]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/mxs_nand.c
Merge branch 'u-boot/master' into 'u-boot-arm/master'
[people/ms/u-boot.git] / drivers / mtd / nand / mxs_nand.c
1 /*
2 * Freescale i.MX28 NAND flash driver
3 *
4 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
5 * on behalf of DENX Software Engineering GmbH
6 *
7 * Based on code from LTIB:
8 * Freescale GPMI NFC NAND Flash Driver
9 *
10 * Copyright (C) 2010 Freescale Semiconductor, Inc.
11 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License along
24 * with this program; if not, write to the Free Software Foundation, Inc.,
25 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 */
27
28 #include <common.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/types.h>
32 #include <malloc.h>
33 #include <asm/errno.h>
34 #include <asm/io.h>
35 #include <asm/arch/clock.h>
36 #include <asm/arch/imx-regs.h>
37 #include <asm/imx-common/regs-bch.h>
38 #include <asm/imx-common/regs-gpmi.h>
39 #include <asm/arch/sys_proto.h>
40 #include <asm/imx-common/dma.h>
41
42 #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
43
44 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512
45 #if defined(CONFIG_MX6)
46 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 2
47 #else
48 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 0
49 #endif
50 #define MXS_NAND_METADATA_SIZE 10
51
52 #define MXS_NAND_COMMAND_BUFFER_SIZE 32
53
54 #define MXS_NAND_BCH_TIMEOUT 10000
55
56 struct mxs_nand_info {
57 int cur_chip;
58
59 uint32_t cmd_queue_len;
60 uint32_t data_buf_size;
61
62 uint8_t *cmd_buf;
63 uint8_t *data_buf;
64 uint8_t *oob_buf;
65
66 uint8_t marking_block_bad;
67 uint8_t raw_oob_mode;
68
69 /* Functions with altered behaviour */
70 int (*hooked_read_oob)(struct mtd_info *mtd,
71 loff_t from, struct mtd_oob_ops *ops);
72 int (*hooked_write_oob)(struct mtd_info *mtd,
73 loff_t to, struct mtd_oob_ops *ops);
74 int (*hooked_block_markbad)(struct mtd_info *mtd,
75 loff_t ofs);
76
77 /* DMA descriptors */
78 struct mxs_dma_desc **desc;
79 uint32_t desc_index;
80 };
81
82 struct nand_ecclayout fake_ecc_layout;
83
84 /*
85 * Cache management functions
86 */
87 #ifndef CONFIG_SYS_DCACHE_OFF
88 static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
89 {
90 uint32_t addr = (uint32_t)info->data_buf;
91
92 flush_dcache_range(addr, addr + info->data_buf_size);
93 }
94
95 static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
96 {
97 uint32_t addr = (uint32_t)info->data_buf;
98
99 invalidate_dcache_range(addr, addr + info->data_buf_size);
100 }
101
102 static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
103 {
104 uint32_t addr = (uint32_t)info->cmd_buf;
105
106 flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
107 }
108 #else
109 static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
110 static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
111 static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
112 #endif
113
114 static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
115 {
116 struct mxs_dma_desc *desc;
117
118 if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
119 printf("MXS NAND: Too many DMA descriptors requested\n");
120 return NULL;
121 }
122
123 desc = info->desc[info->desc_index];
124 info->desc_index++;
125
126 return desc;
127 }
128
129 static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
130 {
131 int i;
132 struct mxs_dma_desc *desc;
133
134 for (i = 0; i < info->desc_index; i++) {
135 desc = info->desc[i];
136 memset(desc, 0, sizeof(struct mxs_dma_desc));
137 desc->address = (dma_addr_t)desc;
138 }
139
140 info->desc_index = 0;
141 }
142
143 static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
144 {
145 return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
146 }
147
148 static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
149 {
150 return ecc_strength * 13;
151 }
152
153 static uint32_t mxs_nand_aux_status_offset(void)
154 {
155 return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
156 }
157
158 static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
159 uint32_t page_oob_size)
160 {
161 if (page_data_size == 2048)
162 return 8;
163
164 if (page_data_size == 4096) {
165 if (page_oob_size == 128)
166 return 8;
167
168 if (page_oob_size == 218)
169 return 16;
170 }
171
172 return 0;
173 }
174
175 static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
176 uint32_t ecc_strength)
177 {
178 uint32_t chunk_data_size_in_bits;
179 uint32_t chunk_ecc_size_in_bits;
180 uint32_t chunk_total_size_in_bits;
181 uint32_t block_mark_chunk_number;
182 uint32_t block_mark_chunk_bit_offset;
183 uint32_t block_mark_bit_offset;
184
185 chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8;
186 chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength);
187
188 chunk_total_size_in_bits =
189 chunk_data_size_in_bits + chunk_ecc_size_in_bits;
190
191 /* Compute the bit offset of the block mark within the physical page. */
192 block_mark_bit_offset = page_data_size * 8;
193
194 /* Subtract the metadata bits. */
195 block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
196
197 /*
198 * Compute the chunk number (starting at zero) in which the block mark
199 * appears.
