * We fill the caller's buffer with set bits, and then copy the block
683 * mark to the caller's buffer. Note that, if block mark swapping was
684 * necessary, it has already been done, so we can rely on the first
685 * byte of the auxiliary buffer to contain the block mark.
686 */
687 memset(nand->oob_poi, 0xff, mtd->oobsize);
688
689 nand->oob_poi[0] = nand_info->oob_buf[0];
690
691 memcpy(buf, nand_info->data_buf, mtd->writesize);
692
693 rtn:
694 mxs_nand_return_dma_descs(nand_info);
695
696 return ret;
697 }
698
699 /*
700 * Write a page to NAND.
701 */
702 static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
703 struct nand_chip *nand, const uint8_t *buf,
704 int oob_required)
705 {
706 struct mxs_nand_info *nand_info = nand->priv;
707 struct mxs_dma_desc *d;
708 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
709 int ret;
710
711 memcpy(nand_info->data_buf, buf, mtd->writesize);
712 memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
713
714 /* Handle block mark swapping. */
715 mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
716
717 /* Compile the DMA descriptor - write data. */
718 d = mxs_nand_get_dma_desc(nand_info);
719 d->cmd.data =
720 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
721 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
722 (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
723
724 d->cmd.address = 0;
725
726 d->cmd.pio_words[0] =
727 GPMI_CTRL0_COMMAND_MODE_WRITE |
728 GPMI_CTRL0_WORD_LENGTH |
729 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
730 GPMI_CTRL0_ADDRESS_NAND_DATA;
731 d->cmd.pio_words[1] = 0;
732 d->cmd.pio_words[2] =
733 GPMI_ECCCTRL_ENABLE_ECC |
734 GPMI_ECCCTRL_ECC_CMD_ENCODE |
735 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
736 d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
737 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
738 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
739
740 mxs_dma_desc_append(channel, d);
741
742 /* Flush caches */
743 mxs_nand_flush_data_buf(nand_info);
744
745 /* Execute the DMA chain. */
746 ret = mxs_dma_go(channel);
747 if (ret) {
748 printf("MXS NAND: DMA write error\n");
749 goto rtn;
750 }
751
752 ret = mxs_nand_wait_for_bch_complete();
753 if (ret) {
754 printf("MXS NAND: BCH write timeout\n");
755 goto rtn;
756 }
757
758 rtn:
759 mxs_nand_return_dma_descs(nand_info);
760 return 0;
761 }
762
763 /*
764 * Read OOB from NAND.
765 *
766 * This function is a veneer that replaces the function originally installed by
767 * the NAND Flash MTD code.
768 */
769 static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
770 struct mtd_oob_ops *ops)
771 {
772 struct nand_chip *chip = mtd->priv;
773 struct mxs_nand_info *nand_info = chip->priv;
774 int ret;
775
776 if (ops->mode == MTD_OPS_RAW)
777 nand_info->raw_oob_mode = 1;
778 else
779 nand_info->raw_oob_mode = 0;
780
781 ret = nand_info->hooked_read_oob(mtd, from, ops);
782
783 nand_info->raw_oob_mode = 0;
784
785 return ret;
786 }
787
788 /*
789 * Write OOB to NAND.
790 *
791 * This function is a veneer that replaces the function originally installed by
792 * the NAND Flash MTD code.
793 */
794 static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
795 struct mtd_oob_ops *ops)
796 {
797 struct nand_chip *chip = mtd->priv;
798 struct mxs_nand_info *nand_info = chip->priv;
799 int ret;
800
801 if (ops->mode == MTD_OPS_RAW)
802 nand_info->raw_oob_mode = 1;
803 else
804 nand_info->raw_oob_mode = 0;
805
806 ret = nand_info->hooked_write_oob(mtd, to, ops);
807
808 nand_info->raw_oob_mode = 0;
809
810 return ret;
811 }
812
813 /*
814 * Mark a block bad in NAND.
815 *
816 * This function is a veneer that replaces the function originally installed by
817 * the NAND Flash MTD code.
