]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/mtd/nand/raw/brcmnand/brcmnand.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / drivers / mtd / nand / raw / brcmnand / brcmnand.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright © 2010-2015 Broadcom Corporation
4 */
5
6 #include <linux/clk.h>
7 #include <linux/version.h>
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/platform_device.h>
13 #include <linux/err.h>
14 #include <linux/completion.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/ioport.h>
19 #include <linux/bug.h>
20 #include <linux/kernel.h>
21 #include <linux/bitops.h>
22 #include <linux/mm.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/mtd/partitions.h>
26 #include <linux/of.h>
27 #include <linux/of_platform.h>
28 #include <linux/slab.h>
29 #include <linux/list.h>
30 #include <linux/log2.h>
31
32 #include "brcmnand.h"
33
34 /*
35 * This flag controls if WP stays on between erase/write commands to mitigate
36 * flash corruption due to power glitches. Values:
37 * 0: NAND_WP is not used or not available
38 * 1: NAND_WP is set by default, cleared for erase/write operations
39 * 2: NAND_WP is always cleared
40 */
41 static int wp_on = 1;
42 module_param(wp_on, int, 0444);
43
44 /***********************************************************************
45 * Definitions
46 ***********************************************************************/
47
48 #define DRV_NAME "brcmnand"
49
50 #define CMD_NULL 0x00
51 #define CMD_PAGE_READ 0x01
52 #define CMD_SPARE_AREA_READ 0x02
53 #define CMD_STATUS_READ 0x03
54 #define CMD_PROGRAM_PAGE 0x04
55 #define CMD_PROGRAM_SPARE_AREA 0x05
56 #define CMD_COPY_BACK 0x06
57 #define CMD_DEVICE_ID_READ 0x07
58 #define CMD_BLOCK_ERASE 0x08
59 #define CMD_FLASH_RESET 0x09
60 #define CMD_BLOCKS_LOCK 0x0a
61 #define CMD_BLOCKS_LOCK_DOWN 0x0b
62 #define CMD_BLOCKS_UNLOCK 0x0c
63 #define CMD_READ_BLOCKS_LOCK_STATUS 0x0d
64 #define CMD_PARAMETER_READ 0x0e
65 #define CMD_PARAMETER_CHANGE_COL 0x0f
66 #define CMD_LOW_LEVEL_OP 0x10
67
68 struct brcm_nand_dma_desc {
69 u32 next_desc;
70 u32 next_desc_ext;
71 u32 cmd_irq;
72 u32 dram_addr;
73 u32 dram_addr_ext;
74 u32 tfr_len;
75 u32 total_len;
76 u32 flash_addr;
77 u32 flash_addr_ext;
78 u32 cs;
79 u32 pad2[5];
80 u32 status_valid;
81 } __packed;
82
83 /* Bitfields for brcm_nand_dma_desc::status_valid */
84 #define FLASH_DMA_ECC_ERROR (1 << 8)
85 #define FLASH_DMA_CORR_ERROR (1 << 9)
86
87 /* Bitfields for DMA_MODE */
88 #define FLASH_DMA_MODE_STOP_ON_ERROR BIT(1) /* stop in Uncorr ECC error */
89 #define FLASH_DMA_MODE_MODE BIT(0) /* link list */
90 #define FLASH_DMA_MODE_MASK (FLASH_DMA_MODE_STOP_ON_ERROR | \
91 FLASH_DMA_MODE_MODE)
92
93 /* 512B flash cache in the NAND controller HW */
94 #define FC_SHIFT 9U
95 #define FC_BYTES 512U
96 #define FC_WORDS (FC_BYTES >> 2)
97
98 #define BRCMNAND_MIN_PAGESIZE 512
99 #define BRCMNAND_MIN_BLOCKSIZE (8 * 1024)
100 #define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024)
101
102 #define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY)
103 #define NAND_POLL_STATUS_TIMEOUT_MS 100
104
105 #define EDU_CMD_WRITE 0x00
106 #define EDU_CMD_READ 0x01
107 #define EDU_STATUS_ACTIVE BIT(0)
108 #define EDU_ERR_STATUS_ERRACK BIT(0)
109 #define EDU_DONE_MASK GENMASK(1, 0)
110
111 #define EDU_CONFIG_MODE_NAND BIT(0)
112 #define EDU_CONFIG_SWAP_BYTE BIT(1)
113 #ifdef CONFIG_CPU_BIG_ENDIAN
114 #define EDU_CONFIG_SWAP_CFG EDU_CONFIG_SWAP_BYTE
115 #else
116 #define EDU_CONFIG_SWAP_CFG 0
117 #endif
118
119 /* edu registers */
120 enum edu_reg {
121 EDU_CONFIG = 0,
122 EDU_DRAM_ADDR,
123 EDU_EXT_ADDR,
124 EDU_LENGTH,
125 EDU_CMD,
126 EDU_STOP,
127 EDU_STATUS,
128 EDU_DONE,
129 EDU_ERR_STATUS,
130 };
131
132 static const u16 edu_regs[] = {
133 [EDU_CONFIG] = 0x00,
134 [EDU_DRAM_ADDR] = 0x04,
135 [EDU_EXT_ADDR] = 0x08,
136 [EDU_LENGTH] = 0x0c,
137 [EDU_CMD] = 0x10,
138 [EDU_STOP] = 0x14,
139 [EDU_STATUS] = 0x18,
140 [EDU_DONE] = 0x1c,
141 [EDU_ERR_STATUS] = 0x20,
142 };
143
144 /* flash_dma registers */
145 enum flash_dma_reg {
146 FLASH_DMA_REVISION = 0,
147 FLASH_DMA_FIRST_DESC,
148 FLASH_DMA_FIRST_DESC_EXT,
149 FLASH_DMA_CTRL,
150 FLASH_DMA_MODE,
151 FLASH_DMA_STATUS,
152 FLASH_DMA_INTERRUPT_DESC,
153 FLASH_DMA_INTERRUPT_DESC_EXT,
154 FLASH_DMA_ERROR_STATUS,
155 FLASH_DMA_CURRENT_DESC,
156 FLASH_DMA_CURRENT_DESC_EXT,
157 };
158
159 /* flash_dma registers v0*/
160 static const u16 flash_dma_regs_v0[] = {
161 [FLASH_DMA_REVISION] = 0x00,
162 [FLASH_DMA_FIRST_DESC] = 0x04,
163 [FLASH_DMA_CTRL] = 0x08,
164 [FLASH_DMA_MODE] = 0x0c,
165 [FLASH_DMA_STATUS] = 0x10,
166 [FLASH_DMA_INTERRUPT_DESC] = 0x14,
167 [FLASH_DMA_ERROR_STATUS] = 0x18,
168 [FLASH_DMA_CURRENT_DESC] = 0x1c,
169 };
170
171 /* flash_dma registers v1*/
172 static const u16 flash_dma_regs_v1[] = {
173 [FLASH_DMA_REVISION] = 0x00,
174 [FLASH_DMA_FIRST_DESC] = 0x04,
175 [FLASH_DMA_FIRST_DESC_EXT] = 0x08,
176 [FLASH_DMA_CTRL] = 0x0c,
177 [FLASH_DMA_MODE] = 0x10,
178 [FLASH_DMA_STATUS] = 0x14,
179 [FLASH_DMA_INTERRUPT_DESC] = 0x18,
180 [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x1c,
181 [FLASH_DMA_ERROR_STATUS] = 0x20,
182 [FLASH_DMA_CURRENT_DESC] = 0x24,
183 [FLASH_DMA_CURRENT_DESC_EXT] = 0x28,
184 };
185
186 /* flash_dma registers v4 */
187 static const u16 flash_dma_regs_v4[] = {
188 [FLASH_DMA_REVISION] = 0x00,
189 [FLASH_DMA_FIRST_DESC] = 0x08,
190 [FLASH_DMA_FIRST_DESC_EXT] = 0x0c,
191 [FLASH_DMA_CTRL] = 0x10,
192 [FLASH_DMA_MODE] = 0x14,
193 [FLASH_DMA_STATUS] = 0x18,
194 [FLASH_DMA_INTERRUPT_DESC] = 0x20,
195 [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x24,
196 [FLASH_DMA_ERROR_STATUS] = 0x28,
197 [FLASH_DMA_CURRENT_DESC] = 0x30,
198 [FLASH_DMA_CURRENT_DESC_EXT] = 0x34,
199 };
200
201 /* Controller feature flags */
202 enum {
203 BRCMNAND_HAS_1K_SECTORS = BIT(0),
204 BRCMNAND_HAS_PREFETCH = BIT(1),
205 BRCMNAND_HAS_CACHE_MODE = BIT(2),
206 BRCMNAND_HAS_WP = BIT(3),
207 };
208
209 struct brcmnand_host;
210
211 struct brcmnand_controller {
212 struct device *dev;
213 struct nand_controller controller;
214 void __iomem *nand_base;
215 void __iomem *nand_fc; /* flash cache */
216 void __iomem *flash_dma_base;
217 unsigned int irq;
218 unsigned int dma_irq;
219 int nand_version;
220
221 /* Some SoCs provide custom interrupt status register(s) */
222 struct brcmnand_soc *soc;
223
224 /* Some SoCs have a gateable clock for the controller */
225 struct clk *clk;
226
227 int cmd_pending;
228 bool dma_pending;
229 bool edu_pending;
230 struct completion done;
231 struct completion dma_done;
232 struct completion edu_done;
233
234 /* List of NAND hosts (one for each chip-select) */
235 struct list_head host_list;
236
237 /* EDU info, per-transaction */
238 const u16 *edu_offsets;
239 void __iomem *edu_base;
240 int edu_irq;
241 int edu_count;
242 u64 edu_dram_addr;
243 u32 edu_ext_addr;
244 u32 edu_cmd;
245 u32 edu_config;
246
247 /* flash_dma reg */
248 const u16 *flash_dma_offsets;
249 struct brcm_nand_dma_desc *dma_desc;
250 dma_addr_t dma_pa;
251
252 int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf,
253 u32 len, u8 dma_cmd);
254
255 /* in-memory cache of the FLASH_CACHE, used only for some commands */
256 u8 flash_cache[FC_BYTES];
257
258 /* Controller revision details */
259 const u16 *reg_offsets;
260 unsigned int reg_spacing; /* between CS1, CS2, ... regs */
261 const u8 *cs_offsets; /* within each chip-select */
262 const u8 *cs0_offsets; /* within CS0, if different */
263 unsigned int max_block_size;
264 const unsigned int *block_sizes;
265 unsigned int max_page_size;
266 const unsigned int *page_sizes;
267 unsigned int max_oob;
268 u32 features;
269
270 /* for low-power standby/resume only */
271 u32 nand_cs_nand_select;
272 u32 nand_cs_nand_xor;
273 u32 corr_stat_threshold;
274 u32 flash_dma_mode;
275 u32 flash_edu_mode;
276 bool pio_poll_mode;
277 };
278
279 struct brcmnand_cfg {
280 u64 device_size;
281 unsigned int block_size;
282 unsigned int page_size;
283 unsigned int spare_area_size;
284 unsigned int device_width;
285 unsigned int col_adr_bytes;
286 unsigned int blk_adr_bytes;
287 unsigned int ful_adr_bytes;
288 unsigned int sector_size_1k;
289 unsigned int ecc_level;
290 /* use for low-power standby/resume only */
291 u32 acc_control;
292 u32 config;
293 u32 config_ext;
294 u32 timing_1;
295 u32 timing_2;
296 };
297
298 struct brcmnand_host {
299 struct list_head node;
300
301 struct nand_chip chip;
302 struct platform_device *pdev;
303 int cs;
304
305 unsigned int last_cmd;
306 unsigned int last_byte;
307 u64 last_addr;
308 struct brcmnand_cfg hwcfg;
309 struct brcmnand_controller *ctrl;
310 };
311
312 enum brcmnand_reg {
313 BRCMNAND_CMD_START = 0,
314 BRCMNAND_CMD_EXT_ADDRESS,
315 BRCMNAND_CMD_ADDRESS,
316 BRCMNAND_INTFC_STATUS,
317 BRCMNAND_CS_SELECT,
318 BRCMNAND_CS_XOR,
319 BRCMNAND_LL_OP,
320 BRCMNAND_CS0_BASE,
321 BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */
322 BRCMNAND_CORR_THRESHOLD,
323 BRCMNAND_CORR_THRESHOLD_EXT,
324 BRCMNAND_UNCORR_COUNT,
325 BRCMNAND_CORR_COUNT,
326 BRCMNAND_CORR_EXT_ADDR,
327 BRCMNAND_CORR_ADDR,
328 BRCMNAND_UNCORR_EXT_ADDR,
329 BRCMNAND_UNCORR_ADDR,
330 BRCMNAND_SEMAPHORE,
331 BRCMNAND_ID,
332 BRCMNAND_ID_EXT,
333 BRCMNAND_LL_RDATA,
334 BRCMNAND_OOB_READ_BASE,
335 BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */
336 BRCMNAND_OOB_WRITE_BASE,
337 BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */
338 BRCMNAND_FC_BASE,
339 };
340
341 /* BRCMNAND v4.0 */
342 static const u16 brcmnand_regs_v40[] = {
343 [BRCMNAND_CMD_START] = 0x04,
344 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
345 [BRCMNAND_CMD_ADDRESS] = 0x0c,
346 [BRCMNAND_INTFC_STATUS] = 0x6c,
347 [BRCMNAND_CS_SELECT] = 0x14,
348 [BRCMNAND_CS_XOR] = 0x18,
349 [BRCMNAND_LL_OP] = 0x178,
350 [BRCMNAND_CS0_BASE] = 0x40,