200 */
201 block_mark_chunk_number =
202 block_mark_bit_offset / chunk_total_size_in_bits;
203
204 /*
205 * Compute the bit offset of the block mark within its chunk, and
206 * validate it.
207 */
208 block_mark_chunk_bit_offset = block_mark_bit_offset -
209 (block_mark_chunk_number * chunk_total_size_in_bits);
210
211 if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
212 return 1;
213
214 /*
215 * Now that we know the chunk number in which the block mark appears,
216 * we can subtract all the ECC bits that appear before it.
217 */
218 block_mark_bit_offset -=
219 block_mark_chunk_number * chunk_ecc_size_in_bits;
220
221 return block_mark_bit_offset;
222 }
223
224 static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
225 {
226 uint32_t ecc_strength;
227 ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
228 return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
229 }
230
231 static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
232 {
233 uint32_t ecc_strength;
234 ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
235 return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
236 }
237
238 /*
239 * Wait for BCH complete IRQ and clear the IRQ
240 */
241 static int mxs_nand_wait_for_bch_complete(void)
242 {
243 struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
244 int timeout = MXS_NAND_BCH_TIMEOUT;
245 int ret;
246
247 ret = mxs_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
248 BCH_CTRL_COMPLETE_IRQ, timeout);
249
250 writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);
251
252 return ret;
253 }
254
255 /*
256 * This is the function that we install in the cmd_ctrl function pointer of the
257 * owning struct nand_chip. The only functions in the reference implementation
258 * that use these functions pointers are cmdfunc and select_chip.
259 *
260 * In this driver, we implement our own select_chip, so this function will only
261 * be called by the reference implementation's cmdfunc. For this reason, we can
262 * ignore the chip enable bit and concentrate only on sending bytes to the NAND
263 * Flash.
264 */
265 static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
266 {
267 struct nand_chip *nand = mtd->priv;
268 struct mxs_nand_info *nand_info = nand->priv;
269 struct mxs_dma_desc *d;
270 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
271 int ret;
272
273 /*
274 * If this condition is true, something is _VERY_ wrong in MTD
275 * subsystem!
276 */
277 if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
278 printf("MXS NAND: Command queue too long\n");
279 return;
280 }
281
282 /*
283 * Every operation begins with a command byte and a series of zero or
284 * more address bytes. These are distinguished by either the Address
285 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
286 * asserted. When MTD is ready to execute the command, it will
287 * deasert both latch enables.
288 *
289 * Rather than run a separate DMA operation for every single byte, we
290 * queue them up and run a single DMA operation for the entire series
291 * of command and data bytes.
292 */
293 if (ctrl & (NAND_ALE | NAND_CLE)) {
294 if (data != NAND_CMD_NONE)
295 nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
296 return;
297 }
298
299 /*
300 * If control arrives here, MTD has deasserted both the ALE and CLE,
301 * which means it's ready to run an operation. Check if we have any
302 * bytes to send.
303 */
304 if (nand_info->cmd_queue_len == 0)
305 return;
306
307 /* Compile the DMA descriptor -- a descriptor that sends command. */
308 d = mxs_nand_get_dma_desc(nand_info);
309 d->cmd.data =
310 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
311 MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
312 MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
313 (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
314
315 d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
316
317 d->cmd.pio_words[0] =
318 GPMI_CTRL0_COMMAND_MODE_WRITE |
319 GPMI_CTRL0_WORD_LENGTH |
320 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
321 GPMI_CTRL0_ADDRESS_NAND_CLE |
322 GPMI_CTRL0_ADDRESS_INCREMENT |
323 nand_info->cmd_queue_len;
324
325 mxs_dma_desc_append(channel, d);
326
327 /* Flush caches */
328 mxs_nand_flush_cmd_buf(nand_info);
329
330 /* Execute the DMA chain. */
331 ret = mxs_dma_go(channel);
332 if (ret)
333 printf("MXS NAND: Error sending command\n");
334
335 mxs_nand_return_dma_descs(nand_info);
336
337 /* Reset the command queue. */
338 nand_info->cmd_queue_len = 0;
339 }
340
341 /*
342 * Test if the NAND flash is ready.
