]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/omap_gpmc.c
treewide: replace #include <asm/errno.h> with <linux/errno.h>
[people/ms/u-boot.git] / drivers / mtd / nand / omap_gpmc.c
1 /*
2 * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
3 * Rohit Choraria <rohitkc@ti.com>
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 #include <common.h>
9 #include <asm/io.h>
10 #include <linux/errno.h>
11 #include <asm/arch/mem.h>
12 #include <linux/mtd/omap_gpmc.h>
13 #include <linux/mtd/nand_ecc.h>
14 #include <linux/bch.h>
15 #include <linux/compiler.h>
16 #include <nand.h>
17 #include <linux/mtd/omap_elm.h>
18
19 #define BADBLOCK_MARKER_LENGTH 2
20 #define SECTOR_BYTES 512
21 #define ECCCLEAR (0x1 << 8)
22 #define ECCRESULTREG1 (0x1 << 0)
23 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
24 #define BCH4_BIT_PAD 4
25
26 #ifdef CONFIG_BCH
27 static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
28 0x97, 0x79, 0xe5, 0x24, 0xb5};
29 #endif
30 static uint8_t cs_next;
31 static __maybe_unused struct nand_ecclayout omap_ecclayout;
32
33 #if defined(CONFIG_NAND_OMAP_GPMC_WSCFG)
34 static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] =
35 { CONFIG_NAND_OMAP_GPMC_WSCFG };
36 #else
37 /* wscfg is preset to zero since its a static variable */
38 static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE];
39 #endif
40
41 /*
42 * Driver configurations
43 */
44 struct omap_nand_info {
45 struct bch_control *control;
46 enum omap_ecc ecc_scheme;
47 uint8_t cs;
48 uint8_t ws; /* wait status pin (0,1) */
49 };
50
51 /* We are wasting a bit of memory but al least we are safe */
52 static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
53
54 /*
55 * omap_nand_hwcontrol - Set the address pointers corretly for the
56 * following address/data/command operation
57 */
58 static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
59 uint32_t ctrl)
60 {
61 register struct nand_chip *this = mtd_to_nand(mtd);
62 struct omap_nand_info *info = nand_get_controller_data(this);
63 int cs = info->cs;
64
65 /*
66 * Point the IO_ADDR to DATA and ADDRESS registers instead
67 * of chip address
68 */
69 switch (ctrl) {
70 case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
71 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
72 break;
73 case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
74 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
75 break;
76 case NAND_CTRL_CHANGE | NAND_NCE:
77 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
78 break;
79 }
80
81 if (cmd != NAND_CMD_NONE)
82 writeb(cmd, this->IO_ADDR_W);
83 }
84
85 /* Check wait pin as dev ready indicator */
86 static int omap_dev_ready(struct mtd_info *mtd)
87 {
88 register struct nand_chip *this = mtd_to_nand(mtd);
89 struct omap_nand_info *info = nand_get_controller_data(this);
90 return gpmc_cfg->status & (1 << (8 + info->ws));
91 }
92
93 /*
94 * gen_true_ecc - This function will generate true ECC value, which
95 * can be used when correcting data read from NAND flash memory core
96 *
97 * @ecc_buf: buffer to store ecc code
98 *
99 * @return: re-formatted ECC value
100 */
101 static uint32_t gen_true_ecc(uint8_t *ecc_buf)
102 {
103 return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
104 ((ecc_buf[2] & 0x0F) << 8);
105 }
106
107 /*
108 * omap_correct_data - Compares the ecc read from nand spare area with ECC
109 * registers values and corrects one bit error if it has occurred
110 * Further details can be had from OMAP TRM and the following selected links:
111 * http://en.wikipedia.org/wiki/Hamming_code
112 * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
113 *
114 * @mtd: MTD device structure
115 * @dat: page data
116 * @read_ecc: ecc read from nand flash
117 * @calc_ecc: ecc read from ECC registers
118 *
119 * @return 0 if data is OK or corrected, else returns -1
120 */
121 static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
122 uint8_t *read_ecc, uint8_t *calc_ecc)
123 {
124 uint32_t orig_ecc, new_ecc, res, hm;
125 uint16_t parity_bits, byte;
126 uint8_t bit;
127
128 /* Regenerate the orginal ECC */
129 orig_ecc = gen_true_ecc(read_ecc);
130 new_ecc = gen_true_ecc(calc_ecc);
131 /* Get the XOR of real ecc */
132 res = orig_ecc ^ new_ecc;
133 if (res) {
134 /* Get the hamming width */
135 hm = hweight32(res);
136 /* Single bit errors can be corrected! */
137 if (hm == 12) {
138 /* Correctable data! */
139 parity_bits = res >> 16;
140 bit = (parity_bits & 0x7);
141 byte = (parity_bits >> 3) & 0x1FF;
142 /* Flip the bit to correct */
143 dat[byte] ^= (0x1 << bit);
144 } else if (hm == 1) {
145 printf("Error: Ecc is wrong\n");
146 /* ECC itself is corrupted */
147 return 2;
148 } else {
149 /*
150 * hm distance != parity pairs OR one, could mean 2 bit
151 * error OR potentially be on a blank page..