351 [BRCMNAND_CS1_BASE] = 0xd0,
352 [BRCMNAND_CORR_THRESHOLD] = 0x84,
353 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
354 [BRCMNAND_UNCORR_COUNT] = 0,
355 [BRCMNAND_CORR_COUNT] = 0,
356 [BRCMNAND_CORR_EXT_ADDR] = 0x70,
357 [BRCMNAND_CORR_ADDR] = 0x74,
358 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
359 [BRCMNAND_UNCORR_ADDR] = 0x7c,
360 [BRCMNAND_SEMAPHORE] = 0x58,
361 [BRCMNAND_ID] = 0x60,
362 [BRCMNAND_ID_EXT] = 0x64,
363 [BRCMNAND_LL_RDATA] = 0x17c,
364 [BRCMNAND_OOB_READ_BASE] = 0x20,
365 [BRCMNAND_OOB_READ_10_BASE] = 0x130,
366 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
367 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
368 [BRCMNAND_FC_BASE] = 0x200,
369 };
370
371 /* BRCMNAND v5.0 */
372 static const u16 brcmnand_regs_v50[] = {
373 [BRCMNAND_CMD_START] = 0x04,
374 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
375 [BRCMNAND_CMD_ADDRESS] = 0x0c,
376 [BRCMNAND_INTFC_STATUS] = 0x6c,
377 [BRCMNAND_CS_SELECT] = 0x14,
378 [BRCMNAND_CS_XOR] = 0x18,
379 [BRCMNAND_LL_OP] = 0x178,
380 [BRCMNAND_CS0_BASE] = 0x40,
381 [BRCMNAND_CS1_BASE] = 0xd0,
382 [BRCMNAND_CORR_THRESHOLD] = 0x84,
383 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
384 [BRCMNAND_UNCORR_COUNT] = 0,
385 [BRCMNAND_CORR_COUNT] = 0,
386 [BRCMNAND_CORR_EXT_ADDR] = 0x70,
387 [BRCMNAND_CORR_ADDR] = 0x74,
388 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
389 [BRCMNAND_UNCORR_ADDR] = 0x7c,
390 [BRCMNAND_SEMAPHORE] = 0x58,
391 [BRCMNAND_ID] = 0x60,
392 [BRCMNAND_ID_EXT] = 0x64,
393 [BRCMNAND_LL_RDATA] = 0x17c,
394 [BRCMNAND_OOB_READ_BASE] = 0x20,
395 [BRCMNAND_OOB_READ_10_BASE] = 0x130,
396 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
397 [BRCMNAND_OOB_WRITE_10_BASE] = 0x140,
398 [BRCMNAND_FC_BASE] = 0x200,
399 };
400
401 /* BRCMNAND v6.0 - v7.1 */
402 static const u16 brcmnand_regs_v60[] = {
403 [BRCMNAND_CMD_START] = 0x04,
404 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
405 [BRCMNAND_CMD_ADDRESS] = 0x0c,
406 [BRCMNAND_INTFC_STATUS] = 0x14,
407 [BRCMNAND_CS_SELECT] = 0x18,
408 [BRCMNAND_CS_XOR] = 0x1c,
409 [BRCMNAND_LL_OP] = 0x20,
410 [BRCMNAND_CS0_BASE] = 0x50,
411 [BRCMNAND_CS1_BASE] = 0,
412 [BRCMNAND_CORR_THRESHOLD] = 0xc0,
413 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4,
414 [BRCMNAND_UNCORR_COUNT] = 0xfc,
415 [BRCMNAND_CORR_COUNT] = 0x100,
416 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
417 [BRCMNAND_CORR_ADDR] = 0x110,
418 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
419 [BRCMNAND_UNCORR_ADDR] = 0x118,
420 [BRCMNAND_SEMAPHORE] = 0x150,
421 [BRCMNAND_ID] = 0x194,
422 [BRCMNAND_ID_EXT] = 0x198,
423 [BRCMNAND_LL_RDATA] = 0x19c,
424 [BRCMNAND_OOB_READ_BASE] = 0x200,
425 [BRCMNAND_OOB_READ_10_BASE] = 0,
426 [BRCMNAND_OOB_WRITE_BASE] = 0x280,
427 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
428 [BRCMNAND_FC_BASE] = 0x400,
429 };
430
431 /* BRCMNAND v7.1 */
432 static const u16 brcmnand_regs_v71[] = {
433 [BRCMNAND_CMD_START] = 0x04,
434 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
435 [BRCMNAND_CMD_ADDRESS] = 0x0c,
436 [BRCMNAND_INTFC_STATUS] = 0x14,
437 [BRCMNAND_CS_SELECT] = 0x18,
438 [BRCMNAND_CS_XOR] = 0x1c,
439 [BRCMNAND_LL_OP] = 0x20,
440 [BRCMNAND_CS0_BASE] = 0x50,
441 [BRCMNAND_CS1_BASE] = 0,
442 [BRCMNAND_CORR_THRESHOLD] = 0xdc,
443 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
444 [BRCMNAND_UNCORR_COUNT] = 0xfc,
445 [BRCMNAND_CORR_COUNT] = 0x100,
446 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
447 [BRCMNAND_CORR_ADDR] = 0x110,
448 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
449 [BRCMNAND_UNCORR_ADDR] = 0x118,
450 [BRCMNAND_SEMAPHORE] = 0x150,
451 [BRCMNAND_ID] = 0x194,
452 [BRCMNAND_ID_EXT] = 0x198,
453 [BRCMNAND_LL_RDATA] = 0x19c,
454 [BRCMNAND_OOB_READ_BASE] = 0x200,
455 [BRCMNAND_OOB_READ_10_BASE] = 0,
456 [BRCMNAND_OOB_WRITE_BASE] = 0x280,
457 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
458 [BRCMNAND_FC_BASE] = 0x400,
459 };
460
461 /* BRCMNAND v7.2 */
462 static const u16 brcmnand_regs_v72[] = {
463 [BRCMNAND_CMD_START] = 0x04,
464 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
465 [BRCMNAND_CMD_ADDRESS] = 0x0c,
466 [BRCMNAND_INTFC_STATUS] = 0x14,
467 [BRCMNAND_CS_SELECT] = 0x18,
468 [BRCMNAND_CS_XOR] = 0x1c,
469 [BRCMNAND_LL_OP] = 0x20,
470 [BRCMNAND_CS0_BASE] = 0x50,
471 [BRCMNAND_CS1_BASE] = 0,
472 [BRCMNAND_CORR_THRESHOLD] = 0xdc,
473 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
474 [BRCMNAND_UNCORR_COUNT] = 0xfc,
475 [BRCMNAND_CORR_COUNT] = 0x100,
476 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
477 [BRCMNAND_CORR_ADDR] = 0x110,
478 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
479 [BRCMNAND_UNCORR_ADDR] = 0x118,
480 [BRCMNAND_SEMAPHORE] = 0x150,
481 [BRCMNAND_ID] = 0x194,
482 [BRCMNAND_ID_EXT] = 0x198,
483 [BRCMNAND_LL_RDATA] = 0x19c,
484 [BRCMNAND_OOB_READ_BASE] = 0x200,
485 [BRCMNAND_OOB_READ_10_BASE] = 0,
486 [BRCMNAND_OOB_WRITE_BASE] = 0x400,
487 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
488 [BRCMNAND_FC_BASE] = 0x600,
489 };
490
491 enum brcmnand_cs_reg {
492 BRCMNAND_CS_CFG_EXT = 0,
493 BRCMNAND_CS_CFG,
494 BRCMNAND_CS_ACC_CONTROL,
495 BRCMNAND_CS_TIMING1,
496 BRCMNAND_CS_TIMING2,
497 };
498
499 /* Per chip-select offsets for v7.1 */
500 static const u8 brcmnand_cs_offsets_v71[] = {
501 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
502 [BRCMNAND_CS_CFG_EXT] = 0x04,
503 [BRCMNAND_CS_CFG] = 0x08,
504 [BRCMNAND_CS_TIMING1] = 0x0c,
505 [BRCMNAND_CS_TIMING2] = 0x10,
506 };
507
508 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
509 static const u8 brcmnand_cs_offsets[] = {
510 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
511 [BRCMNAND_CS_CFG_EXT] = 0x04,
512 [BRCMNAND_CS_CFG] = 0x04,
513 [BRCMNAND_CS_TIMING1] = 0x08,
514 [BRCMNAND_CS_TIMING2] = 0x0c,
515 };
516
517 /* Per chip-select offset for <= v5.0 on CS0 only */
518 static const u8 brcmnand_cs_offsets_cs0[] = {
519 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
520 [BRCMNAND_CS_CFG_EXT] = 0x08,
521 [BRCMNAND_CS_CFG] = 0x08,
522 [BRCMNAND_CS_TIMING1] = 0x10,
523 [BRCMNAND_CS_TIMING2] = 0x14,
524 };
525
526 /*
527 * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
528 * one config register, but once the bitfields overflowed, newer controllers
529 * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
530 */
531 enum {
532 CFG_BLK_ADR_BYTES_SHIFT = 8,
533 CFG_COL_ADR_BYTES_SHIFT = 12,
534 CFG_FUL_ADR_BYTES_SHIFT = 16,
535 CFG_BUS_WIDTH_SHIFT = 23,
536 CFG_BUS_WIDTH = BIT(CFG_BUS_WIDTH_SHIFT),
537 CFG_DEVICE_SIZE_SHIFT = 24,
538
539 /* Only for pre-v7.1 (with no CFG_EXT register) */
540 CFG_PAGE_SIZE_SHIFT = 20,
541 CFG_BLK_SIZE_SHIFT = 28,
542
543 /* Only for v7.1+ (with CFG_EXT register) */
544 CFG_EXT_PAGE_SIZE_SHIFT = 0,
545 CFG_EXT_BLK_SIZE_SHIFT = 4,
546 };
547
548 /* BRCMNAND_INTFC_STATUS */
549 enum {
550 INTFC_FLASH_STATUS = GENMASK(7, 0),
551
552 INTFC_ERASED = BIT(27),
553 INTFC_OOB_VALID = BIT(28),
554 INTFC_CACHE_VALID = BIT(29),
555 INTFC_FLASH_READY = BIT(30),
556 INTFC_CTLR_READY = BIT(31),
557 };
558
559 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
560 {
561 return brcmnand_readl(ctrl->nand_base + offs);
562 }
563
564 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
565 u32 val)
566 {
567 brcmnand_writel(val, ctrl->nand_base + offs);
568 }
569
570 static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
571 {
572 static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
573 static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
574 static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 };
575
576 ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
577
578 /* Only support v4.0+? */
579 if (ctrl->nand_version < 0x0400) {
580 dev_err(ctrl->dev, "version %#x not supported\n",
581 ctrl->nand_version);
582 return -ENODEV;
583 }
584
585 /* Register offsets */
586 if (ctrl->nand_version >= 0x0702)
587 ctrl->reg_offsets = brcmnand_regs_v72;
588 else if (ctrl->nand_version == 0x0701)
589 ctrl->reg_offsets = brcmnand_regs_v71;
590 else if (ctrl->nand_version >= 0x0600)
591 ctrl->reg_offsets = brcmnand_regs_v60;
592 else if (ctrl->nand_version >= 0x0500)
593 ctrl->reg_offsets = brcmnand_regs_v50;
594 else if (ctrl->nand_version >= 0x0400)
595 ctrl->reg_offsets = brcmnand_regs_v40;
596
597 /* Chip-select stride */
598 if (ctrl->nand_version >= 0x0701)
599 ctrl->reg_spacing = 0x14;
600 else
601 ctrl->reg_spacing = 0x10;
602
603 /* Per chip-select registers */
604 if (ctrl->nand_version >= 0x0701) {
605 ctrl->cs_offsets = brcmnand_cs_offsets_v71;
606 } else {
607 ctrl->cs_offsets = brcmnand_cs_offsets;
608
609 /* v5.0 and earlier has a different CS0 offset layout */
610 if (ctrl->nand_version <= 0x0500)
611 ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
612 }
613
614 /* Page / block sizes */
615 if (ctrl->nand_version >= 0x0701) {
616 /* >= v7.1 use nice power-of-2 values! */
617 ctrl->max_page_size = 16 * 1024;
618 ctrl->max_block_size = 2 * 1024 * 1024;
619 } else {
620 ctrl->page_sizes = page_sizes;
621 if (ctrl->nand_version >= 0x0600)
622 ctrl->block_sizes = block_sizes_v6;
623 else
624 ctrl->block_sizes = block_sizes_v4;
625
626 if (ctrl->nand_version < 0x0400) {
627 ctrl->max_page_size = 4096;
628 ctrl->max_block_size = 512 * 1024;
629 }
630 }
631
632 /* Maximum spare area sector size (per 512B) */
633 if (ctrl->nand_version == 0x0702)
634 ctrl->max_oob = 128;
635 else if (ctrl->nand_version >= 0x0600)
636 ctrl->max_oob = 64;
637 else if (ctrl->nand_version >= 0x0500)
638 ctrl->max_oob = 32;
639 else
640 ctrl->max_oob = 16;
641
642 /* v6.0 and newer (except v6.1) have prefetch support */
643 if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
644 ctrl->features |= BRCMNAND_HAS_PREFETCH;
645
646 /*
647 * v6.x has cache mode, but it's implemented differently. Ignore it for
648 * now.