343 */
344 static int mxs_nand_device_ready(struct mtd_info *mtd)
345 {
346 struct nand_chip *chip = mtd->priv;
347 struct mxs_nand_info *nand_info = chip->priv;
348 struct mxs_gpmi_regs *gpmi_regs =
349 (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
350 uint32_t tmp;
351
352 tmp = readl(&gpmi_regs->hw_gpmi_stat);
353 tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
354
355 return tmp & 1;
356 }
357
358 /*
359 * Select the NAND chip.
360 */
361 static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
362 {
363 struct nand_chip *nand = mtd->priv;
364 struct mxs_nand_info *nand_info = nand->priv;
365
366 nand_info->cur_chip = chip;
367 }
368
369 /*
370 * Handle block mark swapping.
371 *
372 * Note that, when this function is called, it doesn't know whether it's
373 * swapping the block mark, or swapping it *back* -- but it doesn't matter
374 * because the the operation is the same.
375 */
376 static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
377 uint8_t *data_buf, uint8_t *oob_buf)
378 {
379 uint32_t bit_offset;
380 uint32_t buf_offset;
381
382 uint32_t src;
383 uint32_t dst;
384
385 bit_offset = mxs_nand_mark_bit_offset(mtd);
386 buf_offset = mxs_nand_mark_byte_offset(mtd);
387
388 /*
389 * Get the byte from the data area that overlays the block mark. Since
390 * the ECC engine applies its own view to the bits in the page, the
391 * physical block mark won't (in general) appear on a byte boundary in
392 * the data.
393 */
394 src = data_buf[buf_offset] >> bit_offset;
395 src |= data_buf[buf_offset + 1] << (8 - bit_offset);
396
397 dst = oob_buf[0];
398
399 oob_buf[0] = src;
400
401 data_buf[buf_offset] &= ~(0xff << bit_offset);
402 data_buf[buf_offset + 1] &= 0xff << bit_offset;
403
404 data_buf[buf_offset] |= dst << bit_offset;
405 data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
406 }
407
408 /*
409 * Read data from NAND.
410 */
411 static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
412 {
413 struct nand_chip *nand = mtd->priv;
414 struct mxs_nand_info *nand_info = nand->priv;
415 struct mxs_dma_desc *d;
416 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
417 int ret;
418
419 if (length > NAND_MAX_PAGESIZE) {
420 printf("MXS NAND: DMA buffer too big\n");
421 return;
422 }
423
424 if (!buf) {
425 printf("MXS NAND: DMA buffer is NULL\n");
426 return;
427 }
428
429 /* Compile the DMA descriptor - a descriptor that reads data. */
430 d = mxs_nand_get_dma_desc(nand_info);
431 d->cmd.data =
432 MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
433 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
434 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
435 (length << MXS_DMA_DESC_BYTES_OFFSET);
436
437 d->cmd.address = (dma_addr_t)nand_info->data_buf;
438
439 d->cmd.pio_words[0] =
440 GPMI_CTRL0_COMMAND_MODE_READ |
441 GPMI_CTRL0_WORD_LENGTH |
442 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
443 GPMI_CTRL0_ADDRESS_NAND_DATA |
444 length;
445
446 mxs_dma_desc_append(channel, d);
447
448 /*
449 * A DMA descriptor that waits for the command to end and the chip to
450 * become ready.
451 *
452 * I think we actually should *not* be waiting for the chip to become
453 * ready because, after all, we don't care. I think the original code
454 * did that and no one has re-thought it yet.
455 */
456 d = mxs_nand_get_dma_desc(nand_info);
457 d->cmd.data =
458 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
459 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
460 MXS_DMA_DESC_WAIT4END | (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
461
462 d->cmd.address = 0;
463
464 d->cmd.pio_words[0] =
465 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
466 GPMI_CTRL0_WORD_LENGTH |
467 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
468 GPMI_CTRL0_ADDRESS_NAND_DATA;
469
470 mxs_dma_desc_append(channel, d);
471
472 /* Execute the DMA chain. */
473 ret = mxs_dma_go(channel);
474 if (ret) {
475 printf("MXS NAND: DMA read error\n");
476 goto rtn;
477 }
478
479 /* Invalidate caches */
480 mxs_nand_inval_data_buf(nand_info);
481
482 memcpy(buf, nand_info->data_buf, length);
483
484 rtn:
485 mxs_nand_return_dma_descs(nand_info);
486 }
487
488 /*
489 * Write data to NAND.