152 * orig_ecc: contains spare area data from nand flash.
153 * new_ecc: generated ecc while reading data area.
154 * Note: if the ecc = 0, all data bits from which it was
155 * generated are 0xFF.
156 * The 3 byte(24 bits) ecc is generated per 512byte
157 * chunk of a page. If orig_ecc(from spare area)
158 * is 0xFF && new_ecc(computed now from data area)=0x0,
159 * this means that data area is 0xFF and spare area is
160 * 0xFF. A sure sign of a erased page!
161 */
162 if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
163 return 0;
164 printf("Error: Bad compare! failed\n");
165 /* detected 2 bit error */
166 return -EBADMSG;
167 }
168 }
169 return 0;
170 }
171
172 /*
173 * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
174 * @mtd: MTD device structure
175 * @mode: Read/Write mode
176 */
177 __maybe_unused
178 static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
179 {
180 struct nand_chip *nand = mtd_to_nand(mtd);
181 struct omap_nand_info *info = nand_get_controller_data(nand);
182 unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
183 unsigned int ecc_algo = 0;
184 unsigned int bch_type = 0;
185 unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
186 u32 ecc_size_config_val = 0;
187 u32 ecc_config_val = 0;
188 int cs = info->cs;
189
190 /* configure GPMC for specific ecc-scheme */
191 switch (info->ecc_scheme) {
192 case OMAP_ECC_HAM1_CODE_SW:
193 return;
194 case OMAP_ECC_HAM1_CODE_HW:
195 ecc_algo = 0x0;
196 bch_type = 0x0;
197 bch_wrapmode = 0x00;
198 eccsize0 = 0xFF;
199 eccsize1 = 0xFF;
200 break;
201 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
202 case OMAP_ECC_BCH8_CODE_HW:
203 ecc_algo = 0x1;
204 bch_type = 0x1;
205 if (mode == NAND_ECC_WRITE) {
206 bch_wrapmode = 0x01;
207 eccsize0 = 0; /* extra bits in nibbles per sector */
208 eccsize1 = 28; /* OOB bits in nibbles per sector */
209 } else {
210 bch_wrapmode = 0x01;
211 eccsize0 = 26; /* ECC bits in nibbles per sector */
212 eccsize1 = 2; /* non-ECC bits in nibbles per sector */
213 }
214 break;
215 case OMAP_ECC_BCH16_CODE_HW:
216 ecc_algo = 0x1;
217 bch_type = 0x2;
218 if (mode == NAND_ECC_WRITE) {
219 bch_wrapmode = 0x01;
220 eccsize0 = 0; /* extra bits in nibbles per sector */
221 eccsize1 = 52; /* OOB bits in nibbles per sector */
222 } else {
223 bch_wrapmode = 0x01;
224 eccsize0 = 52; /* ECC bits in nibbles per sector */
225 eccsize1 = 0; /* non-ECC bits in nibbles per sector */
226 }
227 break;
228 default:
229 return;
230 }
231 /* Clear ecc and enable bits */
232 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
233 /* Configure ecc size for BCH */
234 ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
235 writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
236
237 /* Configure device details for BCH engine */
238 ecc_config_val = ((ecc_algo << 16) | /* HAM1 | BCHx */
239 (bch_type << 12) | /* BCH4/BCH8/BCH16 */
240 (bch_wrapmode << 8) | /* wrap mode */
241 (dev_width << 7) | /* bus width */
242 (0x0 << 4) | /* number of sectors */
243 (cs << 1) | /* ECC CS */
244 (0x1)); /* enable ECC */
245 writel(ecc_config_val, &gpmc_cfg->ecc_config);
246 }
247
248 /*
249 * omap_calculate_ecc - Read ECC result
250 * @mtd: MTD structure
251 * @dat: unused
252 * @ecc_code: ecc_code buffer
253 * Using noninverted ECC can be considered ugly since writing a blank
254 * page ie. padding will clear the ECC bytes. This is no problem as
255 * long nobody is trying to write data on the seemingly unused page.