649 */
650 if (ctrl->nand_version >= 0x0700)
651 ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
652
653 if (ctrl->nand_version >= 0x0500)
654 ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
655
656 if (ctrl->nand_version >= 0x0700)
657 ctrl->features |= BRCMNAND_HAS_WP;
658 else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
659 ctrl->features |= BRCMNAND_HAS_WP;
660
661 return 0;
662 }
663
664 static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
665 {
666 /* flash_dma register offsets */
667 if (ctrl->nand_version >= 0x0703)
668 ctrl->flash_dma_offsets = flash_dma_regs_v4;
669 else if (ctrl->nand_version == 0x0602)
670 ctrl->flash_dma_offsets = flash_dma_regs_v0;
671 else
672 ctrl->flash_dma_offsets = flash_dma_regs_v1;
673 }
674
675 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
676 enum brcmnand_reg reg)
677 {
678 u16 offs = ctrl->reg_offsets[reg];
679
680 if (offs)
681 return nand_readreg(ctrl, offs);
682 else
683 return 0;
684 }
685
686 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
687 enum brcmnand_reg reg, u32 val)
688 {
689 u16 offs = ctrl->reg_offsets[reg];
690
691 if (offs)
692 nand_writereg(ctrl, offs, val);
693 }
694
695 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
696 enum brcmnand_reg reg, u32 mask, unsigned
697 int shift, u32 val)
698 {
699 u32 tmp = brcmnand_read_reg(ctrl, reg);
700
701 tmp &= ~mask;
702 tmp |= val << shift;
703 brcmnand_write_reg(ctrl, reg, tmp);
704 }
705
706 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
707 {
708 return __raw_readl(ctrl->nand_fc + word * 4);
709 }
710
711 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
712 int word, u32 val)
713 {
714 __raw_writel(val, ctrl->nand_fc + word * 4);
715 }
716
717 static inline void edu_writel(struct brcmnand_controller *ctrl,
718 enum edu_reg reg, u32 val)
719 {
720 u16 offs = ctrl->edu_offsets[reg];
721
722 brcmnand_writel(val, ctrl->edu_base + offs);
723 }
724
725 static inline u32 edu_readl(struct brcmnand_controller *ctrl,
726 enum edu_reg reg)
727 {
728 u16 offs = ctrl->edu_offsets[reg];
729
730 return brcmnand_readl(ctrl->edu_base + offs);
731 }
732
733 static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
734 {
735
736 /* Clear error addresses */
737 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
738 brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
739 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
740 brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
741 }
742
743 static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
744 {
745 u64 err_addr;
746
747 err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
748 err_addr |= ((u64)(brcmnand_read_reg(ctrl,
749 BRCMNAND_UNCORR_EXT_ADDR)
750 & 0xffff) << 32);
751
752 return err_addr;
753 }
754
755 static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
756 {
757 u64 err_addr;
758
759 err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
760 err_addr |= ((u64)(brcmnand_read_reg(ctrl,
761 BRCMNAND_CORR_EXT_ADDR)
762 & 0xffff) << 32);
763
764 return err_addr;
765 }
766
767 static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
768 {
769 struct nand_chip *chip = mtd_to_nand(mtd);
770 struct brcmnand_host *host = nand_get_controller_data(chip);
771 struct brcmnand_controller *ctrl = host->ctrl;
772
773 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
774 (host->cs << 16) | ((addr >> 32) & 0xffff));
775 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
776 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
777 lower_32_bits(addr));
778 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
779 }
780
781 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
782 enum brcmnand_cs_reg reg)
783 {
784 u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
785 u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
786 u8 cs_offs;
787
788 if (cs == 0 && ctrl->cs0_offsets)
789 cs_offs = ctrl->cs0_offsets[reg];
790 else
791 cs_offs = ctrl->cs_offsets[reg];
792
793 if (cs && offs_cs1)
794 return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
795
796 return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
797 }
798
799 static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
800 {
801 if (ctrl->nand_version < 0x0600)
802 return 1;
803 return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
804 }
805
806 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
807 {
808 struct brcmnand_controller *ctrl = host->ctrl;
809 unsigned int shift = 0, bits;
810 enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
811 int cs = host->cs;
812
813 if (ctrl->nand_version == 0x0702)
814 bits = 7;
815 else if (ctrl->nand_version >= 0x0600)
816 bits = 6;
817 else if (ctrl->nand_version >= 0x0500)
818 bits = 5;
819 else
820 bits = 4;
821
822 if (ctrl->nand_version >= 0x0702) {
823 if (cs >= 4)
824 reg = BRCMNAND_CORR_THRESHOLD_EXT;
825 shift = (cs % 4) * bits;
826 } else if (ctrl->nand_version >= 0x0600) {
827 if (cs >= 5)
828 reg = BRCMNAND_CORR_THRESHOLD_EXT;
829 shift = (cs % 5) * bits;
830 }
831 brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
832 }
833
834 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
835 {
836 if (ctrl->nand_version < 0x0602)
837 return 24;
838 return 0;
839 }
840
841 /***********************************************************************
842 * NAND ACC CONTROL bitfield
843 *
844 * Some bits have remained constant throughout hardware revision, while
845 * others have shifted around.
846 ***********************************************************************/
847
848 /* Constant for all versions (where supported) */
849 enum {
850 /* See BRCMNAND_HAS_CACHE_MODE */
851 ACC_CONTROL_CACHE_MODE = BIT(22),
852
853 /* See BRCMNAND_HAS_PREFETCH */
854 ACC_CONTROL_PREFETCH = BIT(23),
855
856 ACC_CONTROL_PAGE_HIT = BIT(24),
857 ACC_CONTROL_WR_PREEMPT = BIT(25),
858 ACC_CONTROL_PARTIAL_PAGE = BIT(26),
859 ACC_CONTROL_RD_ERASED = BIT(27),
860 ACC_CONTROL_FAST_PGM_RDIN = BIT(28),
861 ACC_CONTROL_WR_ECC = BIT(30),
862 ACC_CONTROL_RD_ECC = BIT(31),
863 };
864
865 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
866 {
867 if (ctrl->nand_version == 0x0702)
868 return GENMASK(7, 0);
869 else if (ctrl->nand_version >= 0x0600)
870 return GENMASK(6, 0);
871 else
872 return GENMASK(5, 0);
873 }
874
875 #define NAND_ACC_CONTROL_ECC_SHIFT 16
876 #define NAND_ACC_CONTROL_ECC_EXT_SHIFT 13
877
878 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
879 {
880 u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
881
882 mask <<= NAND_ACC_CONTROL_ECC_SHIFT;
883
884 /* v7.2 includes additional ECC levels */
885 if (ctrl->nand_version >= 0x0702)
886 mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT;
887
888 return mask;
889 }
890
891 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
892 {
893 struct brcmnand_controller *ctrl = host->ctrl;
894 u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
895 u32 acc_control = nand_readreg(ctrl, offs);
896 u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
897
898 if (en) {
899 acc_control |= ecc_flags; /* enable RD/WR ECC */
900 acc_control |= host->hwcfg.ecc_level
901 << NAND_ACC_CONTROL_ECC_SHIFT;
902 } else {
903 acc_control &= ~ecc_flags; /* disable RD/WR ECC */
904 acc_control &= ~brcmnand_ecc_level_mask(ctrl);
905 }
906
907 nand_writereg(ctrl, offs, acc_control);
908 }
909
910 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
911 {
912 if (ctrl->nand_version >= 0x0702)
913 return 9;
914 else if (ctrl->nand_version >= 0x0600)
915 return 7;
916 else if (ctrl->nand_version >= 0x0500)
917 return 6;
918 else
919 return -1;
920 }
921
922 static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
923 {
924 struct brcmnand_controller *ctrl = host->ctrl;
925 int shift = brcmnand_sector_1k_shift(ctrl);
926 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
927 BRCMNAND_CS_ACC_CONTROL);
928
929 if (shift < 0)
930 return 0;
931
932 return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
933 }
934
935 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
936 {
937 struct brcmnand_controller *ctrl = host->ctrl;
938 int shift = brcmnand_sector_1k_shift(ctrl);
939 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
940 BRCMNAND_CS_ACC_CONTROL);
941 u32 tmp;
942
943 if (shift < 0)
944 return;
945
946 tmp = nand_readreg(ctrl, acc_control_offs);
947 tmp &= ~(1 << shift);
948 tmp |= (!!val) << shift;
949 nand_writereg(ctrl, acc_control_offs, tmp);
950 }
951
952 /***********************************************************************
953 * CS_NAND_SELECT
954 ***********************************************************************/
955
956 enum {
957 CS_SELECT_NAND_WP = BIT(29),
958 CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30),
959 };
960
961 static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
962 u32 mask, u32 expected_val,
963 unsigned long timeout_ms)
964 {
965 unsigned long limit;
966 u32 val;
967
968 if (!timeout_ms)
969 timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
970
971 limit = jiffies + msecs_to_jiffies(timeout_ms);
972 do {
973 val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
974 if ((val & mask) == expected_val)
975 return 0;
976
977 cpu_relax();
978 } while (time_after(limit, jiffies));
979
980 dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
981 expected_val, val & mask);
982
983 return -ETIMEDOUT;
984 }
985
986 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
987 {
988 u32 val = en ? CS_SELECT_NAND_WP : 0;
989
990 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
991 }
992
993 /***********************************************************************
994 * Flash DMA
995 ***********************************************************************/
996
997 static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
998 {
999 return ctrl->flash_dma_base;
1000 }
1001
1002 static inline bool has_edu(struct brcmnand_controller *ctrl)
1003 {
1004 return ctrl->edu_base;
1005 }
1006
1007 static inline bool use_dma(struct brcmnand_controller *ctrl)
1008 {
1009 return has_flash_dma(ctrl) || has_edu(ctrl);
1010 }
1011
1012 static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
1013 {
1014 if (ctrl->pio_poll_mode)
1015 return;
1016
1017 if (has_flash_dma(ctrl)) {
1018 ctrl->flash_dma_base = NULL;
1019 disable_irq(ctrl->dma_irq);
1020 }
1021
1022 disable_irq(ctrl->irq);
1023 ctrl->pio_poll_mode = true;
1024 }
1025
1026 static inline bool flash_dma_buf_ok(const void *buf)
1027 {
1028 return buf && !is_vmalloc_addr(buf) &&
1029 likely(IS_ALIGNED((uintptr_t)buf, 4));
1030 }
1031
1032 static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
1033 enum flash_dma_reg dma_reg, u32 val)
1034 {
1035 u16 offs = ctrl->flash_dma_offsets[dma_reg];
1036
1037 brcmnand_writel(val, ctrl->flash_dma_base + offs);
1038 }
1039
1040 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
1041 enum flash_dma_reg dma_reg)
1042 {
1043 u16 offs = ctrl->flash_dma_offsets[dma_reg];
1044
1045 return brcmnand_readl(ctrl->flash_dma_base + offs);
1046 }
1047
1048 /* Low-level operation types: command, address, write, or read */
1049 enum brcmnand_llop_type {
1050 LL_OP_CMD,
1051 LL_OP_ADDR,
1052 LL_OP_WR,
1053 LL_OP_RD,
1054 };
1055
1056 /***********************************************************************
1057 * Internal support functions
1058 ***********************************************************************/
1059
1060 static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
1061 struct brcmnand_cfg *cfg)
1062 {
1063 if (ctrl->nand_version <= 0x0701)
1064 return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
1065 cfg->ecc_level == 15;
1066 else
1067 return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
1068 cfg->ecc_level == 15) ||
1069 (cfg->spare_area_size == 28 && cfg->ecc_level == 16));
1070 }
1071
1072 /*
1073 * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
1074 * the layout/configuration.