490 */
491 static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
492 int length)
493 {
494 struct nand_chip *nand = mtd->priv;
495 struct mxs_nand_info *nand_info = nand->priv;
496 struct mxs_dma_desc *d;
497 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
498 int ret;
499
500 if (length > NAND_MAX_PAGESIZE) {
501 printf("MXS NAND: DMA buffer too big\n");
502 return;
503 }
504
505 if (!buf) {
506 printf("MXS NAND: DMA buffer is NULL\n");
507 return;
508 }
509
510 memcpy(nand_info->data_buf, buf, length);
511
512 /* Compile the DMA descriptor - a descriptor that writes data. */
513 d = mxs_nand_get_dma_desc(nand_info);
514 d->cmd.data =
515 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
516 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
517 (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
518 (length << MXS_DMA_DESC_BYTES_OFFSET);
519
520 d->cmd.address = (dma_addr_t)nand_info->data_buf;
521
522 d->cmd.pio_words[0] =
523 GPMI_CTRL0_COMMAND_MODE_WRITE |
524 GPMI_CTRL0_WORD_LENGTH |
525 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
526 GPMI_CTRL0_ADDRESS_NAND_DATA |
527 length;
528
529 mxs_dma_desc_append(channel, d);
530
531 /* Flush caches */
532 mxs_nand_flush_data_buf(nand_info);
533
534 /* Execute the DMA chain. */
535 ret = mxs_dma_go(channel);
536 if (ret)
537 printf("MXS NAND: DMA write error\n");
538
539 mxs_nand_return_dma_descs(nand_info);
540 }
541
542 /*
543 * Read a single byte from NAND.
544 */
545 static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
546 {
547 uint8_t buf;
548 mxs_nand_read_buf(mtd, &buf, 1);
549 return buf;
550 }
551
552 /*
553 * Read a page from NAND.
554 */
555 static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
556 uint8_t *buf, int page)
557 {
558 struct mxs_nand_info *nand_info = nand->priv;
559 struct mxs_dma_desc *d;
560 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
561 uint32_t corrected = 0, failed = 0;
562 uint8_t *status;
563 int i, ret;
564
565 /* Compile the DMA descriptor - wait for ready. */
566 d = mxs_nand_get_dma_desc(nand_info);
567 d->cmd.data =
568 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
569 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
570 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
571
572 d->cmd.address = 0;
573
574 d->cmd.pio_words[0] =
575 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
576 GPMI_CTRL0_WORD_LENGTH |
577 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
578 GPMI_CTRL0_ADDRESS_NAND_DATA;
579
580 mxs_dma_desc_append(channel, d);
581
582 /* Compile the DMA descriptor - enable the BCH block and read. */
583 d = mxs_nand_get_dma_desc(nand_info);
584 d->cmd.data =
585 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
586 MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
587
588 d->cmd.address = 0;
589
590 d->cmd.pio_words[0] =
591 GPMI_CTRL0_COMMAND_MODE_READ |
592 GPMI_CTRL0_WORD_LENGTH |
593 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
594 GPMI_CTRL0_ADDRESS_NAND_DATA |
595 (mtd->writesize + mtd->oobsize);
596 d->cmd.pio_words[1] = 0;
597 d->cmd.pio_words[2] =
598 GPMI_ECCCTRL_ENABLE_ECC |
599 GPMI_ECCCTRL_ECC_CMD_DECODE |
600 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
601 d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
602 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
603 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
604
605 mxs_dma_desc_append(channel, d);
606
607 /* Compile the DMA descriptor - disable the BCH block. */
608 d = mxs_nand_get_dma_desc(nand_info);
609 d->cmd.data =
610 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
611 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
612 (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
613
614 d->cmd.address = 0;
615
616 d->cmd.pio_words[0] =
617 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
618 GPMI_CTRL0_WORD_LENGTH |
619 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
620 GPMI_CTRL0_ADDRESS_NAND_DATA |
621 (mtd->writesize + mtd->oobsize);