818 */
819 static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
820 {
821 struct nand_chip *chip = mtd->priv;
822 struct mxs_nand_info *nand_info = chip->priv;
823 int ret;
824
825 nand_info->marking_block_bad = 1;
826
827 ret = nand_info->hooked_block_markbad(mtd, ofs);
828
829 nand_info->marking_block_bad = 0;
830
831 return ret;
832 }
833
834 /*
835 * There are several places in this driver where we have to handle the OOB and
836 * block marks. This is the function where things are the most complicated, so
837 * this is where we try to explain it all. All the other places refer back to
838 * here.
839 *
840 * These are the rules, in order of decreasing importance:
841 *
842 * 1) Nothing the caller does can be allowed to imperil the block mark, so all
843 * write operations take measures to protect it.
844 *
845 * 2) In read operations, the first byte of the OOB we return must reflect the
846 * true state of the block mark, no matter where that block mark appears in
847 * the physical page.
848 *
849 * 3) ECC-based read operations return an OOB full of set bits (since we never
850 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
851 * return).
852 *
853 * 4) "Raw" read operations return a direct view of the physical bytes in the
854 * page, using the conventional definition of which bytes are data and which
855 * are OOB. This gives the caller a way to see the actual, physical bytes
856 * in the page, without the distortions applied by our ECC engine.
857 *
858 * What we do for this specific read operation depends on whether we're doing
859 * "raw" read, or an ECC-based read.
860 *
861 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
862 * easy. When reading a page, for example, the NAND Flash MTD code calls our
863 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
864 * ECC-based or raw view of the page is implicit in which function it calls
865 * (there is a similar pair of ECC-based/raw functions for writing).
866 *
867 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
868 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
869 * caller wants an ECC-based or raw view of the page is not propagated down to
870 * this driver.
871 *
872 * Since our OOB *is* covered by ECC, we need this information. So, we hook the
873 * ecc.read_oob and ecc.write_oob function pointers in the owning
874 * struct mtd_info with our own functions. These hook functions set the
875 * raw_oob_mode field so that, when control finally arrives here, we'll know
876 * what to do.
877 */
878 static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
879 int page)
880 {
881 struct mxs_nand_info *nand_info = nand->priv;
882
883 /*
884 * First, fill in the OOB buffer. If we're doing a raw read, we need to
885 * get the bytes from the physical page. If we're not doing a raw read,
886 * we need to fill the buffer with set bits.
887 */
888 if (nand_info->raw_oob_mode) {
889 /*
890 * If control arrives here, we're doing a "raw" read. Send the
891 * command to read the conventional OOB and read it.
892 */
893 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
894 nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
895 } else {
896 /*
897 * If control arrives here, we're not doing a "raw" read. Fill
898 * the OOB buffer with set bits and correct the block mark.
899 */
900 memset(nand->oob_poi, 0xff, mtd->oobsize);
901
902 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
903 mxs_nand_read_buf(mtd, nand->oob_poi, 1);
904 }
905
906 return 0;
907
908 }
909
910 /*
911 * Write OOB data to NAND.
912 */
913 static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
914 int page)
915 {
916 struct mxs_nand_info *nand_info = nand->priv;
917 uint8_t block_mark = 0;
918
919 /*
920 * There are fundamental incompatibilities between the i.MX GPMI NFC and
921 * the NAND Flash MTD model that make it essentially impossible to write
922 * the out-of-band bytes.
923 *
924 * We permit *ONE* exception. If the *intent* of writing the OOB is to
925 * mark a block bad, we can do that.
926 */
927
928 if (!nand_info->marking_block_bad) {
929 printf("NXS NAND: Writing OOB isn't supported\n");
930 return -EIO;
931 }
932
933 /* Write the block mark. */
934 nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
935 nand->write_buf(mtd, &block_mark, 1);
936 nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
937
938 /* Check if it worked. */
939 if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
940 return -EIO;
941
942 return 0;
943 }
944
945 /*
946 * Claims all blocks are good.