1075 * Returns -ERRCODE on failure.
1076 */
1077 static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
1078 struct mtd_oob_region *oobregion)
1079 {
1080 struct nand_chip *chip = mtd_to_nand(mtd);
1081 struct brcmnand_host *host = nand_get_controller_data(chip);
1082 struct brcmnand_cfg *cfg = &host->hwcfg;
1083 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1084 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1085
1086 if (section >= sectors)
1087 return -ERANGE;
1088
1089 oobregion->offset = (section * sas) + 6;
1090 oobregion->length = 3;
1091
1092 return 0;
1093 }
1094
1095 static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
1096 struct mtd_oob_region *oobregion)
1097 {
1098 struct nand_chip *chip = mtd_to_nand(mtd);
1099 struct brcmnand_host *host = nand_get_controller_data(chip);
1100 struct brcmnand_cfg *cfg = &host->hwcfg;
1101 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1102 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1103
1104 if (section >= sectors * 2)
1105 return -ERANGE;
1106
1107 oobregion->offset = (section / 2) * sas;
1108
1109 if (section & 1) {
1110 oobregion->offset += 9;
1111 oobregion->length = 7;
1112 } else {
1113 oobregion->length = 6;
1114
1115 /* First sector of each page may have BBI */
1116 if (!section) {
1117 /*
1118 * Small-page NAND use byte 6 for BBI while large-page
1119 * NAND use byte 0.
1120 */
1121 if (cfg->page_size > 512)
1122 oobregion->offset++;
1123 oobregion->length--;
1124 }
1125 }
1126
1127 return 0;
1128 }
1129
1130 static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
1131 .ecc = brcmnand_hamming_ooblayout_ecc,
1132 .free = brcmnand_hamming_ooblayout_free,
1133 };
1134
1135 static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
1136 struct mtd_oob_region *oobregion)
1137 {
1138 struct nand_chip *chip = mtd_to_nand(mtd);
1139 struct brcmnand_host *host = nand_get_controller_data(chip);
1140 struct brcmnand_cfg *cfg = &host->hwcfg;
1141 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1142 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1143
1144 if (section >= sectors)
1145 return -ERANGE;
1146
1147 oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
1148 oobregion->length = chip->ecc.bytes;
1149
1150 return 0;
1151 }
1152
1153 static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
1154 struct mtd_oob_region *oobregion)
1155 {
1156 struct nand_chip *chip = mtd_to_nand(mtd);
1157 struct brcmnand_host *host = nand_get_controller_data(chip);
1158 struct brcmnand_cfg *cfg = &host->hwcfg;
1159 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1160 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1161
1162 if (section >= sectors)
1163 return -ERANGE;
1164
1165 if (sas <= chip->ecc.bytes)
1166 return 0;
1167
1168 oobregion->offset = section * sas;
1169 oobregion->length = sas - chip->ecc.bytes;
1170
1171 if (!section) {
1172 oobregion->offset++;
1173 oobregion->length--;
1174 }
1175
1176 return 0;
1177 }
1178
1179 static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
1180 struct mtd_oob_region *oobregion)
1181 {
1182 struct nand_chip *chip = mtd_to_nand(mtd);
1183 struct brcmnand_host *host = nand_get_controller_data(chip);
1184 struct brcmnand_cfg *cfg = &host->hwcfg;
1185 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1186
1187 if (section > 1 || sas - chip->ecc.bytes < 6 ||
1188 (section && sas - chip->ecc.bytes == 6))
1189 return -ERANGE;
1190
1191 if (!section) {
1192 oobregion->offset = 0;
1193 oobregion->length = 5;
1194 } else {
1195 oobregion->offset = 6;
1196 oobregion->length = sas - chip->ecc.bytes - 6;
1197 }
1198
1199 return 0;
1200 }
1201
1202 static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
1203 .ecc = brcmnand_bch_ooblayout_ecc,
1204 .free = brcmnand_bch_ooblayout_free_lp,
1205 };
1206
1207 static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1208 .ecc = brcmnand_bch_ooblayout_ecc,
1209 .free = brcmnand_bch_ooblayout_free_sp,
1210 };
1211
1212 static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1213 {
1214 struct brcmnand_cfg *p = &host->hwcfg;
1215 struct mtd_info *mtd = nand_to_mtd(&host->chip);
1216 struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1217 unsigned int ecc_level = p->ecc_level;
1218 int sas = p->spare_area_size << p->sector_size_1k;
1219 int sectors = p->page_size / (512 << p->sector_size_1k);
1220
1221 if (p->sector_size_1k)
1222 ecc_level <<= 1;
1223
1224 if (is_hamming_ecc(host->ctrl, p)) {
1225 ecc->bytes = 3 * sectors;
1226 mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1227 return 0;
1228 }
1229
1230 /*
1231 * CONTROLLER_VERSION:
1232 * < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1233 * >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1234 * But we will just be conservative.
1235 */
1236 ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1237 if (p->page_size == 512)
1238 mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1239 else
1240 mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1241
1242 if (ecc->bytes >= sas) {
1243 dev_err(&host->pdev->dev,
1244 "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1245 ecc->bytes, sas);
1246 return -EINVAL;
1247 }
1248
1249 return 0;
1250 }
1251
1252 static void brcmnand_wp(struct mtd_info *mtd, int wp)
1253 {
1254 struct nand_chip *chip = mtd_to_nand(mtd);
1255 struct brcmnand_host *host = nand_get_controller_data(chip);
1256 struct brcmnand_controller *ctrl = host->ctrl;
1257
1258 if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1259 static int old_wp = -1;
1260 int ret;
1261
1262 if (old_wp != wp) {
1263 dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1264 old_wp = wp;
1265 }
1266
1267 /*
1268 * make sure ctrl/flash ready before and after
1269 * changing state of #WP pin
1270 */
1271 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
1272 NAND_STATUS_READY,
1273 NAND_CTRL_RDY |
1274 NAND_STATUS_READY, 0);
1275 if (ret)
1276 return;
1277
1278 brcmnand_set_wp(ctrl, wp);
1279 nand_status_op(chip, NULL);
1280 /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1281 ret = bcmnand_ctrl_poll_status(ctrl,
1282 NAND_CTRL_RDY |
1283 NAND_STATUS_READY |
1284 NAND_STATUS_WP,
1285 NAND_CTRL_RDY |
1286 NAND_STATUS_READY |
1287 (wp ? 0 : NAND_STATUS_WP), 0);
1288
1289 if (ret)
1290 dev_err_ratelimited(&host->pdev->dev,
1291 "nand #WP expected %s\n",
1292 wp ? "on" : "off");
1293 }
1294 }
1295
1296 /* Helper functions for reading and writing OOB registers */
1297 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1298 {
1299 u16 offset0, offset10, reg_offs;
1300
1301 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1302 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1303
1304 if (offs >= ctrl->max_oob)
1305 return 0x77;
1306
1307 if (offs >= 16 && offset10)
1308 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1309 else
1310 reg_offs = offset0 + (offs & ~0x03);
1311
1312 return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1313 }
1314
1315 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1316 u32 data)
1317 {
1318 u16 offset0, offset10, reg_offs;
1319
1320 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1321 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1322
1323 if (offs >= ctrl->max_oob)
1324 return;
1325
1326 if (offs >= 16 && offset10)
1327 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1328 else
1329 reg_offs = offset0 + (offs & ~0x03);
1330
1331 nand_writereg(ctrl, reg_offs, data);
1332 }
1333
1334 /*
1335 * read_oob_from_regs - read data from OOB registers
1336 * @ctrl: NAND controller
1337 * @i: sub-page sector index
1338 * @oob: buffer to read to
1339 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1340 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1341 */
1342 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1343 int sas, int sector_1k)
1344 {
1345 int tbytes = sas << sector_1k;
1346 int j;
1347
1348 /* Adjust OOB values for 1K sector size */
1349 if (sector_1k && (i & 0x01))
1350 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1351 tbytes = min_t(int, tbytes, ctrl->max_oob);
1352
1353 for (j = 0; j < tbytes; j++)
1354 oob[j] = oob_reg_read(ctrl, j);
1355 return tbytes;
1356 }
1357
1358 /*
1359 * write_oob_to_regs - write data to OOB registers
1360 * @i: sub-page sector index
1361 * @oob: buffer to write from
1362 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1363 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1364 */
1365 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1366 const u8 *oob, int sas, int sector_1k)
1367 {
1368 int tbytes = sas << sector_1k;
1369 int j;
1370
1371 /* Adjust OOB values for 1K sector size */
1372 if (sector_1k && (i & 0x01))
1373 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1374 tbytes = min_t(int, tbytes, ctrl->max_oob);
1375
1376 for (j = 0; j < tbytes; j += 4)
1377 oob_reg_write(ctrl, j,
1378 (oob[j + 0] << 24) |
1379 (oob[j + 1] << 16) |
1380 (oob[j + 2] << 8) |
1381 (oob[j + 3] << 0));
1382 return tbytes;
1383 }
1384
1385 static void brcmnand_edu_init(struct brcmnand_controller *ctrl)
1386 {
1387 /* initialize edu */
1388 edu_writel(ctrl, EDU_ERR_STATUS, 0);
1389 edu_readl(ctrl, EDU_ERR_STATUS);
1390 edu_writel(ctrl, EDU_DONE, 0);
1391 edu_writel(ctrl, EDU_DONE, 0);
1392 edu_writel(ctrl, EDU_DONE, 0);
1393 edu_writel(ctrl, EDU_DONE, 0);
1394 edu_readl(ctrl, EDU_DONE);
1395 }
1396
1397 /* edu irq */
1398 static irqreturn_t brcmnand_edu_irq(int irq, void *data)
1399 {
1400 struct brcmnand_controller *ctrl = data;
1401
1402 if (ctrl->edu_count) {
1403 ctrl->edu_count--;
1404 while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK))
1405 udelay(1);
1406 edu_writel(ctrl, EDU_DONE, 0);
1407 edu_readl(ctrl, EDU_DONE);
1408 }
1409
1410 if (ctrl->edu_count) {
1411 ctrl->edu_dram_addr += FC_BYTES;
1412 ctrl->edu_ext_addr += FC_BYTES;
1413
1414 edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1415 edu_readl(ctrl, EDU_DRAM_ADDR);
1416 edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1417 edu_readl(ctrl, EDU_EXT_ADDR);
1418
1419 mb(); /* flush previous writes */
1420 edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1421 edu_readl(ctrl, EDU_CMD);
1422
1423 return IRQ_HANDLED;
1424 }
1425
1426 complete(&ctrl->edu_done);
1427
1428 return IRQ_HANDLED;
1429 }
1430
1431 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1432 {
1433 struct brcmnand_controller *ctrl = data;
1434
1435 /* Discard all NAND_CTLRDY interrupts during DMA */
1436 if (ctrl->dma_pending)
1437 return IRQ_HANDLED;
1438
1439 /* check if you need to piggy back on the ctrlrdy irq */
1440 if (ctrl->edu_pending) {
1441 if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0))
1442 /* Discard interrupts while using dedicated edu irq */
1443 return IRQ_HANDLED;
1444
1445 /* no registered edu irq, call handler */
1446 return brcmnand_edu_irq(irq, data);
1447 }
1448
1449 complete(&ctrl->done);
1450 return IRQ_HANDLED;
1451 }
1452
1453 /* Handle SoC-specific interrupt hardware */
1454 static irqreturn_t brcmnand_irq(int irq, void *data)
1455 {
1456 struct brcmnand_controller *ctrl = data;
1457
1458 if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1459 return brcmnand_ctlrdy_irq(irq, data);
1460
1461 return IRQ_NONE;
1462 }
1463
1464 static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1465 {
1466 struct brcmnand_controller *ctrl = data;
1467
1468 complete(&ctrl->dma_done);
1469
1470 return IRQ_HANDLED;
1471 }
1472
1473 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1474 {
1475 struct brcmnand_controller *ctrl = host->ctrl;