622 d->cmd.pio_words[1] = 0;
623 d->cmd.pio_words[2] = 0;
624
625 mxs_dma_desc_append(channel, d);
626
627 /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
628 d = mxs_nand_get_dma_desc(nand_info);
629 d->cmd.data =
630 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
631 MXS_DMA_DESC_DEC_SEM;
632
633 d->cmd.address = 0;
634
635 mxs_dma_desc_append(channel, d);
636
637 /* Execute the DMA chain. */
638 ret = mxs_dma_go(channel);
639 if (ret) {
640 printf("MXS NAND: DMA read error\n");
641 goto rtn;
642 }
643
644 ret = mxs_nand_wait_for_bch_complete();
645 if (ret) {
646 printf("MXS NAND: BCH read timeout\n");
647 goto rtn;
648 }
649
650 /* Invalidate caches */
651 mxs_nand_inval_data_buf(nand_info);
652
653 /* Read DMA completed, now do the mark swapping. */
654 mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
655
656 /* Loop over status bytes, accumulating ECC status. */
657 status = nand_info->oob_buf + mxs_nand_aux_status_offset();
658 for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
659 if (status[i] == 0x00)
660 continue;
661
662 if (status[i] == 0xff)
663 continue;
664
665 if (status[i] == 0xfe) {
666 failed++;
667 continue;
668 }
669
670 corrected += status[i];
671 }
672
673 /* Propagate ECC status to the owning MTD. */
674 mtd->ecc_stats.failed += failed;
675 mtd->ecc_stats.corrected += corrected;
676
677 /*
678 * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
679 * details about our policy for delivering the OOB.
680 *
681 * We fill the caller's buffer with set bits, and then copy the block
682 * mark to the caller's buffer. Note that, if block mark swapping was
683 * necessary, it has already been done, so we can rely on the first
684 * byte of the auxiliary buffer to contain the block mark.
685 */
686 memset(nand->oob_poi, 0xff, mtd->oobsize);
687
688 nand->oob_poi[0] = nand_info->oob_buf[0];
689
690 memcpy(buf, nand_info->data_buf, mtd->writesize);
691
692 rtn:
693 mxs_nand_return_dma_descs(nand_info);
694
695 return ret;
696 }
697
698 /*
699 * Write a page to NAND.
700 */
701 static void mxs_nand_ecc_write_page(struct mtd_info *mtd,
702 struct nand_chip *nand, const uint8_t *buf)
703 {
704 struct mxs_nand_info *nand_info = nand->priv;
705 struct mxs_dma_desc *d;
706 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
707 int ret;
708
709 memcpy(nand_info->data_buf, buf, mtd->writesize);
710 memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
711
712 /* Handle block mark swapping. */
713 mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
714
715 /* Compile the DMA descriptor - write data. */
716 d = mxs_nand_get_dma_desc(nand_info);
717 d->cmd.data =
718 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
719 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
720 (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
721
722 d->cmd.address = 0;
723
724 d->cmd.pio_words[0] =
725 GPMI_CTRL0_COMMAND_MODE_WRITE |
726 GPMI_CTRL0_WORD_LENGTH |
727 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
728 GPMI_CTRL0_ADDRESS_NAND_DATA;
729 d->cmd.pio_words[1] = 0;
730 d->cmd.pio_words[2] =
731 GPMI_ECCCTRL_ENABLE_ECC |
732 GPMI_ECCCTRL_ECC_CMD_ENCODE |
733 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
734 d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
735 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
736 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
737
738 mxs_dma_desc_append(channel, d);
739
740 /* Flush caches */
741 mxs_nand_flush_data_buf(nand_info);
742
743 /* Execute the DMA chain. */
744 ret = mxs_dma_go(channel);
745 if (ret) {
746 printf("MXS NAND: DMA write error\n");
747 goto rtn;
748 }
749
750 ret = mxs_nand_wait_for_bch_complete();
751 if (ret) {
752 printf("MXS NAND: BCH write timeout\n");
753 goto rtn;
754 }
755
756 rtn:
757 mxs_nand_return_dma_descs(nand_info);
758 }
759
760 /*
761 * Read OOB from NAND.
762 *
763 * This function is a veneer that replaces the function originally installed by
764 * the NAND Flash MTD code.