947 *
948 * In principle, this function is *only* called when the NAND Flash MTD system
949 * isn't allowed to keep an in-memory bad block table, so it is forced to ask
950 * the driver for bad block information.
951 *
952 * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
953 * this function is *only* called when we take it away.
954 *
955 * Thus, this function is only called when we want *all* blocks to look good,
956 * so it *always* return success.
957 */
958 static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
959 {
960 return 0;
961 }
962
963 /*
964 * Nominally, the purpose of this function is to look for or create the bad
965 * block table. In fact, since the we call this function at the very end of
966 * the initialization process started by nand_scan(), and we doesn't have a
967 * more formal mechanism, we "hook" this function to continue init process.
968 *
969 * At this point, the physical NAND Flash chips have been identified and
970 * counted, so we know the physical geometry. This enables us to make some
971 * important configuration decisions.
972 *
973 * The return value of this function propogates directly back to this driver's
974 * call to nand_scan(). Anything other than zero will cause this driver to
975 * tear everything down and declare failure.
976 */
977 static int mxs_nand_scan_bbt(struct mtd_info *mtd)
978 {
979 struct nand_chip *nand = mtd->priv;
980 struct mxs_nand_info *nand_info = nand->priv;
981 struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
982 uint32_t tmp;
983
984 /* Configure BCH and set NFC geometry */
985 mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
986
987 /* Configure layout 0 */
988 tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
989 << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
990 tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
991 tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
992 << BCH_FLASHLAYOUT0_ECC0_OFFSET;
993 tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE
994 >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
995 writel(tmp, &bch_regs->hw_bch_flash0layout0);
996
997 tmp = (mtd->writesize + mtd->oobsize)
998 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
999 tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
1000 << BCH_FLASHLAYOUT1_ECCN_OFFSET;
1001 tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE
1002 >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
1003 writel(tmp, &bch_regs->hw_bch_flash0layout1);
1004
1005 /* Set *all* chip selects to use layout 0 */
1006 writel(0, &bch_regs->hw_bch_layoutselect);
1007
1008 /* Enable BCH complete interrupt */
1009 writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
1010
1011 /* Hook some operations at the MTD level. */
1012 if (mtd->_read_oob != mxs_nand_hook_read_oob) {
1013 nand_info->hooked_read_oob = mtd->_read_oob;
1014 mtd->_read_oob = mxs_nand_hook_read_oob;
1015 }
1016
1017 if (mtd->_write_oob != mxs_nand_hook_write_oob) {
1018 nand_info->hooked_write_oob = mtd->_write_oob;
1019 mtd->_write_oob = mxs_nand_hook_write_oob;
1020 }
1021
1022 if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
1023 nand_info->hooked_block_markbad = mtd->_block_markbad;
1024 mtd->_block_markbad = mxs_nand_hook_block_markbad;
1025 }
1026
1027 /* We use the reference implementation for bad block management. */
1028 return nand_default_bbt(mtd);
1029 }
1030
1031 /*
1032 * Allocate DMA buffers
1033 */
1034 int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
1035 {
1036 uint8_t *buf;
1037 const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
1038
1039 nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
1040
1041 /* DMA buffers */
1042 buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
1043 if (!buf) {
1044 printf("MXS NAND: Error allocating DMA buffers\n");
1045 return -ENOMEM;
1046 }
1047
1048 memset(buf, 0, nand_info->data_buf_size);
1049
1050 nand_info->data_buf = buf;
1051 nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
1052 /* Command buffers */
1053 nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
1054 MXS_NAND_COMMAND_BUFFER_SIZE);
1055 if (!nand_info->cmd_buf) {
1056 free(buf);
1057 printf("MXS NAND: Error allocating command buffers\n");
1058 return -ENOMEM;
1059 }
1060 memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
1061 nand_info->cmd_queue_len = 0;
1062
1063 return 0;
1064 }
1065
1066 /*
1067 * Initializes the NFC hardware.