1476 int ret;
1477 u64 cmd_addr;
1478
1479 cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1480
1481 dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
1482
1483 BUG_ON(ctrl->cmd_pending != 0);
1484 ctrl->cmd_pending = cmd;
1485
1486 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1487 WARN_ON(ret);
1488
1489 mb(); /* flush previous writes */
1490 brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1491 cmd << brcmnand_cmd_shift(ctrl));
1492 }
1493
1494 /***********************************************************************
1495 * NAND MTD API: read/program/erase
1496 ***********************************************************************/
1497
1498 static void brcmnand_cmd_ctrl(struct nand_chip *chip, int dat,
1499 unsigned int ctrl)
1500 {
1501 /* intentionally left blank */
1502 }
1503
1504 static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
1505 {
1506 struct brcmnand_host *host = nand_get_controller_data(chip);
1507 struct brcmnand_controller *ctrl = host->ctrl;
1508 struct mtd_info *mtd = nand_to_mtd(chip);
1509 bool err = false;
1510 int sts;
1511
1512 if (mtd->oops_panic_write) {
1513 /* switch to interrupt polling and PIO mode */
1514 disable_ctrl_irqs(ctrl);
1515 sts = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY,
1516 NAND_CTRL_RDY, 0);
1517 err = (sts < 0) ? true : false;
1518 } else {
1519 unsigned long timeo = msecs_to_jiffies(
1520 NAND_POLL_STATUS_TIMEOUT_MS);
1521 /* wait for completion interrupt */
1522 sts = wait_for_completion_timeout(&ctrl->done, timeo);
1523 err = (sts <= 0) ? true : false;
1524 }
1525
1526 return err;
1527 }
1528
1529 static int brcmnand_waitfunc(struct nand_chip *chip)
1530 {
1531 struct brcmnand_host *host = nand_get_controller_data(chip);
1532 struct brcmnand_controller *ctrl = host->ctrl;
1533 bool err = false;
1534
1535 dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1536 if (ctrl->cmd_pending)
1537 err = brcmstb_nand_wait_for_completion(chip);
1538
1539 if (err) {
1540 u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1541 >> brcmnand_cmd_shift(ctrl);
1542
1543 dev_err_ratelimited(ctrl->dev,
1544 "timeout waiting for command %#02x\n", cmd);
1545 dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1546 brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1547 }
1548 ctrl->cmd_pending = 0;
1549 return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1550 INTFC_FLASH_STATUS;
1551 }
1552
1553 enum {
1554 LLOP_RE = BIT(16),
1555 LLOP_WE = BIT(17),
1556 LLOP_ALE = BIT(18),
1557 LLOP_CLE = BIT(19),
1558 LLOP_RETURN_IDLE = BIT(31),
1559
1560 LLOP_DATA_MASK = GENMASK(15, 0),
1561 };
1562
1563 static int brcmnand_low_level_op(struct brcmnand_host *host,
1564 enum brcmnand_llop_type type, u32 data,
1565 bool last_op)
1566 {
1567 struct nand_chip *chip = &host->chip;
1568 struct brcmnand_controller *ctrl = host->ctrl;
1569 u32 tmp;
1570
1571 tmp = data & LLOP_DATA_MASK;
1572 switch (type) {
1573 case LL_OP_CMD:
1574 tmp |= LLOP_WE | LLOP_CLE;
1575 break;
1576 case LL_OP_ADDR:
1577 /* WE | ALE */
1578 tmp |= LLOP_WE | LLOP_ALE;
1579 break;
1580 case LL_OP_WR:
1581 /* WE */
1582 tmp |= LLOP_WE;
1583 break;
1584 case LL_OP_RD:
1585 /* RE */
1586 tmp |= LLOP_RE;
1587 break;
1588 }
1589 if (last_op)
1590 /* RETURN_IDLE */
1591 tmp |= LLOP_RETURN_IDLE;
1592
1593 dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1594
1595 brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1596 (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1597
1598 brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1599 return brcmnand_waitfunc(chip);
1600 }
1601
1602 static void brcmnand_cmdfunc(struct nand_chip *chip, unsigned command,
1603 int column, int page_addr)
1604 {
1605 struct mtd_info *mtd = nand_to_mtd(chip);
1606 struct brcmnand_host *host = nand_get_controller_data(chip);
1607 struct brcmnand_controller *ctrl = host->ctrl;
1608 u64 addr = (u64)page_addr << chip->page_shift;
1609 int native_cmd = 0;
1610
1611 if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1612 command == NAND_CMD_RNDOUT)
1613 addr = (u64)column;
1614 /* Avoid propagating a negative, don't-care address */
1615 else if (page_addr < 0)
1616 addr = 0;
1617
1618 dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1619 (unsigned long long)addr);
1620
1621 host->last_cmd = command;
1622 host->last_byte = 0;
1623 host->last_addr = addr;
1624
1625 switch (command) {
1626 case NAND_CMD_RESET:
1627 native_cmd = CMD_FLASH_RESET;
1628 break;
1629 case NAND_CMD_STATUS:
1630 native_cmd = CMD_STATUS_READ;
1631 break;
1632 case NAND_CMD_READID:
1633 native_cmd = CMD_DEVICE_ID_READ;
1634 break;
1635 case NAND_CMD_READOOB:
1636 native_cmd = CMD_SPARE_AREA_READ;
1637 break;
1638 case NAND_CMD_ERASE1:
1639 native_cmd = CMD_BLOCK_ERASE;
1640 brcmnand_wp(mtd, 0);
1641 break;
1642 case NAND_CMD_PARAM:
1643 native_cmd = CMD_PARAMETER_READ;
1644 break;
1645 case NAND_CMD_SET_FEATURES:
1646 case NAND_CMD_GET_FEATURES:
1647 brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1648 brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1649 break;
1650 case NAND_CMD_RNDOUT:
1651 native_cmd = CMD_PARAMETER_CHANGE_COL;
1652 addr &= ~((u64)(FC_BYTES - 1));
1653 /*
1654 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1655 * NB: hwcfg.sector_size_1k may not be initialized yet
1656 */
1657 if (brcmnand_get_sector_size_1k(host)) {
1658 host->hwcfg.sector_size_1k =
1659 brcmnand_get_sector_size_1k(host);
1660 brcmnand_set_sector_size_1k(host, 0);
1661 }
1662 break;
1663 }
1664
1665 if (!native_cmd)
1666 return;
1667
1668 brcmnand_set_cmd_addr(mtd, addr);
1669 brcmnand_send_cmd(host, native_cmd);
1670 brcmnand_waitfunc(chip);
1671
1672 if (native_cmd == CMD_PARAMETER_READ ||
1673 native_cmd == CMD_PARAMETER_CHANGE_COL) {
1674 /* Copy flash cache word-wise */
1675 u32 *flash_cache = (u32 *)ctrl->flash_cache;
1676 int i;
1677
1678 brcmnand_soc_data_bus_prepare(ctrl->soc, true);
1679
1680 /*
1681 * Must cache the FLASH_CACHE now, since changes in
1682 * SECTOR_SIZE_1K may invalidate it
1683 */
1684 for (i = 0; i < FC_WORDS; i++)
1685 /*
1686 * Flash cache is big endian for parameter pages, at
1687 * least on STB SoCs
1688 */
1689 flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i));
1690
1691 brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
1692
1693 /* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1694 if (host->hwcfg.sector_size_1k)
1695 brcmnand_set_sector_size_1k(host,
1696 host->hwcfg.sector_size_1k);
1697 }
1698
1699 /* Re-enable protection is necessary only after erase */
1700 if (command == NAND_CMD_ERASE1)
1701 brcmnand_wp(mtd, 1);
1702 }
1703
1704 static uint8_t brcmnand_read_byte(struct nand_chip *chip)
1705 {
1706 struct brcmnand_host *host = nand_get_controller_data(chip);
1707 struct brcmnand_controller *ctrl = host->ctrl;
1708 uint8_t ret = 0;
1709 int addr, offs;
1710
1711 switch (host->last_cmd) {
1712 case NAND_CMD_READID:
1713 if (host->last_byte < 4)
1714 ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1715 (24 - (host->last_byte << 3));
1716 else if (host->last_byte < 8)
1717 ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1718 (56 - (host->last_byte << 3));
1719 break;
1720
1721 case NAND_CMD_READOOB:
1722 ret = oob_reg_read(ctrl, host->last_byte);
1723 break;
1724
1725 case NAND_CMD_STATUS:
1726 ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1727 INTFC_FLASH_STATUS;
1728 if (wp_on) /* hide WP status */
1729 ret |= NAND_STATUS_WP;
1730 break;
1731
1732 case NAND_CMD_PARAM:
1733 case NAND_CMD_RNDOUT:
1734 addr = host->last_addr + host->last_byte;
1735 offs = addr & (FC_BYTES - 1);
1736
1737 /* At FC_BYTES boundary, switch to next column */
1738 if (host->last_byte > 0 && offs == 0)
1739 nand_change_read_column_op(chip, addr, NULL, 0, false);
1740
1741 ret = ctrl->flash_cache[offs];
1742 break;
1743 case NAND_CMD_GET_FEATURES:
1744 if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1745 ret = 0;
1746 } else {
1747 bool last = host->last_byte ==
1748 ONFI_SUBFEATURE_PARAM_LEN - 1;
1749 brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1750 ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1751 }
1752 }
1753
1754 dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1755 host->last_byte++;
1756
1757 return ret;
1758 }
1759
1760 static void brcmnand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
1761 {
1762 int i;
1763
1764 for (i = 0; i < len; i++, buf++)
1765 *buf = brcmnand_read_byte(chip);
1766 }
1767
1768 static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf,
1769 int len)
1770 {
1771 int i;
1772 struct brcmnand_host *host = nand_get_controller_data(chip);
1773
1774 switch (host->last_cmd) {
1775 case NAND_CMD_SET_FEATURES:
1776 for (i = 0; i < len; i++)
1777 brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1778 (i + 1) == len);
1779 break;
1780 default:
1781 BUG();
1782 break;
1783 }
1784 }
1785
1786 /**
1787 * Kick EDU engine
1788 */
1789 static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1790 u32 len, u8 cmd)
1791 {
1792 struct brcmnand_controller *ctrl = host->ctrl;
1793 unsigned long timeo = msecs_to_jiffies(200);
1794 int ret = 0;
1795 int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1796 u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE);
1797 unsigned int trans = len >> FC_SHIFT;
1798 dma_addr_t pa;
1799
1800 pa = dma_map_single(ctrl->dev, buf, len, dir);
1801 if (dma_mapping_error(ctrl->dev, pa)) {
1802 dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n");
1803 return -ENOMEM;
1804 }
1805
1806 ctrl->edu_pending = true;
1807 ctrl->edu_dram_addr = pa;
1808 ctrl->edu_ext_addr = addr;
1809 ctrl->edu_cmd = edu_cmd;
1810 ctrl->edu_count = trans;
1811
1812 edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1813 edu_readl(ctrl, EDU_DRAM_ADDR);
1814 edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1815 edu_readl(ctrl, EDU_EXT_ADDR);
1816 edu_writel(ctrl, EDU_LENGTH, FC_BYTES);
1817 edu_readl(ctrl, EDU_LENGTH);
1818
1819 /* Start edu engine */
1820 mb(); /* flush previous writes */
1821 edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1822 edu_readl(ctrl, EDU_CMD);
1823
1824 if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) {
1825 dev_err(ctrl->dev,
1826 "timeout waiting for EDU; status %#x, error status %#x\n",
1827 edu_readl(ctrl, EDU_STATUS),
1828 edu_readl(ctrl, EDU_ERR_STATUS));
1829 }
1830
1831 dma_unmap_single(ctrl->dev, pa, len, dir);
1832
1833 /* for program page check NAND status */
1834 if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1835 INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) &&
1836 edu_cmd == EDU_CMD_WRITE) {
1837 dev_info(ctrl->dev, "program failed at %llx\n",
1838 (unsigned long long)addr);
1839 ret = -EIO;
1840 }
1841
1842 /* Make sure the EDU status is clean */
1843 if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE)
1844 dev_warn(ctrl->dev, "EDU still active: %#x\n",
1845 edu_readl(ctrl, EDU_STATUS));
1846
1847 if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) {
1848 dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n",
1849 (unsigned long long)addr);
1850 ret = -EIO;
1851 }
1852
1853 ctrl->edu_pending = false;
1854 brcmnand_edu_init(ctrl);
1855 edu_writel(ctrl, EDU_STOP, 0); /* force stop */
1856 edu_readl(ctrl, EDU_STOP);
1857
1858 return ret;
1859 }
1860
1861 /**
1862 * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1863 * following ahead of time:
1864 * - Is this descriptor the beginning or end of a linked list?
1865 * - What is the (DMA) address of the next descriptor in the linked list?