765 */
766 static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
767 struct mtd_oob_ops *ops)
768 {
769 struct nand_chip *chip = mtd->priv;
770 struct mxs_nand_info *nand_info = chip->priv;
771 int ret;
772
773 if (ops->mode == MTD_OOB_RAW)
774 nand_info->raw_oob_mode = 1;
775 else
776 nand_info->raw_oob_mode = 0;
777
778 ret = nand_info->hooked_read_oob(mtd, from, ops);
779
780 nand_info->raw_oob_mode = 0;
781
782 return ret;
783 }
784
785 /*
786 * Write OOB to NAND.
787 *
788 * This function is a veneer that replaces the function originally installed by
789 * the NAND Flash MTD code.
790 */
791 static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
792 struct mtd_oob_ops *ops)
793 {
794 struct nand_chip *chip = mtd->priv;
795 struct mxs_nand_info *nand_info = chip->priv;
796 int ret;
797
798 if (ops->mode == MTD_OOB_RAW)
799 nand_info->raw_oob_mode = 1;
800 else
801 nand_info->raw_oob_mode = 0;
802
803 ret = nand_info->hooked_write_oob(mtd, to, ops);
804
805 nand_info->raw_oob_mode = 0;
806
807 return ret;
808 }
809
810 /*
811 * Mark a block bad in NAND.
812 *
813 * This function is a veneer that replaces the function originally installed by
814 * the NAND Flash MTD code.
815 */
816 static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
817 {
818 struct nand_chip *chip = mtd->priv;
819 struct mxs_nand_info *nand_info = chip->priv;
820 int ret;
821
822 nand_info->marking_block_bad = 1;
823
824 ret = nand_info->hooked_block_markbad(mtd, ofs);
825
826 nand_info->marking_block_bad = 0;
827
828 return ret;
829 }
830
831 /*
832 * There are several places in this driver where we have to handle the OOB and
833 * block marks. This is the function where things are the most complicated, so
834 * this is where we try to explain it all. All the other places refer back to
835 * here.
836 *
837 * These are the rules, in order of decreasing importance:
838 *
839 * 1) Nothing the caller does can be allowed to imperil the block mark, so all
840 * write operations take measures to protect it.
841 *
842 * 2) In read operations, the first byte of the OOB we return must reflect the
843 * true state of the block mark, no matter where that block mark appears in
844 * the physical page.
845 *
846 * 3) ECC-based read operations return an OOB full of set bits (since we never
847 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
848 * return).
849 *
850 * 4) "Raw" read operations return a direct view of the physical bytes in the
851 * page, using the conventional definition of which bytes are data and which
852 * are OOB. This gives the caller a way to see the actual, physical bytes
853 * in the page, without the distortions applied by our ECC engine.
854 *
855 * What we do for this specific read operation depends on whether we're doing
856 * "raw" read, or an ECC-based read.
857 *
858 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
859 * easy. When reading a page, for example, the NAND Flash MTD code calls our
860 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
861 * ECC-based or raw view of the page is implicit in which function it calls
862 * (there is a similar pair of ECC-based/raw functions for writing).
863 *
864 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
865 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
866 * caller wants an ECC-based or raw view of the page is not propagated down to
867 * this driver.
868 *
869 * Since our OOB *is* covered by ECC, we need this information. So, we hook the
870 * ecc.read_oob and ecc.write_oob function pointers in the owning
871 * struct mtd_info with our own functions. These hook functions set the
872 * raw_oob_mode field so that, when control finally arrives here, we'll know
873 * what to do.
874 */
875 static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
876 int page, int cmd)
877 {
878 struct mxs_nand_info *nand_info = nand->priv;
879
880 /*
881 * First, fill in the OOB buffer. If we're doing a raw read, we need to
882 * get the bytes from the physical page. If we're not doing a raw read,
883 * we need to fill the buffer with set bits.
884 */
885 if (nand_info->raw_oob_mode) {
886 /*
887 * If control arrives here, we're doing a "raw" read. Send the
888 * command to read the conventional OOB and read it.
889 */
890 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
891 nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
892 } else {
893 /*
894 * If control arrives here, we're not doing a "raw" read. Fill
895 * the OOB buffer with set bits and correct the block mark.
896 */
897 memset(nand->oob_poi, 0xff, mtd->oobsize);
898
899 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
900 mxs_nand_read_buf(mtd, nand->oob_poi, 1);
901 }
902
903 return 0;
904
905 }
906
907 /*
908 * Write OOB data to NAND.