256 * Reading an erased page will produce an ECC mismatch between
257 * generated and read ECC bytes that has to be dealt with separately.
258 * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
259 * is used, the result of read will be 0x0 while the ECC offsets of the
260 * spare area will be 0xFF which will result in an ECC mismatch.
261 */
262 static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
263 uint8_t *ecc_code)
264 {
265 struct nand_chip *chip = mtd_to_nand(mtd);
266 struct omap_nand_info *info = nand_get_controller_data(chip);
267 const uint32_t *ptr;
268 uint32_t val = 0;
269 int8_t i = 0, j;
270
271 switch (info->ecc_scheme) {
272 case OMAP_ECC_HAM1_CODE_HW:
273 val = readl(&gpmc_cfg->ecc1_result);
274 ecc_code[0] = val & 0xFF;
275 ecc_code[1] = (val >> 16) & 0xFF;
276 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
277 break;
278 #ifdef CONFIG_BCH
279 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
280 #endif
281 case OMAP_ECC_BCH8_CODE_HW:
282 ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
283 val = readl(ptr);
284 ecc_code[i++] = (val >> 0) & 0xFF;
285 ptr--;
286 for (j = 0; j < 3; j++) {
287 val = readl(ptr);
288 ecc_code[i++] = (val >> 24) & 0xFF;
289 ecc_code[i++] = (val >> 16) & 0xFF;
290 ecc_code[i++] = (val >> 8) & 0xFF;
291 ecc_code[i++] = (val >> 0) & 0xFF;
292 ptr--;
293 }
294 break;
295 case OMAP_ECC_BCH16_CODE_HW:
296 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
297 ecc_code[i++] = (val >> 8) & 0xFF;
298 ecc_code[i++] = (val >> 0) & 0xFF;
299 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
300 ecc_code[i++] = (val >> 24) & 0xFF;
301 ecc_code[i++] = (val >> 16) & 0xFF;
302 ecc_code[i++] = (val >> 8) & 0xFF;
303 ecc_code[i++] = (val >> 0) & 0xFF;
304 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
305 ecc_code[i++] = (val >> 24) & 0xFF;
306 ecc_code[i++] = (val >> 16) & 0xFF;
307 ecc_code[i++] = (val >> 8) & 0xFF;
308 ecc_code[i++] = (val >> 0) & 0xFF;
309 for (j = 3; j >= 0; j--) {
310 val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
311 );
312 ecc_code[i++] = (val >> 24) & 0xFF;
313 ecc_code[i++] = (val >> 16) & 0xFF;
314 ecc_code[i++] = (val >> 8) & 0xFF;
315 ecc_code[i++] = (val >> 0) & 0xFF;
316 }
317 break;
318 default:
319 return -EINVAL;
320 }
321 /* ECC scheme specific syndrome customizations */
322 switch (info->ecc_scheme) {
323 case OMAP_ECC_HAM1_CODE_HW:
324 break;
325 #ifdef CONFIG_BCH
326 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
327
328 for (i = 0; i < chip->ecc.bytes; i++)
329 *(ecc_code + i) = *(ecc_code + i) ^
330 bch8_polynomial[i];
331 break;
332 #endif
333 case OMAP_ECC_BCH8_CODE_HW:
334 ecc_code[chip->ecc.bytes - 1] = 0x00;
335 break;
336 case OMAP_ECC_BCH16_CODE_HW:
337 break;
338 default:
339 return -EINVAL;
340 }
341 return 0;
342 }
343
344 #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
345
346 #define PREFETCH_CONFIG1_CS_SHIFT 24
347 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
348 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
349 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
350 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
351 #define ENABLE_PREFETCH (1 << 7)
352
353 /**
354 * omap_prefetch_enable - configures and starts prefetch transfer
355 * @fifo_th: fifo threshold to be used for read/ write
356 * @count: number of bytes to be transferred
357 * @is_write: prefetch read(0) or write post(1) mode
358 * @cs: chip select to use
359 */
360 static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs)
361 {
362 uint32_t val;
363
364 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
365 return -EINVAL;
366
367 if (readl(&gpmc_cfg->prefetch_control))
368 return -EBUSY;
369
370 /* Set the amount of bytes to be prefetched */
371 writel(count, &gpmc_cfg->prefetch_config2);
372
373 val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) |
374 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH;