1866 */
1867 static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1868 struct brcm_nand_dma_desc *desc, u64 addr,
1869 dma_addr_t buf, u32 len, u8 dma_cmd,
1870 bool begin, bool end,
1871 dma_addr_t next_desc)
1872 {
1873 memset(desc, 0, sizeof(*desc));
1874 /* Descriptors are written in native byte order (wordwise) */
1875 desc->next_desc = lower_32_bits(next_desc);
1876 desc->next_desc_ext = upper_32_bits(next_desc);
1877 desc->cmd_irq = (dma_cmd << 24) |
1878 (end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1879 (!!begin) | ((!!end) << 1); /* head, tail */
1880 #ifdef CONFIG_CPU_BIG_ENDIAN
1881 desc->cmd_irq |= 0x01 << 12;
1882 #endif
1883 desc->dram_addr = lower_32_bits(buf);
1884 desc->dram_addr_ext = upper_32_bits(buf);
1885 desc->tfr_len = len;
1886 desc->total_len = len;
1887 desc->flash_addr = lower_32_bits(addr);
1888 desc->flash_addr_ext = upper_32_bits(addr);
1889 desc->cs = host->cs;
1890 desc->status_valid = 0x01;
1891 return 0;
1892 }
1893
1894 /**
1895 * Kick the FLASH_DMA engine, with a given DMA descriptor
1896 */
1897 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
1898 {
1899 struct brcmnand_controller *ctrl = host->ctrl;
1900 unsigned long timeo = msecs_to_jiffies(100);
1901
1902 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
1903 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
1904 if (ctrl->nand_version > 0x0602) {
1905 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
1906 upper_32_bits(desc));
1907 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
1908 }
1909
1910 /* Start FLASH_DMA engine */
1911 ctrl->dma_pending = true;
1912 mb(); /* flush previous writes */
1913 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
1914
1915 if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
1916 dev_err(ctrl->dev,
1917 "timeout waiting for DMA; status %#x, error status %#x\n",
1918 flash_dma_readl(ctrl, FLASH_DMA_STATUS),
1919 flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
1920 }
1921 ctrl->dma_pending = false;
1922 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
1923 }
1924
1925 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1926 u32 len, u8 dma_cmd)
1927 {
1928 struct brcmnand_controller *ctrl = host->ctrl;
1929 dma_addr_t buf_pa;
1930 int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1931
1932 buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
1933 if (dma_mapping_error(ctrl->dev, buf_pa)) {
1934 dev_err(ctrl->dev, "unable to map buffer for DMA\n");
1935 return -ENOMEM;
1936 }
1937
1938 brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
1939 dma_cmd, true, true, 0);
1940
1941 brcmnand_dma_run(host, ctrl->dma_pa);
1942
1943 dma_unmap_single(ctrl->dev, buf_pa, len, dir);
1944
1945 if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
1946 return -EBADMSG;
1947 else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
1948 return -EUCLEAN;
1949
1950 return 0;
1951 }
1952
1953 /*
1954 * Assumes proper CS is already set
1955 */
1956 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
1957 u64 addr, unsigned int trans, u32 *buf,
1958 u8 *oob, u64 *err_addr)
1959 {
1960 struct brcmnand_host *host = nand_get_controller_data(chip);
1961 struct brcmnand_controller *ctrl = host->ctrl;
1962 int i, j, ret = 0;
1963
1964 brcmnand_clear_ecc_addr(ctrl);
1965
1966 for (i = 0; i < trans; i++, addr += FC_BYTES) {
1967 brcmnand_set_cmd_addr(mtd, addr);
1968 /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
1969 brcmnand_send_cmd(host, CMD_PAGE_READ);
1970 brcmnand_waitfunc(chip);
1971
1972 if (likely(buf)) {
1973 brcmnand_soc_data_bus_prepare(ctrl->soc, false);
1974
1975 for (j = 0; j < FC_WORDS; j++, buf++)
1976 *buf = brcmnand_read_fc(ctrl, j);
1977
1978 brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
1979 }
1980
1981 if (oob)
1982 oob += read_oob_from_regs(ctrl, i, oob,
1983 mtd->oobsize / trans,
1984 host->hwcfg.sector_size_1k);
1985
1986 if (!ret) {
1987 *err_addr = brcmnand_get_uncorrecc_addr(ctrl);
1988
1989 if (*err_addr)
1990 ret = -EBADMSG;
1991 }
1992
1993 if (!ret) {
1994 *err_addr = brcmnand_get_correcc_addr(ctrl);
1995
1996 if (*err_addr)
1997 ret = -EUCLEAN;
1998 }
1999 }
2000
2001 return ret;
2002 }
2003
2004 /*
2005 * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
2006 * error
2007 *
2008 * Because the HW ECC signals an ECC error if an erase paged has even a single
2009 * bitflip, we must check each ECC error to see if it is actually an erased
2010 * page with bitflips, not a truly corrupted page.
2011 *
2012 * On a real error, return a negative error code (-EBADMSG for ECC error), and
2013 * buf will contain raw data.
2014 * Otherwise, buf gets filled with 0xffs and return the maximum number of
2015 * bitflips-per-ECC-sector to the caller.
2016 *
2017 */
2018 static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
2019 struct nand_chip *chip, void *buf, u64 addr)
2020 {
2021 int i, sas;
2022 void *oob = chip->oob_poi;
2023 int bitflips = 0;
2024 int page = addr >> chip->page_shift;
2025 int ret;
2026 void *ecc_chunk;
2027
2028 if (!buf)
2029 buf = nand_get_data_buf(chip);
2030
2031 sas = mtd->oobsize / chip->ecc.steps;
2032
2033 /* read without ecc for verification */
2034 ret = chip->ecc.read_page_raw(chip, buf, true, page);
2035 if (ret)
2036 return ret;
2037
2038 for (i = 0; i < chip->ecc.steps; i++, oob += sas) {
2039 ecc_chunk = buf + chip->ecc.size * i;
2040 ret = nand_check_erased_ecc_chunk(ecc_chunk,
2041 chip->ecc.size,
2042 oob, sas, NULL, 0,
2043 chip->ecc.strength);
2044 if (ret < 0)
2045 return ret;
2046
2047 bitflips = max(bitflips, ret);
2048 }
2049
2050 return bitflips;
2051 }
2052
2053 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
2054 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
2055 {
2056 struct brcmnand_host *host = nand_get_controller_data(chip);
2057 struct brcmnand_controller *ctrl = host->ctrl;
2058 u64 err_addr = 0;
2059 int err;
2060 bool retry = true;
2061
2062 dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
2063
2064 try_dmaread:
2065 brcmnand_clear_ecc_addr(ctrl);
2066
2067 if (ctrl->dma_trans && !oob && flash_dma_buf_ok(buf)) {
2068 err = ctrl->dma_trans(host, addr, buf,
2069 trans * FC_BYTES,
2070 CMD_PAGE_READ);
2071
2072 if (err) {
2073 if (mtd_is_bitflip_or_eccerr(err))
2074 err_addr = addr;
2075 else
2076 return -EIO;
2077 }
2078 } else {
2079 if (oob)
2080 memset(oob, 0x99, mtd->oobsize);
2081
2082 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2083 oob, &err_addr);
2084 }
2085
2086 if (mtd_is_eccerr(err)) {
2087 /*
2088 * On controller version and 7.0, 7.1 , DMA read after a
2089 * prior PIO read that reported uncorrectable error,
2090 * the DMA engine captures this error following DMA read
2091 * cleared only on subsequent DMA read, so just retry once
2092 * to clear a possible false error reported for current DMA
2093 * read
2094 */
2095 if ((ctrl->nand_version == 0x0700) ||
2096 (ctrl->nand_version == 0x0701)) {
2097 if (retry) {
2098 retry = false;
2099 goto try_dmaread;
2100 }
2101 }
2102
2103 /*
2104 * Controller version 7.2 has hw encoder to detect erased page
2105 * bitflips, apply sw verification for older controllers only
2106 */
2107 if (ctrl->nand_version < 0x0702) {
2108 err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
2109 addr);
2110 /* erased page bitflips corrected */
2111 if (err >= 0)
2112 return err;
2113 }
2114
2115 dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
2116 (unsigned long long)err_addr);
2117 mtd->ecc_stats.failed++;
2118 /* NAND layer expects zero on ECC errors */
2119 return 0;
2120 }
2121
2122 if (mtd_is_bitflip(err)) {
2123 unsigned int corrected = brcmnand_count_corrected(ctrl);
2124
2125 dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
2126 (unsigned long long)err_addr);
2127 mtd->ecc_stats.corrected += corrected;
2128 /* Always exceed the software-imposed threshold */
2129 return max(mtd->bitflip_threshold, corrected);
2130 }
2131
2132 return 0;
2133 }
2134
2135 static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
2136 int oob_required, int page)
2137 {
2138 struct mtd_info *mtd = nand_to_mtd(chip);
2139 struct brcmnand_host *host = nand_get_controller_data(chip);
2140 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2141
2142 nand_read_page_op(chip, page, 0, NULL, 0);
2143
2144 return brcmnand_read(mtd, chip, host->last_addr,
2145 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2146 }
2147
2148 static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2149 int oob_required, int page)
2150 {
2151 struct brcmnand_host *host = nand_get_controller_data(chip);
2152 struct mtd_info *mtd = nand_to_mtd(chip);
2153 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2154 int ret;
2155
2156 nand_read_page_op(chip, page, 0, NULL, 0);
2157
2158 brcmnand_set_ecc_enabled(host, 0);
2159 ret = brcmnand_read(mtd, chip, host->last_addr,
2160 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2161 brcmnand_set_ecc_enabled(host, 1);
2162 return ret;
2163 }
2164
2165 static int brcmnand_read_oob(struct nand_chip *chip, int page)
2166 {
2167 struct mtd_info *mtd = nand_to_mtd(chip);
2168
2169 return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2170 mtd->writesize >> FC_SHIFT,
2171 NULL, (u8 *)chip->oob_poi);
2172 }
2173
2174 static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
2175 {
2176 struct mtd_info *mtd = nand_to_mtd(chip);
2177 struct brcmnand_host *host = nand_get_controller_data(chip);
2178
2179 brcmnand_set_ecc_enabled(host, 0);
2180 brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2181 mtd->writesize >> FC_SHIFT,
2182 NULL, (u8 *)chip->oob_poi);
2183 brcmnand_set_ecc_enabled(host, 1);
2184 return 0;
2185 }
2186
2187 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
2188 u64 addr, const u32 *buf, u8 *oob)
2189 {
2190 struct brcmnand_host *host = nand_get_controller_data(chip);
2191 struct brcmnand_controller *ctrl = host->ctrl;
2192 unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
2193 int status, ret = 0;
2194
2195 dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
2196
2197 if (unlikely((unsigned long)buf & 0x03)) {
2198 dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
2199 buf = (u32 *)((unsigned long)buf & ~0x03);
2200 }
2201
2202 brcmnand_wp(mtd, 0);
2203
2204 for (i = 0; i < ctrl->max_oob; i += 4)
2205 oob_reg_write(ctrl, i, 0xffffffff);
2206
2207 if (use_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
2208 if (ctrl->dma_trans(host, addr, (u32 *)buf, mtd->writesize,
2209 CMD_PROGRAM_PAGE))
2210
2211 ret = -EIO;
2212
2213 goto out;
2214 }
2215
2216 for (i = 0; i < trans; i++, addr += FC_BYTES) {
2217 /* full address MUST be set before populating FC */
2218 brcmnand_set_cmd_addr(mtd, addr);
2219
2220 if (buf) {
2221 brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2222
2223 for (j = 0; j < FC_WORDS; j++, buf++)
2224 brcmnand_write_fc(ctrl, j, *buf);
2225
2226 brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2227 } else if (oob) {
2228 for (j = 0; j < FC_WORDS; j++)
2229 brcmnand_write_fc(ctrl, j, 0xffffffff);
2230 }
2231
2232 if (oob) {
2233 oob += write_oob_to_regs(ctrl, i, oob,
2234 mtd->oobsize / trans,
2235 host->hwcfg.sector_size_1k);
2236 }
2237
2238 /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
2239 brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
2240 status = brcmnand_waitfunc(chip);
2241
2242 if (status & NAND_STATUS_FAIL) {
2243 dev_info(ctrl->dev, "program failed at %llx\n",
2244 (unsigned long long)addr);
2245 ret = -EIO;
2246 goto out;
2247 }
2248 }
2249 out:
2250 brcmnand_wp(mtd, 1);
2251 return ret;
2252 }
2253
2254 static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
2255 int oob_required, int page)
2256 {
2257 struct mtd_info *mtd = nand_to_mtd(chip);
2258 struct brcmnand_host *host = nand_get_controller_data(chip);
2259 void *oob = oob_required ? chip->oob_poi : NULL;
2260
2261 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2262 brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2263
2264 return nand_prog_page_end_op(chip);
2265 }
2266
2267 static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
2268 int oob_required, int page)
2269 {
2270 struct mtd_info *mtd = nand_to_mtd(chip);
2271 struct brcmnand_host *host = nand_get_controller_data(chip);