909 */
910 static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
911 int page)
912 {
913 struct mxs_nand_info *nand_info = nand->priv;
914 uint8_t block_mark = 0;
915
916 /*
917 * There are fundamental incompatibilities between the i.MX GPMI NFC and
918 * the NAND Flash MTD model that make it essentially impossible to write
919 * the out-of-band bytes.
920 *
921 * We permit *ONE* exception. If the *intent* of writing the OOB is to
922 * mark a block bad, we can do that.
923 */
924
925 if (!nand_info->marking_block_bad) {
926 printf("NXS NAND: Writing OOB isn't supported\n");
927 return -EIO;
928 }
929
930 /* Write the block mark. */
931 nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
932 nand->write_buf(mtd, &block_mark, 1);
933 nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
934
935 /* Check if it worked. */
936 if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
937 return -EIO;
938
939 return 0;
940 }
941
942 /*
943 * Claims all blocks are good.
944 *
945 * In principle, this function is *only* called when the NAND Flash MTD system
946 * isn't allowed to keep an in-memory bad block table, so it is forced to ask
947 * the driver for bad block information.
948 *
949 * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
950 * this function is *only* called when we take it away.
951 *
952 * Thus, this function is only called when we want *all* blocks to look good,
953 * so it *always* return success.
954 */
955 static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
956 {
957 return 0;
958 }
959
960 /*
961 * Nominally, the purpose of this function is to look for or create the bad
962 * block table. In fact, since the we call this function at the very end of
963 * the initialization process started by nand_scan(), and we doesn't have a
964 * more formal mechanism, we "hook" this function to continue init process.
965 *
966 * At this point, the physical NAND Flash chips have been identified and
967 * counted, so we know the physical geometry. This enables us to make some
968 * important configuration decisions.
969 *
970 * The return value of this function propogates directly back to this driver's
971 * call to nand_scan(). Anything other than zero will cause this driver to
972 * tear everything down and declare failure.
973 */
974 static int mxs_nand_scan_bbt(struct mtd_info *mtd)
975 {
976 struct nand_chip *nand = mtd->priv;
977 struct mxs_nand_info *nand_info = nand->priv;
978 struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
979 uint32_t tmp;
980
981 /* Configure BCH and set NFC geometry */
982 mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
983
984 /* Configure layout 0 */
985 tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
986 << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
987 tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
988 tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
989 << BCH_FLASHLAYOUT0_ECC0_OFFSET;
990 tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE
991 >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
992 writel(tmp, &bch_regs->hw_bch_flash0layout0);
993
994 tmp = (mtd->writesize + mtd->oobsize)
995 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
996 tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
997 << BCH_FLASHLAYOUT1_ECCN_OFFSET;
998 tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE
999 >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
1000 writel(tmp, &bch_regs->hw_bch_flash0layout1);
1001
1002 /* Set *all* chip selects to use layout 0 */
1003 writel(0, &bch_regs->hw_bch_layoutselect);
1004
1005 /* Enable BCH complete interrupt */
1006 writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
1007
1008 /* Hook some operations at the MTD level. */
1009 if (mtd->read_oob != mxs_nand_hook_read_oob) {
1010 nand_info->hooked_read_oob = mtd->read_oob;
1011 mtd->read_oob = mxs_nand_hook_read_oob;
1012 }
1013
1014 if (mtd->write_oob != mxs_nand_hook_write_oob) {
1015 nand_info->hooked_write_oob = mtd->write_oob;
1016 mtd->write_oob = mxs_nand_hook_write_oob;
1017 }
1018
1019 if (mtd->block_markbad != mxs_nand_hook_block_markbad) {
1020 nand_info->hooked_block_markbad = mtd->block_markbad;
1021 mtd->block_markbad = mxs_nand_hook_block_markbad;
1022 }
1023
1024 /* We use the reference implementation for bad block management. */
1025 return nand_default_bbt(mtd);
1026 }
1027
1028 /*
1029 * Allocate DMA buffers
1030 */
1031 int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
1032 {
1033 uint8_t *buf;
1034 const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
1035
1036 nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
1037
1038 /* DMA buffers */
1039 buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
1040 if (!buf) {
1041 printf("MXS NAND: Error allocating DMA buffers\n");
1042 return -ENOMEM;
1043 }
1044
1045 memset(buf, 0, nand_info->data_buf_size);
1046
1047 nand_info->data_buf = buf;
1048 nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
1049 /* Command buffers */
1050 nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
1051 MXS_NAND_COMMAND_BUFFER_SIZE);
1052 if (!nand_info->cmd_buf) {
1053 free(buf);
1054 printf("MXS NAND: Error allocating command buffers\n");
1055 return -ENOMEM;
1056 }
1057 memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
1058 nand_info->cmd_queue_len = 0;
1059
1060 return 0;
1061 }
1062
1063 /*
1064 * Initializes the NFC hardware.