375 writel(val, &gpmc_cfg->prefetch_config1);
376
377 /* Start the prefetch engine */
378 writel(1, &gpmc_cfg->prefetch_control);
379
380 return 0;
381 }
382
383 /**
384 * omap_prefetch_reset - disables and stops the prefetch engine
385 */
386 static void omap_prefetch_reset(void)
387 {
388 writel(0, &gpmc_cfg->prefetch_control);
389 writel(0, &gpmc_cfg->prefetch_config1);
390 }
391
392 static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len)
393 {
394 int ret;
395 uint32_t cnt;
396 struct omap_nand_info *info = nand_get_controller_data(chip);
397
398 ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs);
399 if (ret < 0)
400 return ret;
401
402 do {
403 int i;
404
405 cnt = readl(&gpmc_cfg->prefetch_status);
406 cnt = PREFETCH_STATUS_FIFO_CNT(cnt);
407
408 for (i = 0; i < cnt / 4; i++) {
409 *buf++ = readl(CONFIG_SYS_NAND_BASE);
410 len -= 4;
411 }
412 } while (len);
413
414 omap_prefetch_reset();
415
416 return 0;
417 }
418
419 static inline void omap_nand_read(struct mtd_info *mtd, uint8_t *buf, int len)
420 {
421 struct nand_chip *chip = mtd_to_nand(mtd);
422
423 if (chip->options & NAND_BUSWIDTH_16)
424 nand_read_buf16(mtd, buf, len);
425 else
426 nand_read_buf(mtd, buf, len);
427 }
428
429 static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len)
430 {
431 int ret;
432 uint32_t head, tail;
433 struct nand_chip *chip = mtd_to_nand(mtd);
434
435 /*
436 * If the destination buffer is unaligned, start with reading
437 * the overlap byte-wise.
438 */
439 head = ((uint32_t) buf) % 4;
440 if (head) {
441 omap_nand_read(mtd, buf, head);
442 buf += head;
443 len -= head;
444 }
445
446 /*
447 * Only transfer multiples of 4 bytes in a pre-fetched fashion.
448 * If there's a residue, care for it byte-wise afterwards.
449 */
450 tail = len % 4;
451
452 ret = __read_prefetch_aligned(chip, (uint32_t *)buf, len - tail);
453 if (ret < 0) {
454 /* fallback in case the prefetch engine is busy */
455 omap_nand_read(mtd, buf, len);
456 } else if (tail) {
457 buf += len - tail;
458 omap_nand_read(mtd, buf, tail);
459 }
460 }
461 #endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */
462
463 #ifdef CONFIG_NAND_OMAP_ELM
464 /*
465 * omap_reverse_list - re-orders list elements in reverse order [internal]
466 * @list: pointer to start of list
467 * @length: length of list
468 */
469 static void omap_reverse_list(u8 *list, unsigned int length)
470 {
471 unsigned int i, j;
472 unsigned int half_length = length / 2;
473 u8 tmp;
474 for (i = 0, j = length - 1; i < half_length; i++, j--) {
475 tmp = list[i];
476 list[i] = list[j];
477 list[j] = tmp;
478 }
479 }
480
481 /*
482 * omap_correct_data_bch - Compares the ecc read from nand spare area
483 * with ECC registers values and corrects one bit error if it has occurred
484 *
485 * @mtd: MTD device structure
486 * @dat: page data
487 * @read_ecc: ecc read from nand flash (ignored)
488 * @calc_ecc: ecc read from ECC registers
489 *
490 * @return 0 if data is OK or corrected, else returns -1
491 */
492 static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
493 uint8_t *read_ecc, uint8_t *calc_ecc)
494 {
495 struct nand_chip *chip = mtd_to_nand(mtd);
496 struct omap_nand_info *info = nand_get_controller_data(chip);
497 struct nand_ecc_ctrl *ecc = &chip->ecc;
498 uint32_t error_count = 0, error_max;
499 uint32_t error_loc[ELM_MAX_ERROR_COUNT];
500 enum bch_level bch_type;
501 uint32_t i, ecc_flag = 0;
502 uint8_t count;
503 uint32_t byte_pos, bit_pos;
504 int err = 0;
505
506 /* check calculated ecc */
507 for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
508 if (calc_ecc[i] != 0x00)
509 ecc_flag = 1;
510 }
511 if (!ecc_flag)
512 return 0;
513
514 /* check for whether its a erased-page */
515 ecc_flag = 0;
516 for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
517 if (read_ecc[i] != 0xff)
518 ecc_flag = 1;
519 }
520 if (!ecc_flag)
521 return 0;
522
523 /*
524 * while reading ECC result we read it in big endian.