1068 */
1069 int mxs_nand_init(struct mxs_nand_info *info)
1070 {
1071 struct mxs_gpmi_regs *gpmi_regs =
1072 (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
1073 struct mxs_bch_regs *bch_regs =
1074 (struct mxs_bch_regs *)MXS_BCH_BASE;
1075 int i = 0, j;
1076
1077 info->desc = malloc(sizeof(struct mxs_dma_desc *) *
1078 MXS_NAND_DMA_DESCRIPTOR_COUNT);
1079 if (!info->desc)
1080 goto err1;
1081
1082 /* Allocate the DMA descriptors. */
1083 for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
1084 info->desc[i] = mxs_dma_desc_alloc();
1085 if (!info->desc[i])
1086 goto err2;
1087 }
1088
1089 /* Init the DMA controller. */
1090 for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
1091 j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
1092 if (mxs_dma_init_channel(j))
1093 goto err3;
1094 }
1095
1096 /* Reset the GPMI block. */
1097 mxs_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
1098 mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
1099
1100 /*
1101 * Choose NAND mode, set IRQ polarity, disable write protection and
1102 * select BCH ECC.
1103 */
1104 clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
1105 GPMI_CTRL1_GPMI_MODE,
1106 GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
1107 GPMI_CTRL1_BCH_MODE);
1108
1109 return 0;
1110
1111 err3:
1112 for (--j; j >= 0; j--)
1113 mxs_dma_release(j);
1114 err2:
1115 free(info->desc);
1116 err1:
1117 for (--i; i >= 0; i--)
1118 mxs_dma_desc_free(info->desc[i]);
1119 printf("MXS NAND: Unable to allocate DMA descriptors\n");
1120 return -ENOMEM;
1121 }
1122
1123 /*!
1124 * This function is called during the driver binding process.
1125 *
1126 * @param pdev the device structure used to store device specific
1127 * information that is used by the suspend, resume and
1128 * remove functions
1129 *
1130 * @return The function always returns 0.
1131 */
1132 int board_nand_init(struct nand_chip *nand)
1133 {
1134 struct mxs_nand_info *nand_info;
1135 int err;
1136
1137 nand_info = malloc(sizeof(struct mxs_nand_info));
1138 if (!nand_info) {
1139 printf("MXS NAND: Failed to allocate private data\n");
1140 return -ENOMEM;
1141 }
1142 memset(nand_info, 0, sizeof(struct mxs_nand_info));
1143
1144 err = mxs_nand_alloc_buffers(nand_info);
1145 if (err)
1146 goto err1;
1147
1148 err = mxs_nand_init(nand_info);
1149 if (err)
1150 goto err2;
1151
1152 memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
1153
1154 nand->priv = nand_info;
1155 nand->options |= NAND_NO_SUBPAGE_WRITE;
1156
1157 nand->cmd_ctrl = mxs_nand_cmd_ctrl;
1158
1159 nand->dev_ready = mxs_nand_device_ready;
1160 nand->select_chip = mxs_nand_select_chip;
1161 nand->block_bad = mxs_nand_block_bad;
1162 nand->scan_bbt = mxs_nand_scan_bbt;
1163
1164 nand->read_byte = mxs_nand_read_byte;
1165
1166 nand->read_buf = mxs_nand_read_buf;
1167 nand->write_buf = mxs_nand_write_buf;
1168
1169 nand->ecc.read_page = mxs_nand_ecc_read_page;
1170 nand->ecc.write_page = mxs_nand_ecc_write_page;
1171 nand->ecc.read_oob = mxs_nand_ecc_read_oob;
1172 nand->ecc.write_oob = mxs_nand_ecc_write_oob;
1173
1174 nand->ecc.layout = &fake_ecc_layout;
1175 nand->ecc.mode = NAND_ECC_HW;
1176 nand->ecc.bytes = 9;
1177 nand->ecc.size = 512;
1178 nand->ecc.strength = 8;
1179
1180 return 0;
1181
1182 err2:
1183 free(nand_info->data_buf);
1184 free(nand_info->cmd_buf);
1185 err1:
1186 free(nand_info);
1187 return err;
1188 }