2272 void *oob = oob_required ? chip->oob_poi : NULL;
2273
2274 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2275 brcmnand_set_ecc_enabled(host, 0);
2276 brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2277 brcmnand_set_ecc_enabled(host, 1);
2278
2279 return nand_prog_page_end_op(chip);
2280 }
2281
2282 static int brcmnand_write_oob(struct nand_chip *chip, int page)
2283 {
2284 return brcmnand_write(nand_to_mtd(chip), chip,
2285 (u64)page << chip->page_shift, NULL,
2286 chip->oob_poi);
2287 }
2288
2289 static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
2290 {
2291 struct mtd_info *mtd = nand_to_mtd(chip);
2292 struct brcmnand_host *host = nand_get_controller_data(chip);
2293 int ret;
2294
2295 brcmnand_set_ecc_enabled(host, 0);
2296 ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
2297 (u8 *)chip->oob_poi);
2298 brcmnand_set_ecc_enabled(host, 1);
2299
2300 return ret;
2301 }
2302
2303 /***********************************************************************
2304 * Per-CS setup (1 NAND device)
2305 ***********************************************************************/
2306
2307 static int brcmnand_set_cfg(struct brcmnand_host *host,
2308 struct brcmnand_cfg *cfg)
2309 {
2310 struct brcmnand_controller *ctrl = host->ctrl;
2311 struct nand_chip *chip = &host->chip;
2312 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2313 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2314 BRCMNAND_CS_CFG_EXT);
2315 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2316 BRCMNAND_CS_ACC_CONTROL);
2317 u8 block_size = 0, page_size = 0, device_size = 0;
2318 u32 tmp;
2319
2320 if (ctrl->block_sizes) {
2321 int i, found;
2322
2323 for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
2324 if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
2325 block_size = i;
2326 found = 1;
2327 }
2328 if (!found) {
2329 dev_warn(ctrl->dev, "invalid block size %u\n",
2330 cfg->block_size);
2331 return -EINVAL;
2332 }
2333 } else {
2334 block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2335 }
2336
2337 if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2338 cfg->block_size > ctrl->max_block_size)) {
2339 dev_warn(ctrl->dev, "invalid block size %u\n",
2340 cfg->block_size);
2341 block_size = 0;
2342 }
2343
2344 if (ctrl->page_sizes) {
2345 int i, found;
2346
2347 for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2348 if (ctrl->page_sizes[i] == cfg->page_size) {
2349 page_size = i;
2350 found = 1;
2351 }
2352 if (!found) {
2353 dev_warn(ctrl->dev, "invalid page size %u\n",
2354 cfg->page_size);
2355 return -EINVAL;
2356 }
2357 } else {
2358 page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2359 }
2360
2361 if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2362 cfg->page_size > ctrl->max_page_size)) {
2363 dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2364 return -EINVAL;
2365 }
2366
2367 if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2368 dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2369 (unsigned long long)cfg->device_size);
2370 return -EINVAL;
2371 }
2372 device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2373
2374 tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2375 (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2376 (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2377 (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2378 (device_size << CFG_DEVICE_SIZE_SHIFT);
2379 if (cfg_offs == cfg_ext_offs) {
2380 tmp |= (page_size << CFG_PAGE_SIZE_SHIFT) |
2381 (block_size << CFG_BLK_SIZE_SHIFT);
2382 nand_writereg(ctrl, cfg_offs, tmp);
2383 } else {
2384 nand_writereg(ctrl, cfg_offs, tmp);
2385 tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2386 (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2387 nand_writereg(ctrl, cfg_ext_offs, tmp);
2388 }
2389
2390 tmp = nand_readreg(ctrl, acc_control_offs);
2391 tmp &= ~brcmnand_ecc_level_mask(ctrl);
2392 tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
2393 tmp &= ~brcmnand_spare_area_mask(ctrl);
2394 tmp |= cfg->spare_area_size;
2395 nand_writereg(ctrl, acc_control_offs, tmp);
2396
2397 brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2398
2399 /* threshold = ceil(BCH-level * 0.75) */
2400 brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2401
2402 return 0;
2403 }
2404
2405 static void brcmnand_print_cfg(struct brcmnand_host *host,
2406 char *buf, struct brcmnand_cfg *cfg)
2407 {
2408 buf += sprintf(buf,
2409 "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2410 (unsigned long long)cfg->device_size >> 20,
2411 cfg->block_size >> 10,
2412 cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2413 cfg->page_size >= 1024 ? "KiB" : "B",
2414 cfg->spare_area_size, cfg->device_width);
2415
2416 /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2417 if (is_hamming_ecc(host->ctrl, cfg))
2418 sprintf(buf, ", Hamming ECC");
2419 else if (cfg->sector_size_1k)
2420 sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2421 else
2422 sprintf(buf, ", BCH-%u", cfg->ecc_level);
2423 }
2424
2425 /*
2426 * Minimum number of bytes to address a page. Calculated as:
2427 * roundup(log2(size / page-size) / 8)
2428 *
2429 * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2430 * OK because many other things will break if 'size' is irregular...
2431 */
2432 static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2433 {
2434 return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2435 }
2436
2437 static int brcmnand_setup_dev(struct brcmnand_host *host)
2438 {
2439 struct mtd_info *mtd = nand_to_mtd(&host->chip);
2440 struct nand_chip *chip = &host->chip;
2441 struct brcmnand_controller *ctrl = host->ctrl;
2442 struct brcmnand_cfg *cfg = &host->hwcfg;
2443 char msg[128];
2444 u32 offs, tmp, oob_sector;
2445 int ret;
2446
2447 memset(cfg, 0, sizeof(*cfg));
2448
2449 ret = of_property_read_u32(nand_get_flash_node(chip),
2450 "brcm,nand-oob-sector-size",
2451 &oob_sector);
2452 if (ret) {
2453 /* Use detected size */
2454 cfg->spare_area_size = mtd->oobsize /
2455 (mtd->writesize >> FC_SHIFT);
2456 } else {
2457 cfg->spare_area_size = oob_sector;
2458 }
2459 if (cfg->spare_area_size > ctrl->max_oob)
2460 cfg->spare_area_size = ctrl->max_oob;
2461 /*
2462 * Set oobsize to be consistent with controller's spare_area_size, as
2463 * the rest is inaccessible.
2464 */
2465 mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2466
2467 cfg->device_size = mtd->size;
2468 cfg->block_size = mtd->erasesize;
2469 cfg->page_size = mtd->writesize;
2470 cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2471 cfg->col_adr_bytes = 2;
2472 cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2473
2474 if (chip->ecc.mode != NAND_ECC_HW) {
2475 dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2476 chip->ecc.mode);
2477 return -EINVAL;
2478 }
2479
2480 if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
2481 if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2482 /* Default to Hamming for 1-bit ECC, if unspecified */
2483 chip->ecc.algo = NAND_ECC_HAMMING;
2484 else
2485 /* Otherwise, BCH */
2486 chip->ecc.algo = NAND_ECC_BCH;
2487 }
2488
2489 if (chip->ecc.algo == NAND_ECC_HAMMING && (chip->ecc.strength != 1 ||
2490 chip->ecc.size != 512)) {
2491 dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2492 chip->ecc.strength, chip->ecc.size);
2493 return -EINVAL;
2494 }
2495
2496 if (chip->ecc.mode != NAND_ECC_NONE &&
2497 (!chip->ecc.size || !chip->ecc.strength)) {
2498 if (chip->base.eccreq.step_size && chip->base.eccreq.strength) {
2499 /* use detected ECC parameters */
2500 chip->ecc.size = chip->base.eccreq.step_size;
2501 chip->ecc.strength = chip->base.eccreq.strength;
2502 dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
2503 chip->ecc.size, chip->ecc.strength);
2504 }
2505 }
2506
2507 switch (chip->ecc.size) {
2508 case 512:
2509 if (chip->ecc.algo == NAND_ECC_HAMMING)
2510 cfg->ecc_level = 15;
2511 else
2512 cfg->ecc_level = chip->ecc.strength;
2513 cfg->sector_size_1k = 0;
2514 break;
2515 case 1024:
2516 if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2517 dev_err(ctrl->dev, "1KB sectors not supported\n");
2518 return -EINVAL;
2519 }
2520 if (chip->ecc.strength & 0x1) {
2521 dev_err(ctrl->dev,
2522 "odd ECC not supported with 1KB sectors\n");
2523 return -EINVAL;
2524 }
2525
2526 cfg->ecc_level = chip->ecc.strength >> 1;
2527 cfg->sector_size_1k = 1;
2528 break;
2529 default:
2530 dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2531 chip->ecc.size);
2532 return -EINVAL;
2533 }
2534
2535 cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2536 if (mtd->writesize > 512)
2537 cfg->ful_adr_bytes += cfg->col_adr_bytes;
2538 else
2539 cfg->ful_adr_bytes += 1;
2540
2541 ret = brcmnand_set_cfg(host, cfg);
2542 if (ret)
2543 return ret;
2544
2545 brcmnand_set_ecc_enabled(host, 1);
2546
2547 brcmnand_print_cfg(host, msg, cfg);
2548 dev_info(ctrl->dev, "detected %s\n", msg);
2549
2550 /* Configure ACC_CONTROL */
2551 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2552 tmp = nand_readreg(ctrl, offs);
2553 tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2554 tmp &= ~ACC_CONTROL_RD_ERASED;
2555
2556 /* We need to turn on Read from erased paged protected by ECC */
2557 if (ctrl->nand_version >= 0x0702)
2558 tmp |= ACC_CONTROL_RD_ERASED;
2559 tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2560 if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2561 tmp &= ~ACC_CONTROL_PREFETCH;
2562
2563 nand_writereg(ctrl, offs, tmp);
2564
2565 return 0;
2566 }
2567
2568 static int brcmnand_attach_chip(struct nand_chip *chip)
2569 {
2570 struct mtd_info *mtd = nand_to_mtd(chip);
2571 struct brcmnand_host *host = nand_get_controller_data(chip);
2572 int ret;
2573
2574 chip->options |= NAND_NO_SUBPAGE_WRITE;
2575 /*
2576 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2577 * to/from, and have nand_base pass us a bounce buffer instead, as
2578 * needed.
2579 */
2580 chip->options |= NAND_USE_BOUNCE_BUFFER;
2581
2582 if (chip->bbt_options & NAND_BBT_USE_FLASH)
2583 chip->bbt_options |= NAND_BBT_NO_OOB;
2584
2585 if (brcmnand_setup_dev(host))
2586 return -ENXIO;
2587
2588 chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2589
2590 /* only use our internal HW threshold */
2591 mtd->bitflip_threshold = 1;
2592
2593 ret = brcmstb_choose_ecc_layout(host);
2594
2595 return ret;
2596 }
2597
2598 static const struct nand_controller_ops brcmnand_controller_ops = {
2599 .attach_chip = brcmnand_attach_chip,
2600 };
2601
2602 static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
2603 {
2604 struct brcmnand_controller *ctrl = host->ctrl;
2605 struct platform_device *pdev = host->pdev;
2606 struct mtd_info *mtd;
2607 struct nand_chip *chip;
2608 int ret;
2609 u16 cfg_offs;
2610
2611 ret = of_property_read_u32(dn, "reg", &host->cs);
2612 if (ret) {
2613 dev_err(&pdev->dev, "can't get chip-select\n");
2614 return -ENXIO;
2615 }
2616
2617 mtd = nand_to_mtd(&host->chip);
2618 chip = &host->chip;
2619
2620 nand_set_flash_node(chip, dn);
2621 nand_set_controller_data(chip, host);
2622 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
2623 host->cs);
2624 if (!mtd->name)
2625 return -ENOMEM;
2626
2627 mtd->owner = THIS_MODULE;
2628 mtd->dev.parent = &pdev->dev;
2629
2630 chip->legacy.cmd_ctrl = brcmnand_cmd_ctrl;
2631 chip->legacy.cmdfunc = brcmnand_cmdfunc;
2632 chip->legacy.waitfunc = brcmnand_waitfunc;
2633 chip->legacy.read_byte = brcmnand_read_byte;
2634 chip->legacy.read_buf = brcmnand_read_buf;
2635 chip->legacy.write_buf = brcmnand_write_buf;
2636
2637 chip->ecc.mode = NAND_ECC_HW;
2638 chip->ecc.read_page = brcmnand_read_page;
2639 chip->ecc.write_page = brcmnand_write_page;
2640 chip->ecc.read_page_raw = brcmnand_read_page_raw;
2641 chip->ecc.write_page_raw = brcmnand_write_page_raw;
2642 chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2643 chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2644 chip->ecc.read_oob = brcmnand_read_oob;
2645 chip->ecc.write_oob = brcmnand_write_oob;
2646
2647 chip->controller = &ctrl->controller;
2648
2649 /*
2650 * The bootloader might have configured 16bit mode but
2651 * NAND READID command only works in 8bit mode. We force
2652 * 8bit mode here to ensure that NAND READID commands works.