525 * Hence while loading to ELM we have rotate to get the right endian.
526 */
527 switch (info->ecc_scheme) {
528 case OMAP_ECC_BCH8_CODE_HW:
529 bch_type = BCH_8_BIT;
530 omap_reverse_list(calc_ecc, ecc->bytes - 1);
531 break;
532 case OMAP_ECC_BCH16_CODE_HW:
533 bch_type = BCH_16_BIT;
534 omap_reverse_list(calc_ecc, ecc->bytes);
535 break;
536 default:
537 return -EINVAL;
538 }
539 /* use elm module to check for errors */
540 elm_config(bch_type);
541 err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
542 if (err)
543 return err;
544
545 /* correct bch error */
546 for (count = 0; count < error_count; count++) {
547 switch (info->ecc_scheme) {
548 case OMAP_ECC_BCH8_CODE_HW:
549 /* 14th byte in ECC is reserved to match ROM layout */
550 error_max = SECTOR_BYTES + (ecc->bytes - 1);
551 break;
552 case OMAP_ECC_BCH16_CODE_HW:
553 error_max = SECTOR_BYTES + ecc->bytes;
554 break;
555 default:
556 return -EINVAL;
557 }
558 byte_pos = error_max - (error_loc[count] / 8) - 1;
559 bit_pos = error_loc[count] % 8;
560 if (byte_pos < SECTOR_BYTES) {
561 dat[byte_pos] ^= 1 << bit_pos;
562 debug("nand: bit-flip corrected @data=%d\n", byte_pos);
563 } else if (byte_pos < error_max) {
564 read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
565 debug("nand: bit-flip corrected @oob=%d\n", byte_pos -
566 SECTOR_BYTES);
567 } else {
568 err = -EBADMSG;
569 printf("nand: error: invalid bit-flip location\n");
570 }
571 }
572 return (err) ? err : error_count;
573 }
574
575 /**
576 * omap_read_page_bch - hardware ecc based page read function
577 * @mtd: mtd info structure
578 * @chip: nand chip info structure
579 * @buf: buffer to store read data
580 * @oob_required: caller expects OOB data read to chip->oob_poi
581 * @page: page number to read
582 *
583 */
584 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
585 uint8_t *buf, int oob_required, int page)
586 {
587 int i, eccsize = chip->ecc.size;
588 int eccbytes = chip->ecc.bytes;
589 int eccsteps = chip->ecc.steps;
590 uint8_t *p = buf;
591 uint8_t *ecc_calc = chip->buffers->ecccalc;
592 uint8_t *ecc_code = chip->buffers->ecccode;
593 uint32_t *eccpos = chip->ecc.layout->eccpos;
594 uint8_t *oob = chip->oob_poi;
595 uint32_t data_pos;
596 uint32_t oob_pos;
597
598 data_pos = 0;
599 /* oob area start */
600 oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
601 oob += chip->ecc.layout->eccpos[0];
602
603 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
604 oob += eccbytes) {
605 chip->ecc.hwctl(mtd, NAND_ECC_READ);
606 /* read data */
607 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
608 chip->read_buf(mtd, p, eccsize);
609
610 /* read respective ecc from oob area */
611 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
612 chip->read_buf(mtd, oob, eccbytes);
613 /* read syndrome */
614 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
615
616 data_pos += eccsize;
617 oob_pos += eccbytes;
618 }
619
620 for (i = 0; i < chip->ecc.total; i++)
621 ecc_code[i] = chip->oob_poi[eccpos[i]];
622
623 eccsteps = chip->ecc.steps;
624 p = buf;
625
626 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
627 int stat;
628
629 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
630 if (stat < 0)
631 mtd->ecc_stats.failed++;
632 else
633 mtd->ecc_stats.corrected += stat;
634 }
635 return 0;
636 }
637 #endif /* CONFIG_NAND_OMAP_ELM */
638
639 /*
640 * OMAP3 BCH8 support (with BCH library)
641 */
642 #ifdef CONFIG_BCH
643 /**
644 * omap_correct_data_bch_sw - Decode received data and correct errors
645 * @mtd: MTD device structure
646 * @data: page data
647 * @read_ecc: ecc read from nand flash
648 * @calc_ecc: ecc read from HW ECC registers
649 */
650 static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
651 u_char *read_ecc, u_char *calc_ecc)
652 {
653 int i, count;
654 /* cannot correct more than 8 errors */
655 unsigned int errloc[8];
656 struct nand_chip *chip = mtd_to_nand(mtd);
657 struct omap_nand_info *info = nand_get_controller_data(chip);
658
659 count = decode_bch(info->control, NULL, 512, read_ecc, calc_ecc,
660 NULL, errloc);
661 if (count > 0) {
662 /* correct errors */
663 for (i = 0; i < count; i++) {
664 /* correct data only, not ecc bytes */
665 if (errloc[i] < 8*512)
666 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
667 debug("corrected bitflip %u\n", errloc[i]);
668 #ifdef DEBUG
669 puts("read_ecc: ");
670 /*
671 * BCH8 have 13 bytes of ECC; BCH4 needs adoption
672 * here!