1065 */
1066 int mxs_nand_init(struct mxs_nand_info *info)
1067 {
1068 struct mxs_gpmi_regs *gpmi_regs =
1069 (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
1070 struct mxs_bch_regs *bch_regs =
1071 (struct mxs_bch_regs *)MXS_BCH_BASE;
1072 int i = 0, j;
1073
1074 info->desc = malloc(sizeof(struct mxs_dma_desc *) *
1075 MXS_NAND_DMA_DESCRIPTOR_COUNT);
1076 if (!info->desc)
1077 goto err1;
1078
1079 /* Allocate the DMA descriptors. */
1080 for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
1081 info->desc[i] = mxs_dma_desc_alloc();
1082 if (!info->desc[i])
1083 goto err2;
1084 }
1085
1086 /* Init the DMA controller. */
1087 for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
1088 j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
1089 if (mxs_dma_init_channel(j))
1090 goto err3;
1091 }
1092
1093 /* Reset the GPMI block. */
1094 mxs_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
1095 mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
1096
1097 /*
1098 * Choose NAND mode, set IRQ polarity, disable write protection and
1099 * select BCH ECC.
1100 */
1101 clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
1102 GPMI_CTRL1_GPMI_MODE,
1103 GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
1104 GPMI_CTRL1_BCH_MODE);
1105
1106 return 0;
1107
1108 err3:
1109 for (--j; j >= 0; j--)
1110 mxs_dma_release(j);
1111 err2:
1112 free(info->desc);
1113 err1:
1114 for (--i; i >= 0; i--)
1115 mxs_dma_desc_free(info->desc[i]);
1116 printf("MXS NAND: Unable to allocate DMA descriptors\n");
1117 return -ENOMEM;
1118 }
1119
1120 /*!
1121 * This function is called during the driver binding process.
1122 *
1123 * @param pdev the device structure used to store device specific
1124 * information that is used by the suspend, resume and
1125 * remove functions
1126 *
1127 * @return The function always returns 0.
1128 */
1129 int board_nand_init(struct nand_chip *nand)
1130 {
1131 struct mxs_nand_info *nand_info;
1132 int err;
1133
1134 nand_info = malloc(sizeof(struct mxs_nand_info));
1135 if (!nand_info) {
1136 printf("MXS NAND: Failed to allocate private data\n");
1137 return -ENOMEM;
1138 }
1139 memset(nand_info, 0, sizeof(struct mxs_nand_info));
1140
1141 err = mxs_nand_alloc_buffers(nand_info);
1142 if (err)
1143 goto err1;
1144
1145 err = mxs_nand_init(nand_info);
1146 if (err)
1147 goto err2;
1148
1149 memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
1150
1151 nand->priv = nand_info;
1152 nand->options |= NAND_NO_SUBPAGE_WRITE;
1153
1154 nand->cmd_ctrl = mxs_nand_cmd_ctrl;
1155
1156 nand->dev_ready = mxs_nand_device_ready;
1157 nand->select_chip = mxs_nand_select_chip;
1158 nand->block_bad = mxs_nand_block_bad;
1159 nand->scan_bbt = mxs_nand_scan_bbt;
1160
1161 nand->read_byte = mxs_nand_read_byte;
1162
1163 nand->read_buf = mxs_nand_read_buf;
1164 nand->write_buf = mxs_nand_write_buf;
1165
1166 nand->ecc.read_page = mxs_nand_ecc_read_page;
1167 nand->ecc.write_page = mxs_nand_ecc_write_page;
1168 nand->ecc.read_oob = mxs_nand_ecc_read_oob;
1169 nand->ecc.write_oob = mxs_nand_ecc_write_oob;
1170
1171 nand->ecc.layout = &fake_ecc_layout;
1172 nand->ecc.mode = NAND_ECC_HW;
1173 nand->ecc.bytes = 9;
1174 nand->ecc.size = 512;
1175
1176 return 0;
1177
1178 err2:
1179 free(nand_info->data_buf);
1180 free(nand_info->cmd_buf);
1181 err1:
1182 free(nand_info);
1183 return err;
1184 }