2653 */
2654 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2655 nand_writereg(ctrl, cfg_offs,
2656 nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2657
2658 ret = nand_scan(chip, 1);
2659 if (ret)
2660 return ret;
2661
2662 ret = mtd_device_register(mtd, NULL, 0);
2663 if (ret)
2664 nand_cleanup(chip);
2665
2666 return ret;
2667 }
2668
2669 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2670 int restore)
2671 {
2672 struct brcmnand_controller *ctrl = host->ctrl;
2673 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2674 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2675 BRCMNAND_CS_CFG_EXT);
2676 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2677 BRCMNAND_CS_ACC_CONTROL);
2678 u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2679 u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2680
2681 if (restore) {
2682 nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2683 if (cfg_offs != cfg_ext_offs)
2684 nand_writereg(ctrl, cfg_ext_offs,
2685 host->hwcfg.config_ext);
2686 nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2687 nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2688 nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2689 } else {
2690 host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2691 if (cfg_offs != cfg_ext_offs)
2692 host->hwcfg.config_ext =
2693 nand_readreg(ctrl, cfg_ext_offs);
2694 host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2695 host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2696 host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2697 }
2698 }
2699
2700 static int brcmnand_suspend(struct device *dev)
2701 {
2702 struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2703 struct brcmnand_host *host;
2704
2705 list_for_each_entry(host, &ctrl->host_list, node)
2706 brcmnand_save_restore_cs_config(host, 0);
2707
2708 ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2709 ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2710 ctrl->corr_stat_threshold =
2711 brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2712
2713 if (has_flash_dma(ctrl))
2714 ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2715 else if (has_edu(ctrl))
2716 ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2717
2718 return 0;
2719 }
2720
2721 static int brcmnand_resume(struct device *dev)
2722 {
2723 struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2724 struct brcmnand_host *host;
2725
2726 if (has_flash_dma(ctrl)) {
2727 flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2728 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2729 }
2730
2731 if (has_edu(ctrl))
2732 ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2733 else {
2734 edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config);
2735 edu_readl(ctrl, EDU_CONFIG);
2736 brcmnand_edu_init(ctrl);
2737 }
2738
2739 brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2740 brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2741 brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2742 ctrl->corr_stat_threshold);
2743 if (ctrl->soc) {
2744 /* Clear/re-enable interrupt */
2745 ctrl->soc->ctlrdy_ack(ctrl->soc);
2746 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2747 }
2748
2749 list_for_each_entry(host, &ctrl->host_list, node) {
2750 struct nand_chip *chip = &host->chip;
2751
2752 brcmnand_save_restore_cs_config(host, 1);
2753
2754 /* Reset the chip, required by some chips after power-up */
2755 nand_reset_op(chip);
2756 }
2757
2758 return 0;
2759 }
2760
2761 const struct dev_pm_ops brcmnand_pm_ops = {
2762 .suspend = brcmnand_suspend,
2763 .resume = brcmnand_resume,
2764 };
2765 EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2766
2767 static const struct of_device_id brcmnand_of_match[] = {
2768 { .compatible = "brcm,brcmnand-v4.0" },
2769 { .compatible = "brcm,brcmnand-v5.0" },
2770 { .compatible = "brcm,brcmnand-v6.0" },
2771 { .compatible = "brcm,brcmnand-v6.1" },
2772 { .compatible = "brcm,brcmnand-v6.2" },
2773 { .compatible = "brcm,brcmnand-v7.0" },
2774 { .compatible = "brcm,brcmnand-v7.1" },
2775 { .compatible = "brcm,brcmnand-v7.2" },
2776 { .compatible = "brcm,brcmnand-v7.3" },
2777 {},
2778 };
2779 MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2780
2781 /***********************************************************************
2782 * Platform driver setup (per controller)
2783 ***********************************************************************/
2784 static int brcmnand_edu_setup(struct platform_device *pdev)
2785 {
2786 struct device *dev = &pdev->dev;
2787 struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
2788 struct resource *res;
2789 int ret;
2790
2791 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu");
2792 if (res) {
2793 ctrl->edu_base = devm_ioremap_resource(dev, res);
2794 if (IS_ERR(ctrl->edu_base))
2795 return PTR_ERR(ctrl->edu_base);
2796
2797 ctrl->edu_offsets = edu_regs;
2798
2799 edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND |
2800 EDU_CONFIG_SWAP_CFG);
2801 edu_readl(ctrl, EDU_CONFIG);
2802
2803 /* initialize edu */
2804 brcmnand_edu_init(ctrl);
2805
2806 ctrl->edu_irq = platform_get_irq_optional(pdev, 1);
2807 if (ctrl->edu_irq < 0) {
2808 dev_warn(dev,
2809 "FLASH EDU enabled, using ctlrdy irq\n");
2810 } else {
2811 ret = devm_request_irq(dev, ctrl->edu_irq,
2812 brcmnand_edu_irq, 0,
2813 "brcmnand-edu", ctrl);
2814 if (ret < 0) {
2815 dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n",
2816 ctrl->edu_irq, ret);
2817 return ret;
2818 }
2819
2820 dev_info(dev, "FLASH EDU enabled using irq %u\n",
2821 ctrl->edu_irq);
2822 }
2823 }
2824
2825 return 0;
2826 }
2827
2828 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
2829 {
2830 struct device *dev = &pdev->dev;
2831 struct device_node *dn = dev->of_node, *child;
2832 struct brcmnand_controller *ctrl;
2833 struct resource *res;
2834 int ret;
2835
2836 /* We only support device-tree instantiation */
2837 if (!dn)
2838 return -ENODEV;
2839
2840 if (!of_match_node(brcmnand_of_match, dn))
2841 return -ENODEV;
2842
2843 ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
2844 if (!ctrl)
2845 return -ENOMEM;
2846
2847 dev_set_drvdata(dev, ctrl);
2848 ctrl->dev = dev;
2849
2850 init_completion(&ctrl->done);
2851 init_completion(&ctrl->dma_done);
2852 init_completion(&ctrl->edu_done);
2853 nand_controller_init(&ctrl->controller);
2854 ctrl->controller.ops = &brcmnand_controller_ops;
2855 INIT_LIST_HEAD(&ctrl->host_list);
2856
2857 /* NAND register range */
2858 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2859 ctrl->nand_base = devm_ioremap_resource(dev, res);
2860 if (IS_ERR(ctrl->nand_base))
2861 return PTR_ERR(ctrl->nand_base);
2862
2863 /* Enable clock before using NAND registers */
2864 ctrl->clk = devm_clk_get(dev, "nand");
2865 if (!IS_ERR(ctrl->clk)) {
2866 ret = clk_prepare_enable(ctrl->clk);
2867 if (ret)
2868 return ret;
2869 } else {
2870 ret = PTR_ERR(ctrl->clk);
2871 if (ret == -EPROBE_DEFER)
2872 return ret;
2873
2874 ctrl->clk = NULL;
2875 }
2876
2877 /* Initialize NAND revision */
2878 ret = brcmnand_revision_init(ctrl);
2879 if (ret)
2880 goto err;
2881
2882 /*
2883 * Most chips have this cache at a fixed offset within 'nand' block.
2884 * Some must specify this region separately.
2885 */
2886 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
2887 if (res) {
2888 ctrl->nand_fc = devm_ioremap_resource(dev, res);
2889 if (IS_ERR(ctrl->nand_fc)) {
2890 ret = PTR_ERR(ctrl->nand_fc);
2891 goto err;
2892 }
2893 } else {
2894 ctrl->nand_fc = ctrl->nand_base +
2895 ctrl->reg_offsets[BRCMNAND_FC_BASE];
2896 }
2897
2898 /* FLASH_DMA */
2899 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
2900 if (res) {
2901 ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
2902 if (IS_ERR(ctrl->flash_dma_base)) {
2903 ret = PTR_ERR(ctrl->flash_dma_base);
2904 goto err;
2905 }
2906
2907 /* initialize the dma version */
2908 brcmnand_flash_dma_revision_init(ctrl);
2909
2910 ret = -EIO;
2911 if (ctrl->nand_version >= 0x0700)
2912 ret = dma_set_mask_and_coherent(&pdev->dev,
2913 DMA_BIT_MASK(40));
2914 if (ret)
2915 ret = dma_set_mask_and_coherent(&pdev->dev,
2916 DMA_BIT_MASK(32));
2917 if (ret)
2918 goto err;
2919
2920 /* linked-list and stop on error */
2921 flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
2922 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2923
2924 /* Allocate descriptor(s) */
2925 ctrl->dma_desc = dmam_alloc_coherent(dev,
2926 sizeof(*ctrl->dma_desc),
2927 &ctrl->dma_pa, GFP_KERNEL);
2928 if (!ctrl->dma_desc) {
2929 ret = -ENOMEM;
2930 goto err;
2931 }
2932
2933 ctrl->dma_irq = platform_get_irq(pdev, 1);
2934 if ((int)ctrl->dma_irq < 0) {
2935 dev_err(dev, "missing FLASH_DMA IRQ\n");
2936 ret = -ENODEV;
2937 goto err;
2938 }
2939
2940 ret = devm_request_irq(dev, ctrl->dma_irq,
2941 brcmnand_dma_irq, 0, DRV_NAME,
2942 ctrl);
2943 if (ret < 0) {
2944 dev_err(dev, "can't allocate IRQ %d: error %d\n",
2945 ctrl->dma_irq, ret);
2946 goto err;
2947 }
2948
2949 dev_info(dev, "enabling FLASH_DMA\n");
2950 /* set flash dma transfer function to call */
2951 ctrl->dma_trans = brcmnand_dma_trans;
2952 } else {
2953 ret = brcmnand_edu_setup(pdev);
2954 if (ret < 0)
2955 goto err;
2956
2957 /* set edu transfer function to call */
2958 ctrl->dma_trans = brcmnand_edu_trans;
2959 }
2960
2961 /* Disable automatic device ID config, direct addressing */
2962 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
2963 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
2964 /* Disable XOR addressing */
2965 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
2966
2967 if (ctrl->features & BRCMNAND_HAS_WP) {
2968 /* Permanently disable write protection */
2969 if (wp_on == 2)
2970 brcmnand_set_wp(ctrl, false);
2971 } else {
2972 wp_on = 0;
2973 }
2974
2975 /* IRQ */
2976 ctrl->irq = platform_get_irq(pdev, 0);
2977 if ((int)ctrl->irq < 0) {
2978 dev_err(dev, "no IRQ defined\n");
2979 ret = -ENODEV;
2980 goto err;
2981 }
2982
2983 /*
2984 * Some SoCs integrate this controller (e.g., its interrupt bits) in
2985 * interesting ways
2986 */
2987 if (soc) {
2988 ctrl->soc = soc;
2989
2990 ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
2991 DRV_NAME, ctrl);
2992
2993 /* Enable interrupt */
2994 ctrl->soc->ctlrdy_ack(ctrl->soc);
2995 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2996 } else {
2997 /* Use standard interrupt infrastructure */
2998 ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
2999 DRV_NAME, ctrl);
3000 }
3001 if (ret < 0) {
3002 dev_err(dev, "can't allocate IRQ %d: error %d\n",
3003 ctrl->irq, ret);
3004 goto err;
3005 }
3006
3007 for_each_available_child_of_node(dn, child) {
3008 if (of_device_is_compatible(child, "brcm,nandcs")) {
3009 struct brcmnand_host *host;
3010
3011 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3012 if (!host) {
3013 of_node_put(child);
3014 ret = -ENOMEM;
3015 goto err;
3016 }
3017 host->pdev = pdev;
3018 host->ctrl = ctrl;
3019
3020 ret = brcmnand_init_cs(host, child);
3021 if (ret) {
3022 devm_kfree(dev, host);
3023 continue; /* Try all chip-selects */
3024 }
3025
3026 list_add_tail(&host->node, &ctrl->host_list);
3027 }
3028 }
3029
3030 /* No chip-selects could initialize properly */
3031 if (list_empty(&ctrl->host_list)) {
3032 ret = -ENODEV;
3033 goto err;
3034 }
3035
3036 return 0;
3037
3038 err:
3039 clk_disable_unprepare(ctrl->clk);
3040 return ret;
3041
3042 }
3043 EXPORT_SYMBOL_GPL(brcmnand_probe);
3044
3045 int brcmnand_remove(struct platform_device *pdev)
3046 {
3047 struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3048 struct brcmnand_host *host;
3049
3050 list_for_each_entry(host, &ctrl->host_list, node)
3051 nand_release(&host->chip);
3052
3053 clk_disable_unprepare(ctrl->clk);
3054
3055 dev_set_drvdata(&pdev->dev, NULL);
3056
3057 return 0;
3058 }
3059 EXPORT_SYMBOL_GPL(brcmnand_remove);
3060
3061 MODULE_LICENSE("GPL v2");
3062 MODULE_AUTHOR("Kevin Cernekee");
3063 MODULE_AUTHOR("Brian Norris");
3064 MODULE_DESCRIPTION("NAND driver for Broadcom chips");
3065 MODULE_ALIAS("platform:brcmnand");