673 */
674 for (i = 0; i < 13; i++)
675 printf("%02x ", read_ecc[i]);
676 puts("\n");
677 puts("calc_ecc: ");
678 for (i = 0; i < 13; i++)
679 printf("%02x ", calc_ecc[i]);
680 puts("\n");
681 #endif
682 }
683 } else if (count < 0) {
684 puts("ecc unrecoverable error\n");
685 }
686 return count;
687 }
688
689 /**
690 * omap_free_bch - Release BCH ecc resources
691 * @mtd: MTD device structure
692 */
693 static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
694 {
695 struct nand_chip *chip = mtd_to_nand(mtd);
696 struct omap_nand_info *info = nand_get_controller_data(chip);
697
698 if (info->control) {
699 free_bch(info->control);
700 info->control = NULL;
701 }
702 }
703 #endif /* CONFIG_BCH */
704
705 /**
706 * omap_select_ecc_scheme - configures driver for particular ecc-scheme
707 * @nand: NAND chip device structure
708 * @ecc_scheme: ecc scheme to configure
709 * @pagesize: number of main-area bytes per page of NAND device
710 * @oobsize: number of OOB/spare bytes per page of NAND device
711 */
712 static int omap_select_ecc_scheme(struct nand_chip *nand,
713 enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
714 struct omap_nand_info *info = nand_get_controller_data(nand);
715 struct nand_ecclayout *ecclayout = &omap_ecclayout;
716 int eccsteps = pagesize / SECTOR_BYTES;
717 int i;
718
719 switch (ecc_scheme) {
720 case OMAP_ECC_HAM1_CODE_SW:
721 debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
722 /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
723 * initialized in nand_scan_tail(), so just set ecc.mode */
724 info->control = NULL;
725 nand->ecc.mode = NAND_ECC_SOFT;
726 nand->ecc.layout = NULL;
727 nand->ecc.size = 0;
728 break;
729
730 case OMAP_ECC_HAM1_CODE_HW:
731 debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
732 /* check ecc-scheme requirements before updating ecc info */
733 if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
734 printf("nand: error: insufficient OOB: require=%d\n", (
735 (3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
736 return -EINVAL;
737 }
738 info->control = NULL;
739 /* populate ecc specific fields */
740 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
741 nand->ecc.mode = NAND_ECC_HW;
742 nand->ecc.strength = 1;
743 nand->ecc.size = SECTOR_BYTES;
744 nand->ecc.bytes = 3;
745 nand->ecc.hwctl = omap_enable_hwecc;
746 nand->ecc.correct = omap_correct_data;
747 nand->ecc.calculate = omap_calculate_ecc;
748 /* define ecc-layout */
749 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
750 for (i = 0; i < ecclayout->eccbytes; i++) {
751 if (nand->options & NAND_BUSWIDTH_16)
752 ecclayout->eccpos[i] = i + 2;
753 else
754 ecclayout->eccpos[i] = i + 1;
755 }
756 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
757 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
758 BADBLOCK_MARKER_LENGTH;
759 break;
760
761 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
762 #ifdef CONFIG_BCH
763 debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
764 /* check ecc-scheme requirements before updating ecc info */
765 if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
766 printf("nand: error: insufficient OOB: require=%d\n", (
767 (13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
768 return -EINVAL;
769 }
770 /* check if BCH S/W library can be used for error detection */
771 info->control = init_bch(13, 8, 0x201b);
772 if (!info->control) {
773 printf("nand: error: could not init_bch()\n");
774 return -ENODEV;
775 }
776 /* populate ecc specific fields */
777 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
778 nand->ecc.mode = NAND_ECC_HW;
779 nand->ecc.strength = 8;
780 nand->ecc.size = SECTOR_BYTES;
781 nand->ecc.bytes = 13;
782 nand->ecc.hwctl = omap_enable_hwecc;
783 nand->ecc.correct = omap_correct_data_bch_sw;
784 nand->ecc.calculate = omap_calculate_ecc;
785 /* define ecc-layout */
786 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
787 ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
788 for (i = 1; i < ecclayout->eccbytes; i++) {
789 if (i % nand->ecc.bytes)
790 ecclayout->eccpos[i] =
791 ecclayout->eccpos[i - 1] + 1;
792 else
793 ecclayout->eccpos[i] =
794 ecclayout->eccpos[i - 1] + 2;
795 }
796 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
797 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
798 BADBLOCK_MARKER_LENGTH;
799 break;
800 #else
801 printf("nand: error: CONFIG_BCH required for ECC\n");
802 return -EINVAL;
803 #endif
804
805 case OMAP_ECC_BCH8_CODE_HW:
806 #ifdef CONFIG_NAND_OMAP_ELM
807 debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
808 /* check ecc-scheme requirements before updating ecc info */
809 if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
810 printf("nand: error: insufficient OOB: require=%d\n", (
811 (14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
812 return -EINVAL;
813 }
814 /* intialize ELM for ECC error detection */
815 elm_init();
816 info->control = NULL;
817 /* populate ecc specific fields */
818 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
819 nand->ecc.mode = NAND_ECC_HW;
820 nand->ecc.strength = 8;
821 nand->ecc.size = SECTOR_BYTES;
822 nand->ecc.bytes = 14;
823 nand->ecc.hwctl = omap_enable_hwecc;
824 nand->ecc.correct = omap_correct_data_bch;
825 nand->ecc.calculate = omap_calculate_ecc;
826 nand->ecc.read_page = omap_read_page_bch;
827 /* define ecc-layout */
828 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
829 for (i = 0; i < ecclayout->eccbytes; i++)
830 ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
831 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
832 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
833 BADBLOCK_MARKER_LENGTH;
834 break;
835 #else
836 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
837 return -EINVAL;
838 #endif
839
840 case OMAP_ECC_BCH16_CODE_HW:
841 #ifdef CONFIG_NAND_OMAP_ELM
842 debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
843 /* check ecc-scheme requirements before updating ecc info */
844 if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
845 printf("nand: error: insufficient OOB: require=%d\n", (
846 (26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
847 return -EINVAL;
848 }
849 /* intialize ELM for ECC error detection */
850 elm_init();
851 /* populate ecc specific fields */
852 nand->ecc.mode = NAND_ECC_HW;
853 nand->ecc.size = SECTOR_BYTES;
854 nand->ecc.bytes = 26;
855 nand->ecc.strength = 16;
856 nand->ecc.hwctl = omap_enable_hwecc;
857 nand->ecc.correct = omap_correct_data_bch;
858 nand->ecc.calculate = omap_calculate_ecc;
859 nand->ecc.read_page = omap_read_page_bch;
860 /* define ecc-layout */
861 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
862 for (i = 0; i < ecclayout->eccbytes; i++)
863 ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
864 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
865 ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
866 BADBLOCK_MARKER_LENGTH;
867 break;
868 #else
869 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
870 return -EINVAL;
871 #endif
872 default:
873 debug("nand: error: ecc scheme not enabled or supported\n");
874 return -EINVAL;
875 }
876
877 /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
878 if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
879 nand->ecc.layout = ecclayout;
880
881 info->ecc_scheme = ecc_scheme;
882 return 0;
883 }
884
885 #ifndef CONFIG_SPL_BUILD
886 /*
887 * omap_nand_switch_ecc - switch the ECC operation between different engines
888 * (h/w and s/w) and different algorithms (hamming and BCHx)
889 *
890 * @hardware - true if one of the HW engines should be used
891 * @eccstrength - the number of bits that could be corrected
892 * (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
893 */
894 int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
895 {
896 struct nand_chip *nand;
897 struct mtd_info *mtd;
898 int err = 0;
899
900 if (nand_curr_device < 0 ||
901 nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
902 !nand_info[nand_curr_device]) {
903 printf("nand: error: no NAND devices found\n");
904 return -ENODEV;
905 }
906
907 mtd = nand_info[nand_curr_device];
908 nand = mtd_to_nand(mtd);
909 nand->options |= NAND_OWN_BUFFERS;
910 nand->options &= ~NAND_SUBPAGE_READ;
911 /* Setup the ecc configurations again */
912 if (hardware) {
913 if (eccstrength == 1) {
914 err = omap_select_ecc_scheme(nand,
915 OMAP_ECC_HAM1_CODE_HW,
916 mtd->writesize, mtd->oobsize);
917 } else if (eccstrength == 8) {
918 err = omap_select_ecc_scheme(nand,
919 OMAP_ECC_BCH8_CODE_HW,
920 mtd->writesize, mtd->oobsize);
921 } else if (eccstrength == 16) {
922 err = omap_select_ecc_scheme(nand,
923 OMAP_ECC_BCH16_CODE_HW,
924 mtd->writesize, mtd->oobsize);
925 } else {
926 printf("nand: error: unsupported ECC scheme\n");
927 return -EINVAL;
928 }
929 } else {
930 if (eccstrength == 1) {
931 err = omap_select_ecc_scheme(nand,
932 OMAP_ECC_HAM1_CODE_SW,
933 mtd->writesize, mtd->oobsize);
934 } else if (eccstrength == 8) {
935 err = omap_select_ecc_scheme(nand,
936 OMAP_ECC_BCH8_CODE_HW_DETECTION_SW,
937 mtd->writesize, mtd->oobsize);
938 } else {
939 printf("nand: error: unsupported ECC scheme\n");
940 return -EINVAL;
941 }
942 }
943
944 /* Update NAND handling after ECC mode switch */
945 if (!err)
946 err = nand_scan_tail(mtd);
947 return err;
948 }
949 #endif /* CONFIG_SPL_BUILD */
950
951 /*
952 * Board-specific NAND initialization. The following members of the
953 * argument are board-specific:
954 * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
955 * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
956 * - cmd_ctrl: hardwarespecific function for accesing control-lines
957 * - waitfunc: hardwarespecific function for accesing device ready/busy line
958 * - ecc.hwctl: function to enable (reset) hardware ecc generator
959 * - ecc.mode: mode of ecc, see defines
960 * - chip_delay: chip dependent delay for transfering data from array to
961 * read regs (tR)
962 * - options: various chip options. They can partly be set to inform
963 * nand_scan about special functionality. See the defines for further
964 * explanation
965 */
966 int board_nand_init(struct nand_chip *nand)
967 {
968 int32_t gpmc_config = 0;
969 int cs = cs_next++;
970 int err = 0;
971 /*
972 * xloader/Uboot's gpmc configuration would have configured GPMC for
973 * nand type of memory. The following logic scans and latches on to the
974 * first CS with NAND type memory.
975 * TBD: need to make this logic generic to handle multiple CS NAND
976 * devices.
977 */
978 while (cs < GPMC_MAX_CS) {
979 /* Check if NAND type is set */
980 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
981 /* Found it!! */
982 break;
983 }
984 cs++;
985 }
986 if (cs >= GPMC_MAX_CS) {
987 printf("nand: error: Unable to find NAND settings in "
988 "GPMC Configuration - quitting\n");
989 return -ENODEV;
990 }
991
992 gpmc_config = readl(&gpmc_cfg->config);
993 /* Disable Write protect */
994 gpmc_config |= 0x10;
995 writel(gpmc_config, &gpmc_cfg->config);
996
997 nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
998 nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
999 omap_nand_info[cs].control = NULL;
1000 omap_nand_info[cs].cs = cs;
1001 omap_nand_info[cs].ws = wscfg[cs];
1002 nand_set_controller_data(nand, &omap_nand_info[cs]);
1003 nand->cmd_ctrl = omap_nand_hwcontrol;
1004 nand->options |= NAND_NO_PADDING | NAND_CACHEPRG;
1005 nand->chip_delay = 100;
1006 nand->ecc.layout = &omap_ecclayout;
1007
1008 /* configure driver and controller based on NAND device bus-width */
1009 gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
1010 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
1011 nand->options |= NAND_BUSWIDTH_16;
1012 writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
1013 #else
1014 nand->options &= ~NAND_BUSWIDTH_16;
1015 writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
1016 #endif
1017 /* select ECC scheme */
1018 #if defined(CONFIG_NAND_OMAP_ECCSCHEME)
1019 err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
1020 CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
1021 #else
1022 /* pagesize and oobsize are not required to configure sw ecc-scheme */
1023 err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
1024 0, 0);
1025 #endif
1026 if (err)
1027 return err;
1028
1029 #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
1030 nand->read_buf = omap_nand_read_prefetch;
1031 #else
1032 if (nand->options & NAND_BUSWIDTH_16)
1033 nand->read_buf = nand_read_buf16;
1034 else
1035 nand->read_buf = nand_read_buf;
1036 #endif
1037
1038 nand->dev_ready = omap_dev_ready;
1039
1040 return 0;
1